Higher-order matching for

program.teanrsfertraton

refactoring

Ganesh Sittampalam



MAG

 Annotate source code with hints for
complex optimisations

e Maintain unoptimised, easy-to-read
code

o Compiler automatically applies
optimisation
— Displays calculation — or detalls of failure



Refactoring

Apply the same transformations
Now at edit time not compile time
Can work with optimised code

Want the inverse transformation too



Cat-elimination

reverse [] =[]
reverse (X:xs) = reverse xs ++ [X]

->




Cat-elimination

Specification:

Laws:




Canned recursion on lists

foldr Is the natural fold on lists

foldrfe[]=e

foldr f e (x:xs) = f x (foldr f e xs)

reverse xs = foldr (Atts — ts ++ [t]) [] xs



List fusion

Supposef(aob)=aofbla,b
Then:
f(a,0(a,0(a;0...(a,0€))))
—a,0f(a,0(@;0...(a,0e)))
a,0(a,o0f(ay0...(a,0e)))

a,0(@a,0(a;0...(a,0fe)))



Fusion rule

If




Applying fusion

f (foldr (1) e xs) = foldr (1) e’ xs
If f strict, fe =¢’
ANab-f(@alb)=Aab-alfb

reverse’ Xs ys = reverse xs ++ ys

= foldr (Atts —» ts++[t])) [] ++ VS

* Pick subexpression

e Try to apply fusion



Applying fusion

f (foldr (1) e xs) = foldr (1) e’ xs
If f strict, fe =¢’
ANab-f(@alb)=Aab-alfb

foldr (\tts - ts++[t]) [] ++

* Pick subexpression

e Try to apply fusion



Applying fusion

f (foldr (L) e xs) = foldr (1) e’ xs
If f strict, fe =¢’
ANab - f(allb)=Axab - alfb




Applying fusion

f (foldr (L) e xs) = foldr (1) e’ xs
If f strict, fe =¢’
ANab - f(allb)=Axab - alfb

- e Substitute into side conditions




Applying fusion

* Rewrite exhaustively

* n-expand where needed



Applying fusion

* Rewrite exhaustively

* n-expand where needed



Applying fusion

* Rewrite exhaustively

* n-expand where needed



Applying fusion




Applying fusion




Higher-order matching

e Various algorithms

 All solve for @iIn the equation

(pP =T ¢ a substitution, P and T A-terms
P contains free variables, T closed

e Vary in
— Restrictions on P
— Which solutions are returned
— More solutions = More restrictions



ast reverse

reverse xs = foldr (A tts - ts ++ [t]) [] XS

->




ast reverse

reverse xs = foldr (A tts - ts ++ [t]) [] XS

€«>




Warm fusion

xs = foldr (:) [] xs

e Can introduce folds by fusion

* Fusion transformations merge into one



Other examples

Tree traversals

— Flattening a tree

— Alpha-beta pruning

Tupling

— Fibonacci etc etc

Some kinds of deforestation

Fix-point fusion




Conclusions etc

Complex rewrite rules

=» good specifications for refactoring

— Good for recursive programs
— Need HOM to solve

More Integration between browser +
compiler?

More ideas of applications?

Can we always invert things?



