
�

�������	
����	��������	�	
���

Stephen Drape
Oxford University Computing Laboratory

with thanks to Jeff Sanders

�

���	
��������	
���

Obfuscation is a program transformation:
� Used to make a program "harder to

understand"
� Try to make reverse engineering harder
� Must preserve functionality
� Concerns about efficiency

�

���
��������	
���������

Obfuscation is usually applied to object-
oriented languages such as Java and C#.

When compiling these languages, an
intermediate representation is produced.

It is possible to recover the original code
from this representation – obfuscation can
make this process harder.

�

�������������

Instead of obfuscating an imperative
program, we consider obfuscating
operations of a data-type – we can then
exploit properties of that data-type (see
later!).

We model the data-types and the
operations in Haskell.

�

���

�����!��
��

We want to obfuscate some set
operations.

Using functional programs, we can:
� Derive obfuscations
� Easily establish proofs of correctness

Both of these are difficult to do in
imperative languages.

"

#
�	��$
		
��

Adapt "array splitting" – consider a particular
example "alternating split"

Write xs ~ �l,r�a to denote xs is split into two
lists l and r – xs is data refined by �l,r�a

[5,7,5,4,3,1,1] ~ �[5,5,3,1], [7,4,1]�a

Invariant: |r| ≤ |l| ≤|r|+1

%

��$
		
������	
��

split([]) = �[],[]�a
split([p]) = �[p],[]�a
split(p:q:xs) = �p:l, q:r�a

where �l, r�a = split(xs)

unsplit �[], []�a = []

unsplit �[p], []�a = [p]

unsplit �p:l, q:r�a =

p:q:unsplit(�l, r�a)

&

���
 �	
���

split . op = sp_op . split

op = unsplit . sp_op . split

sp_op = split . op . unsplit

Data

Refinement

'

#
�	�����	
���

p: �l, r�a = �p:r, l�a

�l0, r0�a ++ �l1, r1�a

| |l0|==|r0| = �l0 ++ l1, r0 ++ r1�a

| otherwise = �l0 ++ r1, r0 ++ l1�a

: and ++ distribute over split

�(

)��������#
�	�*
	���	���$
��	��

member p xs = or(map (==p) xs)

insert p xs = if member p xs then xs

else p:xs

delete p xs = ys ++ (if null zs

then zs

else tail zs)

where (ys,zs) = span (/=p) xs

��

���

����$�	�

Deriving the delete operation for split lists
deletea p = split.delete p.unsplit

Let l = [l0, l1,…, l j, l j+1,…,ln] r = [r0, r1,…,rn']

and xs ~ �l,r �a

We have three cases
(a) p ∈ l
(b) p ∈ r

(c) p ∉ �l, r �a

��

+���,�- ,p ∈ l) �

Suppose that lj = p

Let (ly,lz) = span (/=p) l

= ([l0, l1,…, lj-1], [lj, lj+1,…, ln])

(ry,rz) = splitAt |ly| r

= ([r0, r1,…, rj-1], [rj,…, rn'])

��

+���,�- ,p ∈ l) �

deletea p �l, r�a
= {derivation equation}
split(delete p(unsplit �l, r�a))

={definition of unsplit}
split(delete p [l0, r0, l1,…])

={definition of delete, lj =p}

split([l0, r0,..., rj-1] ++ [rj,…])

��

+���,�- ,p ∈ l) �

split([l0, r0,..., rj-1] ++ [rj,…])
={split distributes over ++}

split([l0, r0,...])++ split([rj,…])

={definition of split}
�[l0,…], [r0,…]�a ++ �[rj,…, rn'], [lj+1,…, ln]�a

={earlier definitions}
�ly, ry�a ++ � rz, tail lz�a

��

+���,�- ,p ∈ l) �

�ly, ry�a ++ �rz, tail lz�a
={definition of ++, |ly|=|ry|}
�ly ++ rz, ry ++ tail lz�a

We cannot simplify this further,
but as lists are unordered:

�ly, ry�a is equivalent to �ry, ly�a

�"

+���,�- ,p ∈ l) �

�ry, ly�a ++ �rz, tail lz�a
={definition of ++}
�ry ++ rz, ly ++ tail lz�a
={definitions}

�r, delete p l�a �

�%

+���,�- ,p ∈ r) �

deletea p �l, r�a
= { l =(head l):(tail l), l≠[]}

deletea p �(head l): (tail l), r�a
={definition of :}

deletea p ((head l): �r, tail l �a)

={head l ≠ p}

(head l):(deletea p �r, tail l �a)

�&

+���,�- ,p ∈ r) �

(head l):(deletea p �r, tail l �a)

= {previous definition of deletea }
(head l):(�tail l , delete p r�a)

={definition of :}

�(head l):(delete p r),tail l �a �

�'

�
��$$�

(c) p ∉ l and p ∉ r

deletea p � l, r �a = � l, r �a �

Final definition

deletea p �l, r�a
| member p l = �r, delete p l�a
| member p r =

�(head l):(delete p r), tail l�a
| otherwise = �l, r�a

�(

.����	�����	
��

inserta p �l, r�a =

if membera p �l, r�a
then �l, r�a
else �p:r, l�a

We will now prove that

insert p = unsplit. (inserta p). split

��

!���� �

Case for p ∈ xs is trivial.

Otherwise, suppose that:

xs ~ �l, r�a and p ∉ xs

unsplit(inserta p split(xs))

={xs ~ �l, r�a }

unsplit(inserta p (�l, r�a))

��

!���� �

p:unsplit(�l, r�a)

={definition of inserta}

unsplit(�p:r, l�a)

unsplit(p:�l, r�a)

unsplit(inserta p (�l, r�a))

={definition of :}

={property of :}

��

!���� �

={xs ~ �l, r�a}
p:xs

insert p xs
�

p:unsplit(�l, r�a)

={definition of insert}

��

+�/�$�0
	� �

delete p xs = ys ++ (if null zs

then zs

else tail zs)

where (ys,zs) = span (≠≠≠≠p) xs

deletea p �l, r�a
| member p l = �r, delete p l �a
| member p r = �(head l):(delete p r), tail l �a
| otherwise = �l, r�a

Both functions have linear complexity.

��

+�/�$�0
	� �

insert p xs = if member p xs

then xs

else p:xs

inserta p �l, r�a = if membera p �l, r�a
then �l, r�a
else �p:r, l�a

Again, these functions have linear complexity.

�"

1�������	
����	��������	�	
���1

The paper looks at three representations:

� Unordered with duplicates
� Unordered without duplicates

� Strictly-increasing

Proofs and derivations of delete and
insert are given for the other
representations.

Also, another split is considered.

�%

2�	�
��� �

At the beginning, it was stated we
obfuscate data-types directly so that we
can exploit properties of the data-type.

Suppose that we want to split a matrix
and we want to develop a transpose
operation for the split matrix.

Suppose we flatten the matrix to an array
and then split this array.

�&

2�	�
��� �

Using arrays means that we lose the
"shape" of the matrix and so we have
difficulty in constructing a transpose
operation.
Using matrices directly:

�
�
�

�
�
�
�

�
=��

�

�
��
�

�
TT

TTT

DB

CA

DC

BA

�'

+���$��
���

We have seen that using data-types and

functional programming, we can

� derive obfuscations

� prove correctness

Our operations make little change to the
complexity

Have to keep split secret

�(

��	������3

Possible areas for future work
� Other obfuscations
� Other data-types (matrices, trees)
� Automation
� Obfuscation definition

��

