Semantics through Pictures
Towards a diagrammatic semantics for OO modeling notations

Stuart Kent, Ali Hamie, John Howse, Franco Civello, Richard Mitchelf
Division of Computing,
University of Brighton, Lewes Rd., Brighton, UK.
http://www.biro.brighton.ac.uk/index.html, biro@brighton.ac.uk
fax: ++44 1273 642405, tel: ++44 1273 642494

Abstract. An object-oriented (OO) model has a static component, the set of allowable snapshots or system states, and a
dynamic component, the set of filmstrips or sequences of snapshots. Diagrammatic notations, such as those in UML,
each places constraints on the static and/or dynamic models. A formal semantics of OO modeling notations can be
constructed by providing a formal description of (i) sets of snapshots and filmstrips, (ii) constraints on those séts, and (iii
the derivation of those constraints from diagrammatic notations. In addition, since constraints are contributed by many
diagrams for the same model, a way of doing this compositionally is desirable. One approach to the semantics is to use
first-order logic for (i) and (ii), and theory inclusion with renaming, as in Larch, to characterize composition. A common
approach to (i) is to bootstrap: provide a semantics for a kernel of the notation and then use the kernel to give a
semantics to the other notations. This only works if a kernel which is sufficiently expressive can be identified, and this is
not the case for UML. However, we have developed a diagrammatic notation, dubbed constraint diagrams, which seems
capable of expressing most if not all static and dynamic constraints, and it is proposed that this be used to give a
diagrammatic semantics to OO models.

1 Introduction

This paper outlines an approach to constructing a precise semantics for object-oriented modeling notations.
There are at least four reasons why one might want to build a precise semantics:

1. To clarify meaning leading to refinements of the notation.
2. To clarify meaning for developers using the notation.

3. To clarify meaning for tool developers, thereby increasing the likelihood of interoperability between tools
at a semantic level (e.g. code generated from different tools for the same model has the same behavior).

4. To support semantic checking of models, automated if possible. This includes checking that implementa-
tions meet their specifications, checking internal consistency of components, and checking for inconsis-
tencies and conflicts between components.

(1) just requires the semantics to be written down in a precise form. (2) and (3) requires it to be written down
in a form which developers and tool developers can easily understand. In addition, it would be desirable for
(3) to provide a semantics in a form which directly assists the construction of tools, e.g. the automation of (4).

The approach to semantics advocated in this paper aims to meet all four objectives. Precision (1) is achieved
by grounding the semantics in first-order predicate logic. The dialect used here is Larch (Guttag and Horning
1993): it has a precisely defined language; support for theory composition; and tool support in the form of a
syntax/type checker and theorem prover.

One could argue that the use of predicate logic supports (2) and (3). However, we think we can do better. Spe-
cifically we are proposing to use a diagrammatic notation, dubbed constraint diagrams (Kent 1997): these

allow sophisticated constraints on a model to be expressed diagrammatically; the meaning of diagrammatic
notations for OO modeling can be characterized essentially in terms of the constraints they impose on the
underlying model, and these can be expressed using constraint diagrams. At the very least, this provides an
alternative approach to making mathematics more palatable to e.g. ADL (1997). (4) is achieved through at

least two possible routes:

1. This research was partially funded by the UK EPSRC under grant number GR/K67304

Semantics through Pictures

1. Larch comes with theorem proving tools, so, in theory at least, these could be used to perform semantic
checks.

2. By treating constraint diagrams as graphs, they may be compared for matches or mismatches as a way of
performing consistency checks between different perspectives and views of the model.

Extracts from the specification of a library system are used throughout the paper for illustration. This should
be distinguished from the specification of the business domain with or without the system embedded in it. The
same or similar notations and techniques can be used to model that as well; for example, it is claim of UML
(UML 1997) that it is not just a language for modeling software. The specification is given in a subset of the

notations proposed for UML, enhanced with a language for writing constraints precisely (e.g. invariants, pre
& post conditions) based on Catalysis (d’Souza and Wills 1995, 1997).

2 Underlying model: snapshots and filmstrips

Librar An object oriented (OO)
=rary \Y mo_del may be charac- Tibrar
A :User terized in terms of the| | =lorary
registered \hisfor‘yL possible states the sysp | o ‘
, I tem being modeled can iCopy |collection
octive :Loan enter and the order in :OnShel
/ which it can enter those availableForLoanC
‘Loan > states. We use the ternj
(\ snapshotto refer to a iUser
currinsy current=| Copy possible state of the sysf | S~
‘ tem andfilmstrip a pos- ' active
K collection sible ordering on those

states, i.e. a sequencf

of snapshots. The set o :Library
snapshots form thetatic model and the set of filmstrips thg : .
dynamic model

Figure 1: Admissible sngshot

e
:Copy collection
Figure 1shows a snapshot that is admitted by the model of a ligar :Out eren‘r
system. A copy is currently on loan to an active user (only acfive lableP
; . LoanC | .

users may borrow things). The copy has previously been on logn 1 avilablefpdoan iLoan
the same user. The notation used is that of instance diagrams :User
UML.

currentl

o active

Figure 2 shows a segment of one of the many possible filmstfip
admitted by the model. This segment shows before (pre) and gfter

(post) snapshotg for an i_nvocatio.n of the act'mnrow(u:User', Figure 2: Filmstrip sggment for
c:Copy) on thelibrary object depicted. The copyis up for loan borrow

to u; u must be active; in the collection and available for loan to

u. On completion the copy is marked as “loaned out”, and a new current loan object is created to record that
has been loaned out o

The set of filmstrips forming the dynamic model may be thought of as generated by stringing together pre/post
segments for actions on the system being modeled.

3 Generic descriptors: perspectives on a model

Of course the sets of allowed snapshots and filmstrips characterizing a model are in general infinite (for spec-
ification models), and, at best very large (for implementation models). Therefore modelers need notations that
are able to define very large sets in only a few diagrams. UML calls these notsimrsc descriptors
Essentially generic descriptors provide ways of writing rules or constraints which determine whether any par-
ticular snapshot or filmstrip is allowed in a model or not. Here we consider type and state diagrams (from
UML) combined with invariants and action specifications.

Semantics through Pictures

3.1 Type diagrams

Type diagrams define most of the language that can be used in snapshots and constrains multiplicities of links
between objects in snapshots. The type model for the snapshots appearing in Figures 1 and 2, is given in
Figure 3.

Library
= | registered * | historyL
active U . *
* ser Loan
1 currentL
* *
* 0.1
current
availableForLoanC
availableForLoanP * 1 0.1
*
Publication Copy
1 *
catalog | * collection | *

Figure 3: Type model for library

Only types and association rolenames appearing in the type model may appear in snapshots. Furthermore the
number of links in a snapshot corresponding to a particular association may not exceed the multiplicity con-
straints declared on the type model, for any objects of the types associated. For example, focussing on the
(unlabeled) associations betwdssan andUser andLoan andCopy, a loan object may be linked with only

one user and one copy, though user and copy objects may be linked to many loan objects. This is the case in
Figure 1 on page 2, where each loan object (there are two of them) are linked with only one user and one copy,
but the user and the copy happen to be the same for both so are each linked to two loan objects.

The type diagram also uses the Ulgthmpositenotation, by placing types and associations within the bounds

of another type Library in this case. There are a variety of possible meanings for this, reflecting the various
possible interpretations of composite (see e.g. Civello 1993). All could be expressed as constraints on snap-
shots (e.g. no sharing) and sequences of snapshots (e.g. lifetime dependency). Certainly one constraint we
would like is that whatever navigation route is taken, all paths lead back to the same library; this has a pre-reg-
uisite that the objects are only ever associated with one library object. For example, we would expect that
self.catalog.copies.~collection = self orself.active.loans.~currentLoans = self, and so ort.In snap-

shots, this constraint is realized by always having a single bounding library object from whence all paths come
and to which all paths go.

3.2 State diagrams

A state diagram places constraints on both the static and dynamic models. The state diagram for the type
Copy, in the context of theibrary, is given in Figure 4.

1. For more on the meaning of navigation expressions, see Section 3.3, “Invariants,” on page 5. dédfedhdhe LHS of these
expressions is redundant.

Semantics through Pictures

This is essentially UML notation, though we allow
navigation expressions labelling the transitions. For
7~ Accessible example the diagram indicates that when the action
borrow is performed on the object identified
through ~collection with self as the copy argu-
ment, then, providedelf is in theOnShelf state,

the effect will be to move it into th@ut state. This
reflects a style of specification used in e.g. Catalysis
(d’Souza and Wills 1995, 1997) and Syntropy (Cook
and Daniels 1994) where actions on the “system”
object only are specified. Note that at this level of
modeling i.e. specification, navigation does not
mean message passing. Itis only in the design model

~collection.borrow(u,self)
[self O u.availableForLoanC]

o / that one begins to decide how actions are imple-
mented by allocating responsibilities to objects and
Figure 4: State Diagram forCopy passing messages between them (viz. sequence dia-
grams).
T The constraints on the static .
:Library ’) :Library
currentl rent model imposed by a state dia|curent
tloan gram are the introduction of new :Loan |—current
active > :Out states and the relationshipy .. >
\ between them. For example \ \ iOut
:User |—_ collection | Figure 4 declares thatGopy has User :Withdrawn
] availableForl.oanC states Accessible, OnShelf, }
registered Out and Withdrawn, and that | registered collection
:OnShel '
collection Onshelf Out and Withdrawn are sub- \

states ofAccessible. States may
be thought of either as Boolearigure 6: Snapshot disallowed by state
attributes or as dynamic types, diagram

and indicated as such on snap-

shots. In figures 5 and 6 a state-like bbas been used to indicate an object of a dynamic type, in this case
copies in a particular state. Figure 5 is admitted by Figure 4, but Figure 6 is not - the CopyaisdWith-

drawn at the same time.

Figure 5: Snapshot admitted by state
diagram

The constraints on the dynamic model may be expressed as fopiidary::borrow(u:User c:Copy)
specifications on the actions mentioned in the state diagram. gref
example, the specification ftwrrow read off from the state dia-. collection !

gram Is given opposite. ¢ O u.availableForLoanC 2

This uses a precise language to express pre and post conditiogOHshelf

the pre condition is satisfied on invocation of the action then

post condition should be satisfied on completion. If the pre corgl©ut

tion does not hold, then the effect of the action is undetermined. _

Only filmstrip segments with pre and post snapshots satisfying]theﬂ;ﬁ.f;ﬁ,a:fo‘jv',agﬁ{"Oﬁfyeéi’,‘fs"t’r';?ﬁ;

pre and post conditions, respectively, will be admitted in the model. Library::borrow for copies incollection.

2. cis available for lending to the userThis
comes from the guard (shown between [...])
on the state diagram.

1. Asfar as we are aware, this is not part of current UML. However, we note that rectangles are used to represent tygies on type
grams and objects of those types on instance diagrams. Rounded rectangles are used to indicate states on state diageams, and th
directly correspond to dynamic types, so could be used to represent these on type diagrams. It is then a natural steptto use th
indicate objects of dynamic type (i.e. in a particular state) on instance diagrams. This also explains why we have uggel a recta
as the outermost “state” on the state diagram, which is really a static type.

Semantics through Pictures

3.3 Invariants

Diagrams, or at least those well known in OO modeling, car :Library
express all required static constraints. For example, in the lil | registered

system we would like to say that the current loans of copie User -
the collection is exactly the setirrentl; and that only active ' Lopy
users can have current loans. In other words the snapst ‘ / Col”ecﬁon
Figure 7, is not allowed. historyL

(current
Formally these constraints can be written :Loan
(nvl) collection.current = currentlL .

collection

(inv2) currentL.users O active {
Loan | —| :Copy

respectively. The meaning of navigation expressions used h T
taken from Catalysis (d’'Souza and Wills 1995, 1926)lec- | currentl current
tion.current returns the set of loans obtained by traversing /[

link current for every copy ircollection; for the mathemati-
cally minded, this is the range of the composition ofchléec-
tion andcurrent relations, restricted tgelf in the domain.

Figure 7: Snapshot disallowed ly invariant

3.4 Action specifications

A state diagram does not say everything about the effects of an action. For example, in thbarasevpit

does not say that a new, current loan object must be created recording the fact that the copy has been loanec
out to the user. Using the same precise language as used in Section 3.2, “State diagrams”, another fragment of
specification foborrow is:

Library::borrow(u:User,c:Copy)

The loan ofc tou is recorded in a new current loan object.

O : loan, | Onew Ol O currentL Ol.user = u O
l.copy = ¢ Oc.current = |

This must be combined with the specification derived from the state diagram. Catalysis (d’Souza and Wills
1997) describes two of ways of combining action specifications, differing on whether and how pre and post
conditions are conjoined/disjoined. View compaosition is appropriate here; details are given in the next section.

4 Semantics: compositions of Larch traits

A formal semantics for an object-oriented model makes precise the notion of snapshots, filmstrips and con-
straints on them. It also defines how static and dynamic constraints are derived from generic descriptors.

For the reasons given in the introduction, our approach is to use Larch (Guttag and Horning 1993) as the lan-
guage of formalization, at least at the lowest level. Not only does this have an associated, freely available
toolset, it also provides a relatively sophisticated form of theory composition which supports renaming. A the-
ory ortrait in Larch characterizes a (collection of) constraint(s) on a model, and the language required to
describe it (them); theory composition is used to construct a theory characterizing all constraints on the model,
hence the model itself. Theory composition supports what naturally takes place in modeling: the model is
described using a series of diagrams and text fragments of various kinds, each contributing constraints on the
model. Composition also plays an important role in providing sophisticated tool support: for partitioning
semantic checks into manageable units; and for component-based development where components need to be
composed, decomposed and compared.

By way of illustration, a sketch of the Larch semantics for the library system model is given in Figure 8.

Semantics through Pictures

Type (T) : trait LibraryTA : trait
introduces include s
exists :T,Z - Bool Association Lilfrary \
User ,active ~active)
DirectedAssoc S (T,r,) : trait Association Capy
_ Loan,current ~gurrent)
includes
Type (S)
Type (T) LibrarySC : trait
introduces include s
r : X - Relation S[T,]! Optional Cppy Loan current)
asserts
Oo:2,s:S,t T Library::Invl
ret ,o)O Library::Inv2
(exists s() Oexists t ())
Association S T, g1 1ypg) * trait LibrarySM : trait
includes include s
DirectedAssoc S (T,r , gio7) LibraryTA
DirectedAssoc T S, 1os) LibrarySC
asserts : .
LibraryDM : trait
Oo:2,s:S,t T include s
(5,6 00T g7 (0) = [5 OO 445 (0) Library::borro w

Library : trait
include s

1. This is actually not standard Larch. For presentational rea-
sons, we have used a similar trick for relations as has been LibrarySM
used for sets in the new version of Larch (Horning 1995). It .
can be translated systematically into standard Larch. LibraryDM

Figure 8: Extracts of compositional semantics in Larch for Library system model

Eachtrait is a theory of FOPL. Thimcludes section indicates which other traits are used in the con-
struction of this one, thimtroduces section declares the new functions introduced in the theory and the
asserts section lists axioms imposing constraints on all the functions (introduced or included). The traits in
the left hand column illustrate how types and associations are modele@lydédndrait introduces the basic
components for a (static) type: a sbf identities for objects of that type, and a prediexists indicat-

ing at what points in time (fror@) an object exists; an object exists only after it has been created and before
it is destroyed; only objects which exist have behavior.

TheDirectedAssoc trait defines an association from typ¢o typeT with rolename , with the constraint

that only existing objects may be related by the association. An association is then two directed associations,
with a constraint that the inverse of one is equal to the other. This is similar to the semantics proposed for asso-
ciations in Graham et al. (1997).

Semantics through Pictures

The right-hand column indicates how the semantics dfittrary model, defined by theibrary trait, is
built up.LibraryTA defines the types and associations i.e. the langudgarySC the static constraints,
including multiplicity constraints on associatioh#yrarySM the static model, which is the composition of
the language and the static constraints; labcaryDM the dynamic model, which is just a list of action
specifications.

A static constraint and an action specification argijprary::inv2 trait
given in Figure9 on page7, and Figure 10 on
. : o includes

page 7, respectively. The static constraint is the one))

derived from invariant 2 on page 5. Only the lanPirectedAssoc Lilfrary User, active)

guage (i.e. associations) required to write the invarBirectedAssoc Lilfrary Loan currentL)

ant are included in the trait. The assertion illustratesjrectedAssoc Loan User user)

how navigation expressions are given a semantics;
: » . asserts

the image (range) of the composition of the relations,

corresponding to the associations involved, restrictedo : 2, | Loan

to the set of objects being navigated from, in thignage currentl (o) Cuser (o), {1 })

case the library . Oimage @ctive (o0),{l})

The action specification is formed from the composi- Figure 9: Semantics of a static constraint
tion of the parts contributed by the state diagram in

Figure 4 on page 4 and the separate fragment of specification on page 5, as definédbbgrihebor-
row trait in Figure 10.

Library::borrow : trait Library::borrow-2 : trait

includes include s

Library::borrow-1 DirectedAssoc Liljrary Loan current L)
Library::borrow-2 DirectedAssoc Loan User use r)

DirectedAssoc Laoan Cgpy cop VY)
DirectedAssoc Cdpy Loan cutren t)
introduce s

Library::borrow-1 : trait

00gig + Opey - 20 tLibrary ,u:User,c:Copy porrow Library User Cop y — Action [Z]

borrow-pre | ¢ ¢ , ,0,4)
O (c Oimage ¢ollection (Chew) {I'})
Oimage OnShelf (0,0, {c}) ={true }) '
Oc Oimage @vailableForLoanC (Opon)s {U}) Bl + Opew: =1 Librar y,u:User, c:Copy
(Ebold + Open0 borrow I(u, c,)
Oborrow-pre | ¢ ¢ » Ooid) O

borrow-pre Library User Copy , 2 - Bool
assert s

Action () : trait
includes

o Lloa n

- exists lo{ ,0,,) O-exists Io(,0,4)
Relation (Z, %) Olo Omage durrentl (0,,):{I })
Oimage @iser (0,,). {10 })={u}
Oimage €opy (0,4,):{l0 })={c}
Oimage gurrent (0,,,). {c}) ={lo }

Figure 10: Semantics of an action specification

The semantics for the fragment of specification on page 5 is given liibifaey::borrow-2 trait. Again
this includes only those associations required to write the specification. It introdboeow function
which maps arguments (including one for the tyjlary) to actions, which, as indicated by t#hetion
trait, are relations between points in time. The assertion inilthary::borrow-2 trait characterizes the

Semantics through Pictures

behavior of the action. Note the meaning assigneew which insists that there is now a loan object which
did not exist at the pre or old state but which does exist in the post or new state, i.e. one that has been created
by the action.

Finally note the way in which the pre conditioned is defined. A special function ballexv-pre is intro-

duced, which is constrained so that at least the pre conditions supplied by all specification fragments hold
when the action is invoked. That is when the theories characterized by this aitttahe:borrow-1

traits are composed to provide the full specificatiorbefrow, as in thelLibrary::borrow trait, the

effect is to ‘and’ the pre conditions as required. This corresponds to view composition in Catalysis (d’'Souza
and Wills, 1997).

5 Constraint diagrams

Constraint diagrams (Kent 1997) are a diagrammatic notation for expressing constraints on models. They can
be used in isolation to express static constraints, or in sequence to express dynamic constraints. They build
upon the effectiveness of snapshots in illustrating the import of constraints on the model. They may be viewed
as a generalization of snapshot notation (one diagram represents a set of snapshots), which is more expressive
than type diagrams; or as the natural progression from UML object diagrams which have a notation for repre-
senting sets of objects. They make use of Venn diagram notation, with some extensions, to show relationships
between navigation expressions, interpreted in the Catalysis fashion (see page 5).

Figure 11 on page 8 shows a constraint diagram for the library system model. As with Venn diagram notation

:Library
Publication
Copy catalog™ |
&
/—\
/collec‘rion\\‘
availableForLoanC
/ / availableForLoanP
current ‘
| Loan \ User J
~availableForLoanP
currentl
“ |
‘\
historyL active registered

Figure 11: Constraint diagram showing some static constraints on the libray system

an ellipse represents a set of objects; a type represents the universal set of objects of that type; a set at the tar
get of an arrow is the set identified by the association at the end of the arrow, navigating fetofthiejects
at the source. Thus, focussing on @@y andLoan types, a textual representation of one constraint imposed

by this diagram icollection.current = currentlL

A set at the source of an arrow, which has no arrows targeted on it is assumed to be universally quantified; a
small closed circle is a set containing only one element; a small open circle (not used here), is a set with zero
or one elements. Written textually, a constraint illustrating this is

Ou:User, u O catalog.~availableForLoanP O
u.availableForLoanP U u.availableForLoanC.publications

Semantics through Pictures

A cross in any area means there are no elementp=i=
that area, as illustrated by the constraint

iLibrary
collection.loans — (currentl O historyl) = O

User

Constraint diagrams can be used in sequencq tc Copy
express action specifications, this time generalizihg -t U
the idea of filmstrips. Figure 12 shows the specificp- [|- . ,\

tion of borrow (the part not catered for by the staje
diagram). The diagram in the first frame shows ajy
pre-condition information together with parts of the corrent Loan
state that are subject to change by the action. The |
diagram in the second frame shows only the chanfe: >
imposed by the action. The filmstrip is equivalent jo
the specification fragment foborrow given in
Section 3.4 on page 5.

. . . iLibrary
6 Dlagrammatlc semantics

Constraint diagrams can be used to express njos Copy User
static and dynamic constraints that can be expregse) "
with invariants, pre and post conditions. This | f\
includes constraints imposed by type diagramqd -| |
multiplicity constraints are just a particular form (1!1 w
invariant; and constraints imposed by state diagrafns copy us/er

which contribute to the type model (dynamic typef) Loan

: e t
and action specifications. curren E / currentL
This suggests that once a formal semantics has Qee

given to constraint diagrams, they can then be ugec
to give a semantics to other notations. This coyld
help to make the semantics easier to understand, ap
could provide an alternative approach to providing
tool support for semantic checking, through direct comparison of diagrams. As well as the diagrams men-
tioned it is expected that at least object composition (e.g. as described in UML) could be given a semantics
using this approach. Indeed, this seems to be a prime candidate as the exact meaning of object composition in
UML is far from clear. Civello (1993) and Kilov & Ross (1994) are likely to be helpful here. In particular, the
latter makes considerable use of invariants to formalize various forms of composition.

%ure 12: Constraint diagram filmstri p for borrow

In line with the compositional approach to semantics, it is desirable to construct a calculus for composing con-
straint diagrams and constraint diagram sequences. Then a model would be precisely characterized by the
appropriate compositions of such diagrams. Theory composition as in Larch should provide sufficient mecha-
nisms for formulating such a calculus.

One possible problem with constraint diagrams is the difficulty of showing constraints on attributes which
hold values, e.g. of typEnteger, rather than identify objects. It is expected that this could be cured by show-

ing values like objects on snhapshots, sets of values like sets of objects on constraint diagrams, and relation-
ships between them as associations.

It is not possible to give sequence diagrams a semantics using constraint diagrams, as the former carry a dif-
ferent kind of information, namely the order in which messages are passed between objects. However,
sequence diagrams combined with constraint diagram filmstrips can express at least the same information as
UML collaboration diagrams, which could be given a semantics using their combination.

A sequence diagram with a corresponding constraint diagram filmstrip effectively characterizes the design of
an action. A design model is the composition of the designs of all actions in the specification. Comparing the
first and last diagrams in the filmstrip with the pre/post filmstrip fragment in the specification model, is suffi-
cient to show that the design is a correct againstfores the action specification, subject to an appropriate

Semantics through Pictures

retrieval. Retrievalis the VDM (Jones 1990) term used to describe the mapping of the state characterization
of one model (e.g. a design) into the state characterization of a higher level model (e.g. a specification), where,
in the world of OO modeling, the state is characterized by the types, associations and attributes defined for the
model.

7 Summary and conclusions

An object-oriented model has two parts: the static model, a set of allowed snapshots and the dynamic model, a
set of allowed filmstrips. These are too many to explicitly enumerate, so generic descriptors are used to char-

acterize general constraints on these sets. A significant subset of generic descriptors can be given a precise
semantics by composing Larch traits (i.e. FOPL theories). These may be generated through an intermediate
route: constraint diagrams, sequence diagrams and a calculus for composing them are given a semantics in
these terms; these notations are then used to give a diagrammatic semantics to other notations. Semantic
checks may be based on the Larch layer or the diagrammatic layer.

Many of the details of the approach described here still need to be worked out. A paper describing a semantics
of type diagrams, invariants, state diagrams and action specifications in terms of compositions of Larch traits
should soon be available (watch the BIRO project website http://www.biro.brighton.ac.uk/index.html). This is
based on earlier work on the semantics of Syntropy (Hamie and Howse 1997). Work is just beginning on
detailing the semantics of constraint diagrams and their composition. Areas coming into focus include refine-
ment, object compaosition and component composition and interaction.

As the semantics is defined, it is expected that some refinement of the notation will be required, and this
should be recognized by bodies such as the OMG, who are currently standardizing on object-oriented model-
ing notations.

A main omission from this paper has been any consideration of concurrency and distribution e.g. UML active
objects/types/classes and deployment diagrams. One approach, to handling concurrency at least, would be to
rework the semantics using a process calculus of some form. Our preference instead would be to use temporal
logic, or an encoding in Larch, as this would be a natural extension of the approach advocated here.

References

ADL (1997) Assertion Definition Languagdhe Open Group (formerly X/Open), http://adl.xopen.org.

Civello F. (1993) “Roles of Composite Objects in Object-Oriented Analysis and DesigfQDRSLA93
pp.376-393, ACM Press.

Cook S. and Daniels J. (199¢signing Object SystemRrentice Hall Object-Oriented Series.

D’Souza D. and Wills A. (1995 atalysis: Practical Rigour and Refinemgtgchnical report available at
http://www.iconcomp.com.

D’Souza D. and Wills A. (1997 omponent-Based Development Using Catalymek submitted for publi-
cation, manuscript available at http://www.iconcomp.com.

Graham |., Bischof J. and Henderson-Sellers B. (1997) “Associations considered a bad tHi0g@Rifreb-
ruary 1997, Sigs Publications.

Guttag J. and Horning J. (1993rch: Languages and Tools for Formal Specificatjddgringer-Verlag.

Hamie A. and Howse J. (1997a}erpreting Syntropy in Larghlechnical Report ITCM97/C1, University of
Brighton, available at http://www.biro.brighton.ac.uk/index.html.

Horning J. (1995The Larch Shared Language: Some Open Prohlpmnesented at the workshop on Abstract
Data Types, Oslo, 22 September 1995.

Jones C. (1990 ystematic Software Development using VDM (2nd edifyeptice Hall.

Kent S. (1997)Constraint Diagrams: Visualising Assertions in Object-Oriented Modslbmitted to
OOPSLA97.

Kilov H. and Ross J. (1994)formation modeling: an object-oriented approaétrentice-Hall.

UML (1997) Unified Modeling Language v1.®Rational Software Corporation, available at http://www.ratio-
nal.com.

10

	1 Introduction
	2 Underlying model: snapshots and filmstrips
	Figure 1: Admissible snapshot
	Figure 2: Filmstrip segment for borrow

	3 Generic descriptors: perspectives on a model
	3.1 Type diagrams
	Figure 3: Type model for library

	3.2 State diagrams
	Figure 4: State Diagram for Copy
	Figure 5: Snapshot admitted by state diagram
	Figure 6: Snapshot disallowed by state diagram

	3.3 Invariants
	Figure 7: Snapshot disallowed by invariant

	3.4 Action specifications

	4 Semantics: compositions of Larch traits
	Figure 8: Extracts of compositional semantics in L...
	Figure 9: Semantics of a static constraint
	Figure 10: Semantics of an action specification

	5 Constraint diagrams
	Figure 11: Constraint diagram showing some static ...
	Figure 12: Constraint diagram filmstrip for borrow...

	6 Diagrammatic semantics
	7 Summary and conclusions
	References

