
  Session 12a4 

 
0-7803-5643-8/99/$10.00 © 1999 IEEE November 10 - 13, 1999 San Juan, Puerto Rico 

29th ASEE/IEEE Frontiers in Education Conference 
12a4-1 

What are We Doing When We Teach Programming? 

Sally Fincher, Computing Laboratory, University of Kent at Canterbury, UK 
 
Abstract: The academic discipline of Computer Science is 
confounded by the practice of its curriculum. Uniquely, it 
prepares students for future study by teaching the 
fundamental construct of its practice – programming – 
before anything else. The disciplinary argument seems to 
run that if a student is not versed in the practicalities, then 
they cannot appreciate the underlying concepts of the 
discipline. This may be true. However, an analogous 
situation would be if it were thought necessary for 
architecture students to be taught bricklaying before they 
could appreciate the fundamentals of building design. This 
argument is (in similar fashion) clearly flawed when 
compared to endeavours such as the study of English 
Literature, which makes no claim (or attempt) to teach the 
practice of producing work before the study of the products 
of others’ work: similarly, academic philosophy is the study 
of philosophers, not the practice of thought. 

It is possible that this is an argument of disciplinary 
maturity – that all disciplines have passed through a similar 
phase. This paper will examine the emergent approaches 
currently being defined, all of which address the central 
concern of the teaching of programming and its relationship 
to the learning of Computer Science. It will examine: the 
“syntax-free” approach of Richard Bornat and Russel 
Shackelford, the “problem-solving” approach of David 
Barnes (et al), the “literacy” approach of Peter Juliff  and 
Owen Astrachan and the “computation-as-interaction” 
approach of Lynn Andrea Stein. These approaches will be 
discussed both in their own terms, and also placed in a 
preliminary taxonomic framework for the teaching of 
programming. 

Introduction 
Once upon a time, thirty or forty years ago, people learned to 
program computers because they needed the computer to do 
something for them. Typically these people were scientists, 
engineers and mathematicians. They learned the languages 
and techniques of programming for a specific purpose. Over 
time, from these people there emerged a new discipline of 
Computer Science and they became Computer Scientists. 

Traditionally programming has been taught as these 
scientists learned it, via syntax, through the vehicle of a 
single language. The limitations of this approach – that 
students get bogged down in the specifics of the chosen 
form, that (famously) they see programming as “fighting the 
compiler” – are frequently bemoaned and yet, as frequently, 
this is the approach that dominates undergraduate teaching. 
Very little attention has been paid to the rationale which 

informs the choice of why we teach the subject in a 
particular fashion. 

As Computer Science as an academic discipline has 
matured, programming remains as a central and 
distinguishing feature of the curriculum. However, 
programming is now taught as a process separate from 
purpose. We no longer teach programming in order to get 
the computer to do something, but as a transferable skill in 
its own right. With this change of disciplinary construct 
other conceptual models and methodologies for teaching 
programming have been explored and developed. This paper 
outlines some of these directions and surveys some of the 
approaches being taken. 

The “approaches” outlined here are my clusterings of 
examples of espoused (and therefore conscious) practice, 
from various sources in the literature and are chosen for their 
illustrative purposes. I do not include every example of the 
use of any give “approach”, and inevitably there will be 
better examples for some which I have missed. Equally, it is 
certain that there are other examples in the literature which 
could be clustered as “approaches” in a similar fashion.  

The “syntax-free” approach 
If teaching programming via the vehicle of any given 
language constrains the learning process unacceptably, 
teaching programming without language would seem to have 
the attraction of avoiding all these pitfalls. And yet, such an 
approach is also paradoxical. Trying to teach the practice-
based skills of programming without being able to 
demonstrate the practice sounds nonsensical. Nevertheless, 
teaching programming as a skill separate from coding is one 
that occurs often and has been instantiated in practice at 
several institutions. 

However, whilst recognising the same core of the 
central problem, the approaches are often presented in terms 
of different rationales. For example, Richard Bornat in 
Programming from First Principles [1] describes the 
approach used by him (and his colleagues) at Queen Mary 
College* of the University of London as “the result of a six 
year experiment in undergraduate teaching”. His rationale is 
“The ‘damage’ caused by early exposure to a particular code 
(BASIC is often singled out in this regard) is real enough but 
is not caused by the evil properties of any particular 
notation; it is the delusion that to lean a code is to learn to 
program which is truly harmful” [1, p.xvi].  

The book which espouses and encapsulates this 
approach is divided into five parts: Basic Concepts, 
                                                        
* Now, due to a merger, Queen Mary and Westfield College 



  Session 12a4 

 
0-7803-5643-8/99/$10.00 © 1999 IEEE November 10 - 13, 1999 San Juan, Puerto Rico 

29th ASEE/IEEE Frontiers in Education Conference 
12a4-2 

Structured Instructions, Some Extended Examples, 
Structures of Values and Transcribing into other Codes – 
reflecting issues of importance when using the imperative 
languages popular at the time (Pascal, COBOL, Algol-68, 
Ada etc.). The notation used for the examples is based on 
ISWIM (If you See What I Mean) which is introduced 
gradually, throughout the text, as needed. All the exercises 
in the book can be done with pencil-and-paper; to use them 
in an electronic environment requires translation into a 
programming language. 

A second classic implementation of this approach is 
described by Russel Shackelford from Georgia Institute of 
Technology [2]. The rationale for this introduction is slightly 
different from the earlier example. Although the course was 
designed for first-year undergraduate computer science 
students, in this case, they were not the only audience. The 
author says “We believe that all well-educated college 
students should be exposed to the basic tenets of algorithmic 
thinking. The algorithm-oriented agenda found in this book 
is not for CS-majors only. It is offered as ‘foundational 
twenty-first century knowledge’ for a broad population of 
students from across the family of academic citizens” and 
“To this end, our approach has three key goals: providing an 
introduction to the field, providing conceptual content and 
software skills and preparing students for programming”. 
This course (Introduction to Computing) is now a core, 
required course for all undergraduates at Georgia Tech. For 
CS-majors is it followed in the second semester by 
“Introduction to Programming” which uses a given 
programming language.  

The book is structured in three parts: the Computing 
Perspective, The Algorithm Toolkit and The Limits of 
Computing, the accompanying (lab-based part) of the course 
in five modules: Communications Tools and Facilities, Data 
Processing Tools and Facilities, Problem-Solving, a Taste of 
Programming and Lab Skills Evaluation. Shackelford uses a 
pseudocode as the teaching vehicle. This is rather closer to 
an actual programming language than ISWIM. It is called 
RUSCAL and “features the important ideas embodied in 
various languages such as Java, C++, Pascal and Fortran” [2, 
p.56]. This is supplemented (at least at Georgia Tech) with a 
system which allows fragments of this code to be compiled 
and run, sometimes against test suites, and electronically 
submitted as assignments. 

The “Literacy” approach 
Although somewhat differently implemented, the impulse to 
abstract the skill of programming away from the tightly 
associated skill of expressing a program in a code (and 
coding environment) is a common feature of both the 
syntax-free and literacy approaches. 

It might be argued that this "literacy" approach, too, is 
an obvious one, given the nature of the problem. Almost 
every child in the world (and certainly every child who 
comes into tertiary-level education) has learned at least one 

totally abstract notation for the purposes of conveying 
meaning – the skills of the alphabet, of reading and writing. 
It is not such a far-fetched idea to assume that this process 
could be modelled for learning programming. However, a 
considerable problem in this area is that most literacy 
learning takes place in very young children. The learning 
patterns, styles and motivations (not to mention the physical 
structure of the brain) are very different in early life from 
later†.  

Given this, and accepting that we cannot teach material 
in the same ways (using the same methods) that we can with 
children, the question then is, what are the important features 
in the learning process by which we achieve literacy? These 
have concentrated on aspects of achievablity, motivation, 
relevance and what I term “the use of sharp tools”.  

Achievability and motivation are important because 
when children learn to read they do not (in general)  know 
how to learn, what to learn or why what they are learning 
might be useful. Motivation in this sort of situation must, of 
necessity,  be extrinsic, and supplied by the teacher. 

The most illustrative example is that of Peter Juliff, in 
describing his approach to teaching programming to non-CS 
students [3]. He describes the implementation of the 
approach in a course to Business students at Deakin 
University which covers encompasses “A detailed study of 
algorithm design; multi-level decomposition; data typing 
and scope rules; logic constructs enabling structured 
programming and information hiding; abstract data 
structures and recursive processing techniques.” Although 
this is the material to be covered, this description is not 
revealed to the students as they would see these aims as 
neither achievable nor relevant. These notions (of 
achievability and relevance) are reinforced through the 
course by ensuring that a student can achieve a (small) 
working application within a 2 hour laboratory session 
(which can then be built on and enhanced in later sessions) 
and setting problems and projects which result in software 
which resembles the look-and-feel of commercial 
applications they encounter in the “real world”. Just as the 
majority of children are not motivated by learning rules of 
grammar, so the majority of students are not motivated by 
the construction and manipulation of complex internal data 
structures that involve little or no user interaction. 

The third leg upon which this approach stands, in 
contrast to the syntax-free approach, is that of using a real, 
current, programming language throughout. Rather than 
teaching a quite separate notation (or a pseudocode) the 

                                                        
† There has been some interest in the parallel between 

acquiring a second language and the learning of 
programming, but this has manifested itself much less in the 
area of introductory programming. Some of the techniques 
for testing comprehension have, however, been transferred 
to the new domain. 
 



  Session 12a4 

 
0-7803-5643-8/99/$10.00 © 1999 IEEE November 10 - 13, 1999 San Juan, Puerto Rico 

29th ASEE/IEEE Frontiers in Education Conference 
12a4-3 

students are given an actual language as their tool. This has 
obvious relevance for the students but also embodies the 
idea that learning to program involves the use of real tools 
and no service is done by making the students go through an 
intermediary step. In this, it could be seen to stand in 
opposition to the syntax-free approach described above.  

A variation of this approach (rarely explicitly codified) 
is that students of programming (just like students who are 
learning to read) are capable of reading much more complex 
works than they are themselves able to produce. By 
presenting them with a structured series of good examples, 
the argument is that they will learn the desirable features of a 
good program, they will learn good style. This notion has 
been a feature of the “apprenticeship” model of learning 
described by Owen Astrachan which he utilises at Duke 
University. “This approach follows an apprenticeship model 
of learning, where students begin by reading, studying, and 
extending programs written by experienced and expert 
programmers”[4]. Astrachan’s “applied apprenticeship” also 
has an emphasis on real-world applications and motivations 
“ Under our applied approach, (1) students are able to learn 
from interesting real-world examples, (2) the synthesis of 
different programming constructs is supported using 
incremental examples, and (3) good design is stressed via 
code and concept reuse.” 

Perhaps, the central feature of this approach is that 
learning to program is a new (and difficult) skill. Students 
need their learning to be supported in such environments, 
and the supports this approach provides are those which 
mimic the acquisition of the skills of reading and writing 
prose. In this way, this approach is rather closer to the 
“traditional” model, of teaching something (int his case 
programming) which students can immediately use to 
achieve some other goal. “At the end of a day at 
kindergarten, youngsters like to have a painting to take home 
to show the family and to have it displayed on the door of 
the refrigerator. What makes us think that undergraduates 
are any different?” [3] In this sense it is a more practical, 
teacher-oriented approach than the others described here, as 
its methodology transfers directly to the classroom. It echoes 
the formal apprenticeships of other traditions used in the 
teaching of many skills-based activities, from craft 
professionals to engineers. 

The “problem-solving” approach 
The phrase “problem-solving” appears as a very common 
short-hand encapsulation of what the non-coding skills of 
programming are. Often it is used in conjunction with 
phrases such as “analysis” and “design”. This is true to such 
an extent that there are books and even series of books with 
it in the title. For example, two published this year are 
Ada95 Problem Solving and Program Design [5] and 
Problem Solving and Program Design in C [6]. However, 
the approach they work on is not pedagogically very useful. 
Firstly they assume that problem-solving is what the student 

wants to do (when they may well be wanting to do 
something else – like learn C); secondly they do it via the 
medium of a single syntax (which brings back all the syntax-
based problems previously observed) and thirdly they 
assume that the student does not know how to problem-
solve. 

A more pedagogically-based approach based on 
problem-solving has been described by  Barnes et al [7]. 
Here they describe how programming tasks were re-
conceptualized for the students away from a coding exercise 
towards an activity requiring a separate and distinct skill set. 
They derive a simple cycle of activity –  Understand, 
Design, Write, Review – in part from previous work, 
influential in the field of mathematics [8]. This is then 
applied not only to programming tasks in a specific syntax, 
but across several courses and syntaxes (functional and 
imperative) and even to every-day material (that is, to things 
other than programming) with the intention of allowing the 
students to apprehend that problem solving is a distinct set 
of behaviours which can be applied to many areas. Their 
central concept is that problem-solving is a transferable skill, 
and one that can be presented (semi-) independently of 
domain. 

Computation as Interaction 
This approach is rather different from the others 

delineated so far, in that it has been described (and, 
presumably utilised) by only one author. Lynn Andrea Stein 
has defined a different approach to the teaching of 
programming over several articles [9,10].  Her approach has 
been influenced by a change in the paradigm underlying 
programming (and programming languages) and to the 
conditions and experiences of computing which students 
have before they come to be CS students.  

In terms of the paradigm shift, her approach is in 
response to the massively increased popularity of object-
orientation, where the world is modelled as a collection of 
objects which know certain things about each other and 
which communicate to get things done. This is 
fundamentally quite distinct from the stepwise 
decomposition of imperative and functional languages. 

In terms of “the world” her argument is that all 
twentieth-century students, from a very early age, experience 
computers as multi-threaded, GUI–driven devices (which 
she terms experiencing “computation as interaction”). Her 
argument (and approach) is that to present these same 
students (when they begin to study Computer Science) with 
a model of single-threaded problem-solving “the sequence of 
calculations required to get from a particular instance of the 
question to the corresponding instance of the answer” is 
cognitively inappropriate. it “doesn’t really correspond to 
the way that computation exists in the world at large”.  

The design of the course she uses (taken from [8]) 
reflects her intent: 

 



  Session 12a4 

 
0-7803-5643-8/99/$10.00 © 1999 IEEE November 10 - 13, 1999 San Juan, Puerto Rico 

29th ASEE/IEEE Frontiers in Education Conference 
12a4-4 

Class Sessions Laboratories 
Introduction to 
Interactive 
Programming  

Expressions and 
Statements  

Spirograph 
(Expressions and 
Statements)  

Objects and Classes Interfaces and 
Exceptions  

Nodes and 
Channels 
(Interactions)  

Self-Animating 
Objects  

Inheritance  Design Project  

Student Holiday  Object-Oriented 
Programming  

Balance (Classes)  

Dispatch 
Mechanisms  

Procedural 
Abstraction  

Calculator 
(Procedures)  

In-Class 
Examination  

Events Driven 
Programming and 
java.awt  

(Documentation 
Project)  

Columbus Day  Event Delegation 
(and more java.awt) 

Scribble (Events)  

Safety, Livenenss, 
and 
Synchronization  

Interfaces and 
Protocols: 
Composing 
Systems  

No Laboratory  

Push and Pull   
In-Class 
Examination  

Explicit 
Communication: 
java.io, java.net  

Cat and Mouse 
(Systems of 
Systems)  

Veteran’s Day  Servers  
Arbitration or RMI  Design 

Architectures  
On Presentations  Thanksgiving 

Holiday  

Group Project Presentations 

Final Project 
(Networked 
Interactions)  

In-Class 
Examination  

Interactive 
Programming as 
Program Design  

 

 
It is interesting to note that she describes the advantages 

of teaching the “traditional” approach as a special-case, later 
in the curriculum. 

Just as one might place the “syntax-free” and “literacy” 
approaches as standing in opposition, here one might place 
the “computation-as-interaction” next to “literacy” in regard 
to its emphasis on a “real-world” contextualisation of skills. 

Provisional Taxonomy 
These varying approaches clearly exist in some sense. 
However, they may only be available to those practitioners 
with the skills (and time) to reflect upon, examine and 
identify their own practice. Whether they can be transferred 
to other institutions and contexts is less clear, as these 
approaches are evangelical rather than evaluated. However, 
they may be made more accessible by placing them in a 
continuum of computer science pedagogy, enabling “chalk 
face” teachers to assess where their own practice stands in 
relation to these fixed points.  

All the approaches have in common the idea that coding 
is separate from programming. It is in the definition of what 
programming comprises that their differences are to be 
found. One possible axis is that of how closely the 
approaches model activity in “the real world”. A possible 
representation might be: 

 
Literacy Computation 

as interaction 
Problem-
solving 

 

Syntax-free 

 
Closely modelled                                                              Abstract 

 
Another way of regarding the differences would be in 

their immediate applicability to the classroom situation. The 
Literacy and Problem-solving approaches both require 
minimal change to the curruiculum and are more dependent 
on the attitude, skills and learning objectives of the teachers. 
The Syntax-free and Computation-as-Interaction approaches 
require considerably more adaptation of existing materials, 
both in the course in which they are situated and in the 
remainder of the courses which comprise the program. 

Summary & Conclusion 
The debate about what we should be teaching undergraduate 
computer scientists is not particularly new. In the UK (at 
least) there has been fierce debate over the last decade as to 
whether Maths is a necessary pre-requisite, and this has 
extended to considerations as to whether mathematical 
ability (whilst necessary for certain areas of the curriculum, 
such as Theoretical Computer Science) is a predictor for 
success in programming. With increased numbers of UK 
universities no longer requiring Maths as a pre-requisite, this 
debate is moving to new grounds. Informal and anecdotal 
evidence suggests that Maths is  not a predictor for success 
in programming so the debate is now focussed on what 
existing pre-dispositions (learning styles, abilities, skills) 
might be predictive. 

What is new is the questioning of what we are aiming to 
do in the teaching of programming. Computer Science is a 
distinctive form of engineering and (especially compared to 
other engineering domains) professionally immature with 
little disciplinary consensus. It is debatable whether even 
today the majority of CS faculty have first degrees in the 
discipline. This means that they have taught CS as they have 
learned it and, in all probability, using their self-taught 
model and/or techniques from the disciplines they learned in 
formally – maths or science. This problem has been 
highlighted by Fintan Culwin [11] where he describes the 
state of mind of educators who believe that because they 
learned imperative programming before they learned object-
oriented programming, that is the way in which everyone 
must learn it, because that is how the concepts are 
structured. Any other method would not deliver the required 
level of understanding. 



  Session 12a4 

 
0-7803-5643-8/99/$10.00 © 1999 IEEE November 10 - 13, 1999 San Juan, Puerto Rico 

29th ASEE/IEEE Frontiers in Education Conference 
12a4-5 

By-and-large, the material covered by and delivered in 
these courses which are based on these "approaches" is the 
same. As Stein [8] says: “Like every introductory 
programming class, this class must begin with the mechanics 
of program-writing, introducing basic data types and 
programming constructs”. What distinguishes these 
approaches, then, is not what is taught, but how and why – 
and it is the how and why that creates the distinctive 
educational frameworks within which these educators teach. 

The common challenge of these approaches is to the 
notion that there is a distinguished order to concept 
acquisition. Instead of accepting the view that students need 
to learn to code and that from this experience they will learn 
complex, transferable skills (analysis, design, problem-
solving), leaving the students to abstract these for 
themselves, these approaches start from a position of 
identifying the acquisition of other skills as the ultimate 
objective and support student learning directly to this end.  

Changing an approach to teaching requires first the 
knowledge that other approaches are possible; secondly it 
requires reflective practitioners. Perhaps this much we have. 
However, it also requires evaluation and evidences of the 
success of any given approach and there is little of this work 
in the literature, and much less which is comparable across 
institutions and diverse student populations.  

This, then, is an open problem for the emergent 
specialism of Computer Science Education and for 
Computer Science Education researchers. 
 
                                                        
[1] Bornat, Richard Programming from First Principles. 
Prentice Hall International,1987 
[2] Shackelford, Russel Introduction to Computing and 
Algorithms Addison-Wesley, 1998 
[3] Juliff, Peter Marketing Programming to Non-
programmers in Informatics in Higher Education , ed. 
Mulder and van Weert, Chapman and Hall, 1998 
[4] Astrachan, Owen and Reed, David AAA and CS1: The 
Applied Apprenticeship Approach to CS 1 In proceedings 
ACM SIGCSE Symposium, 1995 
[5] Feldman, Michael Ada95 Problem Solving and Program 
Design Addison-Wesley, 1999 
[6] Hanly, Jeri. R. and Koffman, Elliot B. Problem Solving 
and Program Design in C Addison-Wesley, 1999 
[7] Barnes, David J., Fincher, Sally and Thompson, Simon 
Introductory Problem Solving in Computer Science In 
Daughton, Goretti and Magee, Patricia, editors, 5th Annual 
Conference on the Teaching of Computing, pages 36-39, 
Centre for Teaching Computing, Dublin City University, 
Dublin 9, Ireland, August 1997. 
[8] Polya, George How to Solve It, Princetown University 
Press, 1957 
[9] Stein, Lynn Andrea What we Swept Under the Rug: 
Radically Rethinking CS1 Computer Science Education, Vol 
8 (2), August 1998 

                                                                                              
[10] Stein, Lynn Andrea Interactive Programming:  
Revolutionizing Introductory Computer Science ACM 
Computing Surveys 28A (4), December 1996  
[11] Culwin, Fintan Object Imperatives! in Proceedings 
ACM SIGCSE Symposium, 1999 


