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ABSTRACT
Refactoring is the process of improving the design of existing
programs without changing their external behaviour. Refac-
toring can make a program easier to understand or modify
if applied correctly. Preserving behaviour guarantees that
refactoring does not introduce (or remove) any bugs.

1. INTRODUCTION
Refactoring [3] is the process of changing the structure of a
computer program without altering its behaviour. A struc-
tural change can potentially make a function definition sim-
pler, by removing duplicate code, say, or can be a prepara-
tory step for an upgrade or extension of a system. The
Haskell refactorer HaRe [2] is a refactoring tool for Haskell,
developed at the University of Kent by Huiqing Li, Claus
Reinke and Simon Thompson. HaRe currently works in
(x)Emacs and Vim and supports a wide range of refactor-
ings, such as renaming a definition, removing or adding ar-
guments to a function, and converting a concrete data type
into an abstract data type. HaRe uses the Programatica [4]
front-end to do all the parsing and language manipulation.
Haskell is used as the language to implement the refactorings
and also as the language to refactor.

Until now, refactorings implemented for HaRe did not need
type information and can rely on just the information sup-
plied in the abstract syntax tree (AST). Haskell being a
strongly typed language means that there are a number of
refactorings and transformations that require the use of type
information.

In this paper I describe some new refactorings for HaRe
that use type information. One of these new refactorings
also uses program slicing. Type checking is provided by the
GHC-API [1]; the motivation for this is also discussed.

2. ADDING A CONSTRUCTOR
Adding a constructor to a data type is an interesting prob-
lem in Haskell. Whenever a new program is being developed,
programs start small and incrementally get more complex,
each time adding more information and functionality. When
a programmer adds a new constructor to a data type, they
also often want to pattern match over the data type, this
can be done automatically by a refactoring. This trans-
formation has the potential of altering the behaviour of all
definitions that pattern match over the data type. Figure 1
shows a program with a data type named Data and a sim-
ple function definition, f that uses pattern matching over

data Data = AA | BB

f :: Data -> Int

f AA = 42

f BB = 0

Figure 1: A Simple Program

data Data AA | BB | NewCon Int

addedNewCon = error "added NewCon Int to Data"

f :: Data -> Int

f AA = 42

f BB = 0

f (NewCon a) = addedNewCon

Figure 2: Constructor NewCon has been added to Data

the data type. Figure 2 shows a similar program; this time
a new constructor named NewCon (with an Int parameter)
has been added to the data type Data, a new clause for the
definition of f has also been added to cope with the possi-
bility of f being called with the new constructor NewCon as
a parameter.

The major problem with adding a constructor to a data
type is not the trivial part of adding the constructor, it is
constructing new patterns for definitions that reference the
data type. In some cases type information is not needed
to find the clauses that reference the data type because a
constructor is directly referenced in the pattern (as in Figure
2). Type information becomes essential when a constructor
of the data type in question is not referenced in the pattern
match, or is not referenced in a nested pattern. Consider
the identity function over the data type Data:

f x = g x f CC = ?

f x = g x

g AA = AA g AA = AA

g BB = BB g BB = BB

g CC = ?

The refactoring needs to create new patterns for all defini-
tions which work over the type Data. This can be done by



f :: Int -> (Int, Int)

f 1 = (1 , 2)

f x = (x , x)

Figure 3: A definition
that returns a tuple

f1 :: Int -> Int

f1 1 = 1

f1 x = x

f2 :: Int -> Int

f2 1 = 2

f2 x = x

Figure 4: Splitting the
functionality of a tuple
into separate definitions

f x = result x

where

result x = res

res = (42,43)

Figure 5: A definition that returns a tuple by calling
a local definition

using the type checker to check whether the arguments to
a definition are of the type in question. If any of the argu-
ments are of the type in question, then the refactoring can
proceed with creating new pattern matching for the argu-
ments of type Data.

3. PROGRAM SLICING
Another refactoring for HaRe which has been implemented
using the type-checker was a static, backwards program slicer
[5] . The program slicer can work in two distinct modes: it
can compute a program slice for a particular expression of
interest, or it can create new definitions for functions that
return tuples, creating new definitions to encapsulate the
functionality of each tuple element.

Consider the program in Figure 3. Selecting the definition f

and choosing the “slicing over tuples” refactoring from the
HaRe menu, the program slicer gives back two new defini-
tions f1 and f2, as shown in Figure 4. The converse could
also be achieved to some extent, merging the definitions f1

and f2 back into the definition f, but this is currently flagged
for future work.

It is common practice for Haskell programmers to write a
definition that returns multiple computations (Figure 5). It
is also common practice to change one of the computations
that the function returns. Having refactorings that can split
a function into separate definitions, and also merging def-

f1 x = result x

where

result x = res

res = 42

f2 x = result x

where

result x = res

res = 43

Figure 6: Splitting the functionality of a definition
that does not explicitly return a tuple

initions together can make changing the functionality, or
optimising these definitions much easier.

Figure 5 shows an example of where the program slicer needs
to use type information. Looking at the right hand side
of f it is impossible to infer the type of result x without
looking at the type of the definitions result and res. In
cases like this where the right hand side of the definition
is not an explicit tuple, the program slicer calls the type
checker to find the types of the definitions needed. The
slicer proceeds if the definition returns a tuple, or is a call
to a local definition returning a tuple. Figure 6 shows the
result of the program slicer over the definition f.

4. USING TYPE INFORMATION
In order to create refactorings that use type based infor-
mation we make use of the Programatica type-checker. Pro-
gramatica allows two methods of parsing a Haskell program,
where both methods return an AST. Straightforward pars-
ing returns an AST representing the names and expressions
that occur within the program. Type checking also returns
an AST, but in addition to names and expressions, the AST
is also decorated with type information, giving types for ev-
ery name and expression within a program. The type deco-
rated AST also contains other information to help the type
checker deal with overloading. The type checker does this
by placing extra parameters to functions that use overload-
ing therefore changing the structure of the AST, so that it
no longer represents the source program.

However, the Programatica type checker was slow to use, so
instead, HaRe now utilises the type checker from the GHC-
API, simply calling it with an arbitrary expression to gather
type information when needed.

I expect the work on using type information in refactorings
to develop further. Firstly to create new refactorings that
merge and optimise definitions. There are also a number of
new refactorings that can be implemented such as adding or
removing class instances, for example.
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