
Common Subexpressions are Uncommon

in Lazy Functional Languages

Olaf Chitil

Lehrstuhl für Informatik II, Aachen University of Technology, Germany
chitil@informatik.rwth-aachen.de

http://www-i2.informatik.RWTH-Aachen.de/~chitil

Abstract. Common subexpression elimination is a well-known compiler
optimisation that saves time by avoiding the repetition of the same com-
putation. In lazy functional languages, referential transparency renders
the identification of common subexpressions very simple. More common
subexpressions can be recognised because they can be of arbitrary type
whereas standard common subexpression elimination only shares primit-
ive values. However, because lazy functional languages decouple program
structure from data space allocation and control flow, analysing its ef-
fects and deciding under which conditions the elimination of a common
subexpression is beneficial proves to be quite difficult. We developed and
implemented the transformation for the language Haskell by extending
the Glasgow Haskell compiler. On real-world programs the transforma-
tion showed nearly no effect. The reason is that common subexpressions
whose elimination could speed up programs are uncommon in lazy func-
tional languages.

1 Transformation of Different Language Classes

The purpose of common subexpression elimination (CSE) is to reduce the run-
time of a program through avoiding the repetition of the same computation. The
transformation statically identifies a repeated computation by locating multiple
occurrences of the same expression. Repeated computations are eliminated by
storing the result of evaluating the expression in a variable and accessing this
variable instead of reevaluating the expression.

1.1 Imperative Languages

CSE is a well-known standard optimisation which is implemented in most com-
pilers for imperative languages ([1]). The program to be optimised is represented
as a flow graph whose nodes are basic blocks, that is sequences of 3-address in-
structions. An expression on the right hand side of an assignment is a common
subexpression if it has been computed before and there is no assignment to any
variable of the expression in between. For languages with pointers the latter
condition is more complicated. Local elimination of all common subexpressions

of a basic block is straightforward. Global elimination requires a data flow ana-
lysis, since an expression can only be eliminated, if it is computed on every path
leading to its basic block.

It is important to note that some transformations are not feasible on source
code level, because the required details are still hidden there. For example, Pascal
only permits to access an array by an index, e.g. a[i] := a[i]+1. Assuming an
array component requires 4 bytes this assignment is translated into the following
3-address code:

t1 := 4 * i;
t2 := a[t1]
t3 := t2 + 1;
t4 := 4 * i;
a[t4] := t3;

The programmer cannot avoid the repeated computation of 4 * i which is elim-
inated by CSE.

Note that 3-address code only handles primitive data such as integers and
floating point values and that the temporary variables t1, . . . , t4 are held in
processor registers. The recomputation of complete arrays for example cannot
be eliminated.

1.2 Strict Functional Languages

Appel implemented CSE in a compiler for the strict functional language ML
([2], Chapter 9). He uses continuation passing style as intermediate language
on which all transformations operate. Whereas 3-address code consists of a se-
quence of instructions, continuation passing style code makes control flow ex-
plicit by nesting. Hence an expression is evaluated before another expression,
if it syntactically dominates that expression. Only in case of syntactic domina-
tion common subexpressions can be eliminated. To increase the applicability of
the transformation, an additional hoisting transformation is implemented which
hoists a continuation expression above another. The following simplified example
from ([2], Chapter 9) shows the transformation of

let f c = c (x+y) in f (x+y) k

This expression is written in continuation passing style as

FIX([(f, [c], PRIMOP(+, [VAR x, VAR y], [z], [
APP(VAR c, [VAR z])]))],

PRIMOP(+, [VAR x, VAR y], [w], [
APP(VAR f, [VAR w, VAR k])]))

which is transformed by hoisting into

PRIMOP(+, [VAR x, VAR y], [w], [
FIX([(f, [c], PRIMOP(+, [VAR x, VAR y], [z], [

APP(VAR c, [VAR z])]))],
APP(VAR f, [VAR w, VAR k]))])

and by CSE into

PRIMOP(+, [VAR x, VAR y], [w], [
FIX([(f, [c], APP(VAR c, [VAR w]))],

APP(VAR f, [VAR w, VAR k]))])

Common subexpressions are restricted to expressions built from primitive
operations which operate only on primitive types. We conclude that CSE for
continuation passing style programs is very similar to CSE for imperative pro-
grams.

Appel reports that the transformation has no effect on run-time and only a
minor positive effect on program size. However, Appel gives no explanation for
this disappointing result. Subsequently developed ML-compilers still use CSE
([16]).

1.3 Lazy Functional Languages

To our knowledge, CSE has not yet been implemented in any compiler for lazy
functional languages. As seen in the previous subsections, classic CSE is based
on an explicit representation of control flow and data flow. In contrast, lazy
functional languages decouple program structure from both control flow and data
space allocation. That makes it hard, first, to ascertain that repeated expressions
are evaluated repeatedly and, second, to predict the effect of the elimination of
a common subexpression on space usage, a problem that we will discuss shortly.

These discrepancies suggest that CSE should be applied at a lower level in a
compiler for a lazy functional language. The Glasgow Haskell compiler produces
C programs. However, these C programs contain many indirect function calls
via pointers ([12]). We suppose that these function calls severely limit the ability
of the GNU C-compiler gcc to find common subexpressions. Unfortunately we
are not able to verify this claim, because gcc does not provide an option for
suppressing CSE.

On the other hand, there are several advantages of applying CSE directly to
lazy functional programs.

First, lazy functional languages like Haskell are referentially transparent, that
is, two identical expressions always denote the same value, independent of the
time of evaluation. Hence the recognition of common subexpressions is easier
to implement than for imperative languages or strict functional languages like
Scheme and ML that have to take account of destructive updates and side effects.
Thus even more common subexpressions may be recognised.

Second, CSE for lazy functional languages automatically recognises common
subexpressions of arbitrary type. Therefore it is able to transform

sum [1..1000] + sum [-1000..1] + sum [1..1000]

into

let v = sum [1..1000] in v + sum [-1000..1] + v

CSE for imperative languages and as used by Appel can only eliminate an ex-
pression, if all its subexpressions including itself only handle primitive values.

The disadvantage of eliminating expressions of arbitrary type is that it can
lead to a considerable increase in space requirements (cf. [10], Sections 14.7.2
and 23.4.2). Consider the transformation of the expression

sum [1..1000] + sum [-1000..1] + prod [1..1000]

into

let v = [1..1000] in sum v + sum [-1000..1] + prod v

The first expression creates three times a list of 1000 elements. The space of a list
can be reclaimed immediately after the list is used by sum and prod respectively.
Hence the amount of space required by one list suffices for the evaluation of
the whole expression. In the second expression the space allocated for the list
[1..1000] is not available when evaluating sum [-1000..1], but can only be
reclaimed after the evaluation of prod v has finished (assuming a left to right
evaluation). In the case of such a ”space leak” it could be cheaper to recompute
the common expression. Santos shortly discusses CSE for the lazy functional
language Haskell in [15] and points out this danger of ”space leaks” He suggests
restricting the type of common subexpression that are eliminated. We will follow
up this idea in Section 4.2. However, if the lifetime of the original expressions
overlap, then sharing compound values is even beneficial for space consumption.

To evaluate the usefulness of CSE for lazy functional languages in practise,
we implemented it as an extension of the Glasgow Haskell compiler (GHC). In
the next section we give a short introduction to GHC and present the simple
lazy language Core on which our transformation operates. In Section 3 the trans-
formation is developed in detail and in Section 4 we discuss, how the problems
mentioned above are (partially) overcome. Because we do not want to loose the
advantage of simplicity by performing a complex analysis, we have to find simple
syntactic conditions under which the elimination of a common subexpression is
beneficial. Section 5 discusses the implementation of the transformation. Af-
terwards, Section 6 presents measurements of the effects of the transformation
on several real-world programs. In Section 7 we discuss the main result of this
paper: CSE is not effective for our test programs because they have only few
common subexpressions. This lack of common subexpressions is likely to be a
characteristics of lazy functional languages. We conclude in Section 8.

2 The Glasgow Haskell Compiler and Core

We chose to implement CSE by extending GHC for the following reasons. First,
GHC is heavily based on the ”compilation by transformation” approach, that
is, it consists of a front end which translates Haskell into a small lazy functional
language named Core, a number of transformations which optimise Core pro-
grams, and a back end which translates Core into C. As much work as possible
is done in the middle part. Furthermore, GHC has been designed with the goal

Program Prog → Bind1; . . . ; Bindn n ≥ 1

Binding Bind → var = Expr Non-recursive
| rec var1 = Expr1;

. . . ;
varn = Exprn;

Recursive n ≥ 1

Expression Expr → Expr Atom Application
| Expr ty Type application
| λvar1 . . . varn->Expr Lambda abstraction
| Λtyvar1 . . . tyvarn->Expr Type abstraction
| case Expr of {Alts} Case expression
| let Bind in Expr Local definition
| con var1 . . . varn Constructor n ≥ 0
| prim var1 . . . varn Primitive op. n ≥ 0
| Atom

Atoms Atom → var Variable
| Literal Unboxed object

Literals Literal → integer | float | . . .

Alternatives Alts → Calt1; . . . ; Caltn; Default n ≥ 0
| Lalt1; . . . ; Laltn; Default n ≥ 0

Constr. alt. Calt → con var1 . . . varn->Expr n ≥ 0

Literal alt. Lalt → Literal->Expr

Default alt. Default → NoDefault

| var->Expr

Fig. 1. Syntax of the Core language

that other people can extend it with new optimising transformations ([8], [3]).
Second, it is one of the standard compilers for the lazy language Haskell. This
permits us to test our transformation on real-world Haskell programs instead of
toy programs in a toy language. The compiler itself is written in Haskell. We
added our transformation to version 2.08 which implements Haskell 1.4 ([4], [9]).

The intermediate language of GHC, Core, is essentially the second-order λ-
calculus augmented with let, case, data constructors, constants and primitive
operations. The syntax of the language is given in Figure 1. To avoid always hav-
ing to speak of global bindings and (local) let bindings, we refer to both kind of
bindings as let bindings. The syntax does not include algebraic data type defin-
itions, but data constructors are used in the patterns of case alternatives. Note
that function arguments must be atoms to simplify the operational semantics
of Core and many transformations. Core has a fixed operational semantics be-

sides the usual denotational semantics to enable reasoning about the usefulness
of a transformation. Hence we shortly describe the main characteristics of this
operational semantics.

Type abstraction and application are only needed for the type system. No
program code is generated for these constructs, because no types are passed at
run-time.

The operational model of Core requires a garbage-collected heap. A heap
object, also named closure, contains a data value, a function value, or is a thunk
for suspended values. Like a function value, a thunk contains a pointer to its
unevaluated code and an environment. The environment is the list of values of
the free variables of the code. After a thunk has been evaluated it is overwritten
by its freshly computed value. Thus lazy evaluation is implemented.

let bindings and only let bindings performs heap allocation. When a let
binding is evaluated, a closure is allocated for the bound expression. If the bound
expression is in weak head normal form (WHNF), a data value or function value
is allocated, otherwise a thunk (trivial let bindings, i.e., let x = y in ..., are
eliminated before code generation). Afterwards the body of the let is evaluated.

case expressions and only case expressions trigger evaluation. The evalu-
ation of a case expression triggers the evaluation of the scrutinised expression
to WHNF. The result is compared with the patterns of the alternatives and
execution proceeds with the appropriate alternative.

A more detailed description of Core and the objectives of its design is given
in [13].

3 Transformation Rules

We define CSE for Core by giving three transformation rules and three assisting
rules. To argue that these rules suffice, we show how other transformations imple-
mented in GHC transform a program into a form suitable for our transformation.
In Section 4 we analyse in detail under which conditions our transformation rules
are sure to reduce the execution costs of the transformed program and we restrict
the application of the rules accordingly.

3.1 Dominating Expressions

The suggestive, general transformation rule

e′[e, e] � let x = e in e′[x, x]

certainly cannot be used, because we want only to eliminate a common subex-
pression when it is safe, that is, costs are not increased. The two occurrences of
the expression e may be far apart and the chances that the value of both are
needed during the evaluation of the program is low. Worse, a closure is always
allocated for e in the transformed program, while this may not be the case for the
original program. If the whole expression is inside the body of a λ-abstraction,

then the transformation may lead to the allocation of an unbound number of
closures. A closure for e also has a long lifetime: First, it is allocated before the
value of e is needed. Then, all occurrences of x in e′ reference the closure which
can only be deallocated when it is no longer referenced. If the added let binding
is global, then the closure will even never be deallocated at all.

We decided on a simple implementation that performs no complicated ana-
lysis. Hence, similar to Appel (cf. Section 1.2), we only look for common subex-
pressions when a named expression syntactically dominates another equal ex-
pression, that is, we use the transformation rule

let x = e in e′[e] � let x = e in e′[x] (1)

The language Core can also express two other kinds of named, syntactically
dominating expression, exemplified by the following expressions:

case tail xs of {ys -> tail xs}
case 6 * 7 of {I# x# -> fib (6 * 7)}

Whereas a programmer hardly writes such code, other program transformations
may produce it. In fact, a strictness based transformation transforms let x = e
in e′ into case e of {C x1 . . . xn -> e′[C x1 . . . xn/x]}, if e′ is strict in x and
the type of x has only a single data constructor ([15], Section 3.6). All unboxed
data types such as Int# have exactly one data constructor (see Section 5.2).
Hence our transformation additionally applies the following two rules:

case e of { . . .;x -> e′[e]; . . . }� case e of { . . . ;x -> e′[x]; . . . } (2)

case e of { . . . ; C x1 . . . xn -> e′[e]; . . . }
� case e of { . . . ; C x1 . . . xn -> e′[C x1 . . . xn]; . . . } (3)

Our three rules do not perform an optimisation if the expression e is a vari-
able. Furthermore, rule (3) cannot be applied in that case, because according
to Core syntax a variable occurring as an argument of an application cannot
be replaced by a constructor application. Sections 3.3 and 5.1 will show that
if e is a variable the following reversed transformation rules are important for
eliminating nested common subexpressions:

let x = y in e′[x] � let x = y in e′[y] (1′)

case y of { . . .;x -> e′[x]; . . . }� case y of { . . . ;x -> e′[y]; . . . } (2′)

case y of { . . . ; C x1 . . . xn -> e′[C x1 . . . xn]; . . . }
� case y of { . . . ; C x1 . . . xn -> e′[y]; . . . } (3′)

Whereas it is still not guaranteed (but more probable) that the eliminated
expression is computed twice in the original program, the transformation is safe
in that the new program allocates no additional closures. The restriction to
syntactically dominating expressions renders the transformation more similar to
standard CSE in imperative languages. Standard CSE eliminates not all com-
mon subexpressions but only those that are already computed before on every
execution path.

3.2 Flattening of let and case expressions

Considering only syntactically dominating expressions is not as severe a restric-
tion as it seems. First of all, a Core program contains significantly more nested
let expressions than a normal functional program, because Core requires the
arguments of functions to be atoms. Regard the Haskell expression

sum [1..1000] + sum [-1000..1] + sum [1..1000]

In Core it looks as follows:1

let si =
let s1 = let l1 = [1..1000] in sum l1 in

let s2 = let l2 = [-1000..1] in sum l2 in
s1 + s2

in
let s3 = let l3 = [1..1000] in sum l3 in
si + s3

Our transformation rules cannot be applied to this program. However, GHC
includes several transformations that flatten nested let and case expressions
and thus bring a program into a form more suitable for our transformation. Note
that in Core programs every bound variable is unique so that in the following
transformation rules variable capture cannot arise.

– float let from let. ([15], Section 3.4.2)

let x = (let y = ey in ex) in e� let y = ey in (let x = ex in e)

This transformation is only applied, if ey is in WHNF or the whole expression
is strict in y.

– float case from let. ([15], Section 3.5.3)

let x = case e of
alt1 -> e1

. . .
altn -> en

in e′

�

case e of
alt1 -> let x = e1 in e′

. . .
altn -> let x = en in e′

This transformation requires e′ to be strict in x.
1 The examples are simplified. In particular, the overloaded numbers of Haskell require

the use of dictionaries.

– float let from case. ([15], Section 3.4.3)

case (let x = e in e′) of . . . � let x = e in (case e′ of . . .)

– float case from case. ([15], Section 3.5.2)

case

case e of

alt1 -> e1

. . .
altn -> en

 of

alt′1 -> e′1
. . .
alt′n -> e′m

�

case e of

alt1 ->

case e1 of

alt′1 -> e′1
. . .
alt′n -> e′m

. . .

altn ->

case en of

alt′1 -> e′1
. . .
alt′n -> e′m

Join points are used to avoid code duplication ([13], Section 5.1; [15], Section
3.5.2).

Furthermore, GHC performs a full laziness transformation ([15], Section 5.2)
which lifts expressions from a λ-abstraction. The full laziness transformation
may introduce new application possibilities for CSE, similar to the hoisting
transformation implemented by Appel.

3.3 Application of the Transformation Rules: An Example

Consider our sum example of the previous subsection. Strictness analysis infers
that the expression is strict in all subexpressions and thus all let bindings of
numbers are transformed into case expressions. A subsequent application of the
transformations listed in the previous subsection leads to the following program.
The data constructor I# is part of the unboxed representation of integers (see
Section 5.2).

let l1 = [1..1000] in
case (sum l1) of
I# s1 -> let l2 = [-1000..1] in

case (sum l2) of
I# s2 -> case (s1 +# s2) of

I# si -> let l3 = [1..1000] in
case (sum l3) of
I# s3 -> case (si +# s3) of

s -> I# s

Applying rule (1) removes the second occurrence of [1..1000]:

let l1 = [1..1000] in
case (sum l1) of
I# s1 -> let l2 = [-1000..1] in

case (sum l2) of
I# s2 -> case (s1 +# s2) of

I# si -> let l3 = l1 in
case (sum l3) of
I# s3 -> case (si +# s3) of

s -> I# s

Rule (1’) renames variable l3 to l1 in the body of the let binding so that rule
(3) can be applied:

let l1 = [1..1000] in
case (sum l1) of
I# s1 -> let l2 = [-1000..1] in

case (sum l2) of
I# s2 -> case (s1 +# s2) of

I# si -> let l3 = l1 in
case I# s1 of
I# s3 -> case (si +# s3) of

s -> I# s

The existing transformations of GHC finally yield the simplified program:

let l1 = [1..1000] in
case (sum l1) of
I# s1 -> let l2 = [-1000..1] in

case (sum l2) of
I# s2 -> case (s1 +# s2) of

I# si -> case (si +# s1) of
s -> I# s

3.4 Swapping of independent let and case expressions

A disadvantage of the restriction to textually dominating expressions is that our
transformation rules may not be applicable because of the accidental order of
independent let or case expressions. The program

let y = 42 in (let x = 42 + 1 in f x y)

is transformed whereas

let x = 42 + 1 in (let y = 42 in f x y)

is not. Unfortunately the independence of several let expressions cannot be
made explicit in the Core language; similarly for case expressions.

It is possible to extend our implementation of CSE, that we present in Sec-
tion 5, to eliminate common subexpressions even in such cases. We did not yet
do so, because we do not expect this case to occur very often.

4 Analysis of the Effects of the Transformation

Here we discuss application conditions for our rules which assure that common
subexpression elimination reduces costs. For lazy functional languages the costs
of major interest are run-time, total heap allocation, maximal heap residency,
that is the maximal space required by life objects on the heap at one time, and
size of the program code. Finally we take up Santos’ idea of restricting the type
of eliminated subexpressions to avoid space leaks.

The observant reader will notice that our transformation rule (1) is just the
inverse of another well-known transformation: inlining. Inlining replaces occur-
rences of a let-bound variable by its defining expression to remove function-call
overhead and to expose the defining expression to local context information and
thus to increase the possibility of other transformations being applied.

Transformations that are inverses of each other occur quite often in GHC, it
applies for example a let floating inward and a let floating outward transform-
ation ([15], Sections 5.1 and 3.4). For determining the conditions for applying
CSE we just have to reverse the known arguments for inlining ([15], Section 6;
[13], Section 4).

4.1 Run-Time and Code Size

We have to distinguish two kinds of common subexpressions. If the expression
concerned is a WHNF, that is, a variable, a literal, a constructor application, or
a λ-abstraction, then CSE cannot save execution time, because the expression
is already evaluated. Replacing the expression by a variable may even increase
run-time, because an additional indirection is introduced ([15], Section 3.2.3).
Eliminating a common non-WHNF saves execution time, if the value of at least
two of its occurrences in the original program are needed.

A special case is a common subexpression that is the right hand side of a let
binding. Replacing this expression by a variable yields a trivial binding of the
form let x = y in ... which is later eliminated by an existing transformation.
Thus run-time and code size are reduced.

In addition to decreasing run-time, CSE can also decrease program size.
It should however be noted that eliminating small expressions like constructor
applications has probably no effect on program size.

4.2 Avoidance of Space Leaks

Whereas the transformation may only decrease total heap usage, it may consid-
erably influence heap residency both positively and negatively. The latter case
is demonstrated in Section 1 by an example and has to be avoided.

Eliminating common subexpressions that are in WHNF does not increase
heap residency, but we have seen that except for right hand sides of let bindings
their elimination is not advantageous.

Santos suggests to eliminate only expressions of certain types ([15], Sections
8.5.11 and 8.6.2), similar to his approach to the full laziness transformation. If

the values of the expressions only take a small, fixed amount of space, then the
increased lifetime of the values on the heap should hardly matter.

Santos considers only types that are not recursive and do not contain re-
cursive types as subcomponents. This restriction is not sufficient. A partially
evaluated expression of a structured type may require an unbound amount of
heap space, because it may contain an arbitrary number of (linked) thunks. The
following example illustrates this.

f 0 = (0, 0)
f (n+1) = case (f n) of (l, m) -> (0, m+1)

let z = f 1000 in
case z of

(x, y) -> -> e[f 1000]

After z has been evaluated by the case expression, y is represented by 1001
thunks denoting the unevaluated expression 0+1+1+ . . .+1. If neither y nor z
occur in the body of the case expression this space can immediately be reclaimed
by the garbage collector. However, if CSE replaces the second occurrence of f
1000 by z, then this space cannot be reclaimed and thus heap residency is
increased considerably.

Hence we see that a partially evaluated expression is certain to require only a
small, fixed amount of space, if and only if its WHNF is already its normal form
and it is not a function, whose environment may refer to arbitrary large data
structures. Examples are all expressions of type Bool, Char, Int, and Float. We
call such types safe.

To assure that a common expression is evaluated before sharing takes place,
we apply rule (1) only if the let expression is strict in the let-bound variable.
GHC applies a let to case transformation after all other transformations which
guarantees that the let-bound expression is evaluated before the body of the
let expression.

Eliminating only those non-WHNFs that are evaluated and of safe type as-
sures that space leaks cannot occur. The transformation is still more general than
standard CSE, because the subexpressions of the eliminated expression may be
of arbitrary type.

5 Implementation of the Transformation

The restriction of the transformation to the elimination of subexpressions which
are let- or case-bound in the same scope permits a single recursive traversal
of the Core program. The named, dominating expressions are collected in a tree
data structure with logarithmic lookup time. The comparison of two expressions
modulo α-conversion by recursive decent is nearly always decided after exam-
ination of the top of the two expressions. Thus, compared to the rest of the
compiler, the time spend on the transformation is not noticeable in practise.

The implementation is available from the author.

5.1 Recognition of Common Subexpressions

For each expression we first transform its subexpressions and then test, if the
whole transformed expression occurred before. This order is necessary to gain
a cumulative effect and it thus assures that the transformation is idempotent,
that is, after being applied once a second application has no effect. For example
we get

let x = 3 in let y = 2+3 in 2+3+4
� let x = 3 in let y = 2+x in y+4

while doing lookup first and then recursive transformation leads to

� let x = 3 in let y = 2+x in 2+x+4

Section 4 showed that the transformation rules may only be applied under a
given condition. Only common subexpressions that are evaluated non-WHNFs
of safe type or that are WHNFs which occur as the right hand side of a let
binding are eliminated.

This condition may restrict our transformation more than desirable. Consider
the example of Section 3.3. The subexpression [1..1000] is not to be eliminated
because it is not of safe type. In consequence rules (1’) and (3) cannot be applied
either. Thus the program is not optimised.

To solve this problem the function that transforms a subexpression returns
two expressions. The first is the result of CSE under observance of the given
condition, but the second is the subexpression with all common subexpressions
eliminated. The latter version is memorised in the mentioned tree data structure
and is thus the basis for comparison of expressions.

Hence in the example l3 is eliminated although [1..1000] is not. The reader
may also assure himself that the expression

sum [1..1000] + sum [-1000..1] + prod [1..1000]

is not modified by the transformation.

5.2 Considerations specific to the Glasgow Haskell Compiler

Unboxed Values. Implementations of non-strict languages like Haskell process so
called boxed values, that is pointers into the heap that either point to a delayed
computation or the actual value. In order to improve efficiency Core is also
able to handle actual values directly, which are named unboxed values and are
distinguished by their types. These unboxed values have been added carefully, so
that — although they introduce explicit strictness into the otherwise non-strict
language — they do not invalidate any program transformation, provided the
produced code observes the following two restrictions: no polymorphic function
is applied to an expression of unboxed type and every expression of unboxed type
which appears as the argument of an application or as the right-hand side of a
binding is in head normal form, that is, a literal, an application of an unboxed
constructor, or a variable (see [11] for details).

Fortunately, the transformation handles unboxed data types correctly: the
types of arguments of (polymorphic) functions are not changed and the trans-
formation never turns an expression which is in head normal form into one that
is not.

We can also add simple unboxed data types like Bool#, Char#, Int#, Float#
and Double# to the list of safe types. However, since the right-hand side of a
let binding that is of unboxed type has to be in head normal form, only rules
(2) and (3) will benefit from this extension.

Uses Type System. Based on ideas from linear logic the type system of Core
has been extended in version 2.01 by so called uses, which record when a value
is used (accessed) at most once. This knowledge permits to avoid update of
closures which are not accessed again, enables update in place of data structures
whose old value is no longer needed, and may guide program optimisations,
especially safe situations for inlining can be determined. Uses are attached to
types. The use 1 of a type indicates that its values are used at most once, while
the use ω indicates that the values of the type may be used any number of times.
A program transformation has to produce Core programs that respect the use
type system (see [6] for details).

The usage information is hardly useful for CSE. Only if a let or case bound
variable has use 1, then common subexpression elimination very probably saves
execution time iff after the transformation a repeated uses type inference yields
use ω for the variable.

Our implementation of common subexpression evaluation violates the uses
type system. Consider the following transformation:

let x = 1+2 in let y = 1+2 in x+y � let x = 1+2 in x+x

In the left expression the type of the variable x may have use 1, and in the right
expression it should have use ω. There does not seem to be any good solution
to this problem. The transformation may either be restricted to variables of use
ω, or the use of all variables used for subexpression elimination is set to ω, or
the program has to be type checked again after the transformation. Currently
this does not matter since version 2.08 of GHC does not yet make use of the use
information for code generation or any program transformation.

Cost Centres. Finally, programs that are compiled for profiling are annotated
with cost centres. Not respecting these annotations, that is, moving subexpres-
sions from the scope of one cost centre to another, does not change the se-
mantics of the program, but it invalidates the profiling measurements. Sansom
and Peyton Jones suggest to curtail transformations to never move costs across
a cost centre annotation. This means however, that observing a program (annot-
ating it with cost centres) influences the behaviour to be observed! Alternatively,
a subexpressions that is moved out of the scope of a cost centre can be annot-
ated with its original cost centre. Nonetheless this usually moves a small cost to
another cost centre and it evidently complicates every transformation (see [14]
for details).

Our transformation eliminates subexpressions without caring about the scope
of cost centres. It is not even clear how the cost of a common subexpression could
be shared between cost centres. Cost centre annotations also limit the applicab-
ility of the transformation since terms which differ only by their annotation are
regarded as different.

6 Measurement of the Effects of the Transformation

The optimisation option -O2 of GHC turns on a long sequence of optimisations.
We inserted our transformation three times into this sequence. Our transforma-
tion is invoked for the first time after the strictness analysis, because we observed
in Sections 3 and 4 that the applicability of CSE is increased by various let and
case floating transformations and by strictness analysis. As standard for com-
parison we use the same sequence of optimisations without CSE.

The objects of our comparison are the sum example of Section 3.2 and nine
programs from the Glasgow nofib test suite, version 2.5 [7]. The latter are real
applications, that is, applications that were not designed as benchmarks but to
solve particular problems, for instance text compression (compress) and Monte
Carlo photon transport (gamteb).

Table 1 shows the results of our measurements. The size of each program’s
source is given in number of lines. Afterwards the maximum of the number
of common subexpressions that were recognised in each of the three passes of
CSE is given. Obviously common subexpressions that are not eliminated are
usually rediscovered in latter CSE passes. The subsequent number is the sum of
common subexpressions eliminated by all three passes. Remember that all type
information is dropped by GHC during code generation. To obtain meaningful
numbers those common subexpressions which are just applications of variables
to types are not counted.

The last four columns show the measured effects of CSE on costs, that is,
run-time, the total amount of heap allocated, maximal heap residency, and code
size. These numbers were obtained by using the profiling facilities of GHC. For
all times we took the minimum of at least six runs. All measurements are given
as differences in per cent between the numbers for the program compiled with
CSE and those for the program compiled without. Horizontal lines signify that
no meaningful numbers could be gained because the run-time was too short.

Both the numbers of recognised and of eliminated subexpressions have a very
weak relationship with the size of the respective program. Most programs have
few common subexpressions and even fewer which can be eliminated safely.

The measurements prove that our sum example profits considerably from
the transformation. Both run-time and total heap allocation are reduced by
the expected one third. However, the effect on the real-world programs of the
nofib suite is disappointing. Only the run-time of reptile is slightly improved.
Additionally the code size of all programs is slightly decreased.

To evaluate the effect of the condition for avoiding space leaks that was intro-
duced in Section 4.2, Table 2 shows the measurements of an older version of our

program lines max. recogn. elim. time total alloc. max. residency code

sum 2 3 1 -30 % -33.3 % 0% -0.08 %
compress 320 3 0 0 % 0% 0% 0%
fulsom 1357 93 22 -0.17 % 0% 0% -0.55 %
gamteb 718 30 30 0 % +0.02 % -0.02 % -0.08 %
grep 356 124 24 – 0% – -0.59 %
lift 2033 97 5 – 0% 0% -0.11 %
pic 544 29 0 0 % 0% 0% 0%
prolog 539 31 5 – -0.25 % +0.5 % -0.27 %
reptile 1522 115 31 -0.8 % 0% 0% -0.34 %
rsa 74 7 0 0 % 0% 0% 0%

Table 1. Eliminated common subexpressions and effect on costs

transformation which does not implement the condition. The increase of max-
imal heap residency of prolog exhibits the lack of the condition. Beware that the
two tables are not directly comparable, because the old version did not imple-
ment rules (2’) and (3’) and the transformation was only applied once instead of
three times. Nonetheless, the larger impact of the old transformation proves that
the space safety condition does prohibit useful transformations. An analysis of
the program rsa reveals that only two common subexpressions, int2Integer#
2 and int2Integer# 128, are responsible for the decrease of run-time by 1.7%.
These expressions are not eliminated by the safe transformation because the
strictness analyser could not infer the fact that they are demanded.

program elim. time total alloc. max. residency

sum 2 -26 % -33.4 % +0.001 %
compress 0 – – –
fulsom 20 +0.3% -0% -0.01 %
gamteb 15 +1.4% +0.02 % -0.3 %
grep 17 – -3.1 % –
lift 7 0% -0.09 % -0.03 %
pic 6 +0.5% +0.4 % -0.01 %
prolog 6 0% -0.3 % +6%
reptile 32 -1.7 % -0.2 % -0.02 %
rsa 4 -1.7 % -0.24 % -2.5 %

Table 2. CSE without considerations for space leaks

7 Lack of Common Subexpressions

Unfortunately our transformation optimises only our demonstration example but
none of our real-world programs. Obviously the elimination of a single common
subexpressions cannot generally be expected to have an effect as large as in
the sum example. The measurements suggest that the reason for the lack of

speedup is that the real-world programs have few common subexpressions and
even fewer which can be eliminated safely. We suppose that the lack of common
subexpressions is also the cause of Appel’s disappointing results of CSE.

Common subexpressions may either already exist in the source program or be
introduced by the compiler. A programmer avoids repeated computations. The
purpose of CSE for imperative languages is to eliminate repeated computations
that are introduced by the compiler. The classical example is array indexing.
However, first, arrays are seldom used in functional programs and, second, they
are implemented by calling C-functions which are not reachable by transforma-
tions working on Core level. Our measurements suggest that GHC introduces few
repeated computations. The only significant exception are overloaded numerical
constants. In Haskell a constant 42 has to be replaced by fromInteger 42 by the
compiler. Nonetheless in most cases the existing specialisation and full-laziness
transformation optimise these hidden common subexpressions sufficiently.

The idea comes up that the existence of a CSE phase may cause programmers
to write their programs without worrying about repeated computations. A pro-
gramming style that encourages the use of abstract data types may also lead to
an increase of common subexpressions. Similar to the example of array indexing
the limited interface of an abstract data type would prevent a programmer from
avoiding duplicated computations himself. Furthermore, compiler phases could
be simplified or improved if they were permitted to create common subexpres-
sions. For example, in deforestation code duplication is a problem ([5]).

However, lazy functional languages decouple program structure from data
space allocation and control flow. Consequently, as we discussed in Chapters
3 and 4, CSE has to be restrained by complex conditions to avoid a decrease
of performance Hence CSE cannot be transparent, that is neither a functional
programmer nor an implementor of an optimisation phase can easily assure that
common subexpressions introduced by him will be eliminated.

8 Conclusion

In this paper we have developed a version of CSE for a lazy functional language,
implemented it by adding it to GHC, and measured its effects on real-world
programs.

Generally, the development of CSE in Section 3 demonstrates the importance
of close interaction of transformations. Several existing optimisations increase
the opportunities for applying CSE. Especially an improved strictness analysis
would improve our transformation. Because the effect of CSE depends highly on
the operational semantics of Core it is unfortunately difficult to transfer the dis-
cussion of Section 4 to another implementation of a lazy functional programming
language. In fact, Section 5.2 proves that detailed knowledge of GHC specific
properties like the underlying abstract machine (the STG-machine), unboxed
data types, the use type system, cost centres, etc. is required for a real imple-
mentation.

The danger of creating space leaks are the same for CSE as for the full laziness
transformation. We showed that the full laziness transformation implemented in
GHC is not safe and gave a safe alas more restrictive transformation condition.
Both transformations would profit from the development of a less restrictive
safety condition.

Our implementation is fast and simple. Unfortunately it optimises only our
demonstration example but none of our real-world programs. There is still room
for improving the transformation. We already mentioned that possibly the space
safety conditions could be partially lifted. More use of the context of common
subexpressions could be made than only handling the right hand sides of let
bindings specially. Cross-module CSE could enable the replacement of expres-
sions by variables defined in imported modules. Finally, analysis techniques could
be developed, which ascertain that repeated expressions are actually evaluated
repeatedly.

However, the fundamental reason why our transformation is unsuccessful is
that our test programs have only few common subexpressions. In Chapter 7
we gave good reasons for common subexpressions generally being uncommon
in lazy functional languages. Note that the full laziness transformation is prob-
ably more effective, because expressions that can be lifted from a λ-abstraction
are more difficult to spot and hence to avoid for a programmer than common
subexpressions.

We claim that whereas CSE is an important optimisation for imperative lan-
guages it is not suitable for reducing the run-time of lazy functional programs. It
remains to be investigated if the transformation could be used for reducing code
size and thus also code generation time by eliminating large common WHNFs
which were introduced by inlining but which did not enable other transforma-
tions.

Acknowledgement

I thank all members of the implementation of functional programming languages
group at Aachen for numerous discussions and Simon Peyton Jones for answering
many questions about GHC. I am grateful to one of the referees for suggesting
the title of this paper.

References

1. A. Aho, R. Sethi, J. Ullman: Compilers: Principles, Techniques and Tools ;
Addison-Wesley, 1986.

2. Andrew W Appel: Compiling with Continuations ; Cambridge University Press,
1992.

3. Olaf Chitil: Adding an Optimisation Pass to the Glasgow Haskell Compiler ; unpub-
lished report; http://www-i2.informatik.rwth-aachen.de/~chitil/, November
1997.

4. The Glasgow Haskell compiler ; http://www.dcs.gla.ac.uk/fp/software/ghc/.

5. Simon D. Marlow: Deforestation for Higher-Order Functional Programs; PhD
Thesis, University of Glasgow, September 1995.

6. Christian Mossin, David N. Turner, and Philip Wadler: Once upon a type ; Tech-
nical Report TR-1995-8, University of Glasgow, 1995. Extended version of Once
upon a type in 7’th International Conference on Functional Programming Lan-
guages and Computer Architecture, June 1995.

7. Will Partain: The nofib benchmark suite of Haskell programs ; Functional Program-
ming, Glasgow 1992, Workshops in Computing, Springer-Verlag, pp 195–202.

8. Will Partain: How to add an optimisation pass to the Glasgow Haskell compiler
(two months before version 0.23) ; part of the GHC 0.29 distribution, October
1994.

9. John Peterson and Kevin Hammond (eds.): Report on the Programming Language
Haskell, Version 1.4 ; http://haskell.org, 1997.

10. Simon L. Peyton Jones: The Implementation of Functional Programming Lan-
guages ; Prentice-Hall, 1987.

11. Simon L. Peyton Jones and John Launchbury: Unboxed values as first class citizens
in a non-strict functional language ; Conf. on Functional Programming Languages
and Computer Architecture, 1991, pp 636–666.

12. Simon L. Peyton Jones: Implementing lazy functional languages on stock hardware:
the Spineless Tagless G-machine ; J. Functional Programming, 2 (2):127–202, 1992.

13. Simon L. Peyton Jones and André L. M. Santos: A transformation-based optimiser
for Haskell ; submitted to Science of Computer Programming, 1997.

14. Patrick M. Sansom and Simon L. Peyton Jones: Time and space profiling for non-
strict, higher-order functional languages ; 22nd ACM Symposium on Principles of
Programming Languages, January 1995.

15. André L. M. Santos: Compilation by transformation in non-strict functional lan-
guages ; PhD Thesis, University of Glasgow, July 1995.

16. D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee: TIL: A
Type-Directed Optimizing Compiler for ML; Sigplan Symposium on Programming
Language Design and Implementation, 1996.

