
Refactoring Erlang  
with Wrangler"

Huiqing Li"
Simon Thompson "

"

School of Computing"
University of Kent "

Overview"

Refactoring."
Tools and tool building."
Clone detection."
Improve module structure."
Tool demo … "

Introduction"

All in the code"

Functional programs
embody their design
in their code."
"
Successful programs
evolve … as do their
tests, makefiles etc."

loop(Frequencies) ->

 receive

 {request, Pid, allocate} ->

 {NewFrequencies, Reply} = allocate
(Frequencies, Pid),

 reply(Pid, Reply),

 loop(NewFrequencies);

 {request, Pid , {deallocate, Freq}} ->

 NewFrequencies=deallocate(Frequencies,
Freq),

 reply(Pid, ok),

 loop(NewFrequencies);

 {'EXIT', Pid, _Reason} ->

 NewFrequencies = exited(Frequencies, Pid),

 loop(NewFrequencies);

 {request, Pid, stop} ->

 reply(Pid, ok)

 end.

exited({Free, Allocated}, Pid) ->

 case lists:keysearch(Pid,2,Allocated) of

 {value,{Freq,Pid}} ->

 NewAllocated = lists:keydelete(Freq,
1,Allocated),

 {[Freq|Free],NewAllocated};

 false ->

 {Free,Allocated}

 end.

Soft-Ware"
Thereʼs no single correct
design … "
"

… different options for
different situations."
"

Maintain flexibility as the
system evolves."
"

Refactor as you program."

Refactoring"

Refactoring means changing the
design or structure of a program …
without changing its behaviour."

Refactor"Modify"

Generalisation"
-module (test).!
-export([f/1]).!
 !
add_one ([H|T]) ->!
 [H+1 | add_one(T)]; !
!
add_one ([]) -> []. !
!

f(X) -> add_one(X)."
"

-module (test).!
-export([f/1]).!
 !
add_one (N, [H|T]) ->!
 [H+N | add_one(N,T)];!
!
add_one (N,[]) -> []. !
!
f(X) -> add_one(1, X).!

 !

-module (test).!
-export([f/1]).!
 !
add_int (N, [H|T]) ->!
 [H+N | add_int(N,T)];!
!
add_int (N,[]) -> []. !
!
f(X) -> add_int(1, X). !

Generalisation and renaming"

Generalisation"
-export([printList/1]).!
!
printList([H|T]) ->!
 io:format("~p\n",[H]),!
 printList(T);!
printList([]) -> true.!

"
printList([1,2,3])"
"

-export([printList/2]).!
!
printList(F,[H|T]) ->!
 F(H),!
 printList(F, T);!
printList(F,[]) -> true.!

"
printList(!
 fun(H) ->!
 io:format("~p\n", [H]) !
 end, !
 [1,2,3]).!
 !

The tool"

Refactoring tool support"
Bureaucratic and
diffuse."
"

Tedious and error
prone."
"

Semantics: scopes,
types, modules, …"
"

Undo/redo"
"

Enhanced creativity"

Wrangler"
Refactoring tool for
Erlang"
"

Integrated into Emacs
and Eclipse"
"

Multiple modules"
"

Structural, process,
macro refactorings"

Duplicate code
detection … "
… and elimination"
"

Testing / refactoring"
"

"Similar" code
identification"
Code Inspection"

Property discovery"

Wrangler"

Basic refactorings: structural, macro,
process and test-framework related"

Clone detection  
+ removal"

Improve module  
structure"

Design philosophy"

Automate the simple actions …"
"

 …as by hand they are tedious and error-prone."
"

Decision support for more complex tasks …"
"

 … don’t try to make them “push button”."
"

Clone detection experience validates this."

Architecture of Wrangler"

Semantic analysis"

Binding structure"
•  Dynamic atom creation, multiple binding occurrences,
pattern semantics etc."
"

Module structure and projects"
•  No explicit projects for Erlang; cf Erlide / Emacs."
"

Type and effect information"
•  Need effect information for e.g. generalisation."

Erlang refactoring: challenges "
Multiple binding occurrences of variables."
Indirect function call or function spawn: "

"apply (lists, rev, [[a,b,c]]) "
Multiple arities … multiple functions: rev/1"
"

Concurrency"
Refactoring within a design library: OTP."
Side-effects."

Static vs dynamic"

Aim to check conditions statically."
"

Static analysis tools possible … but some
aspects intractable: e.g. dynamically
manufactured atoms."
"

Conservative vs liberal."
"

Compensation?"

Refactorings in Wrangler"
•  Renaming variable,
function, module, process
•  Introduce/inline variables
•  Function generalisation
•  Move function(s) between
modules.
•  Function extraction
•  Fold against definition
•  Introduce and fold against
macros.

•  Tuple function arguments
•  Register a process
•  From function to process
•  Add a tag to messages
•  Quickcheck-related
refactorings.
All these refactorings work
across multiple-module
projects and respect macro
definitions."

Integration with ErlIDE"
Tighter control
of what's a
project."
"
Potential for
adoption by
newcomers to
the Erlang
community."

Tool Demo"

Clone detection"

Duplicate code considered harmful"

It’s a bad smell …"
"

•  increases chance of bug propagation,"
•  increases size of the code,"
•  increases compile time, and,"
•  increases the cost of maintenance. "
"

But … itʼs not always a problem."

X+4! Y+5!X+4! Y+5!

What is ‘identical’ code?"

variable+number!

Identical if values of literals and variables
ignored, but respecting binding structure."

(X+3)+4! 4+(5-(3*X))!(X+3)+4! 4+(5-(3*X))!

What is ‘similar’ code?"

X+Y!

The anti-unification gives the (most specific)
common generalisation. "

Clone detection"

•  The Wrangler clone detector "
–  relatively efficient"
–  no false positives"

•  User-guided interactive removal of clones."
•  Integrated into development environments,
but can also be run from an Erlang shell."

Detection Expression search"
All instances of

expressions similar to
this expression …"

"

… and their common
generalisation."

"

Default threshold:
similarity ≥ 0.8."

"

All clones in a project
meeting the threshold
parameters …"
"

… and their common
generalisation."
 "

Default threshold:
≥ 5 expressions and
similarity of ≥ 0.8."

Similarity"

Threshold: anti-unifier should be big
enough relative to the class members:"
"

"

similarity = min(,)"
"
"

Can also threshold length of expression
sequence, or number of tokens, or … ."

||(X+3)+4||" ||4+(5-(3*X))||"
||X+Y||" ||X+Y||"

Clone detection"

Clone detection"

Tool Demo"

Improve Module Structure"

Maintaining modularity"

Cyclic module
dependencies."

"

Export of functions that
are “really” internal."

"

Modules with multiple
purposes."

"

Very large modules."

Modularity tends to
deteriorate over time."

"

Repair with incremental
modularity maintenance."

"

Four modularity “bad
smells”."

Refactoring: move functions"

Move a group of functions from !
one module to another.!

!

Which functions to move? Move to where? How?"
Wrangler provides: "
1.  " Modularity smell detection "
2.  " Refactoring suggestions "
3.  " Refactoring"

“Dogfooding” Wrangler"
"

Case study of Wrangler-0.8.7"
"

56 Erlang modules, 40 kloc (inc. comments)."
"

• Improper dependencies: sharing
implementation between refactorings."

• Cyclic dependencies: need to split modules."

• Multiple goals: refac_syntax_lib 7 clusters."

Wrangler module graph"

Wrangler Cycles"

•  Nodes in red are modules that need inspection."

Inter-layer cyclic module dependency found:
 [refac_prettypr, refac_util, refac_prettypr]

Refactoring suggestion:
move_fun(refac_util, [{refac_util,write_refactored_files,1},
 {refac_util,write_refactored_files,3},
 {refac_util,write_refactored_files,4}],
 user_supplied_target_mod).

refac_util

Inter-layer dependency"
refac_prettypr

concat_toks/1
get_toks/1
get_range/1

print_ast/2

refac_util

Intra-layer dependency"

refac_type_annotation
full_buTP/3
parse_annotate_file/3
rewrite/2
stop_tdTP/3
test_framework_used/1

type_ann_ast/2

Identifying "API" functions"

•  Identify by examining call graph."
•  API functions are those …"

•  … not used internally,"
•  … "close to" other API functions."

•  Others are seen as internal, external calls
to these are deemed improper."

refac_register_pid

Improper dependency"

refac_add_a_tag refac_rename_process refac_annotate_pid

spawn_funs/0 is_spawn_app/0 evaluate_expr/5

refac_syntax_lib.erl"

Report on multi-goal
modules: 12/56."
"

Agglomerative
hierarchical algorithm."
"

Functions represented
by feature lists … fed
into Jaccard metric. "

Module: refac_syntax_lib
Cluster 1, Indegree:25, OutDegree:1,
[{map,2}, {map_subtrees,2},
 {mapfold,3},{mapfold_subtrees,3},
 {fold,3}, {fold_subtrees,3}]

Cluster 2, Indegree:0, OutDegree:0,
[{foldl_listlist,3},{mapfoldl_listlist,3}]

Cluster 3, Indegree:0, OutDegree:0,
[{new_variable_name,1},{new_variable_names,2},
 {new_variable_name,2},{new_variable_names,3}]

Cluster 4, Indegree:4, OutDegree:1,
[{annotate_bindings,2},{annotate_bindings,3},
 {var_annotate_clause,4},{vann_clause,4},
 {annotate_bindings,1}]

 …

Future work"

Incremental detection of module bad smells,
e.g. in overnight builds."
"

Partition module exports according to client
modules."
"

Case studies."
"

Improve module structure"

•  Refactoring "
– Move function(s) from one module to another."

–  select a function definition to move a single
function, an export list to move a collect of
functions."

–  Partition module exports."
"

Tool Demo"

Hands-on"

Installation: Mac OS X and Linux"
"
Requires: Erlang release R11B-5 or later "
"

51

Installation: Mac OS X and Linux"
Download Wrangler from "

http://www.cs.kent.ac.uk/projects/wrangler/"
"

or get it from the memory stick …"
"

In the wrangler directory"
"

./configure"
"

make"
"

sudo make install

52

Installation: Mac OS X and Linux"
Add to ~/.emacs file:"
(add-to-list 'load-path
 "/usr/local/share/wrangler/elisp")
(require 'wrangler)

If youʼre installing emacs now, then you add the
following lines to your ~/.emacs file"

(setq load-path (cons "/usr/local/otp/lib/tools-<ToolsVer>/emacs"

 load-path))

(setq erlang-root-dir "/usr/local/otp")

(setq exec-path (cons "/usr/local/otp/bin" exec-path))

(require 'erlang-start)

53

Installation: Windows"
Requires R11B-5 or later + Emacs "
"

Download installer from "
http://www.cs.kent.ac.uk/projects/wrangler/ "

"

Requires no other actions. "

54

Installation: Eclipse + ErlIDE"
Requires Erlang R11B-5 or later, if it isn't
already present on your system. "
"

On Windows systems, use a path with no
spaces in it."
"

Install Eclipse 3.5, if you didn't already. "
"

All the details at "
http://erlide.sourceforge.net/"

"

55

Starting Wrangler in Emacs"

Open emacs, and open a .erl file."
M-x erlang-refactor-on or ..."
... C-c, C-r"
New menus: Refactor and Inspector"
Customise for dir"
Undo C-c, C-w, _	

56

Preview Feature"

Preview changes before confirming the
change"

Emacs ediff is used. "
"

57

Stopping Wrangler in Emacs"

M-x erlang-refactor-off to stop Wrangler"
"

Shortcut C-c, C-r"
"

58

Tutorial materials"
Exercises:"
http://www.cs.kent.ac.uk/projects/

wrangler/Misc/WranglerExercise.
{doc.pdf}"

Code:"
http://www.cs.kent.ac.uk/projects/

wrangler/Misc/wrangler_ex.tar.gz"
"

59

Carrying on … "

Try on your own project code …"
"
Feedback:"
erlang-refactor@kent.ac.uk or"
H.Li@kent.ac.uk"

60

