Refactoring Erlang
with Wrangler

Huiqging Li
Simon Thompson

School of Computing
University of Kent

property based testing Computing

Overview

Refactoring.

Tools and tool building.
Clone detection.

Improve module structure.

Tool demo ...

Test

pppppppp based testing

ProTesty Kent ...
property based testing

All In the code

Functional programs
embody their design
in their code.

Successful programs
evolve ... as do their
tests, makefiles etc.

Test

property based testing

loop(Frequencies) ->
receive
{request, Pid, allocate} ->

{NewFrequencies, Reply} = allocate
(Frequencies, Pid),
reply(Pid, Reply),
Toop(NewFrequencies);
{request, Pid , {deallocate, Freq}} ->

NewFrequencies=deallocate(Frequencies,
Freq),

reply(Pid, ok),
Toop(NewFrequencies);

{'"EXIT', Pid, _Reason} ->
NewFrequencies = exited(Frequencies, Pid),
Toop(NewFrequencies);

{request, Pid, stop} ->
reply(Pid, ok)

end.

exited({Free, Allocated}, Pid) ->
case lists:keysearch(pPid,2,Allocated) of
{value, {Freq,Pid}} ->
NewAllocated =
1,ATlocated),

{[Freq|Free] ,NewAlTlocated};
false ->
{Free,Allocated?}
end.

Tlists:keydelete(Freq,

University of | A

I@nt C\orﬁ‘puting

Soft-Ware

There’s no single correct
design ...

... different options for
different situations.

Maintain flexibility as the
system evolves.

Refactor as you program.

Te St University of 3
Kent | ..
property based testing n Computing

Refactoring

Refactoring means changing the
design or structure of a program ...
without changing its behaviour.

Refactor

University of | A
TESt Kent ‘ C\o/m\puting

property based testing

Generalisation and renaming

-module (test). -module (test).
-export([£/1]). -export ([£/11]).
add_one ([H|T]) -> add_int (N, [H|T]) ->
[H+1 | add_one(T)]; [H+N | add int(N,T)];
add_one ([]) -> [1]. add int (N,[]) -> []-
f(X) -> add one(X). f(X) -> add_int(1l, X).

Test |

property based testing Computing

(Generalisation

-export([printList/1]).

printList([H|T]) ->
io:format("~p\n",[H]),
printList(T);

printList([]) -> true.

printList([1,2,3])

Test

property based testing

-export([printList/2]).

printList(F,[H|T]) ->
F(H),
printList(F, T);
printList(F,[]) -> true.

printList(
fun(H) ->
io:format("~p\n", [H])
end,
[1,2,3]).

University of

Kent

A

s
Computing

ProTesty Kent ...
property based testing

Refactoring tool support

Bureaucratic and
diffuse.

8= 33451
Tedious and error lllllll--—lll
prone. =

58" "B A" 8
Semantics: scopes,
types, modules, ...

Undo/redo

Enhanced creativity

property based testing

Wrangler

Refactoring tool for Duplicate code
Erlang detection ...

Integrated into Emacs - and elimination

and Eclipse Testing / refactoring

Multiple modules "Similar" code

Structural, process, identification |
macro refactorings Code Inspection

Property discovery

property based testing Computing

Wrangler

Clone detection Improve module
+ removal structure

Basic refactorings: structural, macro,
process and test-framework related

Te St University o A
Kent
rrrrrrrrr based testing n Computin

Design philosophy
Automate the simple actions ...
...as by hand they are tedious and error-prone.

Decision support for more complex tasks ...

... don’ t try to make them “push button”.

Clone detection experience validates this.

property based testing Computing

Architecture of Wrangler

Program
Source
Code

Program
Renderer

Refactorer

AST
annotation

Test

property based testing

University of | A

I(Qnt C\oﬁ\puting

Semantic analysis

Binding structure

- Dynamic atom creation, multiple binding occurrences,
pattern semantics etc.

Module structure and projects
* No explicit projects for Erlang; cf Erlide / Emacs.

Type and effect information
* Need effect information for e.g. generalisation.

Te S t University of Q
I<(2 -
pppppppp based testing n Computing

Erlang refactoring: challenges

Multiple binding occurrences of variables.

Indirect function call or function spawn:
apply (lists, rev, [[a,b,c]])

Multiple arities ... multiple functions: rev/1

Concurrency
Refactoring within a design library: OTP.

Side-effects.

property based testing

Static vs dynamic

Aim to check conditions statically.

Static analysis tools possible ... but some
aspects intractable: e.g. dynamically
manufactured atoms.

Conservative vs liberal.

Compensation?

property based testing Computing

File Edit Options Buffers Tools lRefactor| Inspector Erlang Help

DeEx B @ <

{msg, Ms=sg,0} -> 1lo
| {msg,MMsg,N} ->
io:format ("pin
timer:sleep (50
b! {msg,M=sg,N+1
loop_a()
after 15000 -> io:

exi
end.

loop _b() ->
receive
stop —-> ok
{msg, Ms=sg,0} -> 1lo
{msqg,M=g,N} ->
io:format ("pon
timer:sleep (50
al! {msg,M=sg,N+1
loop_ b()
after 15000 -> io:

exi
end.

____— P i ngpong .er1<2> sm

Rename Variable Name

Rename Function Name
Rename Module Name
Generalise Function Definition
Move Function to Another Module
Function Extraction

Introduce New Variable

Inline Variable

Fold Expression Against Function
Tuple Function Arguments
Unfold Function Application

Introduce a Macro
Fold Against Macro Definition

Identical Code Detection
Similar Code Detection
Refactorings for QuickCheck

Process Refactorings (Beta)
Normalise Record Expression
Partition Exported Functions
gen_fsm State Data to Record

Undo
Customize Wrangler

Version

C-cC-wrv
C-cC-wrf
C-cC-wrm
C-cC-g
C-cC-wm
C-cC-wnf
C-cC-wnv
C-cC-wi
C-cC-wff
C-cC-wt

C-cC-wu

C-cC-wnm
C-cC-wfm

C-c C-w _

& emacs@HL-LT

File Edit Options Buffers Tools Refactor | Inspector | Erlang Help

D = X E 9 ¥ Instances of a Variable

Calls to a Function

loop_a (). Dependencies of a Module

init_b() -> Nested If Expressions
loop_b() . Nested Case Expressions

loop a() —-> Nested Receive Expression

receive Long Functions
stop -> ok
{msg, M=g,0} -> loop_ a():
{msg,Msg,N} -> Generate Function Callgraph

io:format ("ping!~n"), Generate Module Graph
timer:sleep (500),

b! {msg,M=sg,N+1},
loop_a() Improper Inter Module Dependency
after 15000 -> io:formact(

Large Modules

Cyclic Module Dependency

Show Non Tail Recursive Servers

exit (timeot Incomplete Receive Patterns

end.

loop b() ->
receive
stop -> ok
{msg, M=g,0} -> loop b():
{msqg,Msg,N} —->
io:format ("pong!~n"),
timer:sleep (500),
a! {msg,M=sg,N+1},
loop b()
after 15000 -> io:format ("Pong got bored, "
"exiting.~n"),
exit (timeout)

Refactorings in Wrangler

Y 4 4

 Renaming variable,
function, module, process
* Introduce/inline variables
* Function generalisation

* Move function(s) between

 Tuple function arguments
* Register a process

* From function to process
* Add a tag to messages

* Quickcheck-related

modules. refactorings.

* Function extraction All these refactorings work
* Fold against definition across multiple-module

* Introduce and fold against projects and respect macro
macros. definitions.

Test il

property based testing

Integration with ErlIDE

Tighter control

of what's a
project.

Potential for
adoption by
newcomers to
the Erlang
community.

Test

property based testing

Erlang - test/src/syntax.erl - Eclipse SDK - /Users/simonthompson/Documents/workspace

J:’&’ O'%'J J'J =i :2] Erlang &’ Java
(& Erlang Navigator £3 |[3 syntax.erl 2 = B](5= outline ng\ &% W) ° 0
% Formula constructors. © module: syntax
© export
= test % (Form,Form) -> Form P o »
(= ebin record_definition: conj
& include makeConj(L, R) -» #conj{andl-L, and2-R}. record_definition: disj
(= src record_definition: leaf
[brehep_vig_calls % (Form,Form) -> Form O record_definition: neg
.grap 1 ® forml/0
modulegraph makeDisj(L, R) -> #disj{orl = L, or2 = R}. ot
4 syntax.erl ° orm2/
[+ tableau.erl % Form -> Form @® makeConj/2 (L,R)
© module: tab © makeDisj/2 (L,R)
import: synt makeNeg(N) -> #neg{neg = N}. ® makelff/2 (L,R)
o import: utili % String -> Form © makelmp/2 (L, R)
© import: lists ’ © makeLeaf/1 (L)
© export makeLeaf(L) -> #leaf{leaf = L}. @ makeNeg/1 (N)
@ rule/1 @ printFormula/1
@ neg/l (L % Derived constructors for => and <=> @ showFormula/1
© ruleBranch/ % (Form,Form) -> Form U simpilifgjl
@ ruleBranche o testl/
@ build/1 (Fs makeImp(L, R) -> makeDisj(makeNeg(L), R). @ test2/0
@ loop/l (Tat
%) ->
o contra/l (Form,Form) Form 1
@ consis/1 (B \ vece S oo v N A aa Y
@ remContras, = -
© showTab/1 [21 Problems £3 \E Console] [Process list view | [& Live Expressions ¥ =0
® showBranck 0 items
|4 testerl Description A Resource Path Location Type
[+ utilities.erl
<«
lo® | Refresh: (66%) ¢

University of |

I(Qnt C\om\puting

ProTesty Kent ...
property based testing

Clone detection

property based testing Computing

Duplicate code considered harmful

It' s a bad smell ...

* Increases chance of bug propagation,
* increases size of the code,

* increases compile time, and,

* Increases the cost of maintenance.

But ... it’'s not always a problem.

property based testing Computing

What is ‘identical’ code?

variable+number
4 Y+

X+ 5

|dentical if values of literals and variables
ignored, but respecting binding structure.

property based testing 4 INTIL] Computing

What is ‘similar’ code?

X+Y
(X+3)+4 44 (5-(3*X))

The anti-unification gives the (most specific)
common generalisation.

property based testing Computing

Clone detection

- The Wrangler clone detector
— relatively efficient
— no false positives

 User-guided interactive removal of clones.

* Integrated into development environments,
but can also be run from an Erlang shell.

University of | A
TeSt Kent C\om\putmg

property based testing

Detection EXxpression search

All clones in a project All instances of
meeting the threshold expressions similar to
parameters ... this expression ...
... and their common ... and their common
generalisation. generalisation.
Default threshold: Default threshold:
> 5 expressions and similarity = 0.8.

similarity of = 0.8.

University of | A
Tes-t I(@ht C\om‘puting

property based testing

Similarity
Threshold: anti-unifier should be big

enough relative to the class members:

|| x+vlI ||x+vIl
I (x+3)+4l1° la+(5-(3%x)1l)

similarity = min(

Can also threshold length of expression
sequence, or number of tokens, or

University o A
TESt I@nt C\orﬁ‘puting

eeeeeeeeeeeeeeeeeeee

3 emacs@HL-LT |

File Edit Options Buffers Tools Errors Help

5> @& RS XD
DeEeEx BE s ¥ & B & (S
Similar detection finished with **%* 30 **%* clone(s) found.
Clone 1. This code appears 21 times:

c: /ecygwin/home/hl /test/smm SUITE.erl:1906.4-1912.71:
new_fun ()

c:/eygwin/home/hl/test/smm SUITE.erl:2181.4-2187.71:
new_fun ()

:/eygwin/home/hl /test/smm SUITE.erl:229.4-235.71:
new_fun ()

:/eygwin/home/hl /test/smm .erl:836.4—-842.71:
new_fun ()

:/eygwin/home/hl /test/smm .erl:1059.4-1065.71:
new_fun ()

:/eygwin/home/hl /test/smm .erl:2908.4-2914.71:
new_fun()

The cloned expression/function after generalisation:

new_fun() ->
RS55SetResult = ?5MM IMPORT FILE BASIC(?SMM RULESET FILE 1,no),
?TRIAL (ok,RS5SetResult),

AmountOfRuleSets = 2?5MM RULESET_ FILE_ 1 COUNT,
?CM_CHECK (AmountOfRuleSets, ?MP_BS,ets,info, [sbgRuleSetTable,size]),
?0M_CHECK (A&mountOfRuleSets, ?5GC_BS,ets,info, [smmRuleSet,size]),

AmountOfRuleSets.
-1\ **— *erl-output* 1% (20,0) (Fundamental Compilation)
F’f(i]kat::’» Ny
property based testing I(—pnt Computing

File Edit Options Buffers Tools Errors Help

DeB8x BE S xaBhRxE XT

Clone 238. This code appears twice:
c:/eygwin/home/hl/test/smm SUITE.erl:23904.4—-2989.69:
new_fun ("This test case will check the use of "
"ISM support table for '"Rule Set Usage'.~nInst"”
"ances will be changed when filter names "
"are changed.~n")
c:/eygwin/home/hl/test/smm SUITE.erl:2760.4—-2845.69:
new_fun ("This test case will check the use of "
"ISM support table for '"Rule Set Usage'.~nInst"”
"ances will be removed when rule sets "
"are removed.~n")

The cloned expression/function after generalisation:

new_fun (NewVar_1) ->
2COMMENT (
NewVar_ 1,1[1).,

RSSetResult = 2?5MM TIMPORT_ FILE BASIC(?5MM RULESET_ FILE_ 1,no),
?TRIAL (ok,RS55etResult),

ZmountOfRuleSets = 2?5MM RULESET_FILE_1 COUNT,
?CM_CHECK (AmountCfRuleSets, ?MP_BS,ets,info, [sbgRuleSetTable,size]),
?CM_CHECK (AmountOCfRuleSets, ?5GC_BS,ets, info, [smmRuleSet,size]),

FilterStateAtom = notUsed,

FilterNamel = "Filter 1",
CreateFilterl = 2?5MM CREATE FILTER(FilterNamel),

=1\ **— *erl-output* 93% (2316,0) (Fundamental Compilation)

ProTest)

property based testing

University of

Kent

N

N

Computing

ProTesty Kent ...
property based testing

Improve Module Structure

property based testing Computing

Maintaining modularity

Modularity tends to Cyclic module
deteriorate over time. dependencies.

Repair with incremental Export of functions that
modularity maintenance. are “really” internal.

Four modularity “bad Modules with multiple
smells”. purposes.

Very large modules.

Te St R(V;Yﬁof N

property based testing Computing

Refactoring: move functions

Move a group of functions from
one module to another.

Which functions to move? Move to where? How?
Wrangler provides:

1. Modularity smell detection

2. Refactoring suggestions

3. Refactoring

Tes t University of i
Kent ...
property based testing n Computing

“Dogfooding” Wrangler

Case study of Wrangler-0.8.7
56 Erlang modules, 40 kloc (inc. comments).

* Improper dependencies: sharing
implementation between refactorings.

» Cyclic dependencies: need to split modules.

* Multiple goals: refac_syntax_11ib 7 clusters.

property based testing Computing

Wrangler module graph

[=]

] |] |

/[1" /)
—//
pal

[]

[/
!

i1 va

LU B WXLM 3l

property based testing

Wrangler Cycles

/ rewr'rte/Z,updateﬁann/Z,"‘

<

‘,“"‘expand_ﬂles/z,tokenize/3,

i

get_client files/2.

wrangler modulegraph server

add_fun_define_locations/2. 5get_ca||ed_mods/2,module_graph/l,

‘c" test_framework_used/1. |

type_ann_ast/5.

|
“format/ 1

Lexpand_ﬁles/Z.

i

\get_clint fies/2./

\
\’get;called#mods/z,moduIe;graph/y,e‘

collect_unsure_atoms_in_file/3,

wrangler modulegraph servi

et_called_mods/2,

|
| module_graph/1,
get_client _files/2./ o

qet_called mods/2,
| module_graphy1,
|

wrangler modulegraph server

\

| concat_toks/1. “no of changed_funs_toks/1,

\ / print_ast)3,

* Nodes in red are modules that need inspection.

Test

property based testing

University of

Kent

A

s
Computing

Inter-layer dependency

refac_prettypr

concat_toks/1
get_toks/1 print_ast/2

get_range/1
(:::::Eefac_uti1

Inter-layer cyclic module dependency found:
[refac_prettypr, refac_util, refac_prettypr]

Refactoring suggestion:
move_fun(refac_util, [{refac_util,write_refactored_files,1},
{refac_util,write_refactored_files, 3},
{refac_util,write_refactored_files,4}],
user_supplied_target_mod).

Intra-layer dependency

refac_type_annotation

full_buTtP/3
parse_annotate_file/3
rewrite/?2

stop_tdTP/3
test_framework_used/1

type_ann_ast/2

(:::::Eefac_ut11

University of

Te St I(Qn Ciom\puting

property based testing

ldentifying "API" functions

- |dentify by examining call graph.
« API functions are those ...

* ... not used internally,
« ... "close t0o" other API functions.

« Others are seen as internal, external calls
to these are deemed improper.

Te St R(V;Y.Srit';of R

property based testing Computing

Improper dependency

(:EEEE;_add_a;EE§:> (:nggg_annotatEEEEEE> (nggggrename_pEEEEE§>

spawn_funs/0 is_spawn_app/0 evaluate_expr/5

TESt Kgﬁof i |

property based testing Computing

refac_syntax_lib.er]l -

Module: refac_syntax_11ib

Repor’[on mUIti'goaI Cluster 1, Indegree:25, OutDegree:1,
[{map,2}, {map_subtrees,2},

modules: 12/56. {mapfold, 3}, {mapfold_subtrees,3},
{fold,3}, {fold_subtrees,3}]

Cluster 2, Indegree:0, OutDegree:O0,

Agglomerative [{fold]_Tistlist,3},{mapfoldl_listlist,3}]
hierarChicaI algorithm. Cluster 3, Indegree:0, OutDegree:O0,

[{new_variable_name, 1}, {new_variable_names,2},
{new_variable_name,2},{new_variable_names,3}]

Cluster 4, Indegree:4, OutDegree:1,

Functions represented

. _bindi 2}, _bindi 3},
by feature lists ... fed ar anorate clause 41, fvann clause 47,
]] {annotate_bindings,1}]
Into Jaccard metric.

Test Kent

property based testing

s
Computing

Future work

Incremental detection of module bad smells,
e.g. in overnight builds.

Partition module exports according to client
modules.

Case studies.

University of

Te St Kent Ciom\putmg

property based testing

Improve module structure

» Refactoring
— Move function(s) from one module to another.

— select a function definition to move a single
function, an export list to move a collect of
functions.

— Partition module exports.

University of | A
TeSt Kent C\om‘puting

property based testing

File Edit Options Buffers Tools Refactor Inspector Erlang Help

ODeEeEx BE s ¥ &mabhRE XY

3% Etyvpe svntaxTree () = refac_syntax:syntaxTree (). An abstract syntax
% tree. See the <code>er1_syntax</code> module for details.

—module (refac_ syntax_ 1ib) .

—export ([analyze application/1,
analyze attribute/1l, analyze export_attribute/1,
analyze file attribute/l, analyze form/1,
analyze forms/1, analyze function/1,
analyze function name/1l, analyze implicit_ fun/1,
analyze import_attribute/l, analyze module attribute/1,
analyze_record_attribute/1, analyze_record_expr/l,
analyze record field/1l, analyze rule/1,
analyze wild attribute/l, annotate_bindings/1,
annotate_bindings/2, annotate_bindings/3,
fold/3, fold subtrees/3,
foldl 1listlist/3, function name expansions/1,
is _fail expr/1, limit/2, limit/3, map/2, map_ subtrees/2,
mapfold/3, mapfold subtrees/3, mapfoldl listlist/3,
new_variable_name/l, new_variable_name/z,
new variable names/2, new_variable names/3,
strip comments/1l, to_comment/l, to_comment/2,
to_comment/3, wvariables/1l, var_ annotate_clause/4]).

E@spec map (Function, Tree::syntaxTree()) —-> syntaxTree()
Function = (syntaxTree()) —-> syntaxTree ()
@doc Applies a function to each node of a syntax tree. The result of

each application replaces the corresponding original node. The orderxr
of traversal is bottom—up.

University of | [~
Prolest™ <
property based testing I(ent Computing

‘9 emacs@HL-LT

File Edit Options Buffers Tools lRefactorl Inspector Erlang Help

NDedE x @@ <

=2
l 3

Etyvpe syvntaxTree () = re
tree. See the <code>erl

—module (refac_syntax 1lib).

—export ([analyze applicat

analyze attribute
analyze file attrxr
analyze forms/1,

analyze_ function_|
analyze_ import_at
analyze_ record_at
analyze record fi
analyze wild attr
annotate_bindings

Rename Variable Name

Rename Functiocn Name
Rename Module Name
Generalise Function Definition
Mowve Function to Another Module
Function Extraction

Intreduce New Variable

Inline Variable

Fold Expression Against Function
Tuple Function Arguments
Unfold Function Application

Introduce a Macro

C-cC-wrv
C-cC-wrf ‘
C-cC-wrm
C-cC-g (3

C-cC-wm
C-cC-wnf
C-cC-wnv
C-cC-wi
C-cC-wff
C-cC-wt

C-cC-wu

C-cC-wnm

fold/3, fold subt Feld Against Macro Definition C-cC-wfm
foldl 1listlist/3,))
is fail expr/1, 1 Identical Code Detection >
mapfold/3 mapfol L. 2
= ! = Similar Code Detection >
new wvariable name
newfvarlable_name Refactorings for QuickCheck >
strip comments/1,
to_comment/3, wvaxr Process Refactorings (Beta) >
22 Normalise Record Expression S
% @spec map (Function, Tre Partition Exported Functions
== . gen_fsm State Data to Record
3 Function = (sy|
3 Undo C-c C-w _
£% Edoc Applie=s a function £
$% each application replac Customize Wrangler r
$3% of traversal is bottom-—
' 3 Version v
—— (Unix) ———

ProTest)

property based testing

University of

Kent

N

Computing

€9 emacs@HL-LT ..

File Edit Options Buffers Tools Refctor Inspector Erlang Help

ODeEx BE s oabBxE XT

£% @type svntaxTree() = refac_ syntax:syntaxTree (). An abstract syntax
% tree. See the <code>er1_syntax</code> module for details.

—module (refac_syntax 1ib).

—export ([is_fail expr/1l, analyze function name/1,
analyze implicit_fun/1l, analyze application/1,
analyze_module_attribute/1, analyze_export_attribute/1,
analyze import_ attribute/l, analyze wild attribute/1,
analyze function/1l, analyze_ rule/1,
analyze file attribute/l, analyze record attribute/1,
analyze_record_field/l, analyze_record_expr/l,
analyze forms/1l, analyze form/1l, analyze attribute/1]).

—export ([map/2, map subtrees/2, mapfold/3,
mapfold subtrees/3, strip comments/1l, fold/3,
fold subtrees/3]).

—export ([new_vwvariable name/l, new variable names/2,
new variable name/2, new_variable names/3]).

—export ([annotate_bindings/2, annotate_ bindings/3,
var_ annotate_clause/4, annotate_bindings/1]).

—export ([to_comment/l, to_comment/2, to_comment/3]).
—export ([foldl listlist/3, mapfoldl listlist/3]).
—export ([limit/2, 1imit/3]).

—export([function_name_expansions/l]).

University of | [~
Prolest™ <
property based testing I(ent Computing

ProTesty Kent ...
property based testing

ProTesty Kent ...
property based testing

Installation; Mac OS X and Linux

Requires: Erlang release R11B-5 or later

property based testing Computing

Installation; Mac OS X and Linux

Download Wrangler from
http://www.cs.kent.ac.uk/projects/wrangler/

or get it from the memory stick ...

In the wrangler directory
./configure

make

sudo make 1i1nstall

Kent
property based testing n

Installation; Mac OS X and Linux

Add to ~/.emacs file:
(add-to-11st 'load-path

"/usr/local/share/wrangler/elisp")
(require 'wrangler)

If you’re installing emacs now, then you add the
following lines to your ~/.emacs file

(setqg load-path (cons "/usr/local/otp/lib/tools-<ToolsVer>/emacs"
lToad-path))
(setg erlang-root-dir "/usr/local/otp")

(setq exec-path (cons "/usr/local/otp/bin" exec-path))
(require 'erlang-start)

University of | A
Test

(N
Computing

Installation: Windows

Requires R11B-5 or later + Emacs

Download installer from
http://www.cs.kent.ac.uk/projects/wrangler/

Requires no other actions.

property based testing Computing

Installation: Eclipse + ErlIDE

Requires Erlang R11B-5 or later, if it isn't
already present on your system.

On Windows systems, use a path with no
spaces in it.

Install Eclipse 3.5, if you didn't already.

All the details at
http://erlide.sourceforge.net/

property based testing

Starting Wrangler in Emacs

Open emacs, and open a .er1 file.
M-x erlang-refactor-on Or ...

... C-c, C-r

New menus: Refactor and Inspector
Customise for dir

Undo C-c, C-w, _

property based testing

Preview Feature

Preview changes before confirming the
change

Emacs ediff IS used.

University of | A
Te St I(@ht C\om‘puting

eeeeeeeeeeeeeeeeeeee

Stopping Wrangler in Emacs

M-x erlang-refactor-off to stop Wrangler

Shortcut C-c, C-r

property based testing Computing

Tutorial materials

Exercises:

http://www.cs.kent.ac.uk/projects/
wrangler/Misc/WranglerExercise.
{doc.pdf}

Code:

http://www.cs.kent.ac.uk/projects/
wrangler/Misc/wrangler_ex.tar.gz

University of | (x
est Kent &
property based testing omputing

Carrying on ...

Try on your own project code ...

Feedback:

erlang-refactor@kent.ac.uk Or
H.Li@kent.ac.uk

Test

pppppppp based testing

