
28 September 1998 1

Interpreting the Object Constraint Language

Ali Hamie, John Howse and Stuart Kent
Division of Computing,

University of Brighton, Lewes Rd., Brighton, UK.
e-mail: A.A.Hamie@brighton.ac.uk

Abstract

The Object Constraint Language (OCL), which forms part
of the UML 1.1. set of modelling notations is a precise,
textual language for expressing constraints that cannot be
shown in the standard diagrammatic notation used in
UML. A semantics for OCL lays the foundation for
building CASE tools that support integrity checking of
whole UML models, not just the component expressed
using OCL. This paper provides a semantics for OCL, at
the same time providing a semantics for classes,
associations, attributes and states.

1: Introduction

The Object Constraint Language [1][2] is a precise textual
language to complement graphical languages in modelling
object-oriented systems. It allows constraints on the model
to be expressed, that can not be expressed using standard
diagrammatic notations. Specifically, OCL supports the
expression of invariants and pre/post conditions, allowing
the modeller to specify precise and detailed constraints on
the behaviour of a model, without getting embroiled in
implementation detail.

OCL is the culmination of recent work in OO model-
ling [3][4] which has selected ideas from formal methods
to combine with diagrammatic, object-oriented modelling
resulting in a more precise, robust and expressive notation.
Syntropy [3] extended OMT [5] with a Z-like textual lan-
guage for adding invariants to class diagrams and annotat-
ing transitions on state diagrams with pre/post conditions.
OCL adopts a simple non-symbolic syntax and restricts
itself to a small set of core of concepts.

One of the most important aspects of OCL is that it is
part of the Unified Modelling Language [6], which has
recently become the global standard modelling language,

under the auspices of the Object Management Group. As a
result it is likely to get much greater exposure and use than
previously proposed formal specification languages such as
VDM [7] and Z [8], and work invested in ensuring that it is
correct and appropriate for its purpose is therefore more
likely to reap a dividend than work on the aforementioned
languages.

The purpose of this paper is to provide a semantics to
check that OCL is unambiguous and to improve OCL [9].
As OCL does not exist in a vacuum, but instead depends on
some parts of a model to be defined already in diagrams,
this necessitates a semantics for a kernel of the UML dia-
grammatic notation, specifically: class diagrams. Thus
OCL provides a focus for integrating the semantics of the
diagrammatic notations. We present one such integrated
semantics, which we hope lays the foundation for building
CASE tools that support integrity checking of whole UML
models, not just the component expressed using OCL.

Semantics work [10][11] for OO modelling notations
in widespread use, such as OMT or UML, is generally
restricted to capturing the meaning of those notations, so
accompanying precise textual languages have yet to be
considered, as languages such as OCL have only very
recently been incorporated. Exceptions to this are the work
of Bicarregui et al. [12][13] which uses the Object Calculus
[14] to develop a semantics for Syntropy [3], and our own
work [15][16][17][18][19].

We have chosen to use Larch [20]. This choice is
motivated in part by the desire not to be engaged in the
design of logics and reasoning systems, but instead to focus
on elaborating the meaning of the modelling notations
themselves. Larch is a stable language with a well-devel-
oped supporting toolset. It uses first-order predicate logic,
rather than temporal logic, so is accessible to a wider audi-
ence, which includes, hopefully, some commercial tool
developers. It is also close to technologies most likely to
leverage the sophisticated CASE tools that should result
from increasing the precision and expressiveness of model-

Interpreting the Object Constraint Language

28 September 1998 2

ling notations. This is illustrated by the inclusion of an
automated proof assistant in its accompanying toolset. We
have also been using our Larch-based semantics as a start-
ing and subsequent reference point for developing check-
ing and animation tools in Prolog.

The paper is organised as follows. Section 2 is an
informal introduction of using OCL, in combination with a
kernel of the UML diagrammatic notation (class diagrams),
in writing navigation expressions in object-oriented model-
ling. Section 3 establishes the semantic framework by giv-
ing a semantics to class diagrams. Section 4 defines the
semantics of OCL expressions. A key aspect of this is a
semantics for navigation expressions, including navigation
over collections other than sets, such as sequences and
bags, and the semantics of filters. Section 5 deals with sys-
tem states. Section 6 summarises the semantics of invari-
ants and pre/post conditions (expressed in OCL). Section 7
summarises the general mapping of the UML/OCL ele-
ments considered. Section 8 concludes with an overview of
future work in semantics and elsewhere.

2: Navigation in OO Modelling

Navigation in OO modelling means following links from
one object to locate another object or a collection of
objects. It is possible to navigate across many links, and
hence to navigate from a collection to a collection. Naviga-
tion is at the core of OCL. OCL expressions allow us to
write constraints on the behaviour of objects identified by
navigating from the object or objects which are the focus of
the constraint. At the specification level, the expressions
appear in invariants, preconditions and postconditions.

2.1: Example model

Figure 1 presents a small, contrived example of a class dia-
gram in UML for a simple system that supports scheduling
of offerings of seminars to a collection of attendees by pre-
senters who must be qualified for the seminars they
present. A full description of the notation can be found in
[6][21].

2.2: Navigating from single objects

Navigation expressions start with an object, which can be
explicitly declared or given by a context. For example, a
declaration s : Seminar means that s is a variable that can
refer to an object taken from the set of objects conforming
to type Seminar. Here, the type name is used to represent
the set of objects in the model that conform to the type.

A navigation expression is written using an attribute
or role name, and an optional parameter list. Given the ear-
lier declaration, the OCL expression s.title represents the

value of the attribute title for the object represented by s.
An OCL expression can also use the name self to refer to a
contextual instance. In the following example, self refers
to an instance of seminar:

Seminar
self.title

Navigating from an object via an association role can result
in a single object or a collection, depending on the cardi-
nality annotations of the association role. For example,
given the declaration p : Presenter, the expression p.qual-
ifiedFor results in a set of seminars p is qualified to
present.

The association between Seminar and Offering has
the annotation {ordered} on the offering role. As a result,
the expression s.offering, where s is a seminar, results in a
sequence. Notice that this means that the operator “.” is
overloaded, because it can map an object to a set, to a bag,
or to a sequence.

2.3: Navigating from collections

Assume we have the following declaration p:Presenter.
The navigation expression p.qualifiedFor.title (also writ-
ten p.qualifiedFor->collect(title) in OCL) involves navi-
gating first from a single object and then from a collection,
namely the set of seminars for which presenter p is quali-
fied. This is because the expression parses as
(p.qualifiedFor).title. The result of this expression is a bag
obtained by applying title to each member of the set
p.qualifiedFor. The OCL operation asSet can be used to
convert this bag to a set. Similarly, navigating from a bag
yields a bag and navigating from a sequence yields a
sequence.

Figure 1.Class diagram for a seminar scheduling
system

SeminarScheduling
System

title: String
Seminar

name: String

Presenter

name: String
Attendee

goingAhead: Boolean
date: Date

Offering

* *

*
*

qualifiedFor

qualified0..1 1

*
*

*

*

1 1

{ordered}

Interpreting the Object Constraint Language

28 September 1998 3

2.4: Invariants

Navigation expressions can be part of an invariant on a
type which must be true for all instances of that type at any
time. For example, an invariant for the seminar scheduling
system would be:

Presenter

self.qualifiedFor->includesAll(self.offering.seminar)

which says that a presenter must be qualified for all semi-
nars he/she is assigned to present.

2.5: Preconditions and postconditions

An OCL expression can also be used as a precondition or
postcondition, which are used to specify the behaviour of
an operation or method. The name self can also be used in
the expression referring to the object on which the opera-
tion was called. Expressions occurring in a postcondition
can refer to two sets of values for each property of an
object:

• the value of a property at the start of the operation or
method

• the value of a property upon completion of the opera-
tion or method

In OCL the value of a property at the start of the oper-
ation is denoted by postfixing the property name with the
commercial sign @, followed by the keyword pre.

Figure 2 gives the specification of an operation
markAsAbsent in terms of pre/post conditions. This oper-
ation marks a presenter as absent by cancelling his/her pre-
sentations within specific dates.

3: Semantics: Class Diagrams

We shall use the Larch Shared Language (LSL) [20] to
provide the semantics of OCL expressions. This is
achieved by first providing the semantics of object types,
attributes, and associations. LSL uses specification mod-
ules, called traits, to describe abstract data types and theo-
ries.

3.1: Object types

An object type is a description of a set of objects in terms
of properties and behaviour they all share. In our formalisa-
tion, an object type is associated with an LSL basic sort
consisting of elements that uniquely represent objects
(instances) of the type, which can be thought of as object
identifiers. The attributes of an object type are formalised
as functions on the sort representing this type.

The object type Presenter in Figure 1 is interpreted
as a basic sort denoted by , namely a sort of
presenter identifiers. The attribute name is interpreted as a
function with signature

, which is added to the
specification for object type Presenter. The type String is
interpreted as the sort of strings which is avail-
able in the Larch HandBook of specification modules [20].
In a very similar way we interpret the other object types for
the seminar scheduling system.

3.2: Associations

We now extend the interpretation of object types and
attributes given in the previous section to include binary
associations. Associations are basically relationships
between objects. Each association in a class diagram has
two role names which can be used to navigate the associa-
tion from a specific object to refer to other objects and their
properties. For instance, the association between Pre-
senter and Seminar (Figure 1) has two role names quali-
fied and qualifiedFor.

We formalise associations between object types as
two related functions that map an object of one type to the
set of associated objects of another (or the same) type.
These mappings are specified in a way that is independent
of the structure of types they associate. Thus we have a
generic Larch theory for associations that can be renamed
to specify each particular association in the model. For
example, the association between Presenter and Seminar
would be represented as two functions and

 with the signatures:

where and are the

power sorts of and respectively.
By choosing power sorts for the domains and ranges of
these mappings, we have a uniform treatment of associa-
tions which simplifies the formalisation and provides
generic theory for associations. In the case of an optional
association (0..1 cardinality), this is especially useful to

SeminarSchedulingSystem

markAsAbsent(p : Presenter, from, to : Date)

pre: true

post: p.offering@pre->forAll(o |

 o.date >= from and o.date <= to implies

 o.presenter = Set{})

Figure 2.Specification of operation markAsAbsent

Presenter

name

name : Presenter String→

String

qualified

qualifiedFor

qualified : Set Seminar[] Set Presenter[]→

qualifiedFor : Set Presenter[] Set Seminar[]→

Set Seminar[] Set Presenter[]

Seminar Presenter

Interpreting the Object Constraint Language

28 September 1998 4

check whether there is an object or not when navigating the
association, namely whether the resulting set is empty or
not. The case where navigation is from a single object is
subsumed with the general case where the set is a singleton
containing that object. The corresponding functions that
map single objects can be defined in terms of those that
map sets of objects (see later).

The two functions and

 satisfy the axioms:

The operation is the union operation on sets. Note that
these axioms imply that these functions are completely
determined by their values at singleton sets.

In order to represent the association, these functions
are related by the following axiom:

Intuitively, this axiom asserts that if instructor p is quali-
fied to present seminar s, then p must be included in the set
of presenters qualified to present s.

The corresponding functions that operate on single
objects may be constructed from those whose domains are
power sorts as follows:

Semantically, navigating from a single object is equivalent
to navigating from a singleton set containing that object.

For further details and for the generic traits of object
types and associations the reader is referred to [15][17].

4: Collections and their operations

Collection as defined in OCL is an abstract type, with con-
crete collection types as its subtypes; Set, Sequence, and
Bag. This type is not strictly necessary since it is defined
as an abstract supertype.

The Collection type can be specified in LSL by a sort
 and including the signatures of the com-

mon operations shared between its subtypes and some of
their axioms. Let be the sort of collec-

tions of type . For example, the size operation which
common to all collection types has the signature

 and is specified in
terms of the operation iterate. The collection types (Set,

Bag, and Sequence) can be specified in LSL as abstract
data types with the familiar operations. For example, LSL
provides traits (available in the Larch HandBook) for spec-
ifying these mathematical abstractions. The additional
operations provided by OCL will be dealt with in the next
subsection.

The Larch Shared Language does not support subsort-
ing. So in order to assert that is a subtype of

 we use the function

 that
maps a set into a collection representing it. The assertion
that Bag[T] and Sequence[T] are subtypes of Collec-
tion[T] can be handled in a similar way by overloading the
function . For bags we have

. The

size operation has to be specified on by includ-

ing the signature together
with the axiom:

similarly, we specify size for bags and sequences.
There are many operations defined on collection types

in OCL. These operations transform existing collections
into new ones. Here we consider the more interesting ones,
namely select, reject, collect, forAll, exists and iterate.

4.1: Select and reject operations

The select and reject operations provide a way of specify-
ing a subset of a collection. A select is an operation on a
collection and is specified using the ->-syntax:

collection -> select(v : T | b-expr-v)

where the variable v is called the iterator and b-expr-v is a
boolean expression. This expression is evaluated by using
v to iterate over collection and evaluating b-expr-v for
each v. The v is a reference that refers to the objects from
the collection.

The meaning of select expressions can be obtained by
defining two function and with the signa-

tures

and respectively. The function is defined

as . That is each boolean expression
induces a function. The select operation applied to a set
always results in a set, and the same applies for bags and
sequences. Hence, the meaning of the operation has to be
specified for sets, bags and sequences.

For sets we define a function with the sig-

nature and satisfies the axi-

oms:

qualified

qualifiedFor

qualified {}() {}=

qualifiedFor {}() {}=

qualified s s'∪() ==
 qualified s() qualified s'()∪

qualifiedFor s s'∪() ==
 qualifiedFor s() qualifiedFor s'()∪

 ∪

s qualifiedFor p{ }() == p qualified s{ }()∈∈

qualified s() == qualified s{ }()

qualifiedFor p() == qualifiedFor p{ }()

Collection

Collection T[]

T

size :Collection T[] Integer→

Set T[]

Collection T[]

toCollection : Set T[] Collection T[]→

toCollection

toCollection : Bag T[] Collection T[]→

Set T[]

size : Set T[] Integer→

size s() size toCollection s()()=

selectp p

selectp : Collection T[] Collection T[]→

p : T Bool→ p

p v() == b-expr-v

selectp

selectp : Set T[] Set T[]→

Interpreting the Object Constraint Language

28 September 1998 5

where is a boolean function defined as above. In addi-
tion we have the axiom:

For example, p.offering->select(goingAhead) is inter-
preted as , where

goingAhead is interpreted as a function with the signature
.

For bags and sequences similar functions can be
defined with similar axioms, the only difference is the sig-
natures of these functions.

The reject operation is similar to the select operation,
but with reject we get the subset of all the elements for
which the boolean expression evaluates to False. In fact
reject can be interpreted in terms of select because the
expression collection->reject(v:T | b-expr-v) is equiva-
lent to collection->select(v : T | not(b-expr-v)).

4.2: Collect operation

The select and reject operations always yield a sub-col-
lection of the original one. However, it is often required to
specify a collection which is derived from some other col-
lection, but which contains different objects from the origi-
nal collection. The collect operation provides such
construct in OCL. The syntax of collect is written as fol-
lows:

collection -> collect(v : T | expr-v)

The value of the collect operation is the collection of the
results of all the evaluations of expr-v.

The meaning of collect expressions can be obtained
by defining two functions and f with the sig-

natures

 respectively. The function f is defined as .
In OCL the result of the collect operation on a set is a

bag rather than a set. So we define
 which satisfies the axi-

oms:

However, if it is required that collect on a set should result
in a set rather than a bag, then we can make a set from the
bag by using the function
which satisfies the axioms:

For bags we define which

satisfies similar axioms as the one for sets. For sequences,
we define which also sat-

isfies similar axioms as the one for sets, where the only dif-
ference is that the result is a sequence.

4.3: Navigation expressions

In OO modelling navigating from a collection of objects is
very common. For this reason OCL provides a shorthand
notation for the operation collect. Instead of writing
self.qualifiedFor->collect(title) we can write self.quali-
fiedFor.title. In OCL applying a property to a collection of
objects is interpreted as a collect over the members of the
collection with the specified property.

So, for any propertyname of objects in a collection,
the following expressions are identical

collection.propertyname

collection->collect(propertyname)

In OCL, a collection of collections is automatically flat-
tened. Such a view is easy to teach to modellers, but hard to
define without falling into traps. In related work we have
shown that flattening is not necessary. More information
about this can be found in [9].

4.4: Quantifications

OCL provides two operations for quantifications forAll and
exists operations. The forAll operation in OCL allows the
specification of a boolean expression, which must hold for
all objects in a collection. Its syntax is given by:

collection -> forAll(v : T | b-expr-v)

The value of a forAll expression is boolean. The result is
true if the boolean expression b-expr-v is true for all ele-
ments of collection. The result is false if b-expr-v evalu-
ates to false for one or more v in collection.

The semantics of forAll can be given by using LSL

universal quantification denoted by . So the forAll expres-
sion is interpreted as:

Selectp {}() == {}

selectp insert v s,()() == if p v() then

 insert v selectp s(),() else selectp s()

p

toCollection selectP s()()
selectp toCollection s()()

=

selectgoingAhead offering p()()

goingAhead : Offering Bool→

collectf

collectf : Collection T[] Collection S[]
f : T S→

→

f v() = expr-v

collectf : Set T[] Bag S[]→

collectf {}() == {}
collectf insert v s,()() ==
 insert f v() collectf s(),()

toCollection collectp s()() ==

 collectp toCollection s()()()

asSet : Bag T[] Set T[]→

asSet {}() == {}
asSet insert v b,()() == insert v asSet b(),()

collectf : Bag T[] Bag S[]→

collectf : Seq T[] Seq S[]→

∀

 v : T∀() v collection b- r-vexp⇒∈()

Interpreting the Object Constraint Language

28 September 1998 6

The semantics of exists can be given in a similar way.

4.5: Iterate operation

OCL also has the iterate operation which is very generic in
the sense that the operations select, reject, forall, exists,
and collect can all be described in terms of iterate. The
syntax of iterate is:

collection->iterate(v : T; acc:S = expr | expr-v-acc)

The iterate operation is evaluated by using v to iterate over
the collection and the expr-v-acc is evaluated for each v.
After each evaluation of expr-v-acc, its value is assigned
to acc. In this way the value of acc is built up during the
iteration of the collection.

The meaning of iterate expressions can be obtained
by defining

and , where .

For sets the function satisfies the axioms:

where delete is the operation for removing an element
from a set. These axioms are only valid for functions
that satisfy the properties:

Without this axiom we can have two equal sets and

where is not equal to . This
is clearly not consistent with the notion of substituting
equals for equals. So if does not satisfy these properties,
the operation iterate is not deterministic. For bags and
sequences we can define similar functions which satisfy
similar axioms.

5: System state

So far we have ignored system state, which is required in
the presence of dynamic behaviour, as specified for exam-
ple through preconditions and postconditions on opera-
tions. Thus we enrich the semantic model with a sort of
system state . Given this, we introduce, for each object

type T, a function which returns the set of
existing objects of type T (i.e. those that have been created
and not destroyed) in a given state σ. This function is used
to interpret the allInstances feature of an object type,
which returns the set of all instances of the type. For exam-
ple, T.allInstances is interpreted as the set .

Attributes of a given object type are interpreted as
functions with additional argument for the system states.

For example, the attribute title is now interpreted as a func-
tion . And similarly for
associations.

6: Invariants, preconditions and
postconditions

We interpret invariants by interpreting each expression
occurring in it and adding universal quantifications. For
example, for the invariant given earlier, the self.qualified-
For is interpreted as , and
self.offering.seminar is interpreted as

. So the invariant is
interpreted as the following assertion:

That is, the invariant must hold in every system state σ.
We interpret pre/post conditions by interpreting each

expression occurring in them. For example, the postcondi-
tion of the operation markAsAbsent is interpreted by
interpreting p.seminar@pre as , and the
predicate part of forAll as

.
The whole postcondition is interpreted as:

where and are the states before and after the opera-
tion is executed respectively.

7: Summary of mapping

In this section we summarise the mappings between OCL
types and expressions and the sorts and expressions of
LSL.

For each type A in a class diagram we associate with it
a sort of all possible object identities that conform to the

type, denoted by . We define a mapping

 by . That is, τ(A) is the
sort associated with the type A. For example, we have
τ(Seminar) =def Seminar.

The basic value types in OCL are mapped directly to
predefined sorts in LSL. The type Boolean is mapped to
the sort Bool, i.e. τ(Boolean) =def Bool, which is speci-
fied as a trait in the Larch HandBook of specifications. The
type Integer is also mapped to a predefined sort in LSL
namely Integer, i.e τ(Integer) =def Integer. Similarly
we have τ(String) =def String. Enumerated types are also
mapped directly to LSL enumerated sorts.

iteratef rexp, : Collection T[] S→

f : T,S S→ f v acc,() == r-v-accexp

iteratef rexp,

iteratef rexp, {}() == r

i

exp

teratef rexp, insert v s,()() ==

 f v iteratef rexp, delete v s,()(),()

f

f x f y z,(),() f y f x z,(),()=

s1 s2

iterate s1() iterate s2()

f

Σ
T : Σ Set T[]→

T σ()

title : Seminar Σ, String→

qualifiedFor self σ,()

seminar offering self σ,() σ,()

p : Presenter, σ : Σ∀
seminar offering self σ,() σ,()()
qualifiedFor self σ,()

⊆

seminar p σ,()

pred o σ,() == date o σ,() from≥ date o σ,() to≤∧

o : Offering , σ σ' : Σ,()∀() o Offering σ()∈
pred o σ,()∧ presenter p σ',() {}=⇒

(
)

σ σ'

A

τ : OclType lslSort→ τ A() =A

Interpreting the Object Constraint Language

28 September 1998 7

For collection types such as sets, bags and sequences,
LSL provides basic traits that specify basic operations on
these structures. However, these traits need to be extended
to deal with new operations available in OCL. These traits
can be constructed by including the traits that specify oper-
ations like select, reject, iterate, etc.. For the moment we
map the types Set(T), Bag(T), and Sequence(T) to the
sorts Set[T], Bag[T], and Seq[T] respectively.

For each attribute att of type T of an object type A we
associate with it a function symbol denoted by att. For
this we define a mapping αA which maps an attribute sym-
bol to a function symbol in LSL, by αA(att:T) =def

. Operations or queries on type A such as
op(S):T of type T, are mapped as: αA(op(S):T) =def

.

For each association role r (at the right) of an associa-
tion between two types A and B we associate a function
symbol in LSL. For this we define a mapping ρA by

ρA(r:set[B]) =def . Parameterised

(qualified) association roles are dealt with in a similar way.
The table in Figure 3 summarizes the above mappings.

We now define a mapping µ with signature

 ,

that maps OCL expressions to LSL expressions based on
the above mappings. The definition of µ is given in

Figure 4. The interpretation of an OCL expression as given
by µ is given at a moment in time corresponding to a sys-
tem state . In this definition, variables in OCL are
mapped into variables in LSL, i.e. µ(v) = v. Expressions of
the form v.att are mapped to . Expressions of the
form c->collect(v : T | expr-v), where c is a collection and
expr-v is an expression involving v, are mapped to

, where is the interpretation of

c, and f(v) = µ(expr-v). The only exception is where the
expression is a role name, in which case c->collect(r) is
interpreted as .

Value expressions true and false are mapped to true
and false respectively. Set expressions such as Set{},
Set{1,2} are mapped to {} and {1,2}, syntactic sugar for
insert(1,insert(2,{})), respectively. Other value
expressions are mapped in a similar way.

8: Conclusions

A precise semantics for a subset of OCL expressions
together with the semantics for a kernel of the UML dia-
grammatic notation – class (type) diagrams, has been
defined in terms of Larch. We have achieved nearly com-
plete coverage of the OCL, although details have been
omitted in some cases. Through this semantics, we have
established that there is no need for flattening collection of
collections when navigating from collections.
We have not considered meta level features in OCL, such
as type casting and interrogation queries on objects. How-
ever, it is relatively a simple matter to formalise these in
Larch.
Future semantics work includes:

 OCL LSL

 A (object type) A (sort of object identities)

 T (value type) T (sort of values)

 Boolean Bool

 String String

 Integer Integer

 Collection(T) Collection[T]

 Set(T) Set[T]

 Bag(T) Bag[T]

 Sequence(T) Seq[T]

 att:T (attribute)

 op(S) :T

 r : set[B] (role)

 r (S) : set[B] (role)

 r : B (role)

 r (S) : B (role)

Figure 3. Mappings of types, attributes and
associations

att : A Σ, T→

op : A S Σ, T→,

att : A Σ, T→

op : A S Σ, T→,

r : Set A[] Σ, Set B[]→

r : Set A[] S Σ, Set B[]→,

r : Set A[] Σ, Set B[]→

r : Set A[] S Σ, Set B[]→,

r : set A[] Σ, set B[]→

µ : OclExpression lslExpression→

 OCL expressions LSL expressions

 v (variable) v (variable)

 v.att att(v,σ)

 v.op(v’) op(v,v’,σ)

 v.r (r role name) r(v,σ)

 c->select(v | b-expr-v) selectp(c,σ), where

 p(v,σ)=µ(b-expr-v)

 c->reject(v | b-expr-v) rejectp(c,σ),where

 p(v,σ)=µ(b-exp-v)

 c->collect(v | exp-v) collectf(c,σ), where

 f(v,σ)=µ(exp-v)

 c->iteate(v;acc=exp |
 expr-v-acc)

 iteratef,exp(c,σ), where

 f(v,acc,σ)=µ(expr-v-acc)

 c.r (c collection, r role) r(c,σ), (µ(c)= c)

Figure 4. Definition of the mapping µ

σ

att a σ,()

collectf c σ,() µ c() = c

r c σ,()

Interpreting the Object Constraint Language

28 September 1998 8

• Semantics for constraint diagrams [18][19], a diagram-
matic notation that allows most, if not all, OCL
expressions to be given a diagrammatic characterisa-
tion.

• The use of this kernel to give the semantics of other
aspects of UML. In particular state diagrams may be
mapped to class diagrams with additional constraints
expressed in OCL.

• Also being worked on is the semantics of extensions to
UML suggested by Catalysis [4]. We are using the
Larch trait inclusion mechanism to define the seman-
tics of framework composition; and are working out
the proof obligations for establishing conformance
relationships between models, in particular between
the specification and design in a refinement.

Apart from establishing precise, core concepts and check-
ing the integrity and well-definedness of modelling nota-
tions, the semantics effort is also aimed at establishing a
foundation for building CASE tools. We are currently
experimenting with checking and animation tools written
in Prolog, where the mapping from model to Prolog has
benefited considerably from the work in Larch.

Acknowledgements

Thanks for comments are due to colleagues on the BIRO
project at Brighton, in particular Franco Civello and Rich-
ard Mitchell. This research is partially funded by the UK
EPSRC under grant number GR/K67304.

References

[1] Rational Software Corporation, Object Constraint Language
Specification, Version 1.1, http://www.rational.com, 1997.

[2] A. Kleppe, J. Warmer, and S. Cook, “Informal Formality? The
Object Constraint Language and its application in the meta-
model”, Proc. of UML’98 International Workshop, P. Muller and
J. Bezivin, ed., Mulhouse, France, June 3-4, 1998, pp. 127-136.

[3] S. Cook, and J. Daniels, Designing Object Systems: Object-
Oriented Modelling with Syntropy, Prentice-Hall, Hemel Hemp-
stead, UK, 1994, p. 389.

[4] D. D'Souza, and A. Wills, Objects, Components and Frame-
works with UML: The Catalysis Approach, book submitted for
publication by Addison-Wesley, UK, 1998, also available at http:/
/www.trireme.com/catalysis.

[5] J. Rumbaugh, M. Blaha, W. Premerali, F. Eddy, and W.
Lorensen, Object-Oriented Modelling and Design, Prentice-Hall,
Emglewood Cliffs, New Jersy, 1991, p. 500.

[6] Rational Software Corporation, The Unified Modeling Lan-
guage, Version 1.1, http://www.rational.com, 1997.

[7] C. Jones, Systematic Software Development using VDM (2nd
edition), Prentice-Hall, Hemel Hempstead, UK, 1990, p. 333.

[8] M. Spivey, The Z notation (2nd ed.), Prentice Hall, UK, 1992.

[9] A. Hamie, F. Civello, J. Howse, S. Kent, and R. Mitchell,
“Reflections on the Object Constraint Language”, Proc. of
UML’98 International Workshop, P. Muller and J. Bezivin, ed.,
Mulhouse, France, June 3-4, 1998, pp. 137-145.

[10] H. Bourdeau, and B. Cheng, “A Formal Semantics for Object
Model Diagrams”, IEEE Transactions on Software Engineering,
Vol. 21, No. 10, 1995, pp. 799-821.

[11] R. France, J. Bruel, M. Larrondo-Petrie, and M. Shroff,
“Exploring The Semantics of UML Type Structures with Z”,
Proc. Int’l Workshop on Formal Methods for Object-Based Dis-
tributed Systems (FMOODS’97), Chapman and Hall, London,
1997, pp. 247-260.

[12] J. Bicarregui, K. Lano, and T. Maibaum, “Towards a Compo-
sitional Interpretation of Object Diagrams”, Proc. IFIP TC2
Working conference on Algorithmic Languages and Calculi,
Chapman and Hall, 1997.

[13] J. Bicarregui, K. Lano, and T.S.E Maibaum, “Objects, Asso-
ciations and Subsystems: a hierarchical approach to encapsula-
tion”, Proc. European Conf. of Object-Oriented Programming
(ECOOP'97), LNCS 1241, Springer-Verlag, 1997, pp. 324-343.

[14] J. Fiadeiro, and T. Maibaum, “Temporal Theories and Mod-
ularisation Units for Concurrent System Specification”, Formal
Aspects of Computing, Springer-Verlag, Vol. 4, No. 3, 1992, pp.
239-272.

[15] A. Hamie, and J. Howse, “Interpreting Syntropy in Larch”,
Tech. Report ITCM97/C1, Computing Division, University of
Brighton, Brighton, UK, 1997.

[16] A. Hamie, J. Howse, and S. Kent, “Navigation Expressions
in Object-Oriented Modelling”, Proc. of FASE in ETAPS98,
LNCS, 1382, Springer-Verlag, 1998, pp. 123-137.

[17] A. Hamie, J. Howse, and S. Kent, “Modular Semantics of
Object-Oriented Models”, to be published in the proceedings of
the Third Northern Formal Methods WorkShop, UK, 1998.

[18] S. Kent, “Constraint Diagrams: Visualising Invariants in
Object-Oriented Models”, Proc. of OOPSLA97, ACM Press,
1997.

[19] S. Kent, “ Visualising Contracts in Object-Oriented Models”,
Proc. VISUAL98 in ETAPS’98, Lisbon, Portugal, 1998.

[20] J. Guttag, and J. Horning, Larch: Languages and Tools for
Formal Specifications, Springer-Verlag, 1993.

[21] M. Fowler, and K. Scott, UML Distilled, Addison-Wesley,
1997, p. 179.

