
Extract Slice Refactoring

Ran Ettinger
One Day Workshop in Refactoring Functional Programs

The University of Kent, Canterbury, Kent
February 9th, 2004

Goal: Enhanced Code Reusability

• Existing code: you have a function that
computes several results and you wish to
reuse one of those, in isolation.

• Refactor: extract the requested
computation into a function whose name
explains the purpose of the computation.

Example: Word Count

count :: [Char] →→→→(Int,Int,Int)

count = snd.foldl counter (False,(0,0,0))

counter :: (Bool,(Int,Int,Int)) →→→→Char →→→→
(Bool,(Int, Int, Int))

counter (inword, (nl, nc, nw)) c

| c=='\n' = (False,(nl+1,nc+1,nw))

| c=='\t' || c==' ' = (False,(nl, nc+1,nw))

| not(inword) = (True, (nl, nc+1,nw+1))

| otherwise = (inword,(nl, nc+1,nw))

Count Lines – reuse; no isolation

countLines :: [Char] →→→→ Int

countLines = first . count

countChars :: [Char] →→→→ Int

countChars = second . count

countWords :: [Char] →→→→ Int

countWords = third . count

Count Lines – reuse; in isolation

countLines' :: [Char] →→→→ Int

countLines' = snd.foldl linesCounter (False, 0)

linesCounter :: (Bool,Int) →→→→ Char →→→→ (Bool,Int)

linesCounter (inword, nl) c

| c=='\n' = (False, nl+1)

| c=='\t' || c==' ' = (False, nl)

| not(inword) = (True, nl)

| otherwise = (inword, nl)

Count Lines – reuse; in isolation (2)

countLines'' :: [Char] → Int

countLines'' = foldl linesCounter 0

linesCounter' :: Int → Char → Int

linesCounter' nl c

| c=='\n' = nl+1

| otherwise = nl

Count Words – reuse; in isolation

countWords' :: [Char] →→→→ Int

countWords' = snd.foldl wordsCounter

(False, 0)

wordsCounter :: (Bool,Int) →→→→ Char →→→→ (Bool,Int)

wordsCounter (inword, nw) c
| c=='\n'||c=='\t'||c==' ' = (False, nw)

| not(inword) = (True, nw+1)

| otherwise = (inword, nw)

Count Chars – reuse; in isolation

countChars' :: [Char] →→→→ Int

countChars' = foldl charsCounter 0

charsCounter :: Int →→→→ Char →→→→ Int

charsCounter nc c = nc+1

Count Chars – reuse; in isolation (2)

countChars'' :: [Char] →→→→ Int

countChars'' = length

Word Count - refactored

count' :: [Char] →→→→ (Int, Int, Int)

count' = split3 countLines' countChars'

countWords'

split3 :: (a →→→→b) →→→→(a →→→→c) →→→→(a →→→→d) →→→→ a →→→→ (b,c,d)

split3 f g h x = (f x, g x, h x)

Extract Slicein monadic code?
eval :: (ExcMonad m,StMonad m) ⇒

Term →→→→ m Int

eval (Con x) = return x

eval (Div t u) =

do x ←←←← eval u

y ←←←← eval t

tick

if y==0

then raise “divide by zero”

else return (x div y)

Exceptions monad
evalEx :: Term →→→→ Exc Int

evalEx (Con x) = return x

evalEx (Div t u) =

do x ←←←← evalEx u

y ←←←← evalEx t

if y==0

then raise “divide by zero”

else return (x div y)

State monad
evalSt :: Term →→→→ St Int

evalSt (Con x) = return x

evalSt (Div t u) =

do x ←←←← evalSt u

y ←←←← evalSt t

tick

return (x div y)

A larger example

• Tangled flow error checking in a Java compiler:
– used-before-assigned vars and blank final fields

– assigned-twice blank finals

– constructors not filling in blank final fields

– unreachable stmts

– missing return stmts

– various illegal try/catch stmts

References and Acknowledgements
• The word count slicing example is from “Using Program Slicing in Software

Maintenance”, Gallagher and Lyle.

• The monadic example is from “Introduction to Functional Programming”, Richard
Bird, second edition, Chapter 10.

• The flow error checking example is from the AspectJ compiler (www.aspectj.org):
FlowCheckerPass.java.

• Thanks to Mathieu Verbaerefor his contribution during his MSc project and to our
supervisors Oege de Moorand Mike Spivey.

• http://web.comlab.ox.ac.uk/oucl/research/areas/progtools/projects/nate/nate.html

