
- 1 -

BLUE – A LANGUAGE FOR TEACHING OBJECT-ORIENTED PROGRAMMING

Michael Kölling and John Rosenberg
University of Sydney, Australia
{mik,johnr}@cs.usyd.edu.au

ABSTRACT

Teaching object-oriented programming has clearly
become an important part of computer science education.
We agree with many others that the best place to teach it is
in the CS1 introductory course. Many problems with this
have been reported in the literature. These mainly result
from inadequate languages and environments. Blue is a new
language and integrated programming environment,
currently under development explicitly for object-oriented
teaching. We expect clear advantages from the use of Blue
for first year teaching compared to using other available
languages. This paper describes the design principles on
which the language was based and the most important
aspects of the language itself.

1 INTRODUCTION

Object-oriented languages are becoming increasingly
widely used in software projects. Their importance for state-
of-the-art software development is now generally accepted,
and they have achieved popularity with academics and
practitioners alike. As this trend has become clear, many
tertiary institutions have included the teaching of an object-
oriented language somewhere in their curriculum. Often,
this has led to a wide variety of problems. Many different
approaches have been taken to the teaching of object-
oriented concepts and to address the problems related to it.
The main questions include:
• when to teach the first object-oriented language
• what set of concepts to include or exclude from the

course, and
• what programming language to use.

We have argued earlier [4] (as have many others before
us [1,2,8]) that introducing an object-oriented language as
the first programming language in the first course has many
benefits and can greatly improve ease of learning (mainly
by avoiding a "paradigm switch").

Proceedings of 27th SIGCSE Technical Symposium on
Computer Science Education, Philadelphia, Pennsylvania,
U.S.A., SIGCSE Bulletin 28,1, March 1996, pp 190-194.

Several results of attempts of teaching an object-oriented
language in an introductory course have been published
[3,6,7,8,10,11,12]. While the use of object-orientation was
generally seen as a clear improvement, many problems with
the specific languages and environments used have been
reported. This prompted us to examine available languages
for their appropriateness for teaching, and led us to the
conclusion (in [4]) that a new programming language and
environment is needed.

We propose the development of a language that is
designed specifically for teaching. Often it has been argued
that universities and colleges cannot afford to teach "toy"
languages, since they have an obligation to provide their
students with real-world skills for real-world jobs. This has
led many institutions to adopt C++ as their teaching
language.

We agree that a graduate must be a competent
programmer in C++ or a similar widely used language. It
is our firm belief, however, that experience with one year of
a good teaching language and one year of C++ produces
better C++ programmers than two years of C++.

This paper will describe Blue, the language we have
developed, in some detail. It will focus on the language
design and leave the description of the environment, also an
integral part of the project, to [5]. We will discuss design
principles, and the reasons for the various design decisions.
When we give examples of problems with existing
languages we will mainly use C++. This does not mean
that other languages do not have these or similar problems.
We argued about other languages in [4] and use C++ here
because it seems to be the most widely known object-
oriented language and it is the main competitor for every
new language considered for CS1.

2 PRINCIPLES

The design of Blue was guided by a set of basic
principles that were used to make decisions about individual
language issues. These principles are based mainly on an
educational viewpoint, having the goal of the development
of a teaching language clearly in mind. We are not trying
to compete with real-world production languages, but we
believe that we can make significant improvements to the
quality of programming languages as an educational tool.

We will first discuss these design principles and then, in
the next section, talk about individual language issues and
the application of the principles.

- 2 -

Principle 1: No Conceptual Redundancy

Maybe the most confusing aspect of many existing
languages is their ability to achieve the same thing in a
variety of different ways. What can be flexibility for the
expert is usually confusion to the beginner.

The most fundamental example of this is the object
model in many object-oriented languages. In C++, for
instance, an object can exist on the stack, or on the heap, it
might be created explicitly, implicitly or by assignment, its
constructor might be executed or not, it might be deleted
automatically or not, all depending on details of the
declaration and use of the object.

From a formal point of view, all this is an unnecessary
complication. It has its basis only in the requirement to
develop highly optimised code, an issue completely
irrelevant for introductory courses. At the same time it
hides the issues we really want to teach behind a mountain
of language details.

Our principle states that there should be one well defined
mechanism to express each concept that we want to teach.

Principle 2: Clean Concepts

The principle of "clean concepts" states that the
concepts we want to teach should be represented in the
language in a way that directly reflects the theoretical model
and is not compromised by secondary issues. An example
of a violation of this principle in C++ is the dynamic
dispatch mechanism.

We consider dynamic dispatch to be one of the
fundamental characteristics of object-oriented languages, yet
in C++ the dynamic dispatch of a function must be
explicitly defined for individual functions (called "virtual
functions" in C++). This introduces a wide variety of
possible problems for beginners (and for many more
advanced programmers as well) in understanding and using
this mechanism.

Again, the reason for the particular implementation of
this construct in C++ is efficiency.

Principle 3: Readability

The readability of a language is significant in several
aspects.

Firstly, learning by example is one of the strongest
learning mechanisms in programming. Who has not
experienced or at least seen many others flip through a book
about a programming language, reading nothing but the
example programs?

This is not a character flaw of the student, but a natural
and valid way of learning that should be encouraged (in
conjunction with other techniques). Having a programming
language that actually hints at its semantics with its syntax
is a great help in doing so. Such support of readability can
be achieved by favouring expressive keywords over abstract
symbols. A further advantage of the use of keywords rather
than symbols is that they can be looked up in the index of a
good text book, thus supporting independent learning.

The second aspect of readability is that it helps students
to understand their own programs. It is possible to avoid
certain errors that are only introduced because of the poor
syntax of a language. C is the most infamous example of a
language that supports obscure programs, and unfortunately
C++ has inherited its difficulties.

Principle 4: Software Engineering Support

We do not want our students to write just any programs,
we want them to write good programs. Software
engineering as a discipline has developed a number of
mechanisms and guidelines that support good program
development. While many of those mechanisms (such as
assertions and pre and post conditions) can be included in
programs written in just about any language, they are not
part of the actual definition of many languages. This often
leads to the result that they are either not taught properly,
taught only later in the curriculum, or not taken seriously
by the students.

In addition to the above principles, an overall guiding
philosophy of our language design was not to invent many
new features. It is tempting for a language designer to
develop completely new syntax and constructs. Our
approach has been evolutionary rather than revolutionary.
There is a considerable danger that a language which is
revolutionary fails (or at least fails to be implemented).
Ada is an example, where it took many years to produce
acceptable compilers (although many very competent
people worked on Ada), because the language designers
could not resist adding every useful construct they could
think of to the language.

It is more promising to develop a teaching language by
extracting the good aspects from existing languages, and
avoiding techniques that have been recognised to cause
difficulties. This also assures that the techniques which
students learn with Blue are relevant later when other
languages are introduced.

3 SPECIFIC LANGUAGE ISSUES

Blue is a pure object-oriented language (it does not
support development of non-class-based code). It supports
strong static typing, single inheritance, automatic dynamic
dispatch, generic classes, garbage collection, and a powerful
interactive development environment. All of the object-
oriented concepts are represented in the language in a clean
and consistent way.

This section will discuss some language issues we
consider interesting from the educational viewpoint. Space
prohibits us from discussing all aspects of Blue or delving
into minute detail. We believe, however, that this
description provides the reader with an overall impression of
the language and its characteristics.

- 3 -

3 . 1 General Language Constructs

Class Structure

Every class is defined in a single file. There is no
distinction between an interface file and an implementation
file. This avoids code duplication and inconsistencies.
There is, however, a distinction between the interface and
implementation view. Tools exist to look at the interface
or the implementation of a class.

class classname is superclass
-- here is the comment describing the
-- class in general

uses other_class1, other_class2
internal

var
count : integer
name : string

routines
internal routines here

interface
creation (parameters)

body of creation routine here
routines

interface routines here
end class

Figure 1: Structure of a Blue class

Figure 1 shows an overview of the general structure of a
class. The locations of the definitions of different parts of a
class (such as constants, variables, internal and interface
routines) are fixed and always appear in the same order.
General comments to assist with understanding the code
may be placed anywhere. The different parts of a class are:
• the header containing the class name and an optional

super class from which it inherits
• the class comment, describing the class's functionality.

(A standard format for this comment will be defined and
a class browser will be able to use it for searching and
display of a class library.)

• a list of other classes used by this class
• internal entities:

• instance constants and variables
• internal routines

• interface entities:
• the creation routine. (There is only one creation
routine and it is always defined at the beginning of the
interface.)
• interface routines

There are no variables on the interface.
This structure may seem restrictive to C++

programmers, but it greatly increases the ease with which a
class can be read and understood (principle 3). It is also an
application of principle 1. Allowing, for example, variable
definition anywhere in the code may seem convenient, but
for beginners the price they pay in terms of confusion
seems clearly higher than the gain in convenience. As an

important side effect, this structure also eases the
development of tools for the programming environment.

Routines

Routine declarations always start with the routine name.
They then list the routine parameters and the return values.
Figure 2 shows an example.

set (n: integer; s: string) -> (ok: boolean; os: state)

Figure 2: Example of a routine header

A clear distinction is made between those parameters
which are passed into a function and those which are
returned from it. Note that a function can return more than
one value.

This definition avoids some of the type problems that
can occur in connection with reference parameters and
inheritance.

Having the name at the beginning of the declaration
simplifies the lookup of a routine in a class for a human
reader. It makes it easy to scan down the list of names of
routines in a class interface. Preceding the names with
types and keywords moves the name towards the middle of
the header and makes it harder to find.

The body of the routine is strictly structured as well
(figure 3).

routinename (parameters) -> (return values) is
-- routine comment

precondition
pre conditions

var
variable declarations

do
instructions

postcondition
post conditions

end routinename

Figure 3: Structure of a routine definition

Pre and post conditions are optional. If they are present
they are part of the interface of the function. They are
always checked at runtime. Variables have to be declared in
the var section. This structure serves the same purpose as
the strictness in the class structure: it makes definitions
easy to find and supports readability and understandability of
the code. It is based on principles 1, 2 and 4.

Variables

Variables may be initialised at declaration (figure 4).
Any valid expression (including function calls) may be used
for their initialisation.

- 4 -

var
num : integer
count : integer := 0
name : string := get_name (fname)

Figure 4: Variable declarations

Apart from its value, each variable has a state associated
with it. The three possible states are uninitialised,
undefined and defined. Each variable that is not initialised
at declaration is in the state uninitialised. Using an
uninitialised variable in an expression results in a runtime
error. Once a variable is assigned a value, it enters the state
defined. It never returns to the uninitialised state.

The undefined state can be used in programs to
explicitly pass or return undefined parameters and results.
Variables can be set to be undefined and checks for that state
are available.

This mechanism is also used to ensure return of proper
values from functions. Initially, each return value of a
function is uninitialised. Returning from a function with
an uninitialised value results in a runtime error, thus
ensuring that every result value was explicitly assigned.
(The result may be undefined, if the function wants to
express explicitly that it can not return a meaningful value.)

This mechanism detects a group of common errors
frequently made by beginners (principle 4).

Predefined Types

Some types are predefined in the language1. They are
integer, real, boolean, string and array. No character type
exists. A character is handled as a string of length one.

Strings are fully dynamic. No space has to be allocated
explicitly by the programmer, and the string can grow and
shrink without defined restrictions during program
execution.

Arrays are dynamic as well. The array bounds are not
part of the type definition and can be changed dynamically
(the problem of space allocation is handled by the Blue
runtime system). This avoids tedious repetitive code
concerned with dynamic space allocation in other languages.
It therefore avoids code duplication and a whole group of
common errors (principle 4). In addition, by removing
low-level problems from the language, it allows the
teacher/programmer to concentrate on high-level issues,
thus supporting principle 2.

Control Structures

Three control structures exist: an if-statement, a multi-
branch case-statement and a loop. The if and case-
statements are similar to those supported by other
languages and do not need further explanation. There is
only one loop structure in Blue. The loop construct can be
used to achieve the semantics of while, repeat and for loops
as well as more general definitions (figure 5).

1We do not distingish between a class and a type in Blue – they
are synonymous in our context.

l oop
statement-list
exit on condition1
statement-list
[exit on condition2
statement-list]

end loop

Figure 5: Structure of a loop

Each statement list can be empty. A loop may contain
one or more exit statements. By replacing several loop
constructs with a single one, we apply principle 1, thus
easing teaching and learning of the language, without
losing readability. It has also been argued (e.g. in [9]) that
internal loop exits make it easier to implement some
common algorithms and should be supported in an
introductory language.

3 . 2 Object-Oriented Constructs

This section describes some details of the object-oriented
constructs in Blue. These are the parts of language
definition with which we were particularly dissatisfied in
existing languages.

The Object Model

All objects are treated in a uniform manner. All
variables contain references to objects2. Assignments
always pass references to objects. Objects are never created
at runtime without an explicit creation instruction. Blue
distinguishes two different kinds of classes: manifest classes
and dynamic classes. Manifest classes are those whose
objects all exist automatically. Objects of a manifest class
are never created at runtime. Examples of manifest classes
are integer, boolean and enumeration classes.

Dynamic classes are those whose objects come into
existence only by explicit creation. Examples are arrays
and arbitrary user defined classes.

It is important to understand the difference between this
logical distinction and the distinction of storage modes in
other languages. In Blue it can never happen that different
storage models exist for different classes. It is also
guaranteed that two objects of the same class can always be
treated in the same way (which is not true in most other
languages).

This model avoids all questions about whether or not
references to objects can be passed around, whether objects
are deleted automatically, lifetime questions, etc. It is based
on principles 1 and 2.

Some syntactic sugar (called aliases) is provided so that
the natural syntax for objects such as integers can be
utilised.

2At least from the logical view of the language. This does not
mean that a particular implementation has to actually
implement all variables as references. A sensible
implementation would probably store some values, such as
integers, directly.

- 5 -

Information Hiding

Blue supports strict information hiding that cannot be
broken. Variables cannot be made visible on the interface
and no references to internal variables can be passed out.
This not only enables, but guarantees proper information
hiding (principles 2 and 4).

Inheritance

Inheritance is intended only to model pure is-a
relationships. Using inheritance to avoid an indirection
when re-using code (modelling a usage relationship with
inheritance) or just to avoid writing an object identifier
before a function call (syntactical laziness) is not
recommended. Consequently, Blue does not allow hiding or
interface redefinition of inherited routines3. The
implementation of routines may be redefined, since this
does not affect the inheritance relationship (the pre and post
conditions still have to be met, though, enabling some
semantic restrictions to be expressed).

Interfaces

Interface routine calls are always dynamically dispatched.
No construct exists in the language to influence the
semantics of routine call instructions.

It is not possible to overload routine names to call
different routines of the same class when called with
different parameter type combinations. Although examples
can be found where this technique is sensibly applied, we
have come across more examples where it leads to errors in
the code. In addition, a side effect of this mechanism is that
error reporting of a faulty routine call tends to be vague
(since the correct types of the parameters cannot be reported
with certainty).

4 CONCLUSION

Existing programming languages have clear
shortcomings for the introduction object-orientation to
beginners, resulting in unnecessary difficulties in the
teaching and learning process. These difficulties arise
mainly from too many redundant constructs, relevant to
experts but not to beginners, and the compromising of
important concepts for the gain of efficiency. While this
can be important for professional program development, it
complicates teaching significantly. We have developed a
language specifically for teaching object-oriented
programming to beginners which avoids these problems.

Few new concepts have been introduced. Instead, we
have concentrated on removing problems and combining
positive aspects of existing languages. This reduces the
risk of introducing new problems, and ensures relevance of
the acquired knowledge when moving to other languages.

3Except for restricted change of parameter types (contra-
variance).

While few of the individual language constructs are new,
their combination is, leading to a language definition that
has a distinct character, differing from previously available
languages. We expect this language to be a significant
improvement in the teaching of object-oriented
programming.

The implementation of an integrated programming
environment, including an editor, a compiler and a
debugger, has started. A full language definition has not
yet been published, but should be available soon.

REFERENCES

1. R. Decker, St. Hirshfield: Top-Down Teaching:
Object-Oriented Programming in CS 1, ACM,
SIGCSE 1993, pp. 270-273.

2. R. Decker, St. Hirshfield: The Top 10 Reasons Why
Object-Oriented Programming Can't Be Taught in CS
1, ACM, SIGCSE 1994, pp. 51-55.

3. R.C. Holt: Introducing Undergraduates to Object
Orientation Using the Turing Language, ACM,
SIGCSE Bulletin, 25, 3, Sept. 1993, pp. 324-328.

4. Kölling, M., Koch, B. and Rosenberg, J.
Requirements for a First Year Object-Oriented
Teaching Language, ACM SIGCSE Bulletin, 27, 1,
March 1995, pp. 173-177.

5. M. Kölling and J. Rosenberg: An Object-Oriented
Program Development Environment for the First
Programming Course, submitted to SIGCSE
Technical Symposium, 1996.

6. D. Mazaitis: The Object-Oriented Paradigm in the
Undergraduate Curriculum: A Survey of
Implementations and Issues, ACM, SIGCSE Bulletin,
25, 3, Sept. 1993, pp. 58-64.

7. Dung Nguyen in Using C++ in CS1/CS2, ACM,
SIGCSE 1994, p. 384.

8. R.J. Reid: The Object-Oriented Paradigm in CS1,
ACM, SIGCSE 1993, pp. 265-269.

9. E. Roberts: Loop Exits & Structured Programming:
Reopening the Debate, SIGCSE Bulletin, 27, 1,
March 1995, pp. 268-272.

10. S. Skublics, P. White: Teaching Smalltalk as a First
Programming Language, ACM, SIGCSE 1991, pp.
231-234.

11. M.C. Temte: Let's Begin Introducing the Object-
Oriented Paradigm, ACM, SIGCSE 1991, pp. 73-77.

12. Eugene Wallingford in Using C++ in CS1/CS2,
ACM, SIGCSE 1994, p. 384.

