
Architectures, Languages and Patterns
P.H. Welch and A.W.P. Bakkers (Eds.)
IOS Press, 1998

259

Java Threads in the Light of occam/CSP

Peter H. WELCH
Computing Laboratory, University of Kent at Canterbury, CT2 7NF.

P.H.Welch@ukc.ac.uk

Abstract. Java provides support for parallel computing through a model that is built
into the language itself. However, the designers of Java chose to be fairly conservative
and settled for the concepts of threads and monitors. Monitors were developed by
Tony Hoare (and others) in the early 1970s as a structured way of using semaphores
to control access to shared resources. Hoare moved away from this, in the late 1970s,
to develop the theory of Communicating Sequential Processes (CSP). One reason was
that the semantics of monitors are not WYSIWYG, so that designing robust parallel
algorithms at this level is seriously hard. This tutorial will look at how this impacts on
threaded applications written in Java.

Fortunately, it is possible to introduce the CSP model into Java through sets of
classes implemented on top of its monitor support. By restricting interaction be-
tween active Java objects to CSP synchronisation primitives, Java thread semantics
become compositional and systems with arbitrary levels of complexity become pos-
sible. Multi-threaded Web applets and distributed applications become simpler to de-
sign and implement, race hazards never occur, difficulties such as starvation, deadlock
and livelock are easier to confront and overcome; and performance is no worse than
that obtained from directly using the raw monitor primitives.

The advantages of teaching parallelism in Java purely through the CSP class li-
braries will be discussed. These libraries were developed jointly at Kent and Oxford
Universities in the U.K. and the University of Twente in the Netherlands.

This paper was developed from material first presented at the Java Threads Work-
shop [1]. It presents the basic threads model of Java, discusses why they may be
a good thing but why they need special care in their management, runs through the
monitor mechanisms provided in Java for their control and points out weaknesses in
that control. Finally, the CSP primitives are introduced and the case for ignoring the
monitor methods presented.

This work is one of the foundation stones of the JavaPP project [2], which spun out
from the above workshop. The other founding stones [3, 4, 5, 6] were first presented
at the WoTUG-20 conference last year.

1 The world is parallel – enjoy

1.1 Concurrency is everywhere

The natural world is certainly not organised through a central thread of control. Things
happen as the result of the actions and interactions of (unimaginably) large numbers of inde-
pendent agents, operating at all levels of scale from nuclear to astronomic. Computer systems
aiming to be of real use in this real world need to model, at the appropriate level of abstrac-
tion, that part of it for which it is to be of service. If that modelling can reflect the natural
concurrency in the system, it ought to be much simpler

Yet, traditionally, concurrent programming is considered to be an advanced and difficult
topic – certainly much harder than serial computing which, therefore, needs to be mastered
first. But this tradition is wrong.



260 P.H. Welch / Java Threads in the Light of occam/CSP

Java recognises this, a little bit, by binding some notions of concurrency into the language,
rather than leaving it to semantic-busting changes introduced through some external library.
We will quarrel with the antiquity and semantic imprecision (so far) of some aspects of the
Java thread primitives, but at least they give us a platform on which something sound and
easy-to-use can be built.

Java threads are not exactly highlighted in the current range of books. It is easy to get
the impression that they are a somewhat exotic feature with only a narrow field of applica-
tion. Warnings are frequently given as to the difficulties in their safe use – we are advised
to use them only when we absolutely can’t get away with not using them! This does not
square with our view that concurrency is a powerful abstraction that simplifies the design and
implementation of systems, to be used every day on a broad field of application.

1.2 Threads : problems and opportunities

A ‘normal’ program has a single thread of control. Instructions execute one at a time in the
order written in the code and dependent upon the state of the data being processed. A ‘con-
current’ program has many threads of control whose instruction sequences proceed ‘simulta-
neously’. Each thread may be executed by a different processor (e.g. on an SMP platform)
and each processor may have a different speed. More commonly, all the threads may be
scheduled on a single processor, with their individual flows of logic arbitrarily interleaved.
Either way, no assumptions can be made about the relative rates of progress of individual
threads.

Threads also live in a shared memory space. They may declare and manipulate their
own data and, optionally, make them available to other threads (although this is not usually a
good idea). They may also operate on shared (external) data structures. In which case, some
rules for coordinating access need to be designed and enforced if chaos is to be avoided. For
example, it is not a good idea to allow two threads to update the same piece of data at the
same time.

There are many ways to arrange this coordination, but all of them expose new dangers.
For example, a group of threads may get into a state where each one is waiting for another to
do something that will enable it to proceed – DEADLOCK! Or a group of threads may get into
an infinite cycle of interaction amongst themselves and refuse to respond to anything outside
their group – LIVELOCK! Or a thread may get blocked forever, waiting for a condition that
the other threads never set up for it – STARVATION! And if we avoid all this, we can still
get the coordination wrong and, intermittently, allow uncontrolled access to some shared
resource and get unpredictable system corruption – RACE HAZARD!

On the other hand, if we can master these problems, systems do become simpler – with
benefits across the whole engineering life-cycle. We can also achieve significant gains in
performance and responsiveness through the direct targeting of parallel hardware. These in-
clude not only shared-memory (or virtual shared-memory) multi-processors, but also parallel
use of a single processor (for computation) with communication hardware (e.g. for internet
links).

Of course, no performance benefits will arise if the overheads of multi-threading (e.g. for
coordination and context switching) swamp the processing the user actually wants the system
to do. The faster our processors become, the lower must be these overheads. In 1987, the
T800 transputer was the fastest microprocessor in the world, with a one microsecond floating-
point time and a one microsecond (hardware assisted) context switch. In 1997, processors
can be hundreds of times faster at floating-point, but fifty times slower at context-switching
– even with ‘lightweight’ threads mechanisms! Something has gone wrong.



P.H. Welch / Java Threads in the Light of occam/CSP 261

1.3 Some objects are more oriented than others

There is a superficial resemblance between the concepts of object (as provided by O-O lan-
guages such as Java) and process (as given by the occam/CSP model[7, 8, 9, 10, 11, 12]).
Both concepts encapsulate data structures and the algorithms to manage those data structures
– but:

� in occam/CSP, the algorithms form an autonomous thread of control that directly ex-
presses the behaviour of the object from its own point of view;

� in Java (and most other O-O languages), the algorithms implement ‘methods’ which
need to be invoked by some external agent (another object). This invocation forms part
of that external agent’s thread of control. The algorithms express the behaviour of their
object from the point of view of the calling agent.

So, we reach the curious conclusion that, until the concepts of thread and object are bound
together, object algorithms are not really object-oriented in the natural language sense of the
term, but are caller-oriented – in the same way that procedures, in a traditional language such
as Pascal, are caller-oriented.

1.4 Get a life

The magic ingredient that gives us the useful paradigm shift is the thread. In occam/CSP, this
is automatic – processes are live objects executing their own logic via their own threads of
control. In Java, if we want to give life to our objects, we have to do some extra work to set
this up – but, at least, it can be done and it’s not really that hard.

1.5 Living together

However, a system cannot just consist of active objects. They need to interact as they collab-
orate to get their overall job done. They can’t simply call each other’s methods to determine
and/or alter each other’s state – that leads to race hazards and unpredictable behaviour. Some
ways to coordinate these interactions need to be found.

In occam/CSP, processes interact with each other via channels. Channels are passive
objects – they have no life of their own and are just there to be used by the processes they
connect. They provide a communication mechanism between processes that is synchronised.

A process may write to a channel at any time, but has to wait for some other process to
read from that channel before it can continue. Similarly, a process may read from a channel
at any time, but has to wait for another process to write before it can continue. Whoever gets
to the channel first – the writing process or the reading one – is blocked. Blocking is entirely
passive, the blocked process consuming no processor time.

Note that a channel is used just for synchronisation and does not buffer transit data itself.
A good implementation will cause the data (or, possibly, a reference to the data) to be trans-
ferred directly from the writing to the reading process. Channels may be 1-1 (private line),
many-1 (multiplexing), 1-many (de-multiplexing) or many-many (public exchange).

Notice also that it is entirely up to the process whether it chooses to read or write from
a channel. For example, if some server process has run out of a crucial ingredient it needs
to provide its service, it just doesn’t read from the channel along which requests arrive. This
leaves clients neatly and passively queued on the request channel, from which they can easily
be retrieved (once the missing ingredient has been replenished) simply by performing the
necessary reads.



262 P.H. Welch / Java Threads in the Light of occam/CSP

In Java, we don’t have channel primitives but we have plenty of passive objects – these
are ‘normal’ objects that do not contain any threads. Happily, Java provides enough synchro-
nisation mechanisms to allow us to build channels out of passive objects. We have done this
– but it was not easy ...

1.6 The trouble with monitors

The Java threads model is (somewhat loosely) based upon the concepts of monitors and
condition-variables. These were developed in the early 1970s (by Dijkstra, Brinch-Hansen,
Hoare and others) as a structured way of using the more primitive notions of semaphores.
The standard reference quoted by Sun is [13].

Nevertheless, monitors and condition-variables are not easy to use. Their semantics are
volatile and do not compose. Individual methods have to be sensitive to the behaviour of
their siblings, upon which they rely to establish conditions that will allow them to proceed if
they get stalled. To write and understand one (synchronised) method, we need to write and
understand all the (synchronised) methods at the same time – we can’t knock them off one
by one! To develop n methods, we need to consider 0(2n) possible interactions. This type of
logic does not scale and is not for everyday work.

In the late 1970s, Hoare broke entirely new ground with CSP. Some authoritative sources
claim that Java threads are based upon CSP, but this is plainly wrong. Would that it were
true! CSP semantics are denotational – a mathematical term for WYSIWYG. As we have
noted, CSP processes can refuse individual events if they are not in a state to accept them.
Each process has its own contract and looks after itself. This type of logic does scale –
we don’t have to understand the whole in order to understand the part. The whole is the
orthogonal composition of the parts.

2 Synchronising parallel threads – the Java primitives

A thread starts, runs for a while (possibly forever) and then finishes. Whilst it is running, it
may get blocked for various reasons. Sometimes this is voluntary – for example, it may just
choose to sleep for some period (to allow other threads a greater share of the processor or
simply because its next actions aren’t yet due). Sometimes this is forced – because a resource
that it needs (like some user input or buffer space or some data being calculated by another
thread) is not yet available.

Some texts distinguish between two types of ‘running’ threads: those that are actually
being executed (on a uni-processor, there will be just one of those at any one time) and those
that are able to run but are waiting their turn for the processor (normally there will be many
more threads than processors and the interleaving of runnable threads on any processor is
managed by the underlying threads kernel). However, systems should be designed that are
independent of this underlying scheduling, so we make no such distinction.

This tutorial is about ideas (semantics) rather than detailed syntax. For a formal presenta-
tion of the Java thread primitives, see one of the many textbooks (such as [14]). We assume a
little familiarity with the Java syntax for classes, methods and flow-control, but will generally
be fairly relaxed.

2.1 Basic threads in Java

A thread is created when we declare an instance of a class extending the built-in Java class
Thread. For instance:



P.H. Welch / Java Threads in the Light of occam/CSP 263

class Thing extends Thread {
... attributes
... constructor method(s)
public void run () {
... do things
suspend ();
... do some more things

}
}

If we now declare an instance:

Thing T = new Thing ();

the run method of T will start to run, logically in parallel with the thread that has just
declared it. Given the way it has been programmed, the newly spawned thread will do some
things and then, voluntarily, suspend itself. If no other thread does anything to resume it,
it will stay in that blocked state forever.

Suppose the spawning thread were programmed:

Thing T = new Thing (); // T starts to run
... do our own stuff
T.resume (); // kick T back to life (maybe)
... carry on // is T running again?

After spawning thread T, we spend some time doing ‘our own stuff’ and, then, execute
T.resume. There are two possibilities: either T has reached and executed its suspend
instruction (in which case, it will be properly resumed) or it has not (in which case, nothing
happens). In the latter case, T will eventually suspend itself. The problem is that, in our code
marked ‘carry on’, we have no idea whether the thread T is running or not – presumably, we
wanted it to be running! This is an example of a race hazard: the state of the system is not
being controlled by us but by the rates of progression of the various threads (over which we
do not have absolute control).

If we know something about the scheduling of the spawning and spawned threads, and
about the relative timings of their ‘do things’ and ‘do our own stuff’ code fragments, we
might be able to deduce that the suspend happened before the resume and that all is well.
If the timings worked out wrong, we could try to fix things by:

Thing T = new Thing (); // T starts to run
... do our own stuff
sleep (2*seconds);
T.resume (); // kick T back to life (maybe)
... carry on // is T running?

but this is desperate stuff! The problem is that there is no notion of synchronisation built into
the suspend and resume thread methods and, without it, we can’t keep control of what’s
going on in a way that is robust and independent of the underlying threads management. We
don’t recommend the use of suspend/resume.

[Aside: there is another way to create a thread in Java. If we want an object to run a
thread and extend some other class, we can’t proceed as above. Java does not allow multiple
inheritance – we can’t extend from both the Thread class and some other one. To get around
this, we extend from that other class and say that our extended class also implements an
interface called Runnable. Interfaces just contain method headers and Runnable
just contains the run header. We define a run method inside our extended class and declare
and start up a raw Thread object so that it uses our own run method. The information in
this tutorial is independent of whichever way of creating threads is used.]



264 P.H. Welch / Java Threads in the Light of occam/CSP

2.2 Another reason to synchronise

Suppose we have a simple Counter class:

class Counter {

private long count = 42;

public void increment () {
count++;

}

public void decrement () {
count--;

}

public long value () {
return count;

}

}

and a particular instance:

Counter X;

Suppose we have two threads operating on the same X. Suppose they make calls whose
interleaved sequence is indicated by:

. 42 .

. 42 .

. 42 X.increment ()

. 43 .

. 43 .
X.increment () 43 .

. 44 .

. 44 .

. 44 X.increment ()

. 45 .

. 45 .
X.decrement () 45 .

. 44 .

. 44 .

where time flows down the page, the left column indicates when the first thread invoked X-
methods, the right column indicates when the second thread invoked them and the middle
column traces the value of the private X.count.

Because the calls did not overlap, the state of the counter was updated correctly. However,
we can’t assume the calls will never clash. Suppose the scheduling on the first thread was a
little earlier:

. 42 .

. 42 .
X.increment () 42 X.increment ()

. 43 .

. 43 .

. 43 .

. 43 .

. 43 .
X.decrement () 43 X.increment ()

. 42 .

. 42 .



P.H. Welch / Java Threads in the Light of occam/CSP 265

This time, the two threads attempted to increment the count at (around about) the same time.
What happened is that one thread had loaded the value 42 into its processor’s registers when
the processor switched context to the other thread. The second thread completed its increment
operating on the 42 value still in memory, writing 43 back. Context switched back again to
the first thread, which completes its interrupted increment using the 42 value it had originally
loaded, and also writes 43 back into memory. Two increments happened, but the value in
X.count only went up once.

Later, there was another clash between an increment and a decrement. In this case, the
decrement was the interrupted operation, finished last and left 42 back in X.count. It could
equally have happened the other way around, leaving a final value of 44.

These errors are also the result of race hazards due to a lack of synchronisation between
the threads.

2.3 Monitors

Java provides a synchronisation mechanism based upon the concept of monitors. A monitor
is a class whose methods can only be executed by one thread at a time. It enables atomic (i.e.
safe) updating of data within the monitor by any number of threads. In Java, all we do is add
one keyword to the method declarations:

class Counter { // this is a monitor

private long count = 42;

public synchronized void increment () {
count++;

}

public synchronized void decrement () {
count--;

}

public synchronized long value () {
return count;

}

}

In this case, each instance of a Counter object has a lock which has to be acquired
by any thread invoking one of its methods. Only one thread can hold this lock at any
one time. So, if one thread is in the middle of X.increment when another thread calls
X.decrement, the second thread will have to wait until the first call has finished.

So, with the clashing scenario that caused data corruption before, what would happen this
time is:

. 42 .

. 42 .
X.increment () 42 X.increment ()

. 43 <block>

. 44 .

. 44 .

. 44 .

. 44 .
X.decrement () 44 X.increment ()

. 43 <block>

. 44 .

. 44 .



266 P.H. Welch / Java Threads in the Light of occam/CSP

where the first thread acquired the lock first each time and the second one had to wait. But
the X.count would have been securely updated whichever thread had won the race – there
is no hazard. So far so good!

One final point about Java’s monitors: what happens when there are lots of threads vying
for the lock at the same time? The Java language definition is imprecise here. What happens
is left to the threads management kernel that underlies the Java Virtual Machine (JVM). In
all implementations I’ve seen, the threads form an orderly queue for the lock. In that case, so
long as no method executes forever and so long as no deadlock occurs, each thread is bound
to reach the front of that queue and invoke the method on the monitor – no starvation here.
However, we should note that this simple and fair mechanism is not guaranteed by the Java
language.

2.4 Conditions

Sometimes we queue up for something only to find, when we finally get served, that they’ve
run out of the particular item we wanted! Well, we can always go away and try again later.
But that gives no guarantee that we’ll ever get back at the right time to find what we wanted
– a danger of livelock and starvation.

Some shops provide a stand-by area where we can wait if the item we want isn’t available.
When a delivery arrives, we can be notified to come and get it.

These stand-by areas are called condition variables in monitor theory. Hoare’s paper
allowed for as many (named) condition variables as the designer of the monitor wanted, but
Java allows only one.

There is another weakness arising from the current imprecision of Java’s semantics.
Hoare specifies that, when a waiting thread is notified, it immediately acquires control of
the monitor lock and resumes execution. This is only reasonable, since the reason it is noti-
fied is that the condition for which it was waiting has been established – it needs to be able
to exploit that. Otherwise there was not much point in the notification!

But there is no such immediacy mandated for Java. In fact, current systems send the
notified thread from the stand-by area to the back of the queue for the lock – a queue it has
already been through once! By the time it gets back to the front of this queue, the condition
which triggered its notification may no longer apply. As we shall see, this causes trouble.

Java provides three forms of waiting and two kinds of notification. They can only be
invoked once the calling thread is in possession of the monitor lock for that object (e.g.
inside a synchronized method for that object):

� wait ()

The calling thread is blocked and the monitor lock is released. If there are several
threads that get blocked like this for the same object, Java does not say how they are
managed. Current implementations hold them in a queue, but it may not be safe to
rely on this. When some other thread invokes a notify method on this object, one
of the waiting threads is released. Again, this is normally the thread that has been
waiting the longest. The released thread ought to be immediately given the monitor
lock, so it can take advantage of the condition set up by the releasing thread. Current
implementations put it to the back of the queue of threads trying to acquire the monitor
and let the notifying thread retain the lock and carry on.

� wait (long timeout)

This is the same as the above, except that after timeoutmilliseconds without release-
by-notification, the thread is released anyway (to the back of the monitor queue).



P.H. Welch / Java Threads in the Light of occam/CSP 267

� wait (long timeout, int titch)

This is the same as the above, except that the timeout period is timeoutmilliseconds
plus titch nanoseconds. The value of titch should be in the range 0 through
999999.

� notify ()

This releases one of the waiting threads – see the remarks for wait above. If there are
no waiting threads, nothing happens.

� notifyAll ()

This releases all the waiting threads (if any).

[Aside: this method is not envisaged in Hoare’s paper on monitors [13]. It somewhat
clobbers the key property that Hoare had specified that notified threads immediately
take over the monitor lock and resume execution – they can’t all do that! Including
this method may be the reason Java does not mandate this property for the ordinary
notify method.]

2.5 Example : a simple FIFO buffer

Consider a passive object that provides FIFO buffering between active writer threads and
active reader threads. Its top-level structure is:

class Buffer {

private final int max = 100; // buffer size

private int[] buffer // space to hold the buffered data
= new int[max];

private int size = 0; // number of items currently held
private int lo = 0; // index of oldest item in the buffer
private int hi = 0; // index of next free slot in the buffer

public synchronized int read () {...}

public synchronized void write (int n) {...}

}

This is a simple integer buffer with a fixed size (100). It could easily be modified to buffer
arbitrary Objects and have a user-chosen size, but that’s not relevant to our problem.

The private data structures are guaranteed atomic update by the synchronized meth-
ods that operate on them. But what happens when a reader thread acquires the monitor lock
and finds the buffer is empty? Rather than giving up and exiting, the reader can wait in the
stand-by area:

public synchronized int read () throws InterruptedException {
int index;
if (size == 0) wait ();
// hopefully, size is now greater than zero :-)
size--;
index = lo;
lo = (lo + 1) % max;
return buffer[index];

}



268 P.H. Welch / Java Threads in the Light of occam/CSP

[Aside: just ignore the throws InterruptedException stuff! This exception may
be thrown by the wait method we are about to use. Rather than handle this here, we are
throwing it back to the thread that called this read (who may know something sensible to
do with it!)]

Executing the wait releases the monitor lock and this thread becomes blocked. Any
other reader threads invoking this read method will similarly be put on hold. Hopefully, a
writer thread will come along, put something into the buffer, increment the size, update the
hi pointer and issue a notify.

Issuing a notify causes one of the waiting reader threads to move out of the stand-by
area and resume execution. However, first it has to re-acquire the monitor lock ... and current
implementations make it queue up again! If it finds itself behind another reader and behind
no other writers, by the time it gets back the buffer will be empty again.

Consequently, Java authorities (such as [14]) tell us never to wait for a condition using an
if, but to use a while:

public synchronized int read () throws InterruptedException {
int index;
while (size == 0) wait ();
// if we ever exit the above, size *will* be greater than zero :-)
size--;
index = lo;
lo = (lo + 1) % max;
return buffer[index];

}

The problem with the above is proving we will ever exit the while-loop. If there is only one
reading thread, we will go round at most once. But if there are more than one, we have no
guarantees and just have to hope for the best!

There are other problems. Viewing the above method in isolation, it makes no sense. The
semantics of the given while-loop implies no exit, since nothing happens in the loop body
to alter the while-condition. Of course, we can’t reason about this method in isolation – it
depends intimately on its sibling write method:

public synchronized void write (int n) throws InterruptedException {
while (size == max) wait ();
// if we ever exit the above, there *will* be room in the buffer :-)
buffer[hi] = n;
hi = (hi + 1) % max;
size++; // implies size > 0
notify (); // in case there is a waiting reader

}

Executing the notify method summons one of the waiting reader threads out from the
stand-by area. If there were no waiting threads, nothing happens – the unnecessary call is
said to be benign. Notice that we issue the notify immediately after doing something that
ensures that the condition being waited for (in this case, that size is non-zero) has been
established.

Note also that a writer thread, having acquired the monitor lock, will also have to wait
if the buffer is full. This means that we need to go back to the read method and get it to
issue a notify in case there was a waiting writer:



P.H. Welch / Java Threads in the Light of occam/CSP 269

public synchronized int read () throws InterruptedException {
int index;
while (size == 0) wait ();
// if we ever exit the above, size *will* be greater than zero :-)
index = lo;
lo = (lo + 1) % max;
size--; // implies size < max
notify (); // in case there is a waiting writer
return buffer[index];

}

[Aside: a simpler (one-place) version of this Buffer class is given in Sun’s on-line tutorial
[15]. Their class is called CubbyHole and is programmed in an identical style to the version
of our Buffer we have reached so far. And it has the same deficiencies.]

The continual juggling between the two methods to get their mutually dependent seman-
tics correct is not good news – and we are not finished yet!

When the reader issues the notify and there was a waiting writer, what ought to happen
is that the reader immediately relinquishes the monitor lock to the notified writer (because
the condition for which it was waiting has been set up). If that happened in this case, the
notified writer would immediately fill up the last place in the buffer. Unfortunately, that
would overwrite the buffer[index] this method still has to return!

In current implementations, this doesn’t happen – the notified writer is put on the back of
the monitor queue and the reader thread retains the monitor lock and carries on – in which
case, the above code is OK. However, this doesn’t look like something we should rely upon!
Rather than remembering the index to the item we are supposed to be reading, we had better
save the whole thing:

public synchronized int read () throws InterruptedException {
int save;
while (size == 0) wait ();
// if we ever exit the above, size *will* be greater than zero :-)
save = buffer[lo];
lo = (lo + 1) % max;
size--; // implies size < max
notify (); // in case there is a waiting writer
return save;

}

The save variable is local to this method and will be a different variable for each invoking
(but stalled) thread. That fixes that.

However, there is one last thing that is unsatisfactory about the above code. I really don’t
like the calling of notify when there are no waiting threads. It’s not just the unnecessary
overhead – it’s the lack of synchronisation involved (a bit like the way resume works on
threads that have not executed a suspend). Such sloppiness will lead to trouble in the long
run.

In this case, the sloppiness can be removed by maintaining private counts (inside the
Buffer object) of the number of waiting readers and writers. These could be incremented
just before executing a wait and decremented just before executing a notify. The nice
thing is that the call to the notify can then be made dependent on whether there is any
waiting thread. This is left as an exercise.

Reminder: the livelock/starvation problems associated with completing the while-loops
that are waiting for the conditions (in the case of multiple readers and writers) have not yet
been addressed.



270 P.H. Welch / Java Threads in the Light of occam/CSP

2.6 Wot, no chickens?

This example illustrates the danger of simplywaiting for a condition in a while-loop when
there are multiple consumers of that condition. It is described in detail in [1] and outlined
here.

A college consists of five philosophers, a chef and a canteen – see Figure 1. The chef
and the philosophers are active objects. The canteen is a passive object through which the
philosophers and the chef interact. The canteen is implemented in the style of the above
Buffer class (and Sun’s CubbyHole).

Canteen

0

1

2

3

4

Chef
put

get

Figure 1: The greedy but starving philosopher

The philosophers think for a while and then go to the canteen for food. Except for one of
them ... who is plain greedy, never thinks and just keeps going to the canteen.

The chef cooks in batches of four, replenishing the canteen when each batch is ready. The
greedy philosopher always misses out! He gets there too early the first time (no food yet) and
is put on hold. When released, he is put on the back of the canteen queue again ... behind
his colleagues who arrived whilst he was on hold. His colleagues take the whole batch just
arrived from the kitchen and he gets put on hold again. He never gets out of this cycle.

This infinite starvation and livelock does depend on bad luck with the timing. But that is
typical of race hazards and we cannot rely on good luck in order to be safe. The timings are
as follows:

� the philosophers and the chef start up around the same time;

� philosopher 0 thinks for no time at all;

� the other philosophers think for 3 seconds before going to eat;

� the chef cooks chickens in batches of 4 and takes 2 seconds per batch. Delivery to the
canteen takes around 3 seconds (the chickens are hot!) and the chef helps to set them
down. During this time, the canteen cannot accept further orders from philosophers
(who will have to queue) because its lock is owned by the chef.

What happens is:

� second 0: the system starts up. Philosopher 0 calls Canteen.get and is made to
wait since there are no chickens yet. The chef starts cooking and the other philoso-
phers start thinking.



P.H. Welch / Java Threads in the Light of occam/CSP 271

� second 2: the chef calls on Canteen.put with 4 chickens. Setting them down is
going to lock up the canteen for the next 3 seconds.

� second 3: the other 4 philosophers try to call Canteen.get, but cannot acquire its
monitor and have to get in line.

� second 5: the chef finally sets down the batch of 4 chickens and calls notifyAll to
release anyone waiting. In this case, it’s just philosopher 0 and he has to go to the
back of the line.

The chef exits the Canteen.putmethod which allows the philosophers to make their
Canteen.get calls. Philosophers 1 through 4 go through in sequence, taking all the
chickens. Finally, philosopher 0 makes the call and is put on hold again.

The chef starts cooking again and the other philosophers start thinking. We are back to
the state we were in at second 0 and everything repeats – forever! Greedy philosopher
0, despite being always first to the canteen, never gets served.

Here is the code for the Canteen:

class Canteen {

private int n_chickens = 0;

public synchronized int get (int id) throws InterruptedException {
while (n_chickens == 0) {
... complain ("Phil " + id + ": Wot, no chickens?")
wait();

}
... place order ("Phil " + id + ": Those chickens look good ...")
n_chickens--;
return 1;

}

public synchronized void put (int value) throws InterruptedException {
... shout ("Chef : Make room ... this dish is very hot ...")
Thread.sleep (3000); // take 3 seconds to set down the dish
n_chickens += value;
... announce ("Chef : More chickens ... NOTIFYING ...")
notifyAll (); // wake up any waiting philosophers

}

}

where the doted lines indicate some print statements for animating what’s happening.
This code follows the same style as Sun’s CubbyHole and gives little indication of the

danger to which its callers are exposed. We’ve used notifyAll rather than notify, but
it makes no difference in the scenario we have set up – there is only ever one thread waiting
for the chickens (philosopher 0).

What is the matter with this design? Clearly, the chef should not have to queue up with
the philosophers to get into the canteen. The philosophers should have their own queue and
the chef should only have to contend with one philosopher when dealing with the chickens in
the canteen. However, we are modelling this Canteen on the CubbyHole class (to show
the danger of starvation it contains) and CubbyHole has its queue shared by both readers
and writers.

A more serious complaint – from the point of view of object-orientation – is as follows.
All methods, apart from a run method, are executed as part of the thread of control of
their calling objects. This is particularly clear here, where we see them speaking as those
calling objects. For instance, the Canteen.get method is part of the life of the calling



272 P.H. Welch / Java Threads in the Light of occam/CSP

philosopher and Canteen.put is part of the life of the chef. So, this canteen object has bits
of philosopher-algorithm and bits of chef-algorithm for its methods – a somewhat confused
set of roles for something that’s supposed to be a canteen. There’s nothing in these methods
that are oriented towards the life of the canteen.

These problems are not special to this Canteen, but are universal across all passive
objects.

The canteen should, of course, be implemented as an active object connected to the
philosophers and the chef via simple channels. Then, we wouldn’t have the problems arising
from this design. This comes next!

3 Synchronising parallel threads – the JavaPP primitives

This section introduces the basic JavaPP (i.e. occam/CSP) synchronisation primitives. These
can be used exclusively to provide the glue to coordinate and exchange information between
active threads – we never need to get involved again with synchronizedmethods or wait
and notify.

Armed with them, multi-threaded code becomes WYSIWYG and system complexity can
be ramped up with linear increase in effort. No run-time overheads are imposed that wouldn’t
be needed anyway to prevent race hazards. We can inherit the rich treasury of occam/CSP
design and analysis methods/tools. Multi-threaded systems can be structured to reflect real
world system hierarchies. Components become automatically thread-safe and reusable and
the nasty accidents of deadlock, livelock and starvation can be ruled out by design.

But first we have to implement the primitives. These will be passive objects in the normal
sense and we will have to do the hard work – one last time – of safely using the raw Java
monitors.

3.1 Channels : review

Channels were described in Section 1.5. They provide synchronised (un-buffered) communi-
cation between a pair of threads – except that, from now on, we are going to refer to threads
as processes (out of deference to CSP).

Recapping what was said earlier, a process may write to a channel at any time, but has
to wait for some other process to read from that channel before it can continue. Similarly,
a process may read from a channel at any time, but has to wait for another process to write
before it can continue. Whoever gets to the channel first – the writing process or the reading
one – is blocked. Blocking is entirely passive, the blocked process consuming no processor
time.

3.2 Channels : first attempt

For the moment, we are going to restrict ourselves to a channel that only allows integers
to be communicated – extending this to carry arbitrary objects is trivial. We also restrict the
channel to support only a single reader and a single writer. It was multiple readers and writers
that gave rise to the race hazard that caused infinite starvation when using the Buffer class
above. We shall postpone solving that problem for a short while.

Here is a first attempt at the channel. The top-level structure is:



P.H. Welch / Java Threads in the Light of occam/CSP 273

class Channel {

private int channel_hold;
private boolean channel_empty = true; // synchronisation flag

public synchronized int read () throws InterruptedException {...}

public synchronized void write (int n) throws InterruptedException {...}

}

The channel hold attribute holds the value of the data being communicated through the
channel. This is transient and the users of the channel cannot detect that it is buffered here
temporarily. [Aside: for a channel carrying objects, channel hold will just contain a
reference to the object being transmitted.]

The channel empty flag records whether the channel has a (reader or writer) process
waiting on it.

The methods are short and sweet – but kind of tricky:

public synchronized int read () throws InterruptedException {
if (channel_empty) {
channel_empty = false; // first to the rendezvous
wait (); // wait for the writer process

} else {
channel_empty = true; // second to the rendezvous
notify (); // schedule the waiting writer

}
return channel_hold;

}

So, if the reader is first to the channel, it sets the flag and waits. It will be released
later by the writer process (see below), which has first cleared the flag and written into
channel hold. Once released, all the reader has to do is return this value.

If the reader is second to the channel, the writer has already written into channel hold
and set the synchronisation flag. We clear the flag, notify the writer to be released and return
the value that has been written.

Nearly-but-not-quite symmetrically, the writer is implemented:

public synchronized void write (int n) throws InterruptedException {
channel_hold = n;
if (channel_empty) {
channel_empty = false; // first to the rendezvous
wait (); // wait for the reader process

} else {
channel_empty = true; // second to the rendezvous
notify (); // schedule the waiting reader

}
}

The writer can always write, straightaway, into channel hold – it doesn’t matter
whether the reader got there first or not.

Next, if the writer is first to the channel, it sets the flag and waits. It will be released later
by the reader process (see above), which first clears the synchronisation flag. Once released,
all the writer has to do is exit.

If the writer is second to the channel, then the reader is waiting. We clear the synchroni-
sation flag, notify the reader to be released and exit.



274 P.H. Welch / Java Threads in the Light of occam/CSP

3.3 Channels : paranoia

The above seems to work for current implementations ... but we ought to be careful. There
is a potential danger in the reader code. In the case that it was first to the rendezvous and
waiting, what does the writer process do after notifying the reader? Well, it exits and could
immediately have something else to write down this channel and issue another write. If
by any chance that second write got in the queue to the channel monitor before the reader it
just notified, the data from the first write – which the reader still has to return – will be lost!
This is an unlikely, but possible, way that the underlying threads mechanism may chose to
schedule these things. It would be nice if we could rule it out.

There is a similar danger if the reader was second to the rendezvous and has to notify the
waiting writer. For the moment, invoking notify does not seem to hand over the monitor
lock to the process being notified (so that it can exploit the condition that caused us to issue
the notification). If it did, the notified writer would simply exit ... and we would be back with
the scenario from the previous paragraph.

Let’s be paranoid and guard against all this. If the reader were second to the rendezvous,
we can take another copy locally (within the read method) before notifying the waiting
writer and return that local copy. If the reader were first to the rendezvous and waiting, let’s
make sure it regains the monitor before the notifying writer exits its writemethod – we can
do this simply by forcing the writer to wait after it notifies the reader. Then, it is as though
the reader had been second to the rendezvous (i.e. we take a local copy, notify the waiting
writer and return the local copy). The reader and writer methods become:

public synchronized int read () throws InterruptedException {
int local;
if (channel_empty) {
channel_empty = false; // first to the rendezvous
wait (); // wait for the writer process
local = channel_hold; // take a copy of what was written
notify (); // schedule the writer to finish

} else {
channel_empty = true; // second to the rendezvous
local = channel_hold; // take a copy of what was written
notify (); // schedule the waiting writer

}
return local;

}

and:

public synchronized void write (int n) throws InterruptedException {
channel_hold = n;
if (channel_empty) {
channel_empty = false; // first to the rendezvous
wait (); // wait for the reader process

} else {
channel_empty = true; // second to the rendezvous
notify (); // schedule the waiting reader
wait (); // let the reader regain the lock

}
}

Phew!



P.H. Welch / Java Threads in the Light of occam/CSP 275

3.4 Channels : multiple readers and writers

We now extend the channel so as to make it secure for use by multiple readers and writers.
We still want full synchronisation between a reading and writing process. Any process may
read or write on this channel. Readers and writers are queued separately. A reader only
completes when it gets to the front of its queue and finds a writer. A writer only completes
when it gets to the front of its queue and finds a reader. There is no logical buffering of data
in the channel.

writers readers

Figure 2: A shared channel

Figure 2 illustrates the connection: the smiling faces are active processes and the thick
arrow (plus its stubs) represents the passive object that is the shared channel.

The previous version of Channel guarded its waits with a simple if-condition. We
did not need to use a while – as recommended by many textbooks – because we only had
two processes to worry about (one reader and one writer). We do not want to use a while
now because of the lack of guarantee that it will ever exit.

Instead, we make the readers go through their own reader-queue before trying to access
the channel. We make the writers do the same on their own writer-queue. That way, we
ensure that there is still only a single reader and a single writer actually competing to use the
channel itself – and we can use the previous algorithm.

Every object in Java contains a monitor on which we can queue processes simply by
making them synchronize on it. The simplest way to do this is to make use of another
facility of Java – the synchronising block (rather than synchronising methods). To explain
what this is, consider a Java monitor method:

public synchronized int f () {
... body of the method

}

This is equivalent to an unsynchronised method whose body is guarded by a synchronise
command on the monitor object:

public int f () {
synchronized (this) {
... body of the method

}
}

Of course, the synchronised block need not be the whole of the body:

public int g () {
... stuff
synchronized (this) {
... exclusive execution here



276 P.H. Welch / Java Threads in the Light of occam/CSP

}
... more stuff

}

where only one process at a time can execute the synchronised code. We can also synchronise
on any Java object, so long as we know its name, and we make use of this to construct our
extended channel:

class Channel {

private int channel_hold;
private boolean channel_empty = true;

Object read_monitor = // all readers multiplex
new Object (); // through this

Object write_monitor = // all writers multiplex
new Object (); // through this

public int read () throws InterruptedException {
synchronized (read_monitor) { // compete with other readers
synchronized (this) { // compete with a single writer
int local;
if (channel_empty) {
channel_empty = false; // first to the rendezvous
wait (); // wait for the writer thread
local = channel_hold; // take a copy of what was written
notify (); // schedule the writer to finish

} else {
channel_empty = true; // second to the rendezvous
local = channel_hold; // take a copy of what was written
notify (); // schedule waiting writer thread

}
return local;

}
}

}

public void write (int n) throws InterruptedException {
synchronized (write_monitor) { // compete with other writers
synchronized (this) { // compete with a single reader
channel_hold = n;
if (channel_empty) {
channel_empty = false; // first to the rendezvous
wait (); // wait for the reader thread

} else {
channel_empty = true; // second to the rendezvous
notify (); // schedule waiting reader thread
wait (); // let reader regain this monitor

}
}

}
}

}

The methods are the same as before except that, before synchronising on the channel monitor
itself, we have to synchronise on our respective (reader or writer) monitor. It is crucial,
therefore, that the methods are not synchronized themselves.



P.H. Welch / Java Threads in the Light of occam/CSP 277

3.5 Channels : choosing between them

So far, we have only shown how to read and write on channels. Sometimes, we want to wait
on a number of channels and choose the first one that becomes ready – i.e. has a process
trying to use it at the other end. This implies making some declaration of intent that we are
willing to use any of the channels. When we find one that is ready, we need to withdraw that
declaration of intent from the others and commit to the one selected.

Allowing both sides of a channel communication to back off such a declaration is pos-
sible, but requires considerable overheads for its secure management. Although CSP allows
this, we adopt the same compromise made by the occam multiprocessing language and only
allow readers the luxury of backing off. This constraint significantly reduces overheads and,
as found in over a decade of industrial and academic practice, does not significantly limit our
freedom in design.

We also insist that when a process is waiting on a bunch of channels, no other process
may be reading from any of them. In other words, such channels may only have a single
(potential) reader. They can, of course, have multiple writers.

To make a choice between a set of channel reads, the channels have to be held in a Java
array. If they are individual channels, this is still easy to arrange – for example:

Channel[] c = {panic, supply, service};

We also need an instance of a class we have called Alternative in order to make our
selection:

Alternative alt = new Alternative ();

where we refer to [1] for a description of its implementation. The term Alternative
comes from the occam ALT constructor. We will sometimes refer to this choice mechanism
as alting. We make our choice as follows:

int i = alt.select (c);
int x = c[i].read ();
... some process (which can make use of the value of i)

If there are one or more writers who have already written to one or more of the chan-
nels, the alt.select will return immediately with the index of one of them. In fact, the
selection is prioritised so that, if there is a choice, it will choose the lowest index.

If there are no writers pending, the alt.select will block (passively – consuming no
processor time) until one or more writers appear. It will then behave as above.

After receiving the chosen index, it is our responsibility to read from the channel selected
– if we don’t, bad things will happen. After reading from the selected channel, we may
engage in actions appropriate to the processing of the message and the channel from which
it was received.

Often, the channel array will be small (and, if the channels are carrying Java ‘Objects’,
each element can be communicating a separate protocol). In such cases, a ‘switch’ statement
may be more convenient:

switch (alt.select (c)) {
case 0: {
status = panic.read (); // panic == c[0]
... take evasive action
break;

}



278 P.H. Welch / Java Threads in the Light of occam/CSP

case 1: {
goods = supply.read (); // supply == c[1]
... update accounts
break;

}

case 2: {
order = service.read (); // service == c[2]
... process the order
break;

}
}

We can impose run-time determined conditions that can be used to mask out some of the
channels over which we are alting. We just set up an array of boolean guards with the same
size as the channel array. Then:

{ int i = alt.select (c, guard);
x = c[i].read ();
... some process (which can make use of the value of i)

}

What happens now is that if guard[j] is false, channel c[j]will be ignored when making
this choice – even if it has a writer pending. Note that the guards are evaluated just once
at the start of the selection – it would, of course, be a bad program that indulged in the race
hazard of having another thread alter the values of these guards whilst this operation was
being conducted!

Reference [1] gives a much fuller account of the material in this section, including the
setting of timeouts on waiting for channels and for simple polling of the channels.

3.6 Wot, no chickens : WYSIWYG and safe

Let’s do the “Wot, no chickens?” example safely and simply, using channels to connect
everything together. Figure 3 is a diagram of the network.

Canteen Chef

0

1

2

3

4

supply
deliver
service/

Figure 3: The greedy and non-starving philosopher and his mates

This time the canteen is an active object – a pure server process for its philosopher and
chef clients. It listens on its supply and service channels, giving priority to the former.

The philosophers share a pair of channels – service and deliver. Philosophers eat
chickens. They queue up at the canteen on the service channel to place their orders. The
canteen refuses to accept any order when it has no chickens. This is a crucial difference
from the previous version. The canteen is a live process and can make its own decisions



P.H. Welch / Java Threads in the Light of occam/CSP 279

and impose its will. Previously, the canteen was passive and the philosophers had to barge
in, discover the absence of food (“Wot, no chickens?”) and do something to sort out the
resulting mess.

When the canteen has some supplies, it will accept orders from service and dispense
chickens down the deliver channel. It is always prepared to accept supplies from the
supply channel.

The chef cooks chickens. When a batch is ready, she queues up at the canteen on its
supply channel. Setting down the batch takes around 3 seconds and she is made to hang
about until this has happened – this is to stay in line with the behaviour of the original system
(that caused starvation). Here is the code for the chef:

class Chef extends Thread {

private Channel supply;

public Chef (Channel supply) {
this.supply = supply;
start ();

}

public void run () {
try {
... starting ("Hello from the chef ...")
while (true) {
int n_chickens;
... sing ("Frying tonite ...")
... cook (takes around 2 seconds)
n_chickens = 4;
... announce ("4 chickens, ready-to-go ...")
supply.write (n_chickens); // supply the chickens
supply.write (0); // wait till they’re set down

}
} catch (InterruptedException e) {}

}

}

where we are obliged to put in an exception handler in case any of the channel methods fail.
This process repeatedly executes a typical client transaction: it decides when it wants to start
the transaction (the first supply.write) and commits itself to complete the transaction
(the second supply.write).

The philosopher processes also behave as clients:

class Phil extends Thread {

private int id;

private Channel service;
private Channel deliver;

public Phil (int id, Channel service, Channel deliver) {
this.id = id;
this.service = service;
this.deliver = deliver;
start ();

}



280 P.H. Welch / Java Threads in the Light of occam/CSP

public void run () {
try {
... starting ("Hello from philosopher " + id + " ...")
while (true) {
int chicken;
if (id > 0) {
... think for around 3 seconds

}
... announce ("Phil " + id + " ... gotta eat ...")
service.write (0); // may have to wait here
chicken = deliver.read (); // never get blocked here
... consume ("Phil " + id + " ... mmm ... that’s good ...")

}
} catch (InterruptedException e) {}

}

}

The canteen process is a pure server – it never initiates anything external, but responds
(depending on its state) to client requests:

class Canteen extends Thread {

private Channel service; // shared (many-1)
private Channel deliver; // shared (but used 1-1)
private Channel supply; // not shared (1-1)

public Canteen (Channel service, Channel deliver, Channel supply) {
this.service = service;
this.deliver = deliver;
this.supply = supply;
start ();

}

public void run () {
try {

Alternative alt = new Alternative (); // alt object
Channel[] c = {supply, service}; // alt channels
boolean[] guard = {true, false}; // alt guards
final int supply_index = 0; // constant
final int service_index = 1; // constant
int n_chickens = 0; // variable

... starting ("Hello from canteen ...")

while (true) {
guard[service_index] = (n_chickens > 0);
switch (alt.select (c, guard)) {
case supply_index: {
int value = supply.read (); // new batch of chickens
... ouch ("This dish is hot ...")
... take 3 seconds to set down the dish
n_chickens += value;
... announce (n_chickens + " now available ...")
value = supply.read (); // let the chef go
break;

}



P.H. Welch / Java Threads in the Light of occam/CSP 281

case service_index: {
int dummy = service.read (); // philosopher waiting
... announce ("One chicken coming down ...")
deliver.write (1); // serve one chicken
n_chickens--;
break;

}
}

}
} catch (InterruptedException e) {}

}

}

Each case of the switch corresponds (roughly) with the synchronisedget and putmeth-
ods of the passive monitor in Section 2.6. However, this time there are no dangerous loops
and each case can be understood without reference to the other.

Finally, the network itself is constructed with the following code (which could go inside
the main Java method):

int n_philosophers = 5;

Channel service = new Channel ();
Channel deliver = new Channel ();
Channel supply = new Channel ();

Canteen canteen = new Canteen (service, deliver, supply);

Chef chef = new Chef (supply);

Phil[] phil = new Phil[n_philosophers];

for (int i = 0; i < n_philosophers; i++) {
phil[i] = new Phil (i, service, deliver);

}

This time, even though philosopher 0 is just as greedy, nobody starves. Philosopher 0
arrives at the service channel first, but is blocked there since the canteen has no chickens.
The chef delivers between seconds 2 and 5, locking up the canteen as it services the delivery.
At second 3, the other 4 philosophers also arrive at the service channel and queue up
behind philosopher 0 – in the previous version, the greedy philosopher was stuck in the stand-
by area inside the canteen. At second 5, philosophers 0 through 3 get served (because only
4 chickens were delivered) and philosopher 4 remains in line. The next time more chickens
arrive, philosopher 4 will be at the head of the line.

The system is fair and deadlock/livelock/starvation-free. The system conforms to well-
defined client-server design rules for which there are CSP theorems [16, 17, 18, 19, 20, 21]
that prove these somewhat essential properties.



282 P.H. Welch / Java Threads in the Light of occam/CSP

3.7 Buffers : WYSIWYG and safe

As our last example, we return to the Buffer from Section 2.5. Because of the restriction to
alting only over channel reads, the consumer of this Buffer has to make a request before
it can take anything. Notice the guards on selection that refuse consumer requests when the
buffer is empty and refuse supplier inputs when the buffer is full.

class Buffer extends Thread {

private Channel in; // could be shared (many-1)
private Channel request; // could be shared (many-1)
private Channel out; // could be shared (but used 1-1)

private int[] buffer; // space to hold buffered data
private int max; // size of buffer

public Buffer (int max, Channel in, Channel request, Channel out) {
this.max = max;
this.in = in;
this.request = request;
this.out = out;
buffer = new int[max];
start ();

}

public void run () {
try {
int size = 0; // number of items currently held
int lo = 0; // index of oldest item (when size > 0)
int hi = 0; // index of next free slot (when size < max)

Alternative alt = new Alternative (); // alt object
Channel[] c = {in, request}; // alt channels
boolean[] guard = {true, false}; // alt guards
int in_index = 0; // constant
int request_index = 1; // constant

while (true) {
guard[in_index] = (size < max); // only if there’s room
guard[request_index] = (size > 0); // only if not empty
switch (alt.select (c, guard)) {
case 0: { // in_index
buffer[hi] = in.read (); // into first free slot
hi = (hi + 1) % max; // up the pointer
size++; // maintain the size
break;

}
case 1: { // request_index
int dummy = request.read (); // must take the request
out.write (buffer[lo]); // send oldest data
lo = (lo + 1) % max; // up the pointer
size--; // maintain the size
break;

}
}

}
} catch (InterruptedException e) {}

}
}



P.H. Welch / Java Threads in the Light of occam/CSP 283

This Buffer is safe for use by any number of supplier and consumer threads – all are
fairly queued on their respective access channels. All suppliers are blocked when the buffer
is full. All consumers are blocked when the buffer is empty. When the blocks are removed,
processes are serviced in the order they were queued – nobody is exposed to the danger of
being (forever) overtaken.

We claim that this code is significantly easier to write and understand than the previous
monitor version and that it is safe (whereas the monitor version is not). The responses of
Buffer to each signal it receives from the outside world are short and independent of each
other. The guarding of the alt channels, made possible by the liveness of this process, stops
any mess happening due to signals being accepted at inappropriate times – since there is no
mess to clean up, the code is very simple.

4 Summary

We have outlined the raw mechanisms for threads in Java and for synchronising them via the
monitor methods provided. We have shown the difficulties of reasoning with monitors (whose
semantics require a consideration of all their methods at the same time) – difficulties which
are compounded by an incomplete rendering of the ideas presented in Hoare’s paper [13].
We have presented a channel model for synchronisation and communication that is directly
based on Hoare’s (later) algebra of CSP [7, 8] and its practical realisation in occam [12].

We suggest that multi-threaded systems can and should be designed without user involve-
ment in the coding of monitors (i.e. without using the key-word synchronized or the
wait/notify methods or, even, the suspend/resume ones). The occam/CSP approach
to Java (which, for the moment, we have christened JavaPP [2]) provides the foundation for
the creation of reliable and safe applications. The semantics of the system – whether treated
formally or intuitively – are compositional, which means that the meaning of an individ-
ual thread fragment does not depend on what other threads may be doing (What You See Is
What You get). Analysis of systems for deadlock/livelock/starvation properties can exploit
the large body of knowledge and tools that have been developed over the last decade for CSP.
Even better, higher level CSP design rules (with tool support) may be applied that provide
automatic guarantees against the presence of such dengerous attributes.

Of course, without changing the Java language, we cannot match the full security rigour
(or even the performance) achieved by a CSP-aware language as occam, but these are sig-
nificant wins. The JavaPP class libraries are, currently, implemented via the Java monitor
methods (and described in this paper). We are looking to see if it is possible to substitute
something based on the occam multi-processing kernels (which are specifically geared to
support the CSP primitives) for the underlying threads libraries supporting the JVM. These
kernels manage process context-switches and process startup/shutdowns in well under a mi-
crosecond – around 250 nanoseconds on a fast SPARC Ultra, compared with around 50
microseconds for the equivalent Java on the same processor. The benefit of these very low
overheads is that we feel no constraints in designing with lots and lots of threads. The ben-
efit of that is that we get closer to the real-world system we are trying to model and which,
ultimately, pays the bills.

References

[1] Peter Welch et al. Java Threads Workshop – Post Workshop Discussion. <URL:http://www.hensa.ac.uk/
parallel/ groups/ wotug/ java/discussion/ index.html>, February 1997.

[2] JavaPP Team. JavaPP Home Page. <URL:http://www.cs.bris.ac.uk/ ˜alan/ javapp.html/>, February
1997.



284 P.H. Welch / Java Threads in the Light of occam/CSP

[3] J.M.R. Martin and S.A. Jassim. A Tool for Proving Deadlock Freedom. In A. Bakkers, editor, Parallel
Programming and Java, Proceedings of WoTUG 20, volume 50 of Concurrent Systems Engineering, pages
1–16, University of Twente, Netherlands, April 1997. World occam and Transputer User Group (WoTUG),
IOS Press, Netherlands.

[4] Gerald Hilderink, Jan Broenink, Wiek Vervoort, and Andre Bakkers. Communicating Java Threads. In
A. Bakkers, editor, Parallel Programming and Java, Proceedings of WoTUG 20, volume 50 of Concurrent
Systems Engineering, pages 48–76, University of Twente, Netherlands, April 1997. World occam and
Transputer User Group (WoTUG), IOS Press, Netherlands.

[5] G.H. Hilderink. Communicating Java Threads Reference Manual. In A. Bakkers, editor, Parallel Pro-
gramming and Java, Proceedings of WoTUG 20, volume 50 of Concurrent Systems Engineering, pages
283–325, University of Twente, Netherlands, April 1997. World occam and Transputer User Group
(WoTUG), IOS Press, Netherlands.

[6] How to Design Deadlock-Free Networks Using CSP and Verificatio n Tools A Tutorial Introduction.
J.M.R. Martin and S.A. Jassim. In A. Bakkers, editor, Parallel Programming and Java, Proceedings
of WoTUG 20, volume 50 of Concurrent Systems Engineering, pages 326–338, University of Twente,
Netherlands, April 1997. World occam and Transputer User Group (WoTUG), IOS Press, Netherlands.

[7] C.A. Hoare. Communication Sequential Processes. CACM, 21(8):666–677, August 1978.

[8] C.A. Hoare. Communication Sequential Processes. Prentice Hall, 1985.

[9] Oxford University Computer Laboratory. The CSP Archive. <URL: http:// www.comlab.ox.ac.uk/
archive/ csp.html>, 1997.

[10] Ian East. Parallel Processing with Communication Process Architecture. UCL press, 1995. ISBN 1-
85728-239-6.

[11] John Galletly. occam 2 – including occam 2.1. UCL Press, 1996. ISBN 1-85728-362-7.

[12] occam-for-all Team. occam-for-all Home Page. <URL:http://www.hensa.ac.uk/parallel/ occam/occam-
for-all/index.html>, February 1997.

[13] C.A. Hoare. Monitors: an operating system structuring concept. CACM, 17(10):549–557, October 1974.

[14] Ken Arold and James Gosling. The Java Programming Language. Addison Wesley Longman, 1996.
ISBN 0-201-63455-4.

[15] JavaSoft. The Java Tutorial: Monitors. <URL:http://java.sun.com/ docs/ books/ tutorial/ java/ threads/
monitors.html>, 1997.

[16] J.M.R. Martin and P.H. Welch. A Design Strategy for Deadlock-Free Concurrent Systems. Transputer
Communications, 3(4):215–232, October 1996. ISSN 1070-454X.

[17] J. Martin, I. East, and S. Jassim. Design Rules for Deadlock Freedom. Transputer Communications,
2(3):121–133, September 1994. ISSN 1070-454X.

[18] P.H. Welch, G.R.R. Justo, and C. Willcock. High-Level Paradigms for Deadlock-Free High-Performance
Systems. In Grebe et al., editors, Transputer Applications and Systems ’93, pages 981–1004, Amsterdam,
1993. IOS Press. ISBN 90-5199-140-1.

[19] A.W. Roscoe and N. Dathi. The Pursuit of Deadlock Freedom. Technical Report Technical Monograph
PRG-57, Oxford University Computing Laboratory, 1986.

[20] D.J. Beckett and P.H. Welch. A Strict occam Design Tool. In Proceedings of UK Parallel ’96, pages
53–69, London, July 1996. BCS PPSIG, Springer-Verlag. ISBN 3-540-76068-7.

[21] A.W. Roscoe. Model Checking CSP, A Classical Mind. Prentice Hall, 1994.


