
GRACEFUL TERMINATION — GRACEFUL RESETTING

P.H.Welch
Computing Laboratory, The University, Canterbury, Kent − CT2 7NF, ENGLAND

ABSTRACT
Correct — let alone graceful — termination of parallel systems is sometimes thought to be a
difficult problem. This is particularly imagined to be so under the pure message-passing
MIMD discipline of occam and transputer networks, where global operations (like setting a
shared flag or abortions) are not allowed and where time-outs cannot be set for every
communication. This paper describes some common, but erroneous, occam approaches to
this problem and contrasts them with what can be done in Ada [0, 1, 2]. These methods are
all rejected on the grounds of insecurity and performance overheads. A simple, legal, secure
and efficient occam method is then presented. This method also solves a much more
important problem — the general (or partial) resetting of a parallel system (or sub-system).
The resetting mechanism is quite independent of the parallel application algorithm, which
can therefore be developed without worrying about such matters. This separation of
concerns is good software engineering and is fully supported by the occam philosophy.
Finally, an application of this resetting mechanism is described that permits the dynamic
reconstruction of occam network topologies.

The Problem
Given a (sub-)network of processes with arbitrary topology, message protocol and synchronisation
regime, arrange for it to terminate. The initiative to kill the system may come from one or more of the
processes themselves and/or from one or more points outside (if the network is not a closed system).

The pit-fall we have to avoid is committing a process to communicate with a terminated neighbour. If
this were to happen, that communication would never terminate and, therefore, the network would never
terminate.

How Not To Do It — I
Equip every process with an extra interrupt channel. If a process is implemented as a parallel network
of sub-processes, ‘‘fan-out’’ this interrupt channel down to each of them. If a process has a sequential
implementation, modify its algorithm so as to terminate if ever an interrupt signal arrives.

The trouble with this scheme is that its success is sensitive to the order in which the processes are closed
down. Specifically, the processes must be killed off in a ‘‘topological’’ ordering with respect to the
network data-flow.

For instance, if the network were a pipeline of four processes :−

A B C D

interrupt.A interrupt.B interrupt.C interrupt.D

we must arrange for the interrupts to arrive in the sequence A, B, C, D.

Suppose we did not. Suppose that interrupt.C fired before interrupt.B. Then, there is a good chance that
process C will terminate before process B notices its interrupt.B. In that case, process B may make a
fatal attempt to output a message and get suspended for ever. The interrupt.B signal never gets
acknowledged. This might cause further damage by blocking the interrupt generating process — thus
leaving many other parts of the network still active.



Unfortunately, if the network has feed-back, there is no secure ordering possible for firing these
interrupts — e.g. :−

A B

interrupt.A interrupt.B

If A terminates before B, B may get stuck trying to output — and vice versa!

In [1], A is given the responsibility for pulling the interrupt.B (after it has received an interrupt.A). B is
assumed to check its interrupt.B line between every output to A. Then :−

• If B were committed to output to A when A tries to interrupt.B, deadlock is avoided by
having A always interrupt.B in parallel with inputting from B. A outputs this interrupt.B at
high priority so that it will be pending at B before B completes its normal output to A. That
way, B will detect it next time and not attempt to communicate again with A.

• Unfortunately, if the above pre-condition were not true, B will simply detect its interrupt.B
and terminate without ever sending anything back to A — leaving A stranded. Of course, A
might try timing-out on this final communication from B — but see the next section.

How Not To Do It — II
The process that decides to kill the system off simply terminates. Impose some ‘‘time-out’’ mechanism
on all the lowest level (i.e. sequential) network processes so that they simply give up and die if they are
blocked long enough awaiting input.

This scheme is very sensitive to setting the time-out values correctly. For instance, consider :−

A B

Suppose A decides to terminate. B must know the minimum regularity with which it is supposed to
receive messages in order to time-out correctly. If the communications are irregular (or if A were
modified at some stage so that its regularity changed), B may time-out incorrectly. If A then tried to
output, the system gets deadlocked as before.

On the other hand, if it was B that decided to terminate, A has no inputs on which to time-out and so
detect that the system is closing down.

Neither of these problems, of course, can be overcome by setting time-outs on outputs. Even if such
things were legal in occam, they still would not work — which brings us to the next section.

What Ada Might Do (or How Not To Do It — III)
Ada does have the capability of setting a time-out on an ‘‘output’’ (although the Ada equivalent notion is
a ‘‘rendezvous call’’, over which the actual data-flow may be in either — or both — directions).
However, as we are well aware from all the discussions about output guards in occam, the run-time
overheads for this are horrendous. Even if we were able to accept this cost, this method is still insecure.
If any time-outs are set wrong, there is an ever-present danger of the whole system closing down
accidentally. I would not want to fly in an aeroplane controlled by such logic.



What Else Ada Might Do (or How Not To Do It — IV)
Ada might try setting a global flag that each component polls to see if it’s time to close down. This
could be mimicked in a non-shared-memory discipline (like occam) by having a special ‘‘flag process’’,
running in parallel with the main network, that everyone polls. The problem with this is that the order of
shut-down of the components is again very difficult to control, results in deadlock if done wrongly and,
unfortunately, cannot be done correctly if the network has feedback (see How Not to Do It — I).

What Ada Often Does (or How Not To Do It — V)
Ada gives any process the ability to ‘‘abort’’ any other process whose name it knows. This is not a
secure feature! I would not want any process of mine to be at the mercy of any (perhaps quite
unconnected) process who happens to know its name. If a process needs to be closed down, it must be
given the opportunity to perform whatever termination activities are essential to maintain a clean system
environment. Good Ada design guidelines usually go to a lot of trouble (and it is a lot!!) to make
processes anonymous — simply to prevent such abortions. Occam, of course, has no such features and
none, happily, could be added — all processes in occam are anonymous.

What Ada Usually Does (or How Not To Do It — VI)
Ada has her ‘‘terminate option’’. This seems to be an elegant and secure feature designed precisely to
solve this problem. Occam has no equivalent! If occam did have this feature, it might take the form of
another kind of ALT construct — e.g. :−

TERMINATE ALT
in.0 ? message

... process this message
in.1 ? message

... process that message

A process that becomes blocked on an TERMINATE ALT construct would be marked as being
‘‘terminatable’’.

A deadlocked (sub-)network of terminatable processes terminates, courtesy of some magic in the run-
time system. [A deadlocked (sub-)network of terminatable processes is one in which every process is
waiting on a TERMINATE ALT for input either from other processes in this group or from terminated
processes.]

Therefore, the solution would be to have a TERMINATE ALT guarding every input — even when there is
only one channel to monitor. To kill the system, do whatever needs to be done to cause the right kind of
deadlock — for instance, terminate all the sources of the data-flow. Unfortunately, this can again prove
difficult for networks with feedback — if a process ends up blocked on output, it would not be
terminatable!

There are three other problems :−
• this feature provides an improper ‘‘way out’’ from a loop that invalidates simple formal (or

informal) rules for reasoning about loop properties. [In this, it is as bad as loop exit
statements, subroutine return statements, exception raising, the goto and other nasty
discontinuities that occam does not possess.]

• the run-time overheads for managing such options are alarming;

• the transputer (micro-coded) process scheduler does not maintain the information needed to
implement it.

One of the reasons why transputer process scheduling is fast is that only local information need be
examined. A process is associated with channels — not other processes. A process does not maintain
pointers to whatever processes may be at the other ends of those channels — it does not know (and does
not need to know) whether its neighbours are alive, dead, terminatable, siblings (i.e. created by the same
PAR construct as itself) or even if they hav e ev er existed. [Things are different for Ada!]



Therefore, the information is not directly available to find out if the conditions for triggering the
TERMINATE option have been met. Such information is global information and is very expensive to
maintain — especially in a distributed implementation! We are talking about a mass suicide pact which
proceeds only if all the participants are convinced that all of them are actually going to do it — and
where all the participants cannot be gathered together in the same place!!

What To Do If Really Desperate (or How Not To Do It — VII)
Drop into assembler or C. Ignore all occam’s safety rules. Have a go at the process scheduling data-
structures! Good luck, but don’t bet anything valuable (like someone’s life!!) on the result.

How To Do It (If You’re Sure You Really Want To)
Spread some ‘‘poison’’ throughout the circuit using the existing application channels.

For any message PROT OCOL on any channel, identify some value that can represent a special
‘‘poisonous’’ message that is distinct from ‘‘normal’’ messages. If no such value can be identified,
extend the protocol with tags. For instance, if the protocol were just an INT and all INTs were valid
messages, define :−

PROT OCOL TAGGED.INT
CASE

normal; INT
poison

:

With such a PROT OCOL, a higher-level ‘‘protocol’’ must be observed : if we send poison down a
channel, it is the last message we send down that channel.

Consider all the lowest level sequential components in the network. For example :−

PROC thing (CHAN OF TAGGED.INT in.0, in.1, in.2,
CHAN OF TAGGED.INT out.0, out.1)

... local declarations
SEQ

... initialise

... main.cycle (infinite)
:

Change the main.cycle of the component so that it :−
• terminates if it ever receives poison on any input;

• sets a flag (FALSE) to indicate each input on which the poison arrived (poison may arrive on
more than one channel if there were a PAR input).

Then, add an extra finalise phase to the component, giving us :−

PROC terminatable.thing (CHAN OF TAGGED.INT in.0, in.1, in.2,
CHAN OF TAGGED.INT out.0, out.1)

... local declarations
SEQ

... initialise

... main.cycle

... finalise
:

In this last phase, the component in parallel :−
• outputs poison on all output channels;

• ‘‘black holes’’ all input channels until poison arrives.



For example :−

{{{ finalise
PAR

out.0 ! poison
out.1 ! poison
black.hole (flag.0, in.0)
black.hole (flag.1, in.1)
black.hole (flag.2, in.2)

}}}

where :−

PROC black.hole (BOOL flag, CHAN OF TAGGED.INT in)
WHILE flag

in? CASE
INT any:
normal; any

SKIP
poison

flag := FALSE
:

To kill the network from outside, simply inject in poison. If one of the internal components decides
spontaneously to zap the system, all it has to do is terminate its main.cycle and enter its finalise phase.
The poison will eventually reach everything ‘‘down-stream’’ from where it originated. Make sure that
all components are down-stream from all potential starting points — this is a modest design constraint.
This method will cope with multiple kill signals arriving from outside and/or being generated internally.

The network will gracefully terminate in some (unpredictable) order. When you try to input from a
‘‘poisoned’’ neighbour, you get ‘‘poisoned’’ yourself. Active parts of the network will not get blocked
trying to output to ‘‘poisoned’’ neighbours. ‘‘Poisoned’’ neighbours leave behind a cluster of black.hole
processes that stay alive, swallowing and acknowledging output so long as those active parts remain
active.

There are, of course, some run-time penalties to pay. Every message communicated requires an extra
check to detect poison. If variant protocols are necessary to represent poison values, each normal
message is extended by the tag. Compared to the other approaches, these overheads are very light.

Unlike the other approaches, the method is secure (and may be formally proved so to be).

Are You Sure You Really Want To Do It?
Most of the sequential components I write emulate a single, rather small, object with a natural life
expectation of infinity. They generally consist of a single WHILE TRUE loop.

Parallel processes do not need to terminate to produce useful results — unlike procedures or (first order)
functions. Results are ‘‘communicated’’ on-the-fly, not ‘‘returned’’ upon exit.

One of the joys of designing like this is that we only need worry about loop-invariants and can forget
about loop-termination. Much agonising has been reported from some quarters about the ‘‘serious
difficulties’’ of reasoning about parallel processing that are caused by the fact that parallel loops might
not terminate ‘‘together’’. Relax — with infinite loops, those problems never show up!

Another reason for not wanting to do this is the source text overhead for small processes. It can double
the length of some of them! For designing the algorithms and understanding the semantics of the
network, it just gets in the way. With the method outlined above, termination can be automatically
‘‘retro-fitted’’ should the need arise.

The best reason for not doing this is that it’s not really termination that is ever required — it’s resetting.
If you really want to terminate a system, turn the power off!



The Real Problem
Given a (sub-)network of processes with arbitrary topology, message protocol and synchronisation
regime, reset it to a known state.

The initiative that causes the reset may come from one or more of the processes and/or from one or more
of the external inputs. ‘‘Simultaneous’’ resets must be catered for without falling over!

How To Solve The Real Problem
Spread the ‘‘reset’’ signal throughout the circuit using the existing application channels.

Proceed as for the termination problem. Identify a reset value for each PROT OCOL in the system (use
tags if necessary).

Modify the lowest-level sequential processes as in the following example :−

PROC resettable.thing (CHAN OF TAGGED.INT in.0, in.1, in.2,
CHAN OF TAGGED.INT out.0, out.1)

WHILE TRUE
... local declarations
SEQ

... initialise to reset state

... main.cycle

... finalise
:

As before, the main cycle terminates if it receives a reset signal, flagging the channel (or channels) on
which it was received.

The finalise phase is as before, with reset used instead of poison.

From wherever resets originate, a ‘‘wav e’’ of signals ripples across the whole system. Colliding wav es
propagate no further. At any particular moment some of the network processes will still be in their old
states, some will have just been reset and some will be into their post-reset activity.

This loose coupling is perfectly secure. After any process (say P) has been reset, the first
communication it makes on any of its channels will be the first communication that the process on the
other end of the channel (say Q) makes on that channel after Q has been reset. Semantically, it is
equivalent to stopping the whole system, waiting for every component to be reset and, only then, letting
them all start again.

This mechanism for resetting or terminating networks is an example of how global changes of state can
be consistently and safely managed using purely local (and therefore simple and fast) interactions. It
reflects how Nature builds the ‘‘real-world’’ — complex macro-phenomema are merely the result of
massively parallel interactions between simple micro-phenomema.

Resetting Sub-Networks
If we want to be able to reset just a sub-network, components that directly communicate with that sub-
network must be made aware of this possibility. Their main.cycle needs be modified so that if a reset is
received from the sub-network, they respond with a finalise (restricted to deal only with those channels
that connect them to the sub-network). Their main.cycle would then resume without being broken.

Of course, this does mean that neighbouring components ought to take some input from the sub-
network. We are using the sub-network — whatever it may be — as a medium for distributing the
information about its impending reset. A resettable sub-network, therefore, needs protecting from a
blind data-supplier. This can simply be achieved by offering the supplier an output channel from the
sub-network (that is only ever used to carry a reset). On the other hand, if we do not mind introducing
an extra buffer, we may even avoid modifying the data-supplier by introducing an extra process :−



supplier echo.reset sub-network
component

(reset)

PROC echo.reset (CHAN OF TAGGED.INT from.supplier, from.net, to.net)
WHILE TRUE

PRI ALT
from.net ? CASE reset

to.net ! reset − − ‘‘finalise’’
from.supplier ? CASE

INT n:
normal; n

to.net ! normal; n
reset

PAR − − ‘‘finalise’’
to.net ! reset
from.net ? CASE reset

:

Such a process may be inserted on every input channel to the sub-network. The surrounding
compnonents would then be insulated from any need to look out for and participate in any reset!

Similar things need to be done to terminate a sub-network successfully — with poison instead of reset.
However, sub-network termination is somewhat pointless unless we want to re-allocate its resources in
some way — e.g. to install a different sub-network. Otherwise, we may as well just deadlock the sub-
network — hardly any code is ever required for that!

Dynamic Network Topology
Consider the main.cycle of resettable.thing. Suppose it is itself a sub-network of parallel processes, all
of which terminate upon generation or consumption of a ‘‘reset’’ signal. Suppose further that the
particular network that main.cycle installs depends upon run-time data computed during the initialise
phase (where we could, of course, receive instructions from the outside world). We now hav e the ability
to alter the network topology of an application dynamically. We can close down a sub-part and bring it
up again in a different shape without stopping the rest of the network.

Given electronic switching of transputer links (or dynamic routing silicon on future transputers), there is
no reason why much more of occam should not be used as the configuration language to accommodate
these operations at the hardware level. This allows dynamic re-allocation (and re-connection) of
physical transputers to different tasks in response to changing run-time conditions — all within the
existing occam model of parallel processing. Perhaps, occam is not such a static language after all!

Final Comments
Resetting a system to a known state is a real requirement for most systems that have to operate in the
‘‘real world’’. Typical applications are in (real-time) control systems and (layered) communication
network protocols.

The occam method of parallel system design directly reflects an ‘‘object-oriented’’ system analysis,
permitting the rapid development of a range of secure and high-performance implementations with the
basic functionality. ‘‘Special effects’’ — like this arbitrary resetting capability — can be grafted on
afterwards in a quite mechanical way. Does anybody want to write a few tools?



References
[0] INMOS Ltd.: ‘‘Occam 2 Reference Manual’’; Prentice-Hall (ISBN 0-13-629312-3); 1987.

[1] A.Chalmers: ‘‘Useful Titbits’’; Occam User Group Newslettter No. 9 (pp. 15-19); September,
1988.

[2] Ada Joint Program Office: ‘‘Ada Language Reference Manual’’; 1983.


