
- 1 -

AN OBJECT-ORIENTED PROGRAM DEVELOPMENT ENVIRONMENT
FOR THE FIRST PROGRAMMING COURSE

Michael Kölling and John Rosenberg
University of Sydney, Australia

{mik,johnr}@cs.usyd.edu.au

ABSTRACT
Over the last ten years there has been a major shift in

programming language design from procedural languages
to object-oriented languages. Most universities have
adopted an object-oriented language for their first
programming course. However, far less consideration has
been given to the program development environment. In
this paper we argue that the environment is possibly more
important than the language and existing environments fail
to fully support the object-oriented paradigm. We describe
a new program development environment and show how it
has been specifically designed to support object-oriented
design and programming.

1 INTRODUCTION
Over the last ten years there has been a major shift in

programming language design from procedural languages
(e.g. Pascal, C), to object-oriented languages (e.g. C++,
Eiffel [11], Smalltalk). The main reason for this shift is to
capture the potential advantages offered by object-
orientation. These include improved programmer
productivity, an increased level of robustness and
resilience, improved modelling of the real-world using
objects and increased levels of code re-use [10]. Many
tertiary institutions are now either teaching an object-
oriented language in the first programming course or
seriously considering a move to such a language.

Concurrent with the object-oriented development we
have seen major improvements in programming
development environments. Whereas early systems simply
provided an editor and a compiler, modern programming
environments provide facilities such as source code control,
library management, support for group working, version
control and integrated edit/compile/test/debug
environments [3,14].

As object oriented languages have grown in popularity
there have been attempts to bring together the two
technologies [6]. In general the approach has been to adapt
an existing software development environment to an
object-oriented language. Such attempts have not managed
to capture the advantages offered by object orientation.

Proceedings of 27th SIGCSE Technical Symposium on
Computer Science Education, Philadelphia, Pennsylvania,
U.S.A., SIGCSE Bulletin 28,1, March 1996, pp 83-87.

The most significant reason for this is that existing
systems concentrate on abstractions that are appropriate for
procedural languages. Consequently they provide support
for development of procedural programs, management of
source files, organisation of test data, etc. An object-
oriented development environment should provide support
for classes and objects as the fundamental abstraction.
Attempting to use mechanisms designed for procedural
program development to develop objects is not necessarily
appropriate.

As a simple example, consider testing. A procedural
program development environment will provide support for
testing procedural programs. This would include setting
up of input data, capture of output data and comparison of
the actual output with some expected output data. An
object development environment will provide an object test
facility. This should allow interactive invocation of the
interface routines of an object, a quite different paradigm
than that required for procedural programs. Note the
potential advantages of an object-oriented test environment
which include support for incremental development and the
removal of the need to write test programs.

It is our contention that the lack of truly object-oriented
development environments has created major difficulties
for teaching object-oriented technology. In particular,
students have major conceptual difficulties and tend to
write procedural programs in an object-oriented language.
This is particularly prevalent when using languages such as
C++ which have a downwards compatible procedural form
(C). If we expect our students to fully embrace object-
orientation then we must provide them with an appropriate
program development environment.

In this paper we provide the motivation and background
for the design and construction of a new object-oriented
program development environment. The environment is a
component of the Blue project, which includes the design
of a new object-oriented programming language [8],
development environment, debugging system, integrated
editor, etc. All of the components of Blue are specifically
designed for use in the first programming course at tertiary
institutions. The effects of this orientation on the design of
Blue are discussed in [7].

The paper is structured as follows. In section 2 we
provide some background on programming languages and
development environments. In section 3 we argue that it is
essential that the program development environment is
unified with the programming language paradigm. In the
following section we briefly describe the Blue program
development environment and report on the status of the
project.

- 2 -

2 BACKGROUND
Since the beginnings of computer science education

there has been great emphasis placed on the importance of
the choice of the first programming language to teach.
There is a strong feeling that this choice has long term
effects on the quality of the graduates produced and their
ability to produce reliable and well structured software.

Over the last ten years we have seen the almost
universal adoption of the object-oriented programming
paradigm. While this approach has been in use for a long
time (since Simula was developed in the 1960s), its
significance for the software engineering process was not
generally recognised. Smalltalk, for a long time the only
widely available object-oriented language, was seen by
most people as applicable only to research projects without
direct practical application and certainly inappropriate for
introductory courses. This was mainly because of
performance disadvantages of Smalltalk compared to other
languages and its unfamiliar syntax. In the mid 1980s the
development of other object-oriented languages and major
improvements in compiler technology resulted in an
increase in research and discussion about object-oriented
concepts.

Object-oriented programming is viewed by many as the
best answer so far to managing increasing complexity in
software systems. Many of the new languages which have
evolved in the last decade include object-oriented concepts.
While some of these extend previously known languages
such as C or Pascal to include support for objects, other
languages such as Eiffel or Sather [13] have been
developed with object orientation as the key goal. C++, the
object based successor of C, has quickly become the most
popular language in industry projects, replacing C. The
sole reason for the popularity of C++ is the inclusion of
object-oriented concepts in the language.

Most universities have either adopted an object-oriented
programming language as the first language in their courses
or are seriously considering such a move. However, we
have seen reports from a wide variety of institutions which
suggest that this approach is meeting with mixed success.
It is our contention that one of the difficulties with teaching
an object-oriented language is the lack of an appropriate
program development environment [12]. Despite the large
emphasis placed on the choice of a particular object-
oriented language, there seems to be little discussion of the
programming environment, which may well have more of
an influence on the learning experience than the choice of
language.

In systems in use in many universities today, such as
Unix, program development has traditionally been based
around a command line/textual environment, where a set of
separate tools is provided to support the development
process. These tools (typically an editor, a compiler, a
debugger and a "make" facility) are based on concepts
developed in the 1960s and have not changed much since
their introduction. They are basically standalone tools and
have only been slightly enhanced to cope with the
increased complexity issues and new programming
paradigms. "Make", for example, a tool intended to help

manage the complex compilation process for large systems
with source code that is spread over multiple files, often
becomes a complexity problem itself.

This situation has been dramatically improved by the
appearance of integrated graphical programming
environments, which are most prevalent on personal
computers. These environments are able to significantly
reduce the management overhead in software development,
integrating editors, compilers and debuggers into one
coherent system, thus significantly reducing the complexity
of the overall software development task. All tools are
seen as part of the overall process to build an application
and link smoothly together. A debugger, for instance, can
use the editor to point to source lines corresponding to code
currently executed.

3 UNIFYING OBJECT-ORIENTED LANGUAGES AND
INTEGRATED DEVELOPMENT ENVIRONMENTS

The next logical step in improving software
development tools is to unify the new language facilities
with advanced development environments. Although
Smalltalk was integrated into a sophisticated environment
(relative to the time at which it appeared), more recent
object-oriented languages seem to have initially overlooked
this aspect of software development and have tended to
focus on text based interfaces. Only relatively recently,
when actual use of new object-oriented languages has
become more widespread to a large variety of users and
projects, has this deficiency been noticed. This has
provided an impetus for the development of graphical,
integrated environments for object-oriented languages.
Several environments for the more popular languages, such
as C++, Eiffel and Oberon, have now been produced.

Fundamental deficiencies exist in most current
development environments for object-oriented languages.
The main problem is that the particular requirements and
potential of object-oriented systems have not been
understood and utilised to assist the software development
process.

The main shortcomings of existing environments can be
devided into two groups: insufficient object support and
insufficient structure visualisation and manipulation
techniques. We will now explore each of these areas and
give examples of improvements to object-oriented
environments.

3.1 OBJECT SUPPORT

Traditional development environments facilitated the
design and construction of programs. The basic entity was
source code and their functionality revolved around the
convenient manipulation of source code. The ultimate goal
was to produce a program, an algorithm description with
exactly one entry point that could only be built and
executed after all its parts were (in some sense) completed.
No notion of runtime objects existed within the
environment, since those objects could not exist
independently from an active execution of a program. All
data available outside the execution was in the form of
files. Consequently, the environment had only to deal with

- 3 -

source and data files.
When these environments were adapted to object-

oriented languages, source files were replaced by class
descriptions. Typically more source files exist in the
object-oriented environment than in the procedural form.
In addition, these files have more relationships with each
other, e.g. usage and inheritance relations. Tools have been
added to the environment to manage these class files and
some of their relationships.

The general paradigm of the environment, however, has
not changed. The environment is still used to build an
application with exactly one entry point that can be
compiled and executed only after all its parts have been
completed. This is the program/procedure-oriented
paradigm. The object-oriented paradigm, used in the
programming language, has not been adopted in the
environment.

The object-oriented paradigm is based on the idea that
objects exist independently, and that operations can be
executed on them. Consequently, a user in a true object-
oriented development environment should be able to
interactively create objects of any available class,
manipulate these objects and call their interface routines.
The composition of objects by the user must be possible
[1,2,4].

This leads to the possibility of incremental application
development. Any individual class (which would be a
collection of routines in a procedural language) can be
tested independently as soon as it is completed. Testing
then becomes much more flexible than in procedural
systems. In most current object-oriented environments, the
objects have to be embedded in a non-object-oriented main
program or script language to create and invoke the first
object or objects. A direct call of object interfaces is not
possible, since object instances are not supported by the
environment.

In short: the programmer must fall back to the
procedural paradigm to start and test a program.

Summarising, we can say that the two major tasks of an
object-oriented environment are:
• to make classes the main mechanism of code

structuring (which has been achieved in some
environments), and

• to make objects the entities that are operated on (which
has been neglected by most existing environments).

The only widely available programming environments
fulfilling our demands are Smalltalk environments, which
suffer from other problems, outlined below and in [7].

3.2 VISUALISATION SUPPORT

The second major shortcoming of object-oriented
programming environments is the lack of object-oriented
visualisation mechanisms. Graphical visualisation
techniques (e.g. as in [9]) should be used to display
relationships between classes and objects. For example,
inheritance and usage relations as well as call structures
could be shown. While thinking in terms of diagrams is
common at the design level and some CASE tools provide
some support for graphics to model program structures, this

is not well represented in programming environments.
Even though the relations between objects are the most
important factor in the design of an object-oriented system,
little support exists in development environments for their
management with modern visualisation and manipulation
techniques. This lack of support discourages the use of
graphical representations by students.

Manipulation using the graphical or textual
representation of a class should be possible
interchangeably. That means, for instance, that it should be
possible to edit graphically the inheritance relationships of
the objects of an application and have the changes reflected
in the source code of the classes. The same should work
the other way around: if a class is specified as an ancestor
in the source code of another class, this relationship should
automatically be reflected in the graphical representation.

Most existing environments for object-oriented
languages today lack all of these features. All command
line based environments such as Unix obviously lack
facilities for visualisation. Class and object relations,
which are a fundamental part of the programming process,
are not sufficiently visualised and poor modelling
techniques for these are provided. Also, the integration of
the tools involved in the development process is typically
poor.

Graphical systems for most languages support only
some of these requirements. Most graphical systems
provide good tool integration, but lack support for object-
oriented characteristics as described above. The most
advanced professional object-oriented development
environments, such as Visual C++ or Delphi, use graphical
support only to build the user interface of an application,
but neglect the internal structure of the program itself. The
single most important facility lacking in all these
environments is dynamic interaction with single objects
and classes.

The only available system providing these facilities is
the Smalltalk environment. Objects can be created and
used interactively. (A good example is the Portia Smalltalk
Environment [5].) Also, a browser exists to support use of
the library of classes and objects. Smalltalk lacks facilities
on another front: no visualisation facilities for class
relations are available. The main problem with this lies in
the Smalltalk language itself. Since it is not statically
typed, it is not possible to extract usage relations from its
source code. No indication exists before runtime as to call
relationships between classes. Inheritance relationships as
shown in the browser do not present the relationships of
one application but rather the whole Smalltalk environment
and so the browser is not used as an application modelling
tool. It also does not use graphical representation
techniques.

All recently developed object-oriented languages
include strong static typing as one of their fundamental
concepts. Language developers seem to agree that static
typing is a valuable tool in modern software development.
The lack of this makes the provision of some modelling
support for Smalltalk impossible and seems to indicate that
statically typed languages can provide better support for
large scale development of correct software.

- 4 -

3.3 SUMMARY

Existing program development environments simply
fail to fully grasp, support and facilitate the use of the

object-oriented programming paradigm. It is essential that
we provide a more appropriate environment if we wish our
students to produce truly object-oriented programs and to
capture the potential of object-orientation.

Figure 1: The Blue Programming Environment Desktop

4 THE BLUE DEVELOPMENT ENVIRONMENT
In this section we briefly describe the key features of

the program development environment provided with the
Blue programming system. As we have stated earlier, Blue
is designed to be used in the first programming course. It is
expected that students will move to a more conventional
environment in later courses and to one of the popular
object-oriented programming languages (e.g. C++). We
are not suggesting that the ideas presented in the Blue
programming environment are not appropriate for larger
scale projects and languages, it is simply that this has not
been our major emphasis.

The aim of Blue is to provide an environment which
encourages the students to think in terms of objects.
Specific details of the underlying operating system are
hidden and a point and click world in which classes and
objects are the fundamental concepts is presented. We
assume that bit-mapped displays will be used at all times so
that we can make extensive use of graphics.

Figure 1 illustrates the desktop presented to students
when they log on to the system. The system has a notion of
projects. A project is a group of objects which all relate to
a particular application. This is simply an organisational
facility somewhat analogous to directories. On entry to the
system the student chooses the project on which they wish

to work.
The large window at the left of the figure is initially

displayed. Apart from the pull-down menu bar at the top of
the window, it has three components. At the left is a set of
push-buttons which activate frequently used operations. In
addition there are buttons to allow the graphical definition
of inheritance relationships between classes. As each class
is created it is represented in the middle of the window by a
box, with the name of the class at the top. The “classes”
may be moved around the screen and the inheritance
relationships created using the arrow buttons. These
relationships are represented graphically using lines and
arrows. Different colours, patterns and symbols are used to
mark different kinds and states of classes. This includes
whether the class has been compiled and its category, e.g.
abstract class, library class, etc.

Students are encouraged to begin their design of an
application by creating the required classes. They should
think about the relationships between these classes and
represent them graphically. Only when the overall object
structure has been determined should they start to think
about the interfaces and the code.

The text associated with a class may be viewed and
edited by double clicking on the class (or selecting a class
and pressing the “edit” button). Space prohibits a full
description of the editor (known as “red”), however, there

- 5 -

are a few significant features worth mentioning. Red is
language sensitive and provides automatic formatting and
indentation. Either the interface of the class, the full
interface (including inherited routines) or the
implementation may be viewed and edited. There is only
one representation of the text internally and so it is
impossible for these to get out of step with each other.

Red is not a toy editor. It may be used by students
unfamiliar with editing techniques as a simple wysiwig
editor using only the mouse and pull-down menus.
However, it also has a powerful and configurable command
set allowing more experienced users to perform more
complex operations.

Compilation of classes or the whole project is achieved
by a click on a single button in the project window.
Compilation is based on routine units – only routines that
have been changed since the last compilation are
recompiled (unless instance variables were changed). This
removes the need for students to become familiar with
systems such as make, allowing them to concentrate on the
concepts and techniques of object-oriented programming.

A unique feature of Blue is the ability to dynamically
create instances of classes. When pressed, the “create”
button prompts for the constructor parameters and creates
an instance of the selected class. These instances are
displayed in the bottom section of the main window, known
as the object bench. An interface routine of an instance
may be called by selecting it from a pop-up menu as shown
at the bottom of figure 1. Again, Blue prompts for the
parameters. Object instances may be composed and passed
as parameters to each other. The results of an object
invocation are displayed and if a result is an object it can be
placed on the object bench. This allows interactive testing
of components as they are developed.

A standard console object exists that displays a standard
output window and acts as standard input. Alternatively,
an application can open its own windows.

An integrated debugger is available that is presented to
the user not as a separate program but rather as an alternate
mode of execution. By setting the debug switch, a row of
buttons is added to each edit window and this allows the
specification of breakpoints, display and watch variables.
It can also display current stack and heap contents
(identifying objects and variables by their names and
showing their links). The simple but powerful interface
provided by the debugger should encourage the students to
become familiar with these facilities at an early stage, so
that as their programs become progressively more complex,
they will be able to effectively debug them.

5 CONCLUSION
The object-oriented programming paradigm has been

widely adopted and acclaimed by both industry and
educational institutions. There has been considerable
discussion concerning the choice of first year teaching
language. However, the programming environment has
received less attention. In this paper we have argued that
this is equally important and that it is essential that the
environment actively encourage and support the object-
oriented design process.

Blue provides a programming environment specifically
designed for building object-oriented applications. It
provides a graphical view of the object design, an
integrated editor, testing system and source level debugger.
It has a simple point and click interface so that students can
concentrate on understanding the object concepts and are
not distracted by the underlying operating system.

The Blue system is currently being constructed. The
language has been defined and the editor has been
implemented. Work is continuing on the program
development environment. It is expected that a working
prototype will be available at the end of 1995. It will then
be used with a trial group of students so that we can
evaluate its effectiveness.

REFERENCES
1. Beck, K., Cunningham, W. “A Laboratory For

Teaching Object-Oriented Thinking” in N. Meyrowitz
(Ed.), OOPSLA ‘89 Conference Proceedings, ACM.

2. Booch, K. “Object-Oriented Development” in IEEE
Transactions on Software Engineering, Vol SE 12,
No. 2, pp. 211-221.

3. Clarke, L.A., Richardson, D.J., Zeil, S.J. “TEAM: A
Support Environment for Testing, Evaluation, and
Analysis” in SIGSOFT Software Engineering Notes,
Vol. 13, No. 5, 1988, ACM.

4. Evered, M., Kölling, M., Schmolitzky, A. “A Flexible
Object Invocation Language based on Object-
Oriented Language Definition”, The Computer
Journal, 38,2, 1995.

5. Gold, E., Rosson, M.B. “Portia: An Instance-Centered
Environment for Smalltalk” in OOPSLA Proceedings
1991, pp. 62-74, ACM.

6. Haarslev, V., Möller, R. “A Framework for
Visualizing Object-Oriented Systems” in
ECOOP/OOPSLA 1990, pp 237-244, ACM.

7. Kölling, M., Koch, B. and Rosenberg, J.
“Requirements for a First Year Object-Oriented
Teaching Language”, ACM SIGCSE Bulletin, 27, 1,
March 1995, pp. 173-177.

8. Kölling, M.. and Rosenberg, J. “Blue - A Language
for Teaching Object-Oriented Programming, SIGCSE
Technical Symposium, 1996.

9. McDonald, J.A., Stuetzle, W. “Painting multiple
views of complex objects” in ECOOP/OOPSLA
procedings 1990, ACM.

10. Meyer, B. "Object-Oriented Software Construction",
Prentice-Hall, 1988.

11. Meyer, B. “Eiffel - The Language”, Prentice Hall,
1992.

12. Notkin, D. “The Relationship Between Software
Development Environments and the Software
Process”, Panel Session, in SIGSOFT Software
Engineering Notes, Vol. 13, No. 5, 1988, ACM.

13. Omohundro, S.M. “The Sather Language”, ICSI,
1991, part of the Sather system distribution.

14. Rodden, T. “Interacting with an active, integrated
environment” in SIGSOFT Software Engineering
Notes, Vol. 13, No. 5, 1988, ACM.

