
Towards a Modal Logic of Durative
Actions

Stuart Kent

sjk@doc.ic.ac.uk

Department of Computing, Imperial College
180 Queen's Gate, London SW7 2BZ, United Kingdom

Abstract

This paper proposes an extension of modal action logics, which typically make
the assumption that an action is atomic, to include durative actions. These logics
have been developed to support the formal speci�cation of information systems:
we argue, with particular reference to object oriented systems, that assuming
atomicity is too restrictive to express many kinds of temporal constraint. In
consequence, we propose that actions be regarded as durative, and encode this by
assuming that an action occurs over a sequence of atomic transitions, or interval,
rather than a single transition. With this as a pre-requisite, the paper continues
to rede�ne and extend operators of atomic action logics to �t the durative case.

1 Introduction

This paper describes work whose aim is to support the formal speci�cation,
characterisation and development of object oriented systems. Speci�cally, we
propose an extension to action logics [16, 18, 7, 15] which have already been
used with some success in providing axiomatic semantics to object oriented
speci�cation languages [8, 9] and thereby providing a basis for reasoning about
object oriented systems and their development. The core of our proposal is a
reworking of the semantics of such logics to admit durative actions.

An action logic distinguishes between terms denoting actions performed in
the system and terms denoting values. The value-denoting terms are used to
represent the state of the \abstract machine" being speci�ed. Actions identify
transitions to change that state. Typically, the semantics of these logics force
actions to be atomic:1 they are regarded as occurring over single atomic transi-
tions and, with regard to concurrency, it is only possible to express restrictions
on their synchronisation. However, when constructing an object oriented model
of a system one usually makes the assumption that methods have duration, and,
in general, may operate concurrently not just synchronously {ie. one method
may start whilst another is in progress, and only parts of a method need to
synchronise where conict avoidance is required. This is reected in the re-
cent development of OO programming languages, such as DRAGOON [4] and
POOL [3], in which concurrent method execution is the norm and language

1Perhaps an exception to this is [17], which admits compound durative actions (eg. actions constructed

using a sequential combinator). However, primitive durative actions (ie. actions whose structure is not

determined) are not allowed.

constructs are provided to restrict this concurrency. Furthermore, objects call
on the services of other objects by invoking their methods. Such invocations
force the invoking method to run concurrently with the invoked method.2

In order to specify such systems, it would be desirable to have a speci�-
cation language in which methods are assumed to be durative, and which has
language constructs for imposing restrictions on the concurrency of methods.
In providing an axiomatic semantics for such a language, two options present
themselves:

� Attempt to model methods in terms of atomic actions, and specify concur-
rency constraints through synchronisation of these atomic actions.

� Develop an action logic which admits durative actions and has appropriate
language constructs for expressing their concurrent behaviour.

We favour the latter approach, for the same reasons that motivated the use
of modal logics for speci�cation in the �rst place: they are \engineered" to
provide a range of operators, which allows the same language to be used both
to express behaviour and reason about it.

The paper is organised as follows. Section 2 introduces the time point and
interval structures and gives a semantic characterisation of durative actions.
This prepares the incremental de�nition of the logic in Sections 3 { 6, intro-
ducing, respectively, the core logic, action combinators for constructing actions
from component actions, operators for transforming action terms to formulae
and vice-versa (eg. to express when an action is in progress), and a range of
temporal operators for relating occurrences of di�erent actions. A summary of
results and indication of future work is provided in Section 7.

2 Temporal Structures and Actions

This section introduces the mathematical machinery used in the remainder of
the paper. The semantics of action logics, which assume atomicity of actions,
may be given in terms of a structure of states or time points, and an action is
characterised as a collection of atomic transitions (its occurrences) {ie. tran-
sitions between neighbouring points.3 In order to admit durative actions, an
occurrence of an action will be regarded as a sequence of atomic transitions,
alternatively an interval comprising at least two time points. To formulate
this, we begin by introducing a time-point structure, an interval structure de-
rived from a point structure, and the basic mathematical `tools' required to
manipulate and relate points and intervals. This will be followed by a semantic
characterisation of actions along the lines just outlined.

A time point structure and the interval structure derived from it are given
by De�nition 1.

2Even in sequential programming languages, such as Smalltalk, the invoked method must be performed

within the body of the invoking method.
3Note that a transition may observe more than one action.

De�nition 1 (point and interval structures)
(a) T = hT;<i is a time point structure, where T is a set of time points and <

a discrete, linear ordering with an initial time point t0.

(b) I(T) = hIT ; <T i is the interval structure derived from T where IT is the
set of intervals and <T is the precedence ordering on intervals such that:
i. for any i; j 2 IT ; i <T j if and only if for every t 2 i and t0 2 j; t < t0

ii. IT =

�
i j

i 2 }(T) and for all t; t0 2 i if there exists
t00 2 T s.t. t < t00 < t0 then t00 2 i

�
The point structures used to interpret the action logics referred to earlier

have generally been discrete and have an initial time point. To keep things
simple, we have also assumed here a linear ordering.4 From now on, when we
write T we will mean the point structure hT;<i. Similarly, we use the shorthand
I for I(T), and assume this to be de�ned as hI;<i. Some functions and
notation for manipulating points, intervals, sets of points and sets of intervals
are given by De�nition 2, which assumes a point structure T and associated
interval structure I, according to the conventions set out above.

De�nition 2 For any i 2 I; s; t 2 T; U � T and J � I ,
(a) l(i) and r(i) represent, respectively, the left and right bounds of the interval

i, where

l(i) = maxft0 2 T j for every t00 2 i; t0 � t00g

and

r(i) = minft0 2 T [1 j for every t00 2 i; t0 � t00g

for 1 s.t. for every t0 2 T; t0 <1;

(b) i(i) = i� fl(i); r(i)g represents the interior of the interval i;

(c) [s; t]; (s; t); [s; t) and (s; t] are the intervals de�ned by,

[s; t] = ft0 j s � t0 � tg (s; t) = ft0 j s < t0 < tg
[s; t) = ft0 j s � t0 < tg (s; t] = ft0 j s < t0 � tg

(d) succ(t) 2 T is the unique point succeeding t where succ(t) > t and there
exists no t0 2 T s.t. t < t0 < succ(t); pred(t) is the point immediately
preceeding t and is de�ned similarly;

(e) evt(t) = [t; succ(t)], is the atomic transition or event observed from t;

(f) evU(U) = fevt(t) j t 2 Ug, is the set of events observed from points in the
set of points U (note that the set of all events is given by evU(T));

(g) intvls(U) = fi 2 I j i � Ug, is the set of intervals generated from the set of
points U ;

(h) maxintvls(J) = fi 2 J j for every j 2 J; i 6� jg is the set of maximal intervals
in the set of intervals J ;

4A possible use of branching time is discussed in the conclusions.

(i) maxev(E) =

�
i 2 I j

evU(i) � E and for every j 2 I;
if j � i then evU(j) 6� E

�
,

for any E � evU(T), returning the largest intervals whose events are in E;

(j) insts(J) = f[t] j t 2 T and [t] 2 Jg

As a number of authors have observed [19, 2, 20, 5], there are thirteen
primitive relations between intervals: six original relations, their inverses and
equality. All relations are disjoint and partition the universal relation. The
notation used for the six original relations and their inverses is given by De�-
nition 3, which also assumes an interval structure I.

De�nition 3 (interval relations) <; >; [�(�]�) ; (�[�)�] ;)[;](;
([�]�) ; [(�)�] ; (�[�]) ; [�(�)] ; (�[�]�) and [�(�)�] are relations on I � I , such
that, for any i; j 2 I ,
(a) i < j i� r(i) < l(j) i� j > i

(b) i [�(�]�) j i� l(i) < l(j) < r(i) < r(j) i� j (�[�)�] i

(c) i)[j i� r(i) = l(j) i� j](i

(d) i ([�]�) j i� l(i) = l(j) < r(i) < r(j) i� j [(�)�] i

(e) i (�[�]) j i� l(j) < l(i) < r(i) = r(j) i� j [�(�)] i

(f) i (�[�]�) j i� l(j) < l(i) < r(i) < r(j) i� j [�(�)�] i

These relations may be compounded in many di�erent ways. For example,
the usual set theoretic relations � and � are de�ned to be (�[�]�) [(�[�]) [
([�]�) and � [=, respectively. Although we do not de�ne all these compounds
explicitly here, when later we refer to an arbitrary relation between intervals,
we will mean a primitive or compound relation.

2.1 Actions

As indicated earlier, an occurrence of an action is to be characterised as a
sequence of atomic transitions or events. Intuitively, an action must be subject
to the condition that one occurrence may not begin either whilst another of
its occurrences is in progress or at the same time as another of its occurrences
begins.5 In linear time, this restriction is simply encoded by ensuring that
the interiors of occurrences must be disjoint, here assuming that an action is
in progress on all interior states of one of its occurrences. This leads to a
formulation of the set of actions, as follows:

De�nition 4 (actions) For any point structure T ,

(a) Act(T) =

�
a j

a 2 }(I); insts(a) = ; and
for every i; j 2 a; i(i) \ i(j) = ;

�
(b) Actatom(T) = fa j a � evU(T)g

The restriction insts(a) = ; in (a) ensures that the occurrences of an action
have at least two time points: ie. one in which it starts, and one in which it
either �nishes or is in progress.6 Actatom(T) distinguishes the set of atomic
actions, ie. those actions which have only events as occurrences. We will write
Act and Actatom as shorthands for Act(T) and Actatom(T), respectively.

5See [14] for a more detailed discussion on the nature of actions.
6Occurrences of an action may have no right bound. Thus an action may be in progress for ever.

De�nition 5 provides some functions for constructing various subcompo-
nents of an action. The function ev results in all those events performed during
any occurrence of an action a. These include the begin events and the end
events, which are given by beg and end, respectively. prog identi�es those
points in time when an action a is said to be in progress, namely those instants
which are contained in the interior of any of its occurrences. The de�nition
assumes a point structure T .

De�nition 5 (action subcomponents) For any a 2 Act,
(a) ev(a) = fe j e 2 evU(i� fr(i)g); for some i 2 ag

(b) beg(a) = fe j e 2 evU(T) and there exists i 2 a s.t. e ([�]�) ig

(c) end(a) = fe j e 2 evU(T) and there exists i 2 a s.t. e (�[�]) ig

(d) prog(a) =
[
i2a

i(i)

3 The Core Logic

Before considering action combinators and temporal operators, we describe
the core part of the logic, comprising the �rst order component and action
modalities.

3.1 Syntax

The syntax of the core logic is no di�erent to that used in the action logics
mentioned earlier. Our presentation conforms to that of [15]. We begin with the
de�nition of a signature for some arbitrary theory. We distinguish value from
action terms, and accordingly distinguish value from action symbols. There
are three types of value symbol: logical variables, functions and attributes.
Semantically, functions are rigid, as their denotation will not change over time,
and attributes are non-rigid, as their denotation may change with time.

De�nition 6 (signature) � = h�;
;V ;AT ;ACi is a signature where:
(a) � is a set of sorts

(b)
 is a �� ��-indexed family of function symbols,7

(c) V is a collection of variables over the sorts,

(d) AT is a �� ��-indexed family of attribute symbols,

(e) AC is an ��-indexed family of action symbols.

We will write � as a shorthand for the signature h�;V ;AT ;ACi. Value
terms are variables, or composed from an attribute or function symbol combined
with an appropriate number of value term arguments. An action term is either
composed from an action symbol combined with an appropriate number of value
term arguments, or is formed from an action term or terms in combination with
one of a number of combinators. In this section, we only consider uncombinated
action terms.

7Constants are simply function symbols with zero arity. Predicates are e�ectively Boolean functions

De�nition 7 (terms) The set of terms Term(�) = V Term(�)[AcTerm(�)
where:
(a) V Term(�) =

[
S2�

V Term0(�; S)

(b) for any x : S 2 V ; x 2 V Term0(�; S)

(c) for any f : S1 � . . .� Sn � S 2
 and ti 2 V Term0(�; Si);
f(t1; . . . ; tn) 2 V Term0(�; S)

(d) for any A : S1 � . . .� Sn � S 2 AT and ti 2 V Term0(�; Si);
A(t1; . . . ; tn) 2 V Term0(�; S)

(e) for any a : S1 � . . .� Sn 2 AC and ti 2 V Term0(�; Si);
a(t1; . . . ; tn) 2 AcTerm(�)

As usual, formulae of the logic are obtained by combining terms with various
logical operators in a prescribed way. The formulae of the core logic comprise:

� the usual �rst order formulae, where equalities between value terms are the
atomic formulae;

� action modalities, []� and [�]�, familiar to modal action logics and used
for expressing change.

They are given by De�nition 8.

De�nition 8 (formulae) For any signature �, the set of �-formulae is
Form(�), where:

Form(�) �

(
(t1 = t2);:�; (� ^ �);

(� _ �); (� ! �); (�$ �);
8x � �; 9x � �; []�; [at]�

�����
t1; t2 2 V Term(�);

x 2 V ; at 2 AcTerm(�)
and �; � 2 Form(�)

)

3.2 Semantics

The semantics is given in terms of an interpretation structure and an interpre-
tation function. An interpretation structure for a signature � (De�nition 9), is
a tuple comprising a point structure T , an algebra of sorts for interpreting the
sorts and functions of �, and a function f assigning appropriate denotations
to the actions and attribute symbols. Speci�cally, f maps an action symbol to
a function from the sorts of its arguments to actions, and maps an attribute
symbol to a function from the sorts of its arguments to intensions.

De�nition 9 (interpretation structure) For any signature �,
a �-interpretation structure is a tuple = = hT ;U ; fi, where:
(a) T is a time point structure,

(b) U is a tuple h�U ;
Ui s.t.
�U = fSU j S 2 �g

U = fhU : S1U � . . .� SnU � T ! SU j h : S1 � . . .� Sn � S 2
g

(c) f is a function mapping
a : S1 � . . .� Sn 2 AC to f(a) : S1U � . . .� SnU ! Act(T)

A : S1 � . . .� Sn � S 2 AT to f(A) : S1U � . . .� SnU � T ! SU

From now on, we will use = as a shorthand for the interpretation structure
hT ;U ; fi.

An interpretation function assigns denotations to terms and formulae at
a given point in time.8 De�nition 10 de�nes the interpretation function over
value terms, uncombinated action terms, and formulae of the core logic. The
de�nition will be extended to consider other terms and formulae in later sec-
tions.

De�nition 10 (interpretation function) For any signature �,
�-interpretation structure= and �-variable assignmentA, [[]]=;A is a h�;=; Ai-
interpretation function which maps

V Term(�)� T to
[

SU2S

SU

AcTerm(�)� T to Act(T)

Form(�)� T to ftrue; falseg

such that, for any t 2 T; a : S1 � . . .� Sn 2 AC;A : S1 � . . .� Sn � S 2 AT ;
f : S1 � . . .� Sn � S 2
; t1; . . . ; tn 2 V Term(�); x 2 V ; at 2 AcTerm(�) and
�; � 2 Form(�),

[[x]]=;A(t) = A(x)

[[f(t1; . . . ; tn)]]
=;A(t) = fU ([[t1]]

=;A(t); . . . ; [[tn]]
=;A(t))

[[A(t1; . . . ; tn)]]
=;A(t) = f(A)([[t1]]

=;A(t); . . . ; [[tn]]
=;A(t); t)

[[a(t1; . . . ; tn)]]
=;A(t) = f(a)([[t1]]

=;A(t); . . . ; [[tn]]
=;A(t))

[[t1 = t2]]
=;A(t) = true i� [[t1]]

=;A(t) = [[t2]]
=;A(t)

[[[at]�]]=;A(t) = true i� for every i 2 [[at]]=;A(t);

if l(i) = t then [[�]]=;A(r(i)) = true

[[[]�]]=;A(t) = true i� if t = t0 then [[�]]=;A(t) = true

and where the interpretation of the classical logical connectives is as usual.

Intuitively, an action modality is interpreted as for an atomic action logic,
in that the post condition must hold at the end of any occurrence of the action
starting in the state in which the formula is true. The di�erence, of course,
is that here occurrences of an action may occur over a sequence of transitions
(interval) rather than just a single transition. The usual notions of validity,
satis�ability etc. for modal logics apply here.

4 Action Combinators

Action combinators are operators used to construct new actions from compo-
nent actions. In logics where actions are treated atomically (see eg. [15]), the
combinators are parallel (at k bt), choice (at + bt) and complement (at). The
occurrences of a parallel combination of actions is the intersection of the occur-
rences of the component actions, those of a choice of actions is the union of the
occurrences of the components, and the complement of an action comprises all
those transitions which do not observe that action.9 These de�nitions do not

8The alternative is to use intervals of time as the units of evaluation. This point is returned to in the

concluding section.
9That is, performing the complement of an action a means performing any action other than a.

carry over directly to the durative framework, because the result of combining
the component actions in the way described may not themselves be actions ac-
cording to the restrictions de�ned earlier. In particular, problems arise with the
choice combinator, when the interiors of occurrences of the component actions
overlap, and with complementation.

In this section we reinterpret the atomic combinators to �t the durative
case,10 and indicate how new `temporal' combinators could be de�ned. Look-
ing �rst at complementation, directly porting the de�nition from the atomic
case would mean that every interval, which is not an occurrence of the com-
ponent action, would be an occurrence of its complementation. Clearly, such a
collection of intervals would not be an action according to the restrictions set
out earlier. An alternative interpretation is to use complementation to identify
the largest intervals during which the action is not being performed. Formally,
extending De�nitions 7 and 10:

� AcTerm(�) � fat j at 2 AcTerm(�)g

� [[at]]=;A(t) = maxev(evU(T)� ev([[at]]=;A(t)))

We re-interpret the parallel combinator in a similar way to complementation,
with the idea that (at1 k at2) denotes the action whose occurrences are the
maximal periods during which both component actions are being performed.
However, here we have to be slightly more careful about what we mean by
maximality. Speci�cally, we would like equivalence between at and (at k at).11

This will not be the case if k is interpreted as just taking the maximal intervals
during which both actions are being performed. The problem arises when two
occurrences of at meet. By the de�nition just suggested, these occurrences
will be merged into one maximal occurrence of the action (at k at), thereby
blocking the required equivalence. The problem can be avoided by �rst de�ning
a weaker notion of merging: merge is a function merging a set of intervals into
an action, by only merging those intervals whose interiors intersect.

De�nition 11 (merge) For any a 2 Act,
(a) merge(a) = maxev(ev(a� action(a))) [action(a)

(b) action(a) = fi 2 a j for all j 2 a; j = i or i(j) \ i(i) = ;g

The parallel combinator may now be de�ned as an extension of De�nitions
7 and 10:

� AcTerm(�)f� (at1 k at2) j at1; at2 2 AcTerm(�)g

� [[(at1 k at2)]]
=;A(t) = merge([[at1]]

=;A(t) \ [[at2]]
=;A(t))

It is a simple matter to show that this de�nition yields the desired property
of k. A similar de�nition may be given to the choice combinator, and this too
ensures that at is equivalent to (at+ at).

� AcTerm(�) � f(at1 + at2) j at1; at2 2 AcTerm(�)g

� [[(at1 + at2)]]
=;A(t) = merge([[at1]]

=;A(t) [[[at2]]
=;A(t))

10The interpretations given here are similar to those given to operators proposed by [5], who develop

an interval algebra in the Z-like speci�cation language GLIDER for the expression of interval constraints.

The di�erences are twofold: �rstly, they assume a rational model of time; secondly, they have a di�erence

combinator instead of complementation {this would be de�ned here as at1 k at2.

11By the de�nition we have given, it is not the case that at is equivalent to at, for the reason that the

second complementation will merge any occurrences of at which meet. This, perhaps, is also an undesirable

property, but, unfortunately, there seems to be no way of avoiding it.

The introduction of durative actions also provides scope for introducing new
action combinators:

� beg; end and ev, for identifying atomic component actions, as characterised
by the functions beg; end and ev, introduced in Section 2.

� Temporal combinators such as at1 (R at2, for identifying those occurrences
of at1 which are in relation R to an occurrence of at2, and at1 *R at2, for
\merging" occurrences of at1 and at2 which are in relation R to each other.

These are not de�ned here largely for reasons of space. Nevertheless, it would be
wrong to claim that their de�nitions are obvious. Speci�cally, it is not entirely
clear how at1 *R at2 should be de�ned. Consider, for example, a sequential
combination of actions, which might be represented as at1 *)[at2. A naive
interpretation would result in the action whose occurrences were those intervals
exactly containing an occurrence of at1 meeting an occurrence of at2. However,
this might not be an action, for example, if at1 and at2 denoted the same ac-
tion, which had more than one occurrence in sequence. Apart from �nding
an alternative interpretation, one possible solution would be to distinguish a
type of \underdetermined" actions, where such an action is the union of more
than one \determined" action, hence may have occurrences which overlap. As
this would lead to at least three types of action (atomic, determined, underde-
termined) and possibly more,12 it would perhaps be better to reconstruct the
logic to include a sort of actions, with di�erent subsorts, which would allow for
greater exibility when de�ning combinators and other operators. The use of
a sort of actions has been suggested before in eg. [17, 9].

5 prog and occ

In the semantic characterisation of actions presented earlier, we introduced
the notion of an action in progress. This can be reected in the logic, by
introducing an operator prog taking an action as argument and resulting in a
formula which is true at those points in time when an action is in progress.
Formally, extending De�nitions 8 and 10:

� Form(�) � fprog(at) j at 2 AcTerm(�)g

� [[prog(at)]]=;A(t) = true i� t 2 prog([[at]]=;A(t))

A natural compliment to this is an operator which takes formulae and returns
an action. occ(�) returns the `action' whose occurrences are the maximal oc-
currences over which the formula is true, and may be de�ned as an extension
of De�nitions 7 and 10:

� AcTerm(�) � focc(�) j � 2 Form(�)g

� [[occ(�)]]=;A(t) = maxintvls(intvls(ft0 j [[�]]=;A(t0) = trueg))

Under this interpretation, prog(occ(�)) $ � is not an axiom, because
prog(occ(�)) is true only on those time points in the interior of an occurrence
of occ(�). The consequences of this on the logic (eg. whether inverses of these
operators will be required to provide a complete deduction calculus) still need
to be investigated.

12For example, [14] discusses a number of di�erent types of action expressible in natural language.

6 Temporal Operators

A number of action logics [16, 18, 7, 15] have deontic operators for prescribing
when, in normal circumstances, an action occurs with respect to other actions
and with respect to the truth or not of formulae. Deontic operators are used to
distinguish between normal and abnormal behaviour,13 and are of two kinds:
permission operators, for stipulating when actions may occur, and obligation
operators for stipulating when actions must occur. Temporal operators can be
de�ned to achieve a similar e�ect as deontic operators, provided one is willing
to lose the normative/non-normative distinction. [6] presents a detailed formal
analysis of the relationship between the two views, under the assumption that
actions are atomic.

With durative actions, it is possible to de�ne temporal operators which
make use of the ability to relate occurrences of actions using interval relations.
For example, extending De�nitions 8 and 10:14

� Form(�) � f(at1 �R at2) j at1; at2 2 AcTerm(�)g, where R is a relation
on I � I

� [[(at1 �R at2)]]
=;A(t) = true i� for every i 2 [[at1]]

=;A(t); if l(i) = t
then there exists j 2 [[at2]]

=;A(t) s.t. iRj

This family of operators could be further generalised by speci�ying the number
of occurrences of at2 that must be in relation R to at1, for example as in the
formula (at1 �R;n at2) where n is a term denoting a natural number.

A problem15 with this de�nition is that the temporal operators may not be
iterated, as they are binary operators on action terms which result in formulae.
It is possible that the problem could be circumvented by the introduction and
judicious use of `temporal' action combinators. A more radical approach, would
be to interpret formulae over intervals of time, thereby allowing action terms
to be treated as formulae, and de�ne interval temporal operators such as those
in [20]; however, this moves further away from the action logic style of express-
ing behaviour. The ideal solution might be to adopt a dual logic approach {
an interval logic and a logic with action combinitors and modalities, formally
relating theories expressed in the two logics by using the same interpretation
structures and signatures.

7 Summary and Further Work

We have considered how a modal action logic might be extended to include
durative actions. A logic was developed by reinterpreting existing operators,
based on the assumption that actions occur over intervals rather than atomic
transitions, and by introducing new `temporal' operators. Some improvements
and possible extensions were also indicated:

13If a speci�cation does not meet its deontic constraints, then it is viewed as performing abnormally and

some form of error recovery will need to be instigated. See eg. [12, 15] for further discussion.
14This is an extends the de�nition of the `subsumption' operator (�) of [7], where at � bt is true at a

point in time provided that if at is observed by the next transition, bt is also.
15For example, suppose we want to express a bounded obligation (see [15]), where an action at must be

performed during the next future period during which the bounding formula � is true. Without iterating

temporal operators, we are only able to express that at must be performed within a period starting at the

current time during which the formula � is true { ie. by occ(�) �� at.

� A stable set of combinators, in particular `temporal' combinators, needs
to be de�ned. As discussed in Section 4, this would be related to the
introduction of a sort of actions.

� A dual logic approach { an interval logic and a logic with action combinitors
and modalities { could be adopted. In particular, the interval logic would
allow temporal operators to be iterated. The two logics could be formally
related by using the same interpretation structures and signatures.

� A linear time structure has been supposed throughout the paper. Prelimi-
nary investigation reveals that a branching time structure could be used to
distinguish between the atomic transitions when an action stops and those
when it completes as expected (ends).16

� Deontic operators could be introduced to make the distinction between nor-
mal and abnormal behaviour. By combining these with temporal operators,
it should then be possible to express mixed temporal/deontic constraints,
such as those described in [15].

As well as changes to the logic, there is still much work to be done for the
logic to be a useful tool for formal speci�cation. The suitability of the logic in
interpreting OO speci�cation languages and for reasoning about speci�cations
and their developments needs to be tested. In this respect, we are considering
using the logic to give an axiomatic semantics to an object oriented extension
of VDM [1]. In particular, one problem that will need to be addressed is
the handling of di�erent granularities of time, both between objects at one
level of speci�cation and between di�erent levels of a speci�cation. Finally, we
believe it important to develop tools to support the speci�cation process, in
particular the substantial proof e�ort that is involved. To this end, we are in
the considering instantiating proof tools, such as the Mural proof assistant [11],
with various action logics.

Acknowledgments

Thanks to Jos�e Fiadeiro, Stephen Goldsack, Tom Maibaum, Dimitrios Raptis
and Mark Ryan for useful comments and discussion. This work was partially
supported by ESPRIT Project 6500, Afrodite.

References

[1] Afrodite Language Group. Language Reference Manual. Technical Report R.1., ESPRIT
Project 6500 Afrodite, CAP Gemini Innovation, Holland, 1993.

[2] J.F. Allen. Towards a General Theory of Action and Time. In Journal of Arti�cial
Intelligence, Vol. 23, 1983.

[3] P. America & J. Rutten. A Parallel Object-Oriented Language: Design and Semantic
Foundations. PhD thesis, Free University of Amsterdam, 1989.

[4] C. Atkinson, S.J. Goldsack, A. Di Maio & R. Bayan. Object-Oriented Concurrency &
Distribution in DRAGOON. In Journal of Object-oriented Programming, March 91.

[5] M. Celiktin & A. Lamsweerde. Speci�cation of Time Constraints with Interval Sequences.
Research Report RR-92-46, Unit�e d'Informatique, Facult�e des Sciences Appliqu�ees, Uni-
versit�e Catholique de Louvain, 1992.

16See [14] for a detailed discussion of this distinction.

[6] J. Fiadeiro & T.S.E. Maibaum. Temporal Reasoning over Deontic Speci�cations. In Jour-
nal of Logic and Computation 1(3), pp357-395, 1991.

[7] J. Fiadeiro & T.S.E. Maibaum. Towards Object Calculi. In Information Systems Cor-
rectness and Reusability (Selected Papers), G. Saake & A. Senadas (eds.), IS-CORE 91
Workshop, 1991.

[8] J. Fiadeiro, C. Sernadas, T.S.E. Maibaum & G. Saake. Proof-Theoretic Semantics of
Object-Oriented Speci�cation Constructs. In Object-oriented Databases: Analysis De-
sign and Construction, R. Meersman & W. Kent (eds), North Holland, 1991.

[9] J. Fiadeiro, C. Sernadas, T.S.E. Maibaum & A. Sernadas. Describing and Structuring
Objects for Conceptual Schema Development. In Conceptual Modelling, Databases and
CASE, P. Loucopoulos & R. Zicari (eds), John Wiley, 1992.

[10] C.B. Jones. Systematic Software Development using VDM (second edition). Prentice
Hall, 1990.

[11] C.B. Jones, K.D. Jones, P.A. Lindsay & R. Moore. Mural: A Formal Development
Support System. Springer-Verlag, 1991.

[12] A. Jones and M. Sergot. On the role of Deontic Logic in the Characterization of Nor-
mative Systems. In Proc. First International Workshop on Deontic Logic in Computer
Science - DEON 91, Springer-Verlag, 1991.

[13] S.J.H. Kent. A Deduction Calculus for Modal Action Logic with Action Combinators.
FOREST Research Deliverable Report WP3.R2, Imperial College, London, 1991.

[14] S.J.H. Kent.Modelling Events from Natural Language. PhD Thesis, Dept. of Computing,
Imperial College, London, to be submitted July, 1993.

[15] S.J.H. Kent, T.S.E. Maibaum & W.J. Quirk. Formally Specifying Temporal Constraints
and Error Recovery. In Proc. of IEEE First Int. Symposium on Requirements Engineer-
ing, San Diego, 1993.

[16] T.S.E. Maibaum. A Logic for the Formal Requirements Speci�cation of Real-Time, Em-
bedded Systems. Alvey FOREST Report R3, Imperial College, London, 1986.

[17] J. Meyer & R.J. Wieringa. Actors, Actions, and Initiative in Normative System Speci�ca-
tion. Technical report no. IR-257, Faculteit der Wiskunde en Informatica, Free University
of Amsterdam, 1991.

[18] M. Ryan, J. Fiadeiro & T.S.E. Maibaum. Sharing Actions and Attributes in Modal
Action Logic. In Proceedings of the International Conference on Theoretical Aspects of
Computer Science (TACS 91), T. Ito & A. Meyer (eds), Springer Verlag, 1991.

[19] J. van Benthem. The Logic of Time. Reidel, Dordrecht, 1983.

[20] Y. Venema. Expressiveness and Completeness of an Interval Tense Logic. In Notre Dame
Journal of Formal Logic, Vol. 31, 1990.

