
Final version in IEE Proceedings Software, 145, 2-3

atical
ilds on
f such
ssions,
straints
e use of
action

r the
 its
r the

 long
ion of

es for
f For-
and
in the
ted

hods,
en to
ormal
le to
sen-

cally;
et al.,

extual
al-

could
ilds on

il &

er to
ariant
hown
ts
Visualising Action Contracts in Object-Oriented Modelling

Abstract. In recent years a number of OO methods have been enhanced with textual, mathem
languages for specifying invariants and action contracts (pre and post conditions). This paper bu
a recent proposal for “constraint diagrams”, a diagrammatic notation allowing the expression o
assertions. Constraint diagrams essentially provide a pictorial representation of navigation expre
specifically the sets of objects they define, and, using Venn diagrams and other techniques, con
on the cardinalities of and relationships between those sets. The original proposal focused on th
constraint diagrams for depicting invariants. This paper focuses on their use in depicting
contracts.

1 Introduction
Diagrammatic notations for software modelling are currently being standardised unde
Unified Modelling Language banner (UML Consortium, 1997). UML derives much of
inheritance by the advances made in Object-Oriented Software Modelling, in particula
OMT (Rumbaugh et al., 1991) and Booch (Booch, 1991) methods. However, it has
been recognised that these notations are not sufficiently expressive without the inclus
some textual annotation language.

A number of methods, have proposed precise, mathematically-based textual languag
writing these annotations for many of the same reasons that have inspired the study o
mal Methods. Particularly influential have been Syntropy (Cook & Daniels, 1994)
Catalysis (D’Souza & Wills, 1996, 1997), many of whose ideas have been adopted
Object Constraint Language (OCL; UML Consortium, 1997) which is being incorpora
into the UML standard.

Perhaps not surprisingly, this work draws on the rich body of research into Formal Met
most notably Z (Abrial et al., 1980) and VDM (Jones, 1990). The authors have striv
bring the benefits of precision combined with expressiveness and abstraction from F
Methods into the domain of object-oriented modelling, but in a form which is accessib
the wider community of software developers. Specifically they strip away all but the es
tials for writing precisely those constraints which can not be expressed diagrammati
they add only a notation for navigating around object configurations (see e.g., Hamie
1998).

This paper describes work which continues this process, by removing the need for a t
language altogether. Following in the tradition of Harel’s seminal work on Visual Form
isms (Harel 1987, 1988), Kent (1997) introduced the notation constraint diagrams for visu-
alising invariants in Object-Oriented models. It was suggested there that the notation
be used to visualise action contracts, expressed as pre/post conditions. This paper bu
the suggestion, introducing two new forms of diagram: post-box and contract-box. The
paper draws on parallel work in three dimensional notations for modelling software (G
Kent, 1998).

Section 2 introduces UML via an example, which is used in the remainder of the pap
illustrate and reinforce the main arguments. Section 3 gives an example of an inv
which must be expressed as a textual annotation to UML diagrams, but which can be s
visually using the constraint diagram notation. In so doing it introduces the main elemen

Stuart Kent
Division of Computing,

University of Brighton, Lewes Rd., Brighton, UK.
http://www.it.brighton.ac.uk/staff/Stuart.Kent/

Stuart.Kent@brighton.ac.uk
stuart@mclellankent.u-net.com

fax: ++44 1273 642405, tel: ++44 1273 642494

Joseph (Yossi) Gil
IBM T.J. Watson Research Center,

P.O. Box 704,
Yorktown Heights, NY 10598, USA.

yogi@watson.ibm.com
yogi@cs.technion.ac.il
1

Final version in IEE Proceedings Software, 145, 2-3

luding
 state
tract-

elling
stand
grams
 run-

 a toy

g of the
ssible
of the notation. Section 4 is the core of the paper, showing how post- and contract-boxes,
which incorporate constraint diagrams, may be used to visualise action contracts, inc
those parts which can not be expressed, without significant textual annotations, with
diagrams. An appendix summarising the notation of constraint diagrams, post- and con
boxes is provided.

2 Unified Modelling Language
Constraint diagrams are intended to be used in conjunction with object-oriented mod
(OOM) notations. Therefore, in order to understand the notation, it helps to under
aspects of existing OOM notations. This section introduces the three most relevant dia
from UML, the emerging standard language for OOM. It also serves to introduce the
ning example.

2.1 Class and Object Diagrams

The main diagram in UML is the class diagram. Figure 1 shows the class diagram of

library system. The boxes represent classes and the edges, associations. The meanin
diagram can be explained in terms of the invariant constraints it places on the set of po
object configurations the model may enter.

Figure 1: Class diagram for library

Library

*

User

Publication Copy

Loan

Reservation

catalog

*

*
* *

*

*
*

*

*

0..1

0..1

avai lableTo1

1

1

1

1

registered

available

onHoldFor

held

library

1

col lect ion
2

Final version in IEE Proceedings Software, 145, 2-3

e part
alities
ed by

ration
led –

 model
ponds

ions on

it may

bels
ts
An object configuration of a model is a collection
of objects, connected by labelled links. This may
be visualised using object diagrams, such as that
in Figure 2. Each rectangle represents an object:
b01a4:Publication means that the object is of
class Publication and has been given the explicit

identity b01a4 in this state.1 The lines represent
explicit links between objects, where the links are
instances of associations. For example, in this
particular object configuration the links labelled
catalog from the library object indicate that navi-
gating the association catalog from that object
results in a set containing the two publications
depicted.

The class diagram says that only objects and
links, of the classes and with the labels appearing in the diagram, respectively, may b
of the configuration, links must connect objects of the appropriate class, and the cardin
of associations must be preserved. The cardinalities of an association are indicat
number ranges at either end, where * means many. Thus the association between Publication
and Copy indicates that a Publication object may be associated with zero to many Copy
objects, but that a Copy object must be associated with exactly one Publication object. You
will see that these rules are obeyed in Figure 2, so this depicts a valid object configu
for Figure 1 (though not necessarily a valid configuration for the system being model
see Section 3, “Constraint Diagrams”).

2.2 State Diagram

State diagrams in UML are based on Harel statecharts (Harel, 1987). They are used to
(in part) dynamic behaviour, specifically how the state of the system changes as it res
to events.

An example state diagram is given in Figure 3. It shows the states of an arbitrary Copy
object, and how that object responds to various events. In this case the events are act
the library system owning the copy.

The diagram indicates that the copy can be in one of two states, Available or Unavailable.
Those states are further partitioned into substates. Thus when a copy is available
either be on hold or on a shelf.

1. This particular identity has been chosen to make it clear that these identities have nothing to do with la
identifying attributes and association roles. They are purely there for helping to refer to particular objec
when explaining the diagram.

Figure 2: Object diagram

:Library

:User

:Reservation

:Copy
:Publication

b01a4:Publication

he ldcata log

cata log

reg is tered

col lect ion
onHo ldFo r
3

Final version in IEE Proceedings Software, 145, 2-3

n a
iented
l’s hi-
veral
both
e are
inali-

ore
ure 4

 UML
te and
nt pre-
guage,
Transitions run between states. They mean that
when the labelled event happens, the object
changes state from the source of the transition
to the target. Thus if the library associated
with the copy performs a return action and the
argument to that action is this object, then the
copy will move from the Out to the Returned
state. When the library performs the clearRe-
turns action it takes all the copies from the
return bin and, for each one, either puts it back
on the shelf or puts them on hold for a reserva-
tion. Actions with under-determined behav-
iour, such as for ClearReturns, are tolerated in
a specification model.

3 Constraint Diagrams
Kent (1997) introduces a new notation, called
constraint diagrams, which derives its name from an ability to express constraints o
model that can not be expressed using existing diagrammatic notations for object-or
and structured systems modelling. Constraint diagrams are an application of Hare
graphs (Harel, 1988) in the domain of specification of object-oriented systems, with se
important extensions: the ability to show set membership, and the ability to quantify
universally and existentially over set members, in addition to set containment. Thes
achieved in part by introducing notation for showing singletons (and sets of other card
ties).

The notation is summarised here, using the example in Figure 4 for illustration. A m
complete definition of the notation as it currently stands is given in the appendix. Fig

shows a constraint diagram expressing an invariant which can not be expressed with
diagrams (demonstrated in Kent, 1997), even enhanced with ideas for combining sta
class diagrams, such as in D’Souza (1992). The only other way to express the invaria
cisely is to annotate a class diagram with an expression of a textual, mathematical lan
such as OCL (UML Consortium, 1997).

Figure 4: Constraint diagram showing invariant

Figure 3: State diagram for Copy

Avai lable

Unavai lable

OnHold

OnShelf

Returned

Out

library.checkOut(u,self)

lib
ra

ry
.r

et
ur

n(
se

lf)

lib
ra

ry
.cl

ea
rR

et
ur

ns

library.clearReturns

User

Copy

col l

Active
OnShel f

avai lab leTo

OnHold

Reservat ion

avai lab leTo

Library

registered

col lect ion

onHo ldFor

x

y

z

4

Final version in IEE Proceedings Software, 145, 2-3

-

 doing

hus a
ol as a
dicated
ate dia-
d
f nota-

f
cial

 state

e
 this

e
n
 made
it is
ari-

tation
wing

d ele-
Informally, the invariant may be stated as follows:

For any library and any copy in that library’s collection, if the copy is on the shelf then it is
available for borrowing to all active users registered with the library. If, however, the copy is
on hold for a particular reservation that has been made, then it is only available to the regis
tered user that made the reservation.

We now proceed to explain how this invariant can be read from the diagram, and in so
introduce the main parts of the notation.

Before we begin, it should be noted that the notation is highly dependent on sets. T
class is treated as the set of objects of that class and is indicated by the same symb
class on a class diagram. A state is treated as the set of objects in that state, and is in
by the symbol used to represent states on a state diagram. Indeed, enclosing the st
gram of Figure 3 in a class box labelled Copy, and removing the transition arrows, woul
result in a constraint diagram. Other sets are introduced below. The other main piece o
tion are links, which correspond to associations on class diagrams.

The starting point for reading Figure 4 is x. This is an arbitrary singleton set (i.e., object) o
the class Library. The fact that it is a singleton is indicated by a small filled circle. Spe
symbols exist for sets of other cardinalities; they are detailed in the Appendix.

y is an arbitrary object of the set that is the intersection of the set of objects in the
OnShelf and the set coll, which, by the link from x, represents the collection of copies for x.
(coll could instead have been referred to using the navigation expression x.collection.) This is
indicated by placing y inside the projection of OnShelf, shown by using a dashed line for th
boundary. A projection is defined to be the intersection of the set being projected (in
case the state OnShelf) with the smallest set that contains it, in this case x.collection.

Similarly, z is an arbitrary Copy object which is OnHold and in the library’s collection. Thus
so far we have read the following part of the invariant:

For any library and any copy in that library’s collection, if the copy is on the shelf then …. If,
however, the copy is on hold for a particular reservation that had been made, then….

The rest of the invariant comes from following the links from y and z. Following from y, we
see that the users to which y is available is the projection of Active into the set x.registered,
i.e., all active users registered with the library. Thus we derive the constraint that y is availa-
ble to all active users registered with the library. Following the links from z, we see that the
set at the end of the availableTo link (z.availableTo) is a single object, and that this is th
same as if we had followed the onHoldFor link to the reservation it is on hold for, and the
the link to the user associated with the reservation. In our model this is the user who
the reservation. Hence z is only available to the (active) user who made the reservation
on hold for. It is a small step to rewrite the invariant in its final form from the partial inv
ant above and the constraints on y and z.

The equivalent of the invariant in OCL is:

Library
collection->forAll(c |

(c.oclIsKindOf(OnHold) implies c.availableTo = c.onHoldFor.user)
and

(c.oclIsKindOf(OnShelf) implies
c.availableTo = registered->select(oclIsKindOf(Active))))

where Library indicates that this is an invariant which applies to Library objects. x.oclIs-
KindOf(C) is true when the class of x is conformant with C. By treating states as dynamic
classes in UML, this is how we can state that an object is in a particular state. he full no
for constraint diagrams, summarised in the appendix, also includes symbols for sho
inheritance relationships between class, nesting of states and existentially quantifie
5

Final version in IEE Proceedings Software, 145, 2-3

cifica-
s pre-
ok &

te dia-
arate
CL.

ram of
ering
oves
at the

ated by

t can be
e

n

ent:
ments.

4 Action Contracts

4.1 State Diagrams aren’t enough

State diagrams are not sufficiently expressive to capture the complete behaviour spe
tions of actions. As with invariants, this has led to a range of proposals for more or les
cise textual languages to complement the visual notations. For example, Syntropy (Co
Daniels, 1994) proposes the use of a Z-like language for annotating transitions on sta
grams; Catalysis (D’Souza & Wills, 1996, 1997) proposes a language for writing sep
pre and post conditions on actions, and this is the position also adopted within UML/O

To understand why textual annotations are needed, consider again the state diag
Figure 3. Many things are missing from the specified behaviour. For example, consid
the checkOut action, the state diagram only states that the copy being checked out m
into the Out state. It doesn’t state that a new loan object is created, recording the fact th
copy is checked out to user u. Even providing another state diagram for Loan won’t resolve
the problem: the most that can be stated on such a diagram is that a loan object is cre
some library’s checkOut action, and when created is initialised to some state.

The additional behaviour may be written precisely as follows:

Library::checkOut(u:User, c:Copy)
pre

c.availableTo->includes(u) and collection->includes(c)
post
c LV QR ORQJHU DYDLODEOH IRU OHQGLQJ�

c.availableTo->isEmpty
7KH ORDQ RI c WR u LV UHFRUGHG DQG PDUNHG DV RQJRLQJ�

Loan.allInstances->exists(l | Loan.allInstances@pre->includes(l) and
l.oclIsKindOf(Ongoing) and l.user=u and l.copy=c)

l.oclIsKindOf(Ongoing) could be omitted, if a state diagram was also provided for Loan.
Library:: indicates that this is a fragment of specification for the checkOut action on Library
objects.

A state diagram can be regarded as just a means of visualising some aspects of wha
written textually. For the checkOut transition in Figure 3, the textual equivalent may b
derived as follows. First write the specification from the point of view of a Copy object:

Copy::library.checkOut(u:User, self)
pre

oclIsKindOf(Available)
post

oclIsKindOf(Out)

Then convert this to a specification on a Library object, by replacing self with the formal
argument of checkOut, noting that self is generally omitted from the start of navigatio
expressions (i.e. oclIsKindOf(...) is equivalent to self.oclIsKindOf(...)):

Library::checkOut(u:User, c:Copy)
pre

c.oclIsKindOf(Available)
post

c.oclIsKindOf(Out)

The full specification can then be obtained by composing this with the very first fragm

the pre- and post-conditions, respectively, are conjoined.1
6

Final version in IEE Proceedings Software, 145, 2-3

ns get
tion
ifica-
nsi-

 (the
lysis

cation,
ents

sible to
ay be
for an

ualise
 frag-

ich is

ant.
ay be
(see

 pre-

eters
res the

erived
In Figure 3 there is only one transition labelled checkOut, so this approach is equivalent to
adding the annotations directly to the state diagram, as in Syntropy, where pre conditio
re-termed guards. If there are many transitions with the same label, then some indica
must be given as to which fragment of specification should be composed with the spec
tion derived from which transition, where a fragment could be combined with many tra
tions. Syntropy allows a specification fragment to be combined with a single transition
transition is annotated) or to all transitions (the specification is written separately). Cata
proposes that compositions should be written explicitly.

To summarise, state diagrams can only be used to visualise part of an action specifi
the rest must be written textually. It is largely immaterial whether these textual fragm
appear as annotations on the state diagram or are written separately. It is also pos
write the part of the specification contributed by a state diagram textually, and this m
composed with any other fragments of specification to produce the complete contract
action.

In the remainder of this section we show how constraint diagrams may be used to vis
any kind of action contract, whether visualised by a state diagram or not and whether a
ment or a complete specification.

4.2 Pre-conditions

The pre-condition of an action contract is visualised by a single constraint diagram, wh
little different from visualising invariants. There are two additions to the notation:

• An icon for action arguments. The particular icon chosen is, in a sense, irrelev
We have chosen a square, though realise that a different icon (e.g. a 3D one) m
more appropriate, especially if we were able to draw constraint diagram pairs
below) in true 3D.

• A labelled arrow targeted on a particular object, indicating the action to whose
condition the diagram contributes.

The notation is illustrated by the pre-condition constraint diagram for checkOut in Figure 5,
which visualises the textual pre-condition given in the previous section. The two param
to the action are the copy and user indicated by the square icons. The diagram requi
copy to be available and the user to be in the set of users that the copy is available to.

1. Another form of action composition is what has been dubbed in d’Souza & Wills angelic composition. Here
pre-conditions are disjoined and the post-condition takes the form (pre1 implies post1) and (pre2 implies post2).
Angelic composition is used e.g. when deriving the specification of an action by composing fragments d
from different transitions labelled by that action in the state diagram of any one particular class.

Figure 5: Pre-condition of checkOut

Library

checkout

User

Copy

Available

collection

availableTo
7

Final version in IEE Proceedings Software, 145, 2-3

 or pre
uired.

f a
t is
 sets.

 one
clut-
scopic

 how
king it

ram,

y ,
argu-
hese
t same
 the
4.3 Post-conditions: Post-Box

A post-condition is expressed using two constraint diagrams, one to refer to the before
state and one to refer to the after or post state. Two additional pieces of notation are req

• Lifelines which are used to link sets between the two diagrams. The meaning o
lifeline is that the two sets so connected contain exactly the same objects. Tha
the line shows the life of a set objects as it changes its relationships with other

• A symbol (here a) to show the creation objects.

As discussed in Gil and Kent (1998), a 2D view of the constraint diagram pair, e.g. with
on top of the other, can become very cluttered with the addition of lifelines. This visual
ter is reduced if the diagrams are rendered in 3D, or, as is done in this paper, a stereo
projection of the true 3D image. Essentially the third dimension indicates more clearly
to conceptually break up the diagram into separate units of comprehension, hence ma
easier to comprehend as a whole.

An example of a post-box is given in Figure 6. Focusing on the bottom constraint diag

we see that the result of the action is to create a single new loan object, indicated b
which is in the Ongoing state. This is associated with the user and the copy provided as
ments to the action; we know this by the lifelines connecting the objects involved in t
associations to the objects supplied as arguments in the top constraint diagram. Tha
copy object goes into the Out state and thus is not available to any users, as indicated by

Figure 6: Post-box for checkOut

Loan
User

Copy

Copy

User

Library

checkOut

Ongoing

Out

availableTo
8

Final version in IEE Proceedings Software, 145, 2-3

ulting
ions

 the
des
iven
 con-

When

ber of
te of the
arate
ses on

This is
 is per-
rectly
,
availableTo link which targeted on an empty set.1

4.4 Combining pre & post: Contract-Box

It is possible to overlay the pre-condition constraint diagram on top of a post-box, res
in a contract-box. In a tool, colours could be used to distinguish between the contribut
made by the different diagrams. The contract-box for checkOut is shown in Figure 7.

When constructing post & contract boxes from scratch (i.e. without first working out
conditions in OCL) it is likely that the developer will come up with a post box that inclu
information that would be redundant in a textual specification of the post-condition, g
the pre-condition. For example, Figure 6 appears slightly odd as there is seemingly no
nection between the arguments and the library object on which the action is invoked.
from scratch it is far more likely that the developer would draw Figure 7.

So what is the value of post boxes. Consider the situation when an action has a num
cases to its post condition, where each case depends on the arguments and the sta
object at the time at which the action is invoked. In that situation one would draw sep
post-boxes for each case, as it would be impossible, or at best very hard, to show all ca

1. This would be redundant if there was already an invariant stating that a copy that is out is unavailable.
based on the assumption that the specifications assume an implicit frame rule that, provided the action
formed in isolation, nothing changes unless changed directly by the post-condition of the action, or indi
by that post-condition in order to preserve invariants. Thus we adopt a ‘minimal specification’ approach
where we specify exactly what changes and no more.

Figure 7: Contract-box for checkOut

Loan
User

Copy

Copy

User

Library

checkOut

Ongoing

Out

Available

avai lableTo

col lect ion
avai lableTo
9

Final version in IEE Proceedings Software, 145, 2-3

 be a
dition.
he pre-
 out

ion.

ther we
hould

 con-
 object.

ssion
r con-
bel is

from
y, are

tate in

s not
 would

tlined
 dia-
ate the

riving
ntract
s for

ts not
 sequel

t-con-
ce is

 put on
 many
r and
e allo-

copies,
viously
What
cording
a single diagram. Separately one would draw a pre-condition diagram, which would
representation of the weakest pre-condition that would cover all cases in the post-con
Whether or not the post boxes were already contract boxes (i.e. already incorporated t
condition information) would be immaterial in this case. One would still wish to separate
the pre-condition information in a separate diagram, to reduce the possibility of confus

So the real issue is whether one has a separate diagram for the pre condition, not whe
show the pre-condition information on the post box. In general, we think the answer s
be yes.

4.5 State Diagrams and Contract Boxes

Transitions on state diagrams are projections from contract boxes. They would be
structed as follows. Focus on the objects that change state, in this case a single copy
For each of these objects, draw a transition on the Copy state diagram with a single transition
labelled with the name of the action being performed, preceded by a navigation expre
which locates the object on which the action is invoked with respect to the object unde
sideration, and with arguments, which are also similarly located. In this case the la
library.checkOut(u,self): the action being performed is checkOut on the library object
obtained by navigating the library link (same as backwards down the collection link)
the copy object under consideration; the arguments, from the point of view of the cop
some arbitrary user and the copy itself, which is labelled self. The source of the transition is
the state in which the copy object appears on the top diagram, and the target is the s
which it appears in the bottom diagram.

Rather than visualise the complete specification of checkOut using a single constraint dia-
gram, we could have used a constraint diagram to visualise only that part which i
already visualised through the state diagram. In which case all sets representing states
be removed from Figure 7. Composition of the two specifications could be done as ou
earlier by deriving the textual specifications from the constraint diagrams and state
grams, and then composing those. However, then it might not be so clear how to gener
visualisation of the complete specification (i.e., Figure 7).

An alternative approach would be to bypass the textual specification altogether, by de
contract boxes from the state diagram transitions, then composing those with the co
box representing the additional component of specification. This requires a calculu
composing constraint diagrams and contract boxes, which remains to be worked out.

The use of contract-boxes for additive specification, i.e. only to express those aspec
already expressed by the state diagram, is not always possible as the example in the
illustrates.

4.6 Referring to the pre state

Another common feature of precise action contracts is the use of an operator in the pos
dition to enable reference to elements of the pre state. In post-boxes this referen
achieved by the lifelines. For example, imagine a clearReturns action on the library, which is
used to allocate copies that have been returned either to go back on the shelf or to be
hold for a reservation that has been made for the appropriate publication. There are
ways of performing such an allocation. For example, suppose three copies of “Wa
Peace” have been returned and there are two reservations for this book. How does on
cate copies to fulfil the reservations? In order to spread wear and tear across different
the allocation might be done based on the number of times the copies have been pre
loaned out; or it might be done on the basis of which comes first out of the return bin.
if there are more reservations than there are copies returned? Are copies allocated ac
10

Final version in IEE Proceedings Software, 145, 2-3

isions
p level
opies

raint
idera-

y (i.e.,
m rep-
helf and
to oldest reservation, or is there some other priority system in place? Whilst these dec
have to be made at some point, it is probably not a good idea to make them at the to
specification. Instead, we just ensure that, for any publication, the correct number of c
are put on hold and the correct number are put on the shelf.

The detailed specification for this post-condition is given by Figure 8. In the top const
diagram, the sets of copies and reservations of interest for the publication under cons

tion, namely those copies returned and those reservations waiting to be allocated a cop
pending), are identified. Lifelines are used to take these sets into the constraint diagra
resenting the after state, where the copies are separated between those put on the s
those put on hold; similarly for the reservations.

Textually, the lifelines correspond to the use of @pre in OCL, as in the following specifica-
tion fragment derived from this post-box.

catalog@pre->forAll(p |
((p.reservations->select(oclIsKindOf(Pending)))@pre

->select(oclIsKindOf(Waiting)))->size
= (p.copies->select(oclIsKindOf(Returned)))@pre->size.

min((p.reservations->select(oclIsKindOf(Pending)))@pre->size)
and ((p.reservations->select(oclIsKindOf(Pending)))@pre

->select(oclIsKindOf(Waiting)))
->forAll(r1 | ((p.reservations->select(oclIsKindOf(Pending)))@pre

Figure 8: Post-box for clearReturns

Library

Publication

Reservation

Copy

Copy Reservation

clearReturns

Waiting

min(p,q)

qp

OnHold
held

held

held

catalog

OnShelf Pending

Pending

Returned
11

Final version in IEE Proceedings Software, 145, 2-3

erva-

ns and
simul-
aiting

opies
gram
e and

 possi-
itions

ondi-
ticular
eci-
ies.
state

 thor-
ems to
gnised
 is an
get it

E tool

nota-

ndustry
 has
->select(oclIsKindOf(Waiting)))
->forAll(r2 | not r1 = r2 implies not r1.held = r2.held))

and (p.reservations->select(oclIsKindOf(Pending)))@pre.held =
(p.copies->select(oclIsKindOf(Returned)))@pre

and (p.reservations->select(oclIsKindOf(Pending)))@pre –
(p.reservations->select(oclIsKindOf(Pending)))@pre

->select(oclIsKindOf(Waiting))
= (p.reservations->select(oclIsKindOf(Pending)))@pre

->select(oclIsKindOf(Pending))
and (p.copies->select(oclIsKindOf(Returned)))@pre –

(p.copies->select(oclIsKindOf(Returned)))@pre
->select(oclIsKindOf(OnHold))

= (p.copies->select(oclIsKindOf(Returned)))@pre
->select(oclIsKindOf(OnShelf))

)

4.7 Under-determined Specification

The detail in the bottom constraint diagram in Figure 8, shows that the number of Waiting
reservations, with copies waiting to be collected, is the smallest of the number of res
tions that were originally pending (q) and the number of copies that were returned (p) for the
publication under consideration. The links between the Copy sets and Reservation sets,
ensure that there is a 1-1 and onto relationship between the set of waiting reservatio
the set of copies on hold, to ensure that a copy is not put on hold for two reservations
taneously and that the only copies put on hold are those that are put on hold for a w
reservation. This also ensures that the cardinalities of the two sets are equal.

This specification is under-determined in the sense that it does not say exactly which c
are put on hold or which reservations move from pending to waiting. On a state dia
such under-determinism is visualised by showing two transitions from the same stat
with the same label targeted on different states, as is the case for clearReturns in Figure 3.
Furthermore, the use of post/contract-boxes as a means of additive specification is not
ble in this case. This is typified by, for example, any attempt to add guards to the trans
in the state diagram. For example, on the transition targeted on the OnHold state, a guard
would be required stating the conditions under which the copy is put on hold. These c
tions can not be specified, because the specification is under-determined – for any par
copy; it is not possible in general to predict whether it will be put on hold or not. The sp
fication can only be written in terms of the sets of copies involved, not individual cop
This highlights the power of constraint diagrams, which work with sets of objects, over
diagrams, which can only express properties of individual objects.

5 Applicability and Limitations
Traditionally, notations and methods in software engineering have not been subject to
ough experimentation to evaluate their effectiveness. The success of a language se
depend far more on factors such as how well it is marketed, whether it is part of a reco
standard, and so on. Nevertheless, if we can give solid evidence that the notation
improvement on current techniques, then that will certainly help support any effort to
recognised as part of an existing standard, to persuade developers to use it and CAS
vendors to support it in their tools.

To date there has been no formal attempt to evaluate the applicability or utility of the
tion. However we do have some anecdotal evidence.

The notation has been presented a few times as (a small) part of 1 week courses to i
on visual modelling with UML. OCL is also introduced in these courses. The notation
12

Final version in IEE Proceedings Software, 145, 2-3

 use it
hey
. We
 The
straint

l dia-
iagram
8) is

om-
lling

e can
 in e.g
have

 in some
this is
s to a
 it at

a. An
 Kent

at sat-

ets in
n of a

 an

press
 with
ir are
 writ-
 corre-
 the
tarting
ond to

ip with
irable

agrams
nclut-

nt with

d this
exam-
been received with interest by some participants but not by others. The former tend to
in an informal way to help work out OCL. They don’t always use it correctly, but then t
are only given about a half hour introduction, compared with a half day or so for OCL
have also used the notation to explain OCL specifications, without first introducing it.
fact that this works at all indicates that concepts are more directly expressed in the con
diagram notation than in OCL.

Interestingly, we have noticed that in some books on object oriented modelling informa
grams are used to explain concepts which are similar to aspects of the constraint d
notation, again reinforcing the idea that this is a more intuitive notation. Odell (199
probably the best example of this.

Consultants to industry in object-oriented modelling (notably Alistair Cockburn) have c
municated to us that they think the notation is a useful addition to their set of mode
techniques.

We make no general claims at this stage about the expressiveness of the notation. W
show, by example, that there are some constraints that can not be expressed visually
UML, but which can be expressed using constraint diagrams. In the modelling we
done, we have yet to come across a constraint that it has not been possible to express
way, especially since we allow ourselves to use multiple diagrams. One exception to
when it proves necessary to write meta-level constraints, which one is able to expres
limited extent in OCL. Our solution to this is not to extend the notation, but instead use
the meta-level as well, and provide a general way of connecting meta within non-met
application of this approach to modelling design patterns is described in Lauder and
(1998).

The notation can also be unwieldy when it comes to selecting a subset of elements th
isfy a certain condition: in OCL S->select(x | P(x)) is the set of elements in S for which P
holds true. Although it always seems possible to express constraints involving such s
some reasonably natural way (e.g. by introducing states to act as filters – the projectio
state A into a set S is all the elements in S that are in state A), we are toying with the idea of
introducing the concept of selection into the notation. We will only do this if we can find
intuitive, visual way of representing this concept.

We are aware that diagrams can become cluttered and difficult to read if they try to ex
too much. In particular, it can be hard to work out where to begin reading a diagram
many quantified variables and there is opportunity for infinite recursion (e.g. when the
loops in the graph of arrows). Recent work on the semantics, which is currently being
ten up, indicates that these problems are resolvable, and nearly always the solution
sponds to one’s intuition. For example, there is an algorithm for discovering loops in
graph of arrows, and recursion can be resolved by reading the diagram many times, s
at a different point in the loop each time. The semantics so obtained seems to corresp
one’s intuitive reading had you not known to do this.

Because every element on a diagram has a geometric, hence semantic, relationsh
every other element, forcing too many constraints into one diagram can lead to undes
emergent constraints. These potential problems can be counteracted by using many di
to express constraints with the aim of keeping each diagram reasonably simple and u
tered. The drawback is that it is then much harder to check that diagrams are consiste
one another (a straight visual check is no longer possible).

6 Conclusions
The paper has given a brief tour of the constraint diagram notation, then incorporate
into post and contract boxes which visualise action contracts. The paper showed (by
13

Final version in IEE Proceedings Software, 145, 2-3

 is con-

l For-
ation’s

rk is
some
 This
ulting

 the
his to

grity
 dia-
) from
ram-

how
which
ies of
 3D
ope is

port,
ming

 many
ASE

han it
 is to
 when
pply-
i-

isual

ns of
grant

on of

sity

ity,
ple) that the notation was more expressive than state diagrams. It is hoped the reader
vinced that intuitiveness has not been sacrificed for expressiveness.

The notation is only at the first stage of its development, to be regarded as a true Visua
malism, in Harel’s sense. The next stage requires semantics work to ensure the not
integrity and to underpin the provision of CASE tool support.

For the semantics we are mapping constraint diagrams into logical formulae. This wo
currently being written up – contact the authors for details. So far it has uncovered
potential ambiguities in the notation, but nothing that it has not been possible to fix.
paper uses the updated notation (from that originally presented in Kent (1997)) res
from the semantics work.

The semantics will lay a foundation on top of which we can explore how expressive
notation is. One possibility here is to give the same semantics to UML/OCL and use t
explore the expressiveness of constraint diagrams in comparison to OCL.

We envisage the semantics work contributing to the development of tools for inte
checking of diagrams, diagram composition, model simulation (visualised through the
grams), generation of specifications (as constraint diagrams and post/contract-boxes
object diagrams and vice-versa, etc. In this, we hope to build on existing work in diag
matic reasoning (e.g. Allwein and Barwise, 1996).

Work is progressing on integrating the notation better with UML. Specifically, we see
constraint diagrams could be integrated with sequence and collaboration diagrams,
would allow these to be used in a more generic way. An offshoot of this effort is a ser
3D notations for visualising models (Gil & Kent, 1998), which, for example, includes a
sequence diagram integrating collaboration, sequence and constraint diagrams. The h
that this will lead to a fully integrated notation that, given appropriate CASE tool sup
would allow a model to be visualised in one 3D diagram that could be explored by zoo
and projection capability.

We are keen to evaluate the notation for its intuitiveness, usefulness, etc. There are
variables that may affect the results of such experiments. In particular, without decent C
tool support there is always an argument that it takes more time to draw a diagram t
does to write text. Initially, we are likely to focus on experiments comparing how easy it
read the notation as opposed to writing it, and or looking at level of accuracy achieved
producing specifications with/without constraint diagrams. We are also investigating a
ing/adapting the representation design benchmarks of Yang et. al. 1997, to assess the cogn
tive benefits and costs of the notation in comparison with other textual and v
alternatives.

Acknowledgements
Thanks to John Howse and Anthony Lauder for many comments and suggestio
improvements to the notation. Stuart Kent is partially funded by the UK EPSRC under
number GR/K67304.

References

Abrial, J-R., Schuman, S. and Meyer, B. A Specification Language. On the Constructi
Programs, McNaughten R. and McKeag R. (eds.), Cambridge University Press, 1980.

Allwein, G. and Barwise, J. (eds) Logical Reasoning with Diagrams. Oxford Univer
Press, 1996.

Booch, G. Object-0riented Design with Applications. Benjamin Cummings, Redwood C
California, 1991.
14

Final version in IEE Proceedings Software, 145, 2-3

with

 al.,

lysis
le at

 Pro-

EEE

inger-

lling

 and

8.

 Pro-

990.

s. of

res.

nce

odel-

rom

://

s: A
ages
Cook, S. and Daniels, J. Designing Object Systems: Object-Oriented Modelling
Syntropy. Prentice Hall, 1994.

D'Souza, D. & Wills, A. Extending Fusion: practical rigor and refinement. R. Malan et
OO Development at Work, Prentice Hall, 1996.

D'Souza, D. and Wills, A. Objects, Components and Frameworks with UML: The Cata
Approach. Addison-Wesley, to appear 1998. Draft and other related material availab
http://www.trireme.com/catalysis.

D'Souza, D. Education and Training: Teacher! Teacher!. Journal of Object-Oriented
gramming 5(2):12-17, 1992.

Fowler, M. with Scott, K. UML Distilled. Addison-Wesley, 1997.

Gil, Y. and Kent, S. Three Dimensional Software Modelling. Proceedings of ICSE98, I
Press, April 1998.

Guttag, J. and Horning, J. Larch: Languages and Tools for Formal Specifications. Spr
Verlag, 1993.

Hamie, A., Howse, J. and Kent, S. Navigation Expressions in Object-Oriented Mode
Notations. Proceedings of FASE98 in ETAPS98, Springer Verlag, April 1998.

Hammer, E. and Danner, N. Towards a Model Theory of Venn Diagrams. In Allwein G.
Barwise J., Logical Reasoning with Diagrams, Oxford University Press, 1996.

Harel, D. On Visual Formalisms. Communications of the ACM, 31(5)514-530, May 198

Harel, D. Statecharts: A Visual Formalism for Complex Systems. Science of Computer
gramming, 8:231-274, 1987.

Jones, C. Systematic Software Development using VDM (2nd edition). Prentice Hall, 1

Kent, S. Constraint Diagrams: Visualising Invariants in Object-Oriented Models. Proc
OOPSLA97, ACM Press, 1997.

Kent, S., Hamie, A., Howse, J., Civello, F. and Mitchell, R. Semantics Through Pictu
ECOOP'97 workshop reader, LNCS series, Springer Verlag, to appear 1998.

Odell, J. Advanced Object-Oriented Analysis & Design Using UML, SIGS Refere
Library, Cambridge University Press.

Rumbaugh, J., Blaha, M., Premerali, W., Eddy, F. and Lorensen, W. Object-Oriented M
ling and Design. Prentice Hall, 1991.

UML Consortium. Object Constraint Language Specification Version 1.1. Available f
http://www.rational.com, 1997.

UML Consortium. The Unified Modeling Language Version 1.1. Available from http
www.rational.com, 1997.

Yang S., Burnett M., DeKoven E., and Zloof M., Representation Design Benchmark
Design-Time Aid for VPL Navigable Static Representations, Journal of Visual Langu
and Computing, Oct/Dec 1997.
15

Final version in IEE Proceedings Software, 145, 2-3
Appendix – Summary of Notation

Constraint Diagrams

Normal Sets

A set with one element, known as a singleton set.

A set with 0..1 elements, known as an optional set.

A set with 0, 1 or more elements.

A set with n elements; n may be any numerical expression.

Optionally sets can be explicitly labeled. This can be useful for referring to
them in accompanying explanations, or when mapping a constraint diagram to
a math expression.

 Standard Venn diagram notation may be used to show relationships between sets.

Given Sets

 or

A given set, indicated by a centred Capital-
ised label at the top or middle of the set.
This is one that is assumed to be pre-
defined. In mapping a constraint diagram
to a logical formula, the given sets would
be free variables.

 or

A given set corresponding to the set of
objects of the named class Class. The icon
has been chosen to be compatible with
UML.

 or
A given set corresponding to the set of
objects in state State. The icon has been
chosen to be compatible with UML.

Venn diagrams can be used to relate classes
and states. C1 (S1) is a subclass(state) of
C2 (S2). C1 intersects with the two states
to indicate that C1 objects may enter states
S1 and S2.

Navigation

The set at the target of the arrow is the union of the sets
reached by navigating the association labeled role from
each element in the set at the source.

The value of the association labelled role to Class,
when navigated from the source set, is the empty set.

n

s

MySet
My Set

Class

Class

State
State

C2

S2

S1
C1

UROH

Class

role
16

Final version in IEE Proceedings Software, 145, 2-3

a

e set
y
en
Regions

A region is a contiguous area bounded by a closed contour. The closed contour will be made up
of sections from set boundaries. The area within a singleton or optional set is not a region.
Regions denote sets calculated in the obvious way.

Grey fill indicates that there are no elements in that region of the
set. In this case this means that the two subsets partition the con-
taining set. In those cases where grey fill is difficult to achieve
(e.g., by hand or with some drawing tools), a simple cross in the
area may be used as an alternative.

Projection

 is equivalent to the intersection of sets in

Sets other than states can also be projected. The only requirement is a label to identify the set
being projected. In practice this means that it must either be a given set, or a set with a label on
different diagram.

Quantification

A set which is not given or at the target of an arrow is assumed to be quantified. If the icon of th
corresponds to that of a normal set then it is assumed to be existentially quantified. A universall
quantified set is shown by use of a *. Although we allow quantified variables to be sets, more oft
than not they refer to single elements. Only this case has been illustrated below.

Translation to OCL:

r->exists(x | r->exists(y | not x=y ...)

Translation to OCL:

r->forAll(x | r->forAll(y | not x=y ...)

s

State
State

s

r

r

17

Final version in IEE Proceedings Software, 145, 2-3

-
ust
an
.

 is
as
lly
Post & Contract Boxes

Scaffolds & elastic

A scaffold, formed by connecting set contours with struts, is a set whose
elements may be drawn from any of the sets intersecting with the con
tours. The contours in a scaffold may not themselves intersect, and m
all show the same cardinality. Typically a scaffold is used to show that
element may be drawn from any of a number of disconnected regions
The diagram uses a scaffold to show quantification over three discon-
nected regions.

Elastic between two sets indicates that the two sets may intersect. This
most useful for showing that two singletons or optionals may intersect,
this can’t be shown in any other way. The diagram shows two universa
quantified singletons which may or may not be the same.

Lifelines

Lifelines connect sets in the diagrams at the top and bottom of the boxes. These indicate that
the sets connected have exactly the same contents.

Operation invocation

action is invoked on the targeted object.

Action arguments

, , ,
Sets of different cardinality, which are arguments to actions.

New objects

Each of the following symbols represents a set of objects that did not exist in the previous
frame. The symbol differs depending on the cardinality of the set.

, , ,
Sets of different cardinality containing new objects.

action

n

n

18

	2.1 Class and Object Diagrams
	Figure 1: Class diagram for library
	Figure 2: Object diagram

	2.2 State Diagram
	Figure 3: State diagram for Copy
	Figure 4: Constraint diagram showing invariant

	4.1 State Diagrams aren’t enough
	4.2 Pre-conditions
	Figure 5: Pre-condition of checkOut

	4.3 Post-conditions: Post-Box
	Figure 6: Post-box for checkOut

	4.4 Combining pre & post: Contract-Box
	Figure 7: Contract-box for checkOut

	4.5 State Diagrams and Contract Boxes
	4.6 Referring to the pre state
	Figure 8: Post-box for clearReturns

	4.7 Under-determined Specification

