
Analysis-based Refactorings for Haskell

Christopher Brown
Computing Laboratory

University of Kent
United Kingdom

cmb21@kent.ac.uk

Simon Thompson
Computing Laboratory

University of Kent
United Kindgom

S.J.Thompson@kent.ac.uk

ABSTRACT
Refactoring is the process of improving the design of existing
programs without changing their external behaviour. Refac-
toring can make a program easier to understand or modify
if applied appropriately. Preserving behaviour guarantees
that refactoring does not introduce (or remove) any bugs.
Refactoring has taken a prominent place in software devel-
opment and maintenance, but most of the recent success has
been in the OO and XP communities.

HaRe, the Haskell Refactorer, developed at the University
of Kent by Huiqing Li, Claus Reinke and Simon Thompson,
is a refactoring tool for Haskell 98. This paper presents a
number of new refactorings for HaRe that fall under the
category of program-analysis and it also presents some new
refactorings that make use of the GHC type-checker; the
new architecture for HaRe encompassing the type-checker is
also discussed.

General Terms
Transformation, Refactoring, Program Slicing, Languages,
Design

1. INTRODUCTION
Consider the following piece of Haskell code:

f :: [Int] -> [Int]

f list = h list

where

h [] = []

h (x:xs) = (+1) x : h xs

We have another function g such that f and g both use a
local definition that shares the same functionality of taking
a list and applying something to every element:

g :: [Char] -> [Char]

g list = g list

where

h [] = []

h (x:xs) = toUpper x : h xs

We decide that h can be promoted to the top level, and
that by adding a parameter to it, the functionality of (+1)

and toUpper can be passed to it depending on the context.

Renaming h to something useful like apply leads to the fol-
lowing program:

f :: [Int] -> [Int]

f list = apply (+1) list

g :: [Char] -> [Char]

g list = apply toUpper list

apply :: (a -> b) -> [a] -> [b]

apply f [] = []

apply f (x:xs) = f x : apply f xs

Clearly apply is in fact just map, so we rename all calls to
apply with map and delete the definition of apply.

It is common practice to write a program and then dis-
cover that small structural changes can simplify the pro-
gram. This process is called ‘refactoring’ [10]: the process
of changing the structure of a computer program without al-
tering its behaviour. The focus on structural changes rather
than changes in functionality distinguish refactoring from
general ‘code meddling’. A structural change can poten-
tially make a function simpler, by removing duplicate code,
say, or can be a preparatory step for an upgrade or extension
of a system.

HaRe [8, 15, 7] currently works in (x)Emacs and Vim and
supports a wide range of refactorings, such as renaming,
promoting and generalising a definition for example. HaRe
uses the Programatica [12] front-end to do all the parsing
and language manipulation. Haskell is used as the language
to create the refactorings and also as the language to refac-
tor.

Until now, refactorings added to HaRe did not need type
information. Haskell being a strongly typed language means
that there are a number of refactorings and transformations
that require the use of type information. This paper will
present a number of new refactorings for HaRe that make use
of type information and also some ideas for new refactorings
that require type information. The paper also proposes an
evaluation of the current HaRe refactorings: in some cases it
may be necessary to modify some of the HaRe refactorings
to make them type safe.

The paper is divided into a number of sections: firstly we
begin with a brief overview of the Haskell refactorer HaRe.

Secondly we introduce a number of new refactorings for
HaRe, some of the refactorings mentioned introduce a re-
quirement for type information. We then talk about the
architecture of HaRe and our motivation for using the GHC
API [2]. Finally we propose a number of transformations
and refactorings for HaRe. Some of the refactorings and
transformations mention build upon existing work presented
in this paper and are new ideas; a refactoring calculus is also
proposed.

2. HARE: THE HASKELL REFACTORER
HaRe currently has support for:

• The full Haskell 98 standard. Although there has been
an attempt by Chris Ryder [13] to port HaRe to the
to the de facto GHC [1] Haskell standard;

• Working within programmer’s existing tools. HaRe
currently works in (x)Emacs and Vim. Rather than
being a stand-alone tool, HaRe allows programmers to
augment their existing practice with zero overhead;

• Preserving the layout of source programs. Although
layout is significant in Haskell, there are many different
layout styles adopted by different programmers. In
most cases having code reformatted using a ‘pretty
printer’ would be totally unacceptable.

• Project aware refactorings. All refactorings in Haskell
work within the scope of the entire project, incorporat-
ing the namespace of all the modules imported (apart
from the prelude library).

The following is an example of some of the refactorings that
HaRe supports:

• Rename a definition. All occurrences of calls to the
definition are replaced with calls to the new definition
name.

• Promote or Demote a definition. Lift a local defini-
tion to the top level, or demote a top-level definition
to a local scope. HaRe checks that the identifier does
not conflict with other definitions of the same name
after the demotion or promotion.

• Generalise a definition. Higher order functions allow
specific functionality to be abstracted into a function,
which can then be passed as a parameter.

• Folding function definitions. Replace duplicate ex-
pressions with calls to a function definition encompass-
ing the functionality of the expression.

Using a refactoring tool such as HaRe allows programmers
to take a much more exploratory and speculative approach
to design. Large-scale refactorings can be accomplished in
a single step and can also be undone without any effort.

3. ANALYSIS-BASED REFACTORINGS
There have been a number of new refactorings added to
HaRe since the last official release. Some of these new refac-
torings require program analysis for their correct implemen-
tation and are discussed in this section.

In this section we present a number of new refactorings that
have been developed for HaRe:

• Adding a constructor: add a new constructor to a
data type and automatically generate new clauses to
patterns that reference the data type.

• Remove redundant declarations: select a func-
tion, and remove any definitions defined locally in the
function that are not needed to compute the right hand
side.

• Program slicing: highlight a sub-expression and cre-
ate a new definition encompassing all the names and
expressions that are needed to compute the sub-express-
ion.

• Splitting a definition: select a definition that re-
turns a tuple. Create new definitions encapsulating
the functionality of each tuple element.

• Folding expressions against function definitions:
highlight a function where the right hand side is an ex-
pression. Replace all occurrences of the sub-expression
within the program with a call to the function, in some
cases passing in literals as arguments to the function.

• Convert a data type into a newtype: Select a
data type with a single unary constructor and convert
it into a corresponding newtype representation. This
refactoring has the potential of changing the strictness
properties within a program.

HaRe has recently undergone an engineering process to allow
refactorings to gain access to type information. Some of the
refactorings presented in this section use the type checker.
The motivation of extending the refactorings to use type
information is described in the cases where it is used.

3.1 Adding a Constructor
Adding a constructor to a data type may seem like a trivial
program transformation, but it leads to an interesting prob-
lem in Haskell. It is often common practice when developing
new programs in Haskell, to start with a small data defini-
tion, and then add to that data definition to increase the
program complexity in an incremental fashion. In Haskell,
programmers often create data types to model a system and
then create functions to perform some analysis or transfor-
mation on that model. Pattern matches are added to func-
tions that work over the data type to capture different be-
haviors. When a new constructor is added to a data type,
new pattern clauses are often also added to function defi-
nitions to specify the behavior of the function for the new
constructor. This process can be done automatically in a
refactoring.

Let us consider a simple programming problem as a proof
of concept. We are presented with a simple programming

data AST = Program Exp

data Expr = Num Int

eval :: Expr -> Int

eval (Num a) = a

add :: Expr -> Expr -> Int

add (Num a) (Num b) = a + b

Figure 1: The Initial Program

data AST = Program Exp

data Expr = Num Int | Add Expr Expr

eval (Num a) = a

add :: Expr -> Expr -> Int

add (Num a) (Num b) = a + b

Figure 2: Adding a Constructor Refactoring 1

data AST = Program Exp

data Expr = Num Int | Add Expr Expr

addedAdd = error "added Add Expr Expr to Expr"

eval (Num a) = ...

eval (Add a b) = a ‘add‘ b

add (Num a) (Num b) = ...

add (Add a b) (Add c d) = addedAdd

add (Num a) (Add b c) = addedAdd

add (Add a b) (Num c) = addedAdd

Figure 3: Adding a Constructor Refactoring 2

language, and consider creating a Haskell program to eval-
uate the language (a simple interpreter). It makes sense to
represent the language in Haskell, using a data type to repre-
sent the language syntax; and creating functions to evaluate
the terms represented within the data type. Starting with
simple cases, we incrementally add more complexity to our
evaluator to handle increasingly more complex terms. Here
is an example of two distinct terms in our language sepa-
rated by semi-colons:

1;

1 + 2 - 3 ;

The first expression is the number 1; the second is a more
complicated expression showing addition and subtraction. It
makes sense to model the use of the addition and subtraction
operators at the abstract syntax tree (AST) level.

Consider Figure 1. A new data type to represent the AST
for the programming language has been defined. Currently
the AST only has provision for a single kind of expression:
a number (defined as Num Int). The program also has some
simple evaluation functions that work over the AST: eval to
evaluate an expression and add to represent the functionality
to add two expressions together.

The programmer has now decided to represent addition at
the AST level, therefore requiring a new constructor Add to
be added taking two Exprs as parameters.

This produces the program shown in Figure 2. However, the
result of calling add with the following parameters will lead
in a runtime error:

-- (1+2) + (3 + 4)

add (Add 1 2) (Add 3 4)

The function add only accepts two numbers. Clearly new
pattern match clauses need to be added to the definition of
add. The refactoring can do this automatically for us, result-
ing in the program in Figure 3. The new patterns added to
eval and add cover every possible scenario. The right hand
sides of the new pattern clauses call the function addedAdd,
which displays a message indicating that a new constructor
has been added to the data type Expr. This is necessary
because we cannot make assumptions of the intention of the
new constructor.

3.1.1 Using Type Information
The transformation described in Figure 3 was a naive im-
plementation. It simply looked for any occurrence of a Con-
structor name in a pattern, and then attempted to add new
clauses to the patterns that reference the data type in ques-
tion. We say this is naive because there are a number of
cases where the refactoring can overlook situations where
new clauses should be added to patterns, but the construc-
tors in the data type are not directly referenced in the pat-
tern. A simple example of this is in Figure 4. Here a function

data AST = PRogram Expr

data Expr = Num Int | Add Expr Expr

left :: Expr -> Expr -> Expr

left a b = a

Figure 4: A Simple Program

data AST = PRogram Expr

data Expr = Num Int | Add Expr Expr | Sub Expr Expr

addedSub = error "Added Sub Expr Expr to Expr"

left :: Expr -> Expr -> Expr

left (Sub a b) c = addedSub

left a (Sub b c) = addedSub

left a b = a

Figure 5: A Simple Program with an added con-
structor

left is declared, which takes two Expr types as parameters
and returns an Expr value. The only definition of left sim-
ply gives back the first Expr parameter. Now, suppose that
a new constructor is added to Expr, called Sub (taking two
Ints as parameters) as shown in Figure 5. It may seem that
new clauses to capture the new constructor Sub in both ar-
guments of left are not needed, as there is a catch all clause
(denoted by left a b = a). The refactorer cannot assume
what the intended behavior for the new constructor is go-
ing to be, so adds new clauses to left to capture the new
constructor, and places a call to a function which returns an
error message on the right hand side. In this case, strictly
speaking the refactoring does not need type information, as
it can simply look at the type signature of the function. But
there are some cases where the function has no type signa-
ture, but the inferred type is of the data type in question.

The program in Figure 6 shows a simple data type with two
constructors, AA and BB. The type of f is inferred by the
type checker to have f :: Data -> Data (f calls g, which
takes as a parameter a Data type). The program in Figure
7 shows the result of adding a new constructor CC to the
data type Data. The refactoring has placed new clauses for
definitions f and g to capture the undetermined intention of
the new constructor by displaying an error.

Interestingly, although adding a constructor is labelled as a
refactoring, it is in fact a transformation. There is a distinct
difference between a refactoring and a transformation that

data Data = AA | BB

f x = g x

g AA = AA

g BB = BB

Figure 6: A simple program

data Data = AA | BB | CC

addedCC = error "added CC to Data"

f CC = addedCC

f x = g x

g AA = AA

g BB = BB

g CC = addedCC

Figure 7: Adding a constructor to Data

h :: (Int, Int)

h = result 2

where

f = 42

result 2 = (1,2)

result x = res

res = (23, 24)

g = 44

Figure 8: A simple function with some redundant
declarations

might affect the behavior of the program. The top level be-
havior of a program could change if new pattern matches are
added to a function and those functions are then called with
the new constructor as a parameter. Adding new patterns
to the functions in this way can cause the parameters to
become strict. However, the local behavior of the function
is preserved. Figure 7 shows a pattern clause added to f to
capture the constructor CC. The behavior is still preserved
as long as the constructor CC is not used.

3.2 Remove Redundant Declarations
This refactoring removes all the unused declarations in the
local scope of a selected function. This refactoring is also
used in the two refactorings that follow: program slicing and
splitting a definition.

Figure 8 is an example of how this refactoring is used. The
refactoring then cleans h by removing from it any local def-
initions that are needed to compute the expression result

2.

The refactoring works by building a small data dependence
graph of the definitions needed to compute the expression on
the right hand side of the selected function. By following the
path of any function calls, it can be seen that: result calls

h :: (Int, Int)

h = result 2

where

result 2 = (1,2)

Figure 9: A simple function

res. The definitions f and g are needed to compute result

or res. If any of the function makes a call to a definition in
another scope, the refactoring simply ignores it.

It is quite common to change a function and then be left
over with local definitions that are no longer needed. A
refactoring to remove these definitions proves useful.

3.3 Program Slicing
3.3.1 Slicing Imperative Programs
A useful program transformation technique known as pro-
gram slicing has been implemented as a refactoring for HaRe.
Program Slicing [17] is a method for decomposing programs
by analyzing their data and control flow. A program slice
consists of the parts of a program that potentially effect the
values computed at some point of interest, called a slicing
criterion [16]. Usually, a slicing criterion consists of a pair
(line-number, variable). The program slice with respect to
some criterion are the parts of the program that have a di-
rect or indirect effect on computing the values at the slicing
criterion. Program slices are usually computed from a Pro-
gram Dependance Graph [4] that makes explicit both the
data and control dependencies for each operation in a pro-
gram.

The first set of program slicing algorithms took a backwards
slice of the criterion. A backwards slice is all parts of the
program that had an effect on the criterion in question. An-
other form of program slicing is a forwards slice, starting
with the program criterion, or the program point of interest
a forwards slice is all parts of the program that the crite-
rion will effect. There are two types of slice: static pro-
gram slicing, which means that all possible computations
of a program are considered and dynamicprogram slicing,
which considers only particular computations of interest (i.e
if some of the program’s input is known in advance).

3.3.2 Slicing Functional Programs
There has been little work on program slicing for Haskell.
Silva et al. [11] introduces a dynamic slicing technique for a
lazy functional logic language. The Haskell debugger, Hat
[3] also includes a program slicer. However, there is no inde-
pendent program slicing tool available for Haskell. Therefore
our motivation was to create a program slicing transforma-
tion tool that is implemented as a refactoring in HaRe.

The meaning of program slicing in the context of Haskell
is somewhat different to that in an imperative program. In
Haskell, pure functions do not produce side-effects, so per-
forming a program slice on a particular function is trivial:
a simple pruning of the call graph is needed. It makes more
sense to select a particular expression or a structure within
the program (such as a tuple or a list) and then produce
a program consisting of all names and expressions that are
needed to compute the expression of interest, or compute
each element of a tuple. This is the approach that we took.

Our program slicer works by creating a data dependance
graph based on a particular sub-expression of interest, and
then removing parts of the definition that are not required
to compute the names stored in the graph. Our program
slicer only looks under the scope of the particular definition

f x y = let result = x + y ;

result3 = z + 23 in result + result3

where

result2 = h 12 z

z = 23

h = 12

Figure 10: A simple program

f x y = let result = x + y + result2 in result

where

result2 = h 12 z

z = 23

Figure 11: A program slice for expression result

of interest, and does not compute a program slice based on
the entire program.

The program slicer for HaRe requires the selection of a
particular sub-expression of interest and then selecting the
refactoring from the HaRe menu. The refactoring then cre-
ates a new definition with the right hand side being the
selected sub expression. Any local definitions required to
compute the sub-expression are added to the new definition
within a where or let clause respectively.

Consider the program in Figure 10. Suppose the program-
mer is only interested in the parts of f that affect the compu-
tation of the expression result. The programmer highlights
the expression result and selects the refactoring from the
HaRe menu. HaRe then produces a new definition shown in
Figure 11.

The refactoring is very useful when the programmer wishes
to extract a certain piece of functionality from a definition
and then expand on that functionality, creating a new defi-
nition in the process.

3.4 Splitting a Definition
A function can return two values: for instance, the library
function splitAt returns the elements of a list before a spec-
ified index as well as the elements of a list after the index.
Sometimes we want to extract the two distinct operations
and move them into separate functions. Building upon the
program slicing refactoring presented in the previous sec-

f :: Int -> (Int, Int)

f 1 = (1 , 2)

f x = (x , x)

Figure 12: A definition
that returns a tuple

f1 :: Int -> Int

f1 1 = 1

f1 x = x

f2 :: Int -> Int

f2 1 = 2

f2 x = x

Figure 13: Splitting the
functionality of a tuple
into separate definitions

tion, we present another refactoring for HaRe that allows a
function returning a tuple to be split into separate defini-
tions: encapsulating the functionality of each tuple element.

Consider the program in Figure 12. Selecting the definition
f and choosing the “slicing over tuples” refactoring from the
HaRe menu, the program slicer gives back two new defini-
tions f1 and f2, as shown in Figure 13.

The refactoring works by continually calling the program
slicing refactoring on each element of the tuple. Each time
the program slicer is called a new definition is created. In
the cases where the right hand side of the selected definition
is not an explicit tuple (a function call, say) then the refac-
toring traverses to the function definition that is being called
(if it is a local definition) and continues the process. The
refactoring also takes into consideration function matches
(multiple definitions of a function), and performs a separate
slice on each match.

3.4.1 Using Type Information
There are situations where it becomes difficult to determine
whether one has selected a function that returns a tuple.
For example the right hand side of a selected function may
be an explicit tuple as in:

f :: (Int, Int)

f = (1 , 2)

In this case it is easy to split the definition and type in-
formation is not needed. However in cases where the right
hand side is not an explicit tuple, but a function application
then the process becomes more difficult. For example:

f = result

where

result = (1, 2)

In this case it is still possible to check without using the
type checker that the function returns a tuple, but to do
so would require traversing the AST until result is found
and then checking to see if the right hand side of result

is an explicit tuple. Instead it may be a call to a function
returning a tuple, such as splitAt. In cases like this, it
may not be possible to determine that the function returns
a tuple, without doing lots of AST traversals. Using type
information makes the process much simpler.

In the case where the right hand side of the function is not an
explicit tuple, but a function call say, then the type checker
is called to find the type of the expression on the right hand
side. If the type of the expression is a tuple then the pro-
gram slicer jumps to the definition of the function that is
being called and the process is repeated. Once an explicit
tuple has been found in the chain, the program slicer can
create new definitions for slices of each tuple element. If the
function calls are all local definitions, the right hand side of
the function is preserved, but the local definitions change to
return single elements instead of tuples.

addOne :: Int -> Int

addOne n = 1 + n

mulTwo :: Int -> Int

mulTwo n = 2 * n

addTwo :: Int -> Int -> Int

addTwo n m = n + m

Figure 14: A Simple Program showing some dupli-
cate expressions

addOne n = addTwo 1 n

...

addTwo n m = n + m

Figure 15: Folding against addOne

3.5 Folding expressions
This refactoring was implemented as an attempt to help re-
duce the amount of duplicate code within a program. The
user selects a particular function of interest with, what the
user believes to be, a common sub-expression on the right
hand side, and then selects the refactoring from the HaRe
menu. HaRe then attempts to match the expression in
the selected function with all occurrences of the expression
within the program. In particular, HaRe looks for expres-
sions that have the same partial structure as the expression
in the selected function. HaRe then replaces the expression
with a call to the selected function.

To show how this works consider the example in Figure 14.
The functions addOne and addTwo share the same partial
structure: they both add two Ints together. Suppose the
user has realised this and selects the function addTwo, HaRe
then looks for the n + m shape throughout the program, and
replaces all matches with a call to addTwo giving any literals
or identifiers as arguments. The result is shown in Figure
15.

The refactoring follows a naive approach to matching partial
structures. If, for example, the function addOne in Figure
14 was defined as follows:

addOne :: Int -> Int

addOne n = (+) 1 n

Then the refactoring would not replace the expression (+)

1 n with a function call to addTwo. If a function application
is infix, then it is represented in a different way to a nor-
mal application in the Programatica AST. Additional work
could be done to correct this, but the refactoring serves as
an example of a way to approach the problem of reducing
duplicate code in a large Haskell project.

Program Source

Lexer (pass1) Parser + Lexer

Refactorer + pretty printer

Token Stream AST

Token Stream Printer

Token Stream

Modified Program

Figure 16: The implementation of HaRe

3.6 Converting a Data Type into a Newtype
This refactoring simply converts a selected data type (with
a unary constructor) into a newtype:

data New = Con1 Int

Is converted to:

newtype New = Con1 Int

There are some implications for converting a data type into
a newtype [14]. Converting a data type into a new type is
really a Haskell transformation rather than a refactoring, as
the behaviour of the program will change. Currently, the
refactoring issues a warning to the user before the refactor-
ing is applied clearly stating that the program properties,
including strictness, will change after the transformation.
As it stands, this refactoring is relatively trivial, but could
be extended to alter the structure of the program further so
that the behavior of the program is unchanged.

4. USING THE TYPE CHECKER
The current release of HaRe uses Programatica’s lexer [5]
and parser. Figure 16 shows a graphical overview of the
implementation architecture of HaRe. To perform a refac-
toring, the parser takes the program source and passes it into
the lexer to create a token stream and also to the parser to

create the AST. The AST is used only as an auxiliary repre-
sentation of the program to guide the direct modification of
the token stream. The refactorer performs program analysis
and transformation on the AST. Once the AST is modified,
the refactorer also modifies the token stream to reflect the
changes in the AST. The token stream needs adjustment
to counteract the side-effects of the transformation on the
layout rules.

HaRe attempts to preserve the layout of the source pro-
grams. Instead of using a pretty printer to present a mod-
ified AST to the programmer in a concrete form, the new
program is extracted from the token stream. Preserving
both comments and layout style for most programs. Some
refactorings require new code to produced, in which case no
layout information can be inferred so the pretty printer is
used.

In order to create refactorings that used type information we
originally made use of the Programatica type-checker. Pro-
gramatica allows two methods of parsing a Haskell program,
where both methods return an AST. Straightforward pars-
ing returns an AST representing the names and expressions
that occur within the program. Type checking also returns
an AST, but in addition to names and expressions, the AST
is also decorated with type information, giving types for
every name and expression within the program. The type
decorated AST also contains other information to help the
type checker deal with over loading. A dictionary is used for
passing the implementation of type classes as parameters to
functions that use over loaded functions.

However, the Programatica type checker proved to be slow
in practice, so instead, we integrated HaRe with the GHC
API. HaRe still uses the Programatica front-end, to parse
the source program, but also utilises the type-checker from
GHC to get type information. An attempt was made by
Chris Ryder to port HaRe to the GHC API, but due to
time constraints the port was not fully realised. When con-
sidering using the GHC API for type checking, we decided
to not re-engineer HaRe, but instead to only call the GHC
type checker when needed, simply calling it with an arbi-
trary expression to gather type information.

5. FUTURE WORK AND CONCLUSIONS
The ideas presented in this paper have shown how Haskell is
a complex language, and that simple transformations usu-
ally require detailed program analyses. Engineering HaRe
to use type information has opened up a whole world of
more complex transformations to be added to HaRe that
require type information. One example is adding or remov-
ing class instances: such a refactoring would have to check
that removing an instance does not interfere with any func-
tions that rely on that class in a context. Similarly, adding
an instance to a class could mean that some functionality
would have to be provided to the new instance to cope with
existing functions that use the overloaded operations of a
class.

5.1 Merging a definition
A very interesting refactoring is the converse of splitting
a definition. Merging definitions together to form a new
definition which returns a tuple: each element of the tuple

take :: Int -> [a] -> [a]

take n [] = []

take 0 xs = []

take n (x:xs) = x : ls

where

ls = take (n-1) xs

drop :: Int -> [a] -> [a]

drop n [] = []

drop 0 xs = xs

drop n (x:xs) = rs

where

rs = drop (n-1) xs

Figure 17: take and drop

splitAt :: Int -> [a] -> ([a], [a])

splitAt n [] = ([], [])

splitAt 0 xs = ([], xs)

splitAt n (x:xs) = (x:ls, rs)

where

(ls, rs) = splitAt (n-1) xs

Figure 18: take and drop merged together

being the computation of one of the definitions in the merge.
This refactoring is particularly useful to compose functions
together. Consider the two functions in Figure 17, selecting
these definitions and choosing the merge refactoring, the
function splitAt is introduced, shown in Figure 18.

Together with splitting a definition, merging and splitting
allow the user to split a definition into separate subcompo-
nents, alter the functionality of one of the sub components
or even introduce new functionality and then merge back
together to form the original definition (with new function-
ality).

5.2 Generalising a data type
The refactoring to add a constructor to a data type was
discussed, it is also possible to extend this idea further to
generalise a data type. An example of this would be a data
type that represented a tree in Haskell:

data Tree = Node Int | Leaf Tree Tree

succ :: Tree -> Tree

succ (Node x) = x + 1

succ (Leaf x y) = Leaf (succ x) (succ y)

...

transformTree :: Tree -> Tree

transformTree = ... succ ...

By giving the data type Tree a general type, it is possible to
then generalise the functionality of succ and transformTree:

h l = (ls, w)

where

ls = take w l

rs = length l

w = rs - 1

Figure 19: A Function Before Splitting

f1 = ls

where

ls = take (rs - 1) l

rs = length l

f2 = rs - 1

where

rs = length l

h l = ...

Figure 20: A Function After Splitting

data Tree a = Node a | Leaf (Tree a) (Tree a)

succ :: Tree a -> Tree a

succ f (Node x) = f x

succ f (Leaf x y) = Leaf (f x) (f y)

...

transformTree :: Tree Int -> Tree Int

transformTree = ... succ (+1) ...

This refactoring could also be an example of where compos-
ing refactoringsproves useful. Introducing a new refactoring
to generalise a data type and then composing this with the
generalisation refactoring.

5.3 A Symbolic Evaluator
Splitting a definition could be extended further to optimise
code, by symbolically evaluating expressions or removing
definitions defined in a where clause. Consider the function
in Figure 19, splitting the definition into two separate func-
tions and then performing some symbolic evaluating and
optimisation produces the program in Figure 20.

5.4 Refactoring HaRe
As mentioned previously the refactorings in the current re-
lease of HaRe do not use type information. It would be inter-
esting to conduct an analysis of HaRe and how its refactor-
ings can produce untypeable code, by using the type checker
the refactorings could be made type safe.

Examples of refactorings that would benefit from type in-
formation are:

• Generalisation: Currently the refactoring to gener-
alise a definition comments out the type signature, it

would be better practice to use the type-checker to
infer the new type of the transformed definition.

• Promotion and Demotion. Promoting a polymor-
phic function to a top level, say, and removing its
arguments: making it monomorphic might impose a
monomorphism restriction. The same can be said for
demoting a definition.

5.5 A Refactoring Calculus
When implementing many of the refactorings presented in
this paper, we usually take the same preparatory steps. First
we make decisions on what we believe the behavior of the
refactoring should be (our opinions do not in all cases agree
with the opinions of others); secondly we implement the
refactoring and finally we test the refactoring until we are
certain it produces the desired result for our case analyses.

A much more elegant way to create a refactoring would be
to use a refactoring calculus. Such a calculus would allow
one to completely specify an entire refactoring using math-
ematics. A refactoring calculus would need a way to specify
any pre and post conditions that would need to be satisfied.
In order to check that the refactoring guarantees behavior,
the calculus would need a way to allow one to easily reason
about their refactoring.

It would be interesting to conduct a taxonomy of refactor-
ings, finding out exactly what is essential to create a refac-
toring for Haskell; and what is the commonality between
all the refactorings implemented so far. Perhaps there is a
more elegant solution for specifying and implementing these
refactorings. Creating a calculus would allow the program-
mer to define refactorings including the behavior expected
from the refactoring. There has been some work on formalis-
ing refactorings for Haskell by Li [6] and Cornélio [9], but to
our knowledge no work has been done to allow the complete
specification of a refactoring.

6. REFERENCES
[1] The Glasgow Haskell Compiler.

http://www.haskell.org/ghc, 2006.

[2] K. Angelov and S. Marlow. Visual haskell: A
full-featured haskell development environment. In
Haskell ’05: Proceedings of the 2005 ACM SIGPLAN
workshop on Haskell, pages 5–16. ACM Press,
September 2005.

[3] O. Chitil. Source-based trace exploration. In Draft
Proceedings of the 16th International Workshop on
Implementation of Functional Languages, IFL 2004,
pages 239–244. Technical Report 0408, University of
Kiel, September 2004.

[4] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The
program dependence graph and its use in
optimization. ACM Trans. Program. Lang. Syst.,
9(3):319–349, 1987.

[5] T. Hallgren. A Lexer for Haskell in Haskell.
http://www.cse.ogi.edu/ hallgren/Talks/LHiH/2002-
01-14.html,
2002.

[6] H. Li. Refactoring Haskell Programs. PhD thesis,
Computer Science, University of Kent, 2006.

[7] H. Li, C. Reinke, and S. Thompson. Tool support for
refactoring functional programs. In J. Jeuring, editor,
ACM SIGPLAN 2003 Haskell Workshop. Association
for Computing Machinery, August 2003. ISBN
1-58113-758-3.

[8] H. Li, S. Thompson, and C. Reinke. The Haskell
Refactorer: HaRe, and its API. In J. Boyland and
G. Hedin, editors, Proceedings of the 5th workshop on
Language Descriptions, Tools and Applications
(LDTA 2005), April 2005.

[9] M. Lopes Cornélio. Refactorings as Formal
Refinements. PhD thesis, Centro do Informática,
Universidade Federal de Permambuco, 2006.

[10] T. Mens and T. Tourwé. A survey of software
refactoring. IEEE Trans. Software Eng.,
30(2):126–139, 2004.

[11] C. Ochoa, J. Silva, and G. Vidal. Dynamic Slicing
Based on Redex Trails. In Proc. of the ACM
SIGPLAN 2004 Symposium on Partial Evaluation and
Program Manipulation (PEPM’04), pages 123–134.
ACM Press, 2004.

[12] PacSoft. Programatica: Integrating programming,
properties and validation.
www.cse.ogi.edu/PacSoft/projects/programatica/,
2005.

[13] C. Ryder and S. Thompson. Porting HaRe to the
GHC API. Technical Report 8-05, Computing
Laboratory, University of Kent, Canterbury, Kent,
UK, October 2005.

[14] Simon Peyton Jones. Haskell 98 Language and
Libraries: The Revised Report.
http://www.haskell.org/onlinereport, 2002.

[15] S. Thompson. Refactoring Functional Programs. In
V. Vene and T. Uustalu, editors, Advanced Functional
Programming, 5th International School, AFP 2004,
volume 3622 of Lecture Notes in Computer Science,
pages 331–357. Springer Verlag, September 2005.

[16] F. Tip. A survey of program slicing techniques.
Journal of programming languages, 3:121–189, 1995.

[17] M. Weiser. Program slicing. IEEE Trans. Software
Eng., 10(4):352–357, 1984.

