
s

es, and a
 in UML,
 can be

 and (iii
y many

 is to use
mmon
o give a
d this is
h seems

to give a

otations.

 tools
avior).

menta-
nsis-

n down
able for
 of (4).

achieved
orning

rm of a

ter. Spe-
): these
mmatic
 on the
vides an
ough at
Semantics through Pictures
Towards a diagrammatic semantics for OO modeling notation

Stuart Kent, Ali Hamie, John Howse, Franco Civello, Richard Mitchell1

Division of Computing,
University of Brighton, Lewes Rd., Brighton, UK.

http://www.biro.brighton.ac.uk/index.html, biro@brighton.ac.uk
fax: ++44 1273 642405, tel: ++44 1273 642494

Abstract. An object-oriented (OO) model has a static component, the set of allowable snapshots or system stat
dynamic component, the set of filmstrips or sequences of snapshots. Diagrammatic notations, such as those
each places constraints on the static and/or dynamic models. A formal semantics of OO modeling notations
constructed by providing a formal description of (i) sets of snapshots and filmstrips, (ii) constraints on those sets,)
the derivation of those constraints from diagrammatic notations. In addition, since constraints are contributed b
diagrams for the same model, a way of doing this compositionally is desirable. One approach to the semantics
first-order logic for (i) and (ii), and theory inclusion with renaming, as in Larch, to characterize composition. A co
approach to (iii) is to bootstrap: provide a semantics for a kernel of the notation and then use the kernel t
semantics to the other notations. This only works if a kernel which is sufficiently expressive can be identified, an
not the case for UML. However, we have developed a diagrammatic notation, dubbed constraint diagrams, whic
capable of expressing most if not all static and dynamic constraints, and it is proposed that this be used
diagrammatic semantics to OO models.

1 Introduction

This paper outlines an approach to constructing a precise semantics for object-oriented modeling n
There are at least four reasons why one might want to build a precise semantics:

1. To clarify meaning leading to refinements of the notation.

2. To clarify meaning for developers using the notation.

3. To clarify meaning for tool developers, thereby increasing the likelihood of interoperability between
at a semantic level (e.g. code generated from different tools for the same model has the same beh

4. To support semantic checking of models, automated if possible. This includes checking that imple
tions meet their specifications, checking internal consistency of components, and checking for inco
tencies and conflicts between components.

(1) just requires the semantics to be written down in a precise form. (2) and (3) requires it to be writte
in a form which developers and tool developers can easily understand. In addition, it would be desir
(3) to provide a semantics in a form which directly assists the construction of tools, e.g. the automation

The approach to semantics advocated in this paper aims to meet all four objectives. Precision (1) is
by grounding the semantics in first-order predicate logic. The dialect used here is Larch (Guttag and H
1993): it has a precisely defined language; support for theory composition; and tool support in the fo
syntax/type checker and theorem prover.

One could argue that the use of predicate logic supports (2) and (3). However, we think we can do bet
cifically we are proposing to use a diagrammatic notation, dubbed constraint diagrams (Kent 1997
allow sophisticated constraints on a model to be expressed diagrammatically; the meaning of diagra
notations for OO modeling can be characterized essentially in terms of the constraints they impose
underlying model, and these can be expressed using constraint diagrams. At the very least, this pro
alternative approach to making mathematics more palatable to e.g. ADL (1997). (4) is achieved thr
least two possible routes:

1. This research was partially funded by the UK EPSRC under grant number GR/K67304
1

Semantics through Pictures

antic

a way of

 should
 it. The

of UML
 of the
ts, pre

rd that

re/post

or spec-
ons that

ny par-
s (from
1. Larch comes with theorem proving tools, so, in theory at least, these could be used to perform sem
checks.

2. By treating constraint diagrams as graphs, they may be compared for matches or mismatches as
performing consistency checks between different perspectives and views of the model.

Extracts from the specification of a library system are used throughout the paper for illustration. This
be distinguished from the specification of the business domain with or without the system embedded in
same or similar notations and techniques can be used to model that as well; for example, it is claim
(UML 1997) that it is not just a language for modeling software. The specification is given in a subset
notations proposed for UML, enhanced with a language for writing constraints precisely (e.g. invarian
& post conditions) based on Catalysis (d’Souza and Wills 1995, 1997).

2 Underlying model: snapshots and filmstrips

An object oriented (OO)
model may be charac-
terized in terms of the
possible states the sys-
tem being modeled can
enter and the order in
which it can enter those
states. We use the term
snapshot to refer to a
possible state of the sys-
tem and filmstrip a pos-
sible ordering on those
states, i.e. a sequence
of snapshots. The set of

snapshots form the static model, and the set of filmstrips the
dynamic model.

Figure 1shows a snapshot that is admitted by the model of a library
system. A copy is currently on loan to an active user (only active
users may borrow things). The copy has previously been on loan to
the same user. The notation used is that of instance diagrams in
UML.

Figure 2 shows a segment of one of the many possible filmstrips
admitted by the model. This segment shows before (pre) and after
(post) snapshots for an invocation of the action ����������	
��
��
���� on the ������� object depicted. The copy � is up for loan
to �; � must be active, � in the collection and � available for loan to
�. On completion the copy is marked as “loaned out”, and a new current loan object is created to reco�
has been loaned out to �.

The set of filmstrips forming the dynamic model may be thought of as generated by stringing together p
segments for actions on the system being modeled.

3 Generic descriptors: perspectives on a model

Of course the sets of allowed snapshots and filmstrips characterizing a model are in general infinite (f
ification models), and, at best very large (for implementation models). Therefore modelers need notati
are able to define very large sets in only a few diagrams. UML calls these notations generic descriptors.
Essentially generic descriptors provide ways of writing rules or constraints which determine whether a
ticular snapshot or filmstrip is allowed in a model or not. Here we consider type and state diagram
UML) combined with invariants and action specifications.

Figure 1: Admissible snapshot

��������

����	

�
���

����	

�
���
��������

���	
�

���	�����

�������

�	������

�������	��

Figure 2: Filmstri p segment for
������

��������

�

�
���
��	�����

�
���

�

�
�	�������������

�������	��

���	
�

��������

�

�
���
��	�����

�
���

�

�
�	�������������

�������	��

���	
�

����	

�������

��������

�
���
����
2

Semantics through Pictures

 of links
 given in

more the
ity con-
g on the

e case in
ne copy,

nds
rious
n snap-
traint we
pre-req-
ect that

s come

the type
3.1 Type diagrams

Type diagrams define most of the language that can be used in snapshots and constrains multiplicities
between objects in snapshots. The type model for the snapshots appearing in Figures 1 and 2, is
Figure 3.

Only types and association rolenames appearing in the type model may appear in snapshots. Further
number of links in a snapshot corresponding to a particular association may not exceed the multiplic
straints declared on the type model, for any objects of the types associated. For example, focussin
(unlabeled) associations between ���� and �	
� and ���� and
���, a loan object may be linked with only
one user and one copy, though user and copy objects may be linked to many loan objects. This is th
Figure 1 on page 2, where each loan object (there are two of them) are linked with only one user and o
but the user and the copy happen to be the same for both so are each linked to two loan objects.

The type diagram also uses the UML composite notation, by placing types and associations within the bou
of another type - ������� in this case. There are a variety of possible meanings for this, reflecting the va
possible interpretations of composite (see e.g. Civello 1993). All could be expressed as constraints o
shots (e.g. no sharing) and sequences of snapshots (e.g. lifetime dependency). Certainly one cons
would like is that whatever navigation route is taken, all paths lead back to the same library; this has a
uisite that the objects are only ever associated with one library object. For example, we would exp
	
���������������
	������
����� = 	
�� or 	
��������
�����	������
������	 = 	
��, and so on.1 In snap-
shots, this constraint is realized by always having a single bounding library object from whence all path
and to which all paths go.

3.2 State diagrams

A state diagram places constraints on both the static and dynamic models. The state diagram for

���, in the context of the �������, is given in Figure 4.

1. For more on the meaning of navigation expressions, see Section 3.3, “Invariants,” on page 5. Note that ���� on the LHS of these
expressions is redundant.

Figure 3: Type model for library

��������������

�

��	���	�

����
�����
����
�����
��������

��������

�������

�	�
��	�	�

�
��	���

�
������

����	��
��

���
�	

�

�

�
� �

�

�

�

�
�

�

����

����

���
����	��������

�

���
����	��������

�
��	��

�

�

�

3

Semantics through Pictures

or
ion

sis
ok
m”
of
ot
del
le-
nd
 dia-

case

 type
s, and th
se th
recta

)
This is essentially UML notation, though we allow
navigation expressions labelling the transitions. F
example the diagram indicates that when the act
������ is performed on the object identified
through �����
����� with 	
�� as the copy argu-
ment, then, provided 	
�� is in the ����
�� state,
the effect will be to move it into the ��� state. This
reflects a style of specification used in e.g. Cataly
(d’Souza and Wills 1995, 1997) and Syntropy (Co
and Daniels 1994) where actions on the “syste
object only are specified. Note that at this level
modeling i.e. specification, navigation does n
mean message passing. It is only in the design mo
that one begins to decide how actions are imp
mented by allocating responsibilities to objects a
passing messages between them (viz. sequence
grams).

The constraints on the static
model imposed by a state dia-
gram are the introduction of new
states and the relationships
between them. For example,
Figure 4 declares that a
��� has
states ��
		���
, ����
��,
��� and !���"����, and that
��� and !���"���� are sub-
states of ��
		���
. States may
be thought of either as Boolean
attributes or as dynamic types,
and indicated as such on snap-

shots. In figures 5 and 6 a state-like box1 has been used to indicate an object of a dynamic type, in this
copies in a particular state. Figure 5 is admitted by Figure 4, but Figure 6 is not - the copy is ��� and !���#
"���� at the same time.

The constraints on the dynamic model may be expressed as formal
specifications on the actions mentioned in the state diagram. For
example, the specification for ������ read off from the state dia-
gram is given opposite.

This uses a precise language to express pre and post conditions. If
the pre condition is satisfied on invocation of the action then the
post condition should be satisfied on completion. If the pre condi-
tion does not hold, then the effect of the action is undetermined.
Only filmstrip segments with pre and post snapshots satisfying the
pre and post conditions, respectively, will be admitted in the model.

1. As far as we are aware, this is not part of current UML. However, we note that rectangles are used to represent types on dia-
grams and objects of those types on instance diagrams. Rounded rectangles are used to indicate states on state diagramese
directly correspond to dynamic types, so could be used to represent these on type diagrams. It is then a natural step to uem to
indicate objects of dynamic type (i.e. in a particular state) on instance diagrams. This also explains why we have used a ngle
as the outermost “state” on the state diagram, which is really a static type.

Figure 4: State Diagram for ����

��������

����	
��
����	
��

��������������������
�����������	
����
�
������

��
���

��
���

�	

��

��
�

�
�
���

������

�
������
�����

�
�
�
��
�
�
��
�
�
	

�
��

�
�

�
��
�
��
�

��
�
��

∈
 �
	�
��

��
�

��
�
�
��

�
�
�
�
�

�
�
�
��
�
�
�
��
�
	

�
�
�

�
�

�
��
�

Figure 5: Snapshot admitted by state
diagram

��������

��	
�

������

����	����

���

�����
��
���������

���������

���������������
�

�����
�����
�

�����
��

Figure 6: Snapshot disallowed by state
diagram

��������

��	
�

������

����	����

���

���
������

���������

����� �����
�

�����
��

�������������������	
����
����
��

�

2

����	�
��
��	�
�����

1. The state diagram refers to ��������
	
���
�����, so it only constrains
�

������
����� for copies in ������	
���

2. � is available for lending to the user �. This
comes from the guard (shown between [...]
on the state diagram.

� ����
�����∈
� ����������
$������
∈
4

Semantics through Pictures

en loaned
gment of

d Wills
d post

section.

nd con-
rs.

 the lan-
vailable
 A the-
ired to
 model,
odel is
ts on the
oning
eed to be

.

3.3 Invariants

Diagrams, or at least those well known in OO modeling, can not
express all required static constraints. For example, in the library
system we would like to say that the current loans of copies in
the collection is exactly the set ����
���; and that only active
users can have current loans. In other words the snapshot in
Figure 7, is not allowed.

Formally these constraints can be written

(inv 1)

(inv 2)

respectively. The meaning of navigation expressions used here is
taken from Catalysis (d’Souza and Wills 1995, 1997): ����
�#
���������
�� returns the set of loans obtained by traversing the
link ����
�� for every copy in ����
�����; for the mathemati-
cally minded, this is the range of the composition of the ����
�#
���� and ����
�� relations, restricted to 	
�� in the domain.

3.4 Action specifications

A state diagram does not say everything about the effects of an action. For example, in the case of ������, it
does not say that a new, current loan object must be created recording the fact that the copy has be
out to the user. Using the same precise language as used in Section 3.2, “State diagrams”, another fra
specification for ������ is:

�������������������	
����
����
��	�

The loan of � to � is recorded in a new current loan object.

This must be combined with the specification derived from the state diagram. Catalysis (d’Souza an
1997) describes two of ways of combining action specifications, differing on whether and how pre an
conditions are conjoined/disjoined. View composition is appropriate here; details are given in the next

4 Semantics: compositions of Larch traits

A formal semantics for an object-oriented model makes precise the notion of snapshots, filmstrips a
straints on them. It also defines how static and dynamic constraints are derived from generic descripto

For the reasons given in the introduction, our approach is to use Larch (Guttag and Horning 1993) as
guage of formalization, at least at the lowest level. Not only does this have an associated, freely a
toolset, it also provides a relatively sophisticated form of theory composition which supports renaming.
ory or trait in Larch characterizes a (collection of) constraint(s) on a model, and the language requ
describe it (them); theory composition is used to construct a theory characterizing all constraints on the
hence the model itself. Theory composition supports what naturally takes place in modeling: the m
described using a series of diagrams and text fragments of various kinds, each contributing constrain
model. Composition also plays an important role in providing sophisticated tool support: for partiti
semantic checks into manageable units; and for component-based development where components n
composed, decomposed and compared.

By way of illustration, a sketch of the Larch semantics for the library system model is given in Figure 8

Figure 7: Snapshot disallowed by invariant

��������

�
���

����	

���	�����

��������

�
���

�������

�������	��

����	

�
���

�������	���	������
�������

����
����������
�� ����
���=

����
�����	
�	 �����
⊆

� ���� � �
�∈ � ����
��� ���	
� �=
������ �= ������
�� �=

∧ ∧
∧

∈∧,:∃
5

Semantics through Pictures

on-
 the
aits in

 before

ciations,
for asso-
Each trait is a theory of FOPL. The includes section indicates which other traits are used in the c
struction of this one, the introduces section declares the new functions introduced in the theory and
asserts section lists axioms imposing constraints on all the functions (introduced or included). The tr
the left hand column illustrate how types and associations are modeled. The Type trait introduces the basic
components for a (static) type: a sort T of identities for objects of that type, and a predicate exists indicat-
ing at what points in time (from) an object exists; an object exists only after it has been created and
it is destroyed; only objects which exist have behavior.

The DirectedAssoc trait defines an association from type S to type T with rolename r , with the constraint
that only existing objects may be related by the association. An association is then two directed asso
with a constraint that the inverse of one is equal to the other. This is similar to the semantics proposed
ciations in Graham et al. (1997).

Figure 8: Extracts of compositional semantics in Larch for Library system model

1

1. This is actually not standard Larch. For presentational rea-
sons, we have used a similar trick for relations as has been
used for sets in the new version of Larch (Horning 1995). It
can be translated systematically into standard Larch.

Type T() : trait

introduces

exists : T Σ, Bool→

DirectedAssoc S T r, ,() : trait

includes

Type S()
Type T()
introduces

r : Σ Relation S T,[]→
asserts

σ Σ: s S: t T:, ,∀
r s t σ, ,()
exists s () exists t ()∧()

⇒

Association S T r StoT r TtoS, , ,() : trait

includes

DirectedAssoc S T r StoT, ,()

DirectedAssoc T S r TtoS, ,()

asserts

σ Σ: s S: t T:, ,∀
s t,〈 〉 r StoT σ()∈ t s,〈 〉 r TtoS σ()∈⇔

LibraryTA : trait

include s

Association Library
User active ~active

,
, ,

(
)

Association Copy
Loan current ~current

,
, ,

(
)

…

LibrarySC : trait

include s

Optional Copy Loan current, ,()
…
Library::Inv1

Library::Inv2

…

LibrarySM : trait

include s

LibraryTA

LibrarySC

LibraryDM : trait

include s

Library::borro w

…

Library : trait

include s

LibrarySM

LibraryDM

Σ

6

Semantics through Pictures

f
n

The right-hand column indicates how the semantics of the Library model, defined by the Library trait, is
built up. LibraryTA defines the types and associations i.e. the language; LibrarySC the static constraints,
including multiplicity constraints on associations; LibrarySM the static model, which is the composition o
the language and the static constraints; and LibraryDM the dynamic model, which is just a list of actio
specifications.

A static constraint and an action specification are
given in Figure 9 on page 7, and Figure 10 on
page 7, respectively. The static constraint is the one
derived from invariant 2 on page 5. Only the lan-
guage (i.e. associations) required to write the invari-
ant are included in the trait. The assertion illustrates
how navigation expressions are given a semantics:
the image (range) of the composition of the relations,
corresponding to the associations involved, restricted
to the set of objects being navigated from, in this
case the library l .

The action specification is formed from the composi-
tion of the parts contributed by the state diagram in
Figure 4 on page 4 and the separate fragment of specification on page 5, as defined by the Library::bor-
row trait in Figure 10.

The semantics for the fragment of specification on page 5 is given in the Library::borrow-2 trait. Again
this includes only those associations required to write the specification. It introduces a borrow function
which maps arguments (including one for the type Library) to actions, which, as indicated by the Action
trait, are relations between points in time. The assertion in the Library::borrow-2 trait characterizes the

Figure 10: Semantics of an action specification

Figure 9: Semantics of a static constraint

Library::Inv2 : trait

includes

DirectedAssoc Library User active, ,()
DirectedAssoc Library Loan currentL, ,()
DirectedAssoc Loan User user, ,()
asserts

σ Σ: l Loan:,∀
image currentL σ() user σ()⋅ l{ },()

image active σ() l{ },()⊆

Library::borrow : trait

includes

Library::borrow-1

Library::borrow-2

Library::borrow-1 : trait

…

σold σnew, Σ: l∀ Library: u User: c Copy:, ,∀

borrow-pre l u c σold, , ,()
c image collection σnew() l{ },()∈

image OnShelf σnew() c{ },() true{ }=∧
(

)
c image availableForLoanC σnew() u{ },()∈∧

⇒

…

Action Σ() : trait

includes

Relation Σ Σ,()
…

Library::borrow-2 : trait

include s

DirectedAssoc Library Loan current L, ,()
DirectedAssoc Loan User use r, ,()
DirectedAssoc Loan Copy cop y, ,()
DirectedAssoc Copy Loan curren t, ,()
introduce s

borrow Library User Cop y, , Action Σ[]→:

borrow-pre Library User Copy Σ, , , Bool→:
assert s

σold σnew, Σ: l Librar y: u User: c Copy:, , ,∀

σold σnew,〈 〉 borrow l u c, ,()∈
borrow-pre l u c σold, , ,()∧

(
) ⇒

lo Loa n:∃
exists lo σnew,() exists lo σold,()¬

lo image currentL σnew() l{ },()∈
image user σnew() lo{ },() u{ }=
image copy σnew() lo{ },() c{ }=
image current σnew() c{ },() lo{ }=

∧
∧
∧
∧
∧

7

Semantics through Pictures

ch
n created

ts hold

’Souza

hey can
hey build
 viewed
xpressive
r repre-
ionships

otation

 at the tar-

sed

ntified; a
ith zero
behavior of the action. Note the meaning assigned to �
�, which insists that there is now a loan object whi
did not exist at the pre or old state but which does exist in the post or new state, i.e. one that has bee
by the action.

Finally note the way in which the pre conditioned is defined. A special function called borrow-pre is intro-
duced, which is constrained so that at least the pre conditions supplied by all specification fragmen
when the action is invoked. That is when the theories characterized by this and the Library::borrow-1
traits are composed to provide the full specification of ������, as in the Library::borrow trait, the
effect is to ‘and’ the pre conditions as required. This corresponds to view composition in Catalysis (d
and Wills, 1997).

5 Constraint diagrams

Constraint diagrams (Kent 1997) are a diagrammatic notation for expressing constraints on models. T
be used in isolation to express static constraints, or in sequence to express dynamic constraints. T
upon the effectiveness of snapshots in illustrating the import of constraints on the model. They may be
as a generalization of snapshot notation (one diagram represents a set of snapshots), which is more e
than type diagrams; or as the natural progression from UML object diagrams which have a notation fo
senting sets of objects. They make use of Venn diagram notation, with some extensions, to show relat
between navigation expressions, interpreted in the Catalysis fashion (see page 5).

Figure 11 on page 8 shows a constraint diagram for the library system model. As with Venn diagram n

an ellipse represents a set of objects; a type represents the universal set of objects of that type; a set
get of an arrow is the set identified by the association at the end of the arrow, navigating from the set of objects
at the source. Thus, focussing on the
��� and ���� types, a textual representation of one constraint impo
by this diagram is .

A set at the source of an arrow, which has no arrows targeted on it is assumed to be universally qua
small closed circle is a set containing only one element; a small open circle (not used here), is a set w
or one elements. Written textually, a constraint illustrating this is

Figure 11: Constraint diagram showing some static constraints on the library system

��������

�	
��	
�

��
���
�

��������

��������

�	
�����

��

���	��

�������

���	��
���	
�����

����������������������

���	
��
���������

���	
��
���������

����
��

����	
��
���������

����
����������
�� ����
���=

���	
�∀ � �����������������
$������%∈
����������
$������% ����������
$������
������������	⊇

⇒,
8

Semantics through Pictures

s men-
mantics
osition in
, the

ng con-
d by the
mecha-

which
how-
 relation-

rry a dif-
owever,
ation as

sign of
ring the
 suffi-
te
A cross in any area means there are no elements in
that area, as illustrated by the constraint

Constraint diagrams can be used in sequence to
express action specifications, this time generalizing
the idea of filmstrips. Figure 12 shows the specifica-
tion of ������ (the part not catered for by the state
diagram). The diagram in the first frame shows any
pre-condition information together with parts of the
state that are subject to change by the action. The
diagram in the second frame shows only the changes
imposed by the action. The filmstrip is equivalent to
the specification fragment for ������ given in
Section 3.4 on page 5.

6 Diagrammatic semantics

Constraint diagrams can be used to express most
static and dynamic constraints that can be expressed
with invariants, pre and post conditions. This
includes constraints imposed by type diagrams -
multiplicity constraints are just a particular form of
invariant; and constraints imposed by state diagrams,
which contribute to the type model (dynamic types)
and action specifications.

This suggests that once a formal semantics has been
given to constraint diagrams, they can then be used
to give a semantics to other notations. This could
help to make the semantics easier to understand, and
could provide an alternative approach to providing
tool support for semantic checking, through direct comparison of diagrams. As well as the diagram
tioned it is expected that at least object composition (e.g. as described in UML) could be given a se
using this approach. Indeed, this seems to be a prime candidate as the exact meaning of object comp
UML is far from clear. Civello (1993) and Kilov & Ross (1994) are likely to be helpful here. In particular
latter makes considerable use of invariants to formalize various forms of composition.

In line with the compositional approach to semantics, it is desirable to construct a calculus for composi
straint diagrams and constraint diagram sequences. Then a model would be precisely characterize
appropriate compositions of such diagrams. Theory composition as in Larch should provide sufficient
nisms for formulating such a calculus.

One possible problem with constraint diagrams is the difficulty of showing constraints on attributes
hold values, e.g. of type &��
�
�, rather than identify objects. It is expected that this could be cured by s
ing values like objects on snapshots, sets of values like sets of objects on constraint diagrams, and
ships between them as associations.

It is not possible to give sequence diagrams a semantics using constraint diagrams, as the former ca
ferent kind of information, namely the order in which messages are passed between objects. H
sequence diagrams combined with constraint diagram filmstrips can express at least the same inform
UML collaboration diagrams, which could be given a semantics using their combination.

A sequence diagram with a corresponding constraint diagram filmstrip effectively characterizes the de
an action. A design model is the composition of the designs of all actions in the specification. Compa
first and last diagrams in the filmstrip with the pre/post filmstrip fragment in the specification model, is
cient to show that the design is a correct against or refines the action specification, subject to an appropria

Figure 12: Constraint diagram filmstri p for ������

����������������

�

�

�����
�

��������
�	
��	
�

��������

����������������

�������

���	

�

�

�������

�	
��	
�
��
���
�

�	���	��

����

����
����������	 ����
��� ��	�����∪()– ∅=
9

Semantics through Pictures

ization
, where,
d for the

model, a
 to char-
a precise
rmediate
antics in

Semantic

mantics
h traits
his is
ing on
 refine-

nd this
 model-

 active
uld be to

 temporal

t

f

ct

io-
retrieval. Retrieval is the VDM (Jones 1990) term used to describe the mapping of the state character
of one model (e.g. a design) into the state characterization of a higher level model (e.g. a specification)
in the world of OO modeling, the state is characterized by the types, associations and attributes define
model.

7 Summary and conclusions

An object-oriented model has two parts: the static model, a set of allowed snapshots and the dynamic
set of allowed filmstrips. These are too many to explicitly enumerate, so generic descriptors are used
acterize general constraints on these sets. A significant subset of generic descriptors can be given
semantics by composing Larch traits (i.e. FOPL theories). These may be generated through an inte
route: constraint diagrams, sequence diagrams and a calculus for composing them are given a sem
these terms; these notations are then used to give a diagrammatic semantics to other notations.
checks may be based on the Larch layer or the diagrammatic layer.

Many of the details of the approach described here still need to be worked out. A paper describing a se
of type diagrams, invariants, state diagrams and action specifications in terms of compositions of Larc
should soon be available (watch the BIRO project website http://www.biro.brighton.ac.uk/index.html). T
based on earlier work on the semantics of Syntropy (Hamie and Howse 1997). Work is just beginn
detailing the semantics of constraint diagrams and their composition. Areas coming into focus include
ment, object composition and component composition and interaction.

As the semantics is defined, it is expected that some refinement of the notation will be required, a
should be recognized by bodies such as the OMG, who are currently standardizing on object-oriented
ing notations.

A main omission from this paper has been any consideration of concurrency and distribution e.g. UML
objects/types/classes and deployment diagrams. One approach, to handling concurrency at least, wo
rework the semantics using a process calculus of some form. Our preference instead would be to use
logic, or an encoding in Larch, as this would be a natural extension of the approach advocated here.

References

ADL (1997) Assertion Definition Language, The Open Group (formerly X/Open), http://adl.xopen.org.
Civello F. (1993) “Roles of Composite Objects in Object-Oriented Analysis and Design”, in OOPSLA’93,
pp.376-393, ACM Press.
Cook S. and Daniels J. (1994) Designing Object Systems, Prentice Hall Object-Oriented Series.
D’Souza D. and Wills A. (1995) Catalysis: Practical Rigour and Refinement, technical report available a
http://www.iconcomp.com.
D’Souza D. and Wills A. (1997) Component-Based Development Using Catalysis, book submitted for publi-
cation, manuscript available at http://www.iconcomp.com.
Graham I., Bischof J. and Henderson-Sellers B. (1997) “Associations considered a bad thing”, in JOOP, Feb-
ruary 1997, Sigs Publications.
Guttag J. and Horning J. (1993) Larch: Languages and Tools for Formal Specifications, Springer-Verlag.
Hamie A. and Howse J. (1997a) Interpreting Syntropy in Larch, Technical Report ITCM97/C1, University o
Brighton, available at http://www.biro.brighton.ac.uk/index.html.
Horning J. (1995) The Larch Shared Language: Some Open Problems, presented at the workshop on Abstra
Data Types, Oslo, 22 September 1995.
Jones C. (1990) Systematic Software Development using VDM (2nd edition), Prentice Hall.
Kent S. (1997) Constraint Diagrams: Visualising Assertions in Object-Oriented Models, submitted to
OOPSLA97.
Kilov H. and Ross J. (1994) Information modeling: an object-oriented approach, Prentice-Hall.
UML (1997) Unified Modeling Language v1.0, Rational Software Corporation, available at http://www.rat
nal.com.
10

	1 Introduction
	2 Underlying model: snapshots and filmstrips
	Figure 1: Admissible snapshot
	Figure 2: Filmstrip segment for borrow

	3 Generic descriptors: perspectives on a model
	3.1 Type diagrams
	Figure 3: Type model for library

	3.2 State diagrams
	Figure 4: State Diagram for Copy
	Figure 5: Snapshot admitted by state diagram
	Figure 6: Snapshot disallowed by state diagram

	3.3 Invariants
	Figure 7: Snapshot disallowed by invariant

	3.4 Action specifications

	4 Semantics: compositions of Larch traits
	Figure 8: Extracts of compositional semantics in L...
	Figure 9: Semantics of a static constraint
	Figure 10: Semantics of an action specification

	5 Constraint diagrams
	Figure 11: Constraint diagram showing some static ...
	Figure 12: Constraint diagram filmstrip for borrow...

	6 Diagrammatic semantics
	7 Summary and conclusions
	References

