
Joost Visser (Universidade do Minho)
joint work with Ralf Lämmel (VU & CWI)

Strafunski
Functional Strategy Combinators

http://www.cs.vu.nl/Strafunski/

Strafunski

Using FP for language processing applications, e.g.:
• Program analysis and reverse engineering

• Refactoring and re-engineering

Reuse external components for e.g.:
• Parsing

• Graph visualization

Employ generic traversal for
• Conciseness (focus on relevant data constructors)

• Robustness (isolate against data structure change)

Objectives

Strafunski

Strafunski =
Strategies + functions

Strafunski =
• a Haskell-based bundle
• for generic programming, based on the
concept of a functional strategy, and
• for language processing, using GLR

Strafunski =
combinator library + precompiler
+ parser generator

What is it?

Strafunski

• Concepts
• Design patterns
• Tools
• Applications

Outline of this talk

Strafunski
Traversal schemes

topdown s = s `seq` (all (topdown s))
bottomup s = (all (bottomup s)) `seq s
once_td s = s `choice` (one (once_td s))
 ...

Recursion scheme

One-step traversal Recursive call

Strafunski

Characteristics:
• first-class, generic functions
• composed and updated in combinator style
• allow generic traversal into subterms
• mix type-specific and uniform behaviour

functional strategy =/= parametric polymorphic function
functional strategy =/= polytypic function

What are functional strategies?

induction over
sums-and-products

composed from
simple combinators

only uniform behaviour
freely mix generic and
type-specific behaviour

Strafunski
What are functional strategies?

> :i increment
increment :: Term a => a -> a
> increment [0,1,2]
[1,2,3]
> increment (True,[0,1],Just 2)
(True,[1,2],Just 3)

Example: increment all integers in a term

increment
 = apply (topdown (adhoc identity (+1)))

Strafunski
What is it good for?

refTypeNames :: Term a => a -> [HsName]
refTypeNames = runId . applyTU traversal
 where
 traversal = crush nodeAction
 nodeAction = adhocTU (constTU []) getName
 getName (HsTyCon (UnQual n)) = return [n]
 getName _ = return []

Example:
• Haskell itself (30 datatypes, 100
constructors)
• Collect all type constructor names

• Mention two constructors only
• Works on any Haskell fragment / dialect

Strafunski
vs. Scrap your boilerplate

Scope:
• Data.Generics: basic strategy combinators
• Strafunski: basic combinators + library + tools
Availability:
• Data.Generics: available in GHC version 6.2
• Strafunski: works with GHC and Hugs and NHC
Names:
• Data.Generics: Data, extM/Q, gmapM/Q,...
• Strafunski: Term, adhocTP/TU, allTP/TU,...
Future:
• Strafunski uses Data.Generics as basis (optionally)

Strafunski
Library themes

• Traversal (full_td, once_td, stop_td, ...)
• Fixpoint (outermost, innermost, ...)
• Path (below, above,...)
• Name (freeNames,...)
• Keyhole (selectFocus, replaceFocus, deleteFocus)
• Metrics (typeMetric, predMetric, depthWith, ...)
• ...

Strafunski

• Concepts
• Design patterns
• Tools
• Applications

Outline of this talk

Strafunski
Design patterns

Strafunski
Rewrite Step

Intent: Capture a single type-specific computation step
Motivation: By capturing type-specific computations
and naming them, they can easily be reused in different
contexts.
Schema:
 step :: T -> T'
 step pat = rhs
 step v = ...
Sample code:
 refTypes :: HsType -> [HsName]
 refTypes (HsTyCon (UnQual n)) = [n]
 refTypes _ = []

Strafunski
Generic Rewrite Step

Intent: Lift type-specific rewrite steps to all types
Motivation: At some point in the synthesis of generic
programs, type-specific steps must be made generic.
Schema:
 generic = default `adhoc` step1 `adhoc` step2
Sample code:
 anyTypes :: TU [HsName] Identity
 anyTypes = constTU []
 `adhocTU` (return . decTypes)
 `adhocTU` (return . refTypes)

Strafunski
Traversal

Intent: Instantiate a traversal scheme with generic
rewrite steps.
Motivation: You can construct your own traversal by
instantiating a predefined traversal scheme e.g. from
Strafunsk's library.
Schema:
 instantiation = scheme arg1 ... argN
Sample code:
 allTypes :: TU [HsName] Identity
 allTypes = crush anyTypes
Using the predefined combinator:
 crush :: (Monad m, Monoid u) => TU u m -> TU u m

Strafunski
Keyhole Operation

Aka: Wrapper Worker
Intent: Do not expose strategy type to the top level.
Motivation: On the inside, you can work with the full
power of strategies, while on the outside, all you see is
a plain function without any trace of TP, TU, Term.
Schema:
 wrapper fp1 ... fpN = ... apply worker ...
 where worker = ... `adhoc` ...
Sample code:
 isFreshType :: HsName -> HsModule -> Bool
 isFreshType n = runIdentity . applyTU worker
 where worker = allTypes `before` isNotElem
 isNotElem = not . (elem n)

Strafunski
Generic Container

Intent: Use a strategy as a generic data container.
Motivation: Terms of different types sometimes need to
be stored in the same container.
Sample code:
 type GSet = TU () Maybe
 emptyGS = failTU
 fullGS = constTU mempty
 elemGS e s = maybe False (const True) (applyTU s e)
 addGS e s = modifyTU s e (return mempty)
 rmGS e s = modifyTU s t mzero

 modifyTU f e = adhocTU f . modify (applyTU f) t
 modify f x y = \x' -> if x == x' then y else f x'

Strafunski

• Concepts
• Design patterns
• Tools
• Applications

Outline of this talk

Strafunski
What makes it work?

• no new language (cf. PolyP, GH, FISh)

• rely on Term class that captures extras
• instantiate for every algebraic datatype
• use precompiler (extended version of DrIFT)

• or add derive Data,Typeable to all your
datatypes (with GHC 6.2).

Strafunski

TermRep

Fixpoint Theme
PathTheme

StrategyPrimitives

StrategyLib

Datatypes

Strategies

Term
instances

DrIFT

Library Application

Precompiler

Architecture

Strafunski = Library + Precompiler

NameTheme

Strafunski
Getting to terms

Source code:
• SDF to specify grammar
• SGLR to parse
• ATerms to exchange ASTs

Documents:
• DTD to specify document structure
• XML to exhange documents
• HaXML to read / write

Datatypes

Term
instances

DrIFT

XML
instances

ATerm
instances

Sdf2HaskellDtd2Haskell

DTD Grammar

PGEN

GLR parser

Strafunski
Getting to terms

document programStrategies AST

Strafunski
The bundle

Strafunski:
• StrategyLib
• ATermLib
• (DrIFT-Strafunski)
• Sdf2Haskell

Uses:
• Haskell compiler / interpreter (GHC / Hugs)
and Haskell libraries
• parser & parse table generator (SGLR &
PGEN)

Strafunski

• Concepts
• Design patterns
• Tools
• Applications

Outline of this talk

Strafunski
Applications

Java refactoring.
• E.g. Extract Method refactoring

Java metrics and reverse engineering.
• SDF grammar for Java
• E.g. count conditionals, nesting depth, ...
• E.g. Extract conditional call graph

Meta-lang = object-lang = Haskell.
• Use same parser as Haddock
• E.g. do elimination, newtype introduction

Cobol reverse engineering.
• SDF grammar for Cobol
• Extract perform graph

Strafunski
Learn more

Principles:
Typed combinators for generic traversal
(PADL 2002)

Applications:
A Strafunski application letter (PADL 2003)

Cook book:
Design patterns for functional strategic
programming (RULE 2002)

Implementation:
Strategic polymorphism requires just two
combinators! (IFL 2002)

http://www.cs.vu.nl/Strafunski/

