
Denotational Semantics for
Teaching Lazy Functional Programming

Olaf Chitil

Lehrstuhl für Informatik II, RWTH Aachen, Germany
chitil@informatik.rwth-aachen.de

http://www-i2.informatik.RWTH-Aachen.de/˜chitil

Text books explain the meaning of a functional program
concretely only by showing how an expression is evaluated.
Thus the idea that a functional program defines mathemat-
ical functions and that a function is a value is not imparted.

To give a concrete idea of a function as value, we repres-
ent it as a table of arguments and results (its graph):

(&&) False True
False False False
True False True

In general, such tables are infinite and the tables of multi-
argument functions with large domains and higher-order
functions are too complex to visualise even partially. Non-
etheless any function can easily be imagined as being such a
table.

With such tables we can establish by look up that for ex-
ample the value of the expression

even 6 && (4 + 2 > 7)

is False.
To determine the table described by a (recursive) function

definition, we have to evaluate the application of the func-
tion to some arguments. For evaluation we combine reduc-
tion with look up in tables for known functions and prim-
itive functions like (+). I claim that using such a mixture
of reduction and table look up is a natural way to under-
stand a program. Alternatively, we can construct the table
of a recursive function by table look up alone, if we start
with arguments that do not require recursive calls and con-
tinue such that we only require table entries that we have
already determined. For example, we determine the table of
the factorial function

fac n
| n == 0 = 1
| n > 0 = n * fac (n-1)

in the order fac 0, fac 1, fac 2, fac 3, . . .1

I believe that the classical comparison of evaluation
strategies is the best introduction to laziness / non-strictness.
The lazy evaluation strategy is vital for the efficiency of the
data-oriented programming style2 and it explains how infin-
ite data structures can be handled by the computer. How-
ever, it is important not to give students the impression that

1compare with: Simon Thompson: Haskell: The Craft of Functional Program-
ming, 2nd edition, Addison-Wesley, 1999, Section 4.2.

2John Hughes: Why Functional Programming Matters, Computer Journal
32(2), 1989, pp. 98–107.

laziness means giving up the denotational point of view. In
practise, the lazy reduction sequence of an expression is too
complex for a human to follow. On the other hand, functions
can easily be composed.

Whereas it is straightforward to extend tables to cover in-
finite data structures, our table for (&&) lacks an entry for
determining that the value of False && (1 == 1/0) is
False. Hence we introduce a third boolean value ⊥ which
represents undefinedness and complete the table as follows:

(&&) False True ⊥
False False False False
True False True ⊥
⊥ ⊥ ⊥ ⊥

For analogous reasons every type contains a value ⊥.
Moreover, projections like fst and head demonstrate why
⊥ may appear anywhere in an algebraic data structure and
thus gives rise to many partial values:

⊥ [] False:[] True:[] ⊥:[] False:⊥ . . .
head ⊥ ⊥ False True ⊥ False . . .

We can use these tables together with tables for null,
(||) and tail to construct the table of and:

and xs = null xs || (headxs && and(tailxs))

⊥ [] False:[] True:[] ⊥:[] False:⊥ . . .
and ⊥ True False True ⊥ False . . .

As an aside we note that we can also reduce expressions
which contain ⊥. In patterns ⊥ matches only variables and
the wild-card .

I taught several Haskell programming courses for second
year university students who are familiar with a (usually im-
perative) programming language. At the beginning of the
course I gave no definition of the meaning of Haskell pro-
grams but just pointed out the similarity to mathematical
definitions and appealed to the students’ intuition. Only
when I came to laziness I introduced reduction and reduction
strategies. Directly afterwards I explained the use of tables
and ⊥.

I believe that tables and ⊥ assist in understanding (lazy)
functional programs. They could also be used as a starting
point for a formal introduction to denotational semantics.

