Obfuscating Set Representations

Stephen Drape Oxford University Computing Laboratory

with thanks to Jeff Sanders

What is obfuscation?

Obfuscation is a program transformation:

- Used to make a program "harder to understand"
- Try to make reverse engineering harder
- Must preserve functionality
- Concerns about efficiency

Why is obfuscation needed?

Obfuscation is usually applied to objectoriented languages such as Java and C#.

When compiling these languages, an intermediate representation is produced.

It is possible to recover the original code from this representation – obfuscation can make this process harder. Fresh Approach

Instead of obfuscating an imperative program, we consider obfuscating operations of a data-type – we can then exploit properties of that data-type (see later!).

We model the data-types and the operations in Haskell.

Deriving and Proving

We want to obfuscate some set operations.

- Using functional programs, we can:
 Derive obfuscations
- Easily establish proofs of correctness

Both of these are difficult to do in imperative languages.

List splitting

Adapt "array splitting" – consider a particular example "alternating split"

Write $xs \sim \langle l,r \rangle_a$ to denote xs is split into two lists l and r - xs is *data refined* by $\langle l,r \rangle_a$

 $[5,7,5,4,3,1,1] \sim \langle [5,5,3,1], [7,4,1] \rangle_a$

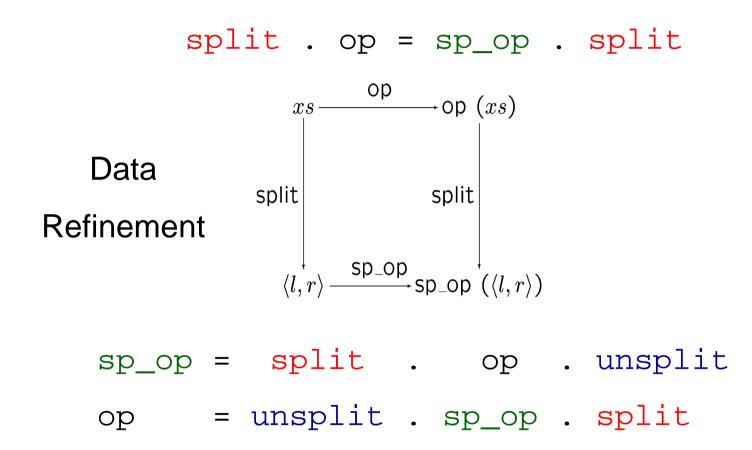
Invariant: $|r| \le |l| \le |r|+1$

Splitting Function

 $\begin{aligned} &\text{split}([]) &= \langle [], [] \rangle_a \\ &\text{split}([p]) &= \langle [p], [] \rangle_a \\ &\text{split}(p:q:xs) &= \langle p:l, q:r \rangle_a \\ & \text{where } \langle l, r \rangle_a &= \text{split}(xs) \end{aligned}$ $\begin{aligned} &\text{unsplit} \langle [], [] \rangle_a &= [] \\ &\text{unsplit} \langle [p], [] \rangle_a &= [p] \end{aligned}$

unsplit $\langle p:l, q:r \rangle_a = p:q:unsplit(\langle l, r \rangle_a)$

Derivations



List operations

$$p: \langle l, r \rangle_a = \langle p: r, l \rangle_a$$

$$\langle l_0, r_0 \rangle_a ++ \langle l_1, r_1 \rangle_a$$

$$||l_0|==|r_0| = \langle l_0 ++ l_1, r_0 ++ r_1 \rangle_a$$

$$| \text{ otherwise} = \langle l_0 ++ r_1, r_0 ++ l_1 \rangle_a$$

: and ++ distribute over split

Unordered Lists without Duplicates

member p xs = or(map (==p) xs)

Deriving Delete

Deriving the delete operation for split lists
 delete_a p = split.delete p.unsplit

Let
$$l = [l_0, l_1, ..., l_j, l_{j+1}, ..., l_n]$$
 $r = [r_0, r_1, ..., r_{n'}]$
and $xs \sim \langle l, r \rangle_a$

We have three cases (a) $p \in l$ (b) $p \in r$ (c) $p \notin \langle l, r \rangle_a$

Case (a)
$$(p \in l)$$
 1

Suppose that $l_j = p$

Let
$$(ly, lz) = \text{span}(/=p) l$$

= $([l_0, l_1, ..., l_{j-1}], [l_j, l_{j+1}, ..., l_n])$
 $(ry, rz) = \text{splitAt} |ly| r$
= $([r_0, r_1, ..., r_{j-1}], [r_j, ..., r_{n'}])$

delete $p \langle l, r \rangle_a$ = {derivation equation} split(delete p(unsplit $\langle l, r \rangle_a$)) ={definition of unsplit} **split**(delete $p[l_0, r_0, l_1, ...])$ ={definition of delete, $l_i = p$ } **split** ($[l_0, r_0, ..., r_{i-1}] + [r_i, ...]$)

 $split([l_0, r_0, ..., r_{i-1}] ++ [r_i, ...])$ ={split distributes over ++} $split([l_0, r_0, ...]) + split([r_i, ...])$ ={definition of split} $\langle [l_0,...], [r_0,...] \rangle_a ++ \langle [r_i,...,r_{n'}], [l_{i+1},...,l_n] \rangle_a$ ={earlier definitions} $\langle ly, ry \rangle_a + \langle rz, tail lz \rangle_a$

$$\langle ly, ry \rangle_a ++ \langle rz, tail lz \rangle_a$$

={definition of ++, $|ly| = |ry|$ }
 $\langle ly ++ rz, ry ++ tail lz \rangle_a$

We cannot simplify this further, but as lists are unordered: $\langle ly, ry \rangle_a$ is equivalent to $\langle ry, ly \rangle_a$ 4

5

 $\langle ry, ly \rangle_a ++ \langle rz, tail lz \rangle_a$ ={definition of ++} $\langle ry ++ rz, ly ++ tail lz \rangle_a$ ={definitions} $\langle r, delete p l \rangle_a$

Case (b) $(p \in r)$

delete_a $p \langle l, r \rangle_a$ = { $l = (\text{head } l) : (\text{tail } l), l \neq [] }$ delete_a $p \langle (\text{head } l) : (\text{tail } l), r \rangle_a$ ={definition of :} delete_{*a*} *p* ((head *l*): $\langle r, \text{tail } l \rangle_a$) ={head $l \neq p$ } (head l): (delete_a $p \langle r, tail l \rangle_a$)

Case (b) $(p \in r)$

(head l):(delete_a $p \langle r, tail l \rangle_a$) = {previous definition of delete_a } (head l):($\langle tail l, delete p r \rangle_a$) ={definition of :}

 $\langle (\text{head } l) : (\text{delete } p r), \text{tail } l \rangle_a$

Finally

(c) $p \notin l$ and $p \notin r$ delete_a $p \langle l, r \rangle_a = \langle l, r \rangle_a$ **Final definition** delete $p \langle l, r \rangle_a$ $| \text{ member } p l = \langle r, \text{delete } p l \rangle_a$ \mid member pr = $\langle (\text{head } l) : (\text{delete } p r), \text{tail } l \rangle_a$ | otherwise = $\langle l, r \rangle_a$

Insert operation

 $insert_{a} p \langle l, r \rangle_{a} =$ $if member_{a} p \langle l, r \rangle_{a}$ $then \langle l, r \rangle_{a}$ $else \langle p:r, l \rangle_{a}$

We will now prove that

insert p = unsplit. (insert_a p). split

Proof

Case for $p \in xs$ is trivial. Otherwise, suppose that: $xs \sim \langle l, r \rangle_a$ and $p \notin xs$ unsplit(insert_a p split(xs)) $= \{xs \sim \langle l, r \rangle_a \}$ unsplit(insert_a p ($\langle l, r \rangle_a$))

Proof

unsplit(insert_a p ($\langle l, r \rangle_a$)) ={definition of insert_} unsplit ($\langle p:r, l \rangle_a$) ={definition of :} unsplit $(p:\langle l, r \rangle_a)$ ={property of :} p:unsplit($\langle l, r \rangle_a$)

Proof

```
p:unsplit(\langle l, r \rangle_a)
={xs ~ \lapha l, r \lapha_a}
p:xs
={definition of insert}
insert p xs
```

Complexity

```
\begin{array}{l} \texttt{delete}_{a} \ p \ \langle l, r \rangle_{a} \\ | \ \texttt{member} \ p \ l \ = \ \langle r, \texttt{delete} \ p \ l \rangle_{a} \\ | \ \texttt{member} \ p \ r \ = \ \langle \texttt{(head } l):(\texttt{delete} \ p \ r), \texttt{tail} \ l \rangle_{a} \\ | \ \texttt{otherwise} \ = \ \langle l, r \rangle_{a} \end{array}
```

Both functions have linear complexity.

Complexity

insert p xs = if member p xs
 then xs
 else p:xs
insert_a p $\langle l, r \rangle_a$ = if member_a p $\langle l, r \rangle_a$ then $\langle l, r \rangle_a$

Again, these functions have linear complexity.

else $\langle p:r,l\rangle_a$

"Obfuscating Set Representations"

The paper looks at three representations:

- Unordered with duplicates
- Unordered without duplicates
- Strictly-increasing

Proofs and derivations of delete and insert are given for the other representations.

Also, another split is considered.

Matrices

At the beginning, it was stated we obfuscate data-types directly so that we can exploit properties of the data-type.

Suppose that we want to split a matrix and we want to develop a transpose operation for the split matrix.

Suppose we flatten the matrix to an array and then split this array.

Matrices

Using arrays means that we lose the "shape" of the matrix and so we have difficulty in constructing a transpose operation.

Using matrices directly:

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}^T = \begin{pmatrix} A^T & C^T \\ B^T & D^T \end{pmatrix}$$

Conclusions

We have seen that using data-types and functional programming, we can

- derive obfuscations
- prove correctness

Our operations make little change to the complexity

Have to keep split secret

Future Work

Possible areas for future work

- Other obfuscations
- Other data-types (matrices, trees)
- Automation
- Obfuscation definition