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Abstract

Experience on a large banking application has highlighted expressive weaknesses in the
standard (concrete) syntax of UML, resulting in models that are under-constrained. It
transpires, however, that the abstract syntax meta-model underlying UML is inherently more
expressive that the concrete syntax layered on top of it. By directly reaching into, exploiting
and, where necessary extending the meta-model we are able to constrain fully our domain
models. Furthermore, since different fragments of a given model require different levels of
expressive power, we are able to utilize a blend of concrete and extended abstract syntaxes
to achieve a compact yet rich form of modeling. Finally, enhancing the concrete syntax of
the modeling language, allowing the association of new concrete graphical icons with our
abstract syntax extensions, facilitates the expression of models in an even more compact,
readable, and intuitive form.

1. Introduction
The origins of this paper lie in two years work (1996 and 1997) by one of the authors at a

large international bank. There we were modeling (in UML) and implementing (in C++) a
securities settlement system. It transpired that there were a number of important
requirements that we simply could not express using standard UML syntax. This meant that
the requirements for our system were effectively under-expressed, which considering the
mission-criticality of the application to the bank was a serious matter.

A number of realizations led to a problem resolution. The first realization was that
underlying the syntax of UML is a highly expressive meta-model – the full power of which
is not fully reflected in the syntax of the language. The second realization was that it is
possible to model directly from the UML meta-model without being constrained by the
limits of the standard syntax, and this has the potential to enhance the richness of a model
significantly. Unfortunately, expressing a model directly from the meta-model is tedious and
time-consuming. This led to the third realization, which was that it is, in fact, both possible
and desirable simultaneously to call upon the concrete syntax and exploit the meta-model
directly within a single model. Using this strategy, most aspects of a given model can be
modeled as normal via UML’s concrete syntax, but those aspects for which standard UML
syntax is insufficiently expressive can be expressed by appealing directly to the meta-model
itself. The two-level modeling approach, we believe, leads to models which are rich in
expressive power, relatively compact, and potentially amenable to CASE-tool interpretation.

Subsequent to the development of the settlement system, both authors of this paper
collaboratively re-examined and reflected upon the issues outlined above. This joint effort
has resulted in numerous important improvements to the original solution, and it is the
results of this collaborative effort that are the main focus of this paper.



2. Securities settlement

2.1. Introduction

Imagine a banking system which settles security trades. Security trades are sale and
purchase agreements between securities traders termed parties to the trade. Each trader terms
the other party to the trade the counter-party. A trading agreement is essentially an
agreement that one party will sell a given security to a counter-party for an agreed price on
an agreed trade date. An agreed trade must eventually be settled, wherein securities and cash
are exchanged, recorded and reported.

Figure 1. Trade Instruction Receipt

For a given trade, a settlement system receives two electronic instructions: a sale
instruction from the selling party, and a purchase instruction from the purchasing party. Let
us assume that the sale instruction is always received first, and that the counter-party’s
purchase instruction is awaited and will always arrive. Two instructions are said to match if
their security, price, trade date and respective counter-parties are all in agreement. The first
task of a settlement system, then, is to receive unmatched trade instructions and match them
with their counter-party instructions. Matched instructions are bound together under a Trade
object depicting the agreed trade common to them both. Figure 1 models the situation so far.

A Trade object goes through various settlement stages, which we will reduce to three:
Processing, Recording, and Reporting. Processing reduces the buyer's cash, increases the
seller's cash balance, and switches the traded securities from the seller to the buyer.
Recording makes a permanent record of the processed trade. Reporting notifies the
appropriate banks to transfer cash and certificates in accordance with the terms of the trade.
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There are four possible states for a Trade object: JustMatched, Processed, Recorded, and
Reported. We will use the State pattern [1] to track a Trade object through its stages of
settlement. Each state has a method (named perform) which performs the next settlement
stage and returns the next state (indicating completion of that stage). A Template Method [1]
(named transition) in the base SettlementState class forms the public interface to these
perform methods, and ensures that the old state is correctly deleted once a new state has
been transitioned to. This is depicted in Figure 2.

Figure 2. Settlement States

2.2. Trade class

Enhancing the Trade class with a reference to the current SettlementState (Figure 3),
we see that new Trade objects start in the JustMatched state. Settlement of a Trade
involves applying the exported transition method for each successive SettlementState until
settlement is complete. This mechanism enables new SettlementState classes to be added
to the Trade class and existing SettlementState classes moved around or removed with
code changes localized to the SettlementState classes themselves.

Figure 3. Trade Class with Settlement State

3. A serious omission
Unfortunately, there is a missing requirement. There is nothing in Figure 2 to prevent the

addition of a class - derived from SettlementState - which, for example, returns a pointer to
its current instance in perform. Consequently, when the transition method of Trade deletes
an instance of such a class it would return that very same object (i.e. the one just deleted) as
the new state. In cases like this, we are just heading for trouble. To prevent the addition of
such badly behaved and dangerous classes, we need to add the explicit requirement that all
implementations of perform behave according to the requirement that they either: (a) create
and return a new SettlementState, or (b) return NULL.
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Processed * p = new Processed;
... Swap cash and securities...
return p;

Recorded * r = new Recorded;
... Write to DB ...
return r;

Reported * r = new Reported;
... Notify banks etc...
return r;

return NULL;

SettlementState * nextState = perform();
delete this;
return nextState;
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sale.initFrom(uS, this);
purchase.initfrom(uP, this);
settlementState = new JustMatched;

while( settlementState )
   settlementState = settlementState->transition();



UML distinguishes between a method (an implementation of behavior) and an operation
(a specification of behavior). For each method there is assumed to be a corresponding
operation (behavioral specification). So far, we have specified only methods, such as the
implementations of perform attached (via little notes) to the various SettlementState
classes in Figure 2. We could use the same approach (little notes) to express the omitted
requirement as a specification for the perform operation on the base SettlementState class.
Unfortunately, all this would really achieve is a comment that is readable by another human.
What we really want is a way to express requirements that are enforcable by a CASE-tool.
We see little point in adding requirement to a model if they cannot be enforced.

Note that many of the expressional omissions of UML have been compensated for by the
addition of the textual constraint-expression sub-language OCL (the Object Constraint
Language [3]). OCL, however, requires a certain degree of familiarity with concepts from
the formal-methods community and may, therefore, prove somewhat inappropriate for
modelers without such a background. In addition, the need to switch between visual and
textual aspects of a model may be less appealing that an entirely visual model to some
modelers. Instead of adopting a textual solution, as in OCL, this paper will propose an
entirely graphical resolution to the expression of the omitted requirement.

4. Revealing the meta-model

4.1. The UML specification documents – an overview

The UML specification centers on two documents: The UML Notation [2] document
focuses primarily upon the visual appearance of UML; describing the appearance of the
graphical shapes (the concrete syntax) that a modeler can make use of when modeling. The
UML Semantics document [4], on the other hand, focuses on the meta-model of UML. The
meta-model is essentially a detailed description of the elements of the language without
dictating a specific concrete syntax for them. The is achieved by “specifying the abstract
syntax and semantics of UML.” The abstract syntax (expressed in a subset of UML itself)
defines UML’s “constructs and their relationships", capturing the structural properties of the
language elements and their interrelationships. In addition to abstract syntax, the Semantics
document covers the semantics  (i.e. the meaning) of the language elements.

The separation of abstract syntax from concrete syntax is both fortunate and important.
We want to “lift the lid” on the UML specification, and reveal the abstract syntax within.
Much of the weakness in the expressive power of UML derives not from the meta-model,
but from UML's concrete syntax. The meta-model, it turns out, captures a more expressive
language than is realized in the standard concrete syntax layered upon it. By passing by the
concrete syntax, the richer underlying language contained within the meta-model is revealed.
Revealing the abstract syntax enables us to not only model at the meta-level, but also to
extend the meta-model itself. So that, if we are faced with a modeling task for which even
the abstract syntax is insufficiently rich, we can simply extend the meta-model (using
ordinary modeling techniques) thus enriching the modeling language it defines. Later in this
paper, we will see these ideas used when we enhance UML to support enable expression of
our missing requirement.

4.2. Abstract syntax of class

After several passes through the (unfortunately patchy) UML Semantics document, we
have constructed a visual depiction of a fragment of the UML meta-model (see Figure 4).



Figure 4. Abstract Syntax of Class

Figure 4 shows, somewhat simplified, the abstract syntax of a Class. The parts that are of
particular interest to us in Figure 4 are the abstract syntax for Method and Operation. A
Method is shown to have a body (a ProceduralExpression) which is executable. We have
taken the liberty of supplying a method (execute), implied in the UML Semantics
document, with which that body can be executed. Each Method has exactly one
specification, which is an Operation providing a specification of type Expression.

4.3. Enhancing the meta-model to support enforced contracts

Unfortunately, the UML Semantics document lacks rigidity in its description of
Operation specifications. All we really know, looking at Figure 4, is that Operation
specifications are of type Expression (which turns out to be a very general type indeed).
The UML Semantics document does state that “[t]he specification can be done in several
different ways, e.g. with pre- and post-conditions, pseudo-code, or just plain text.”, but
provides no further details. This lack of clarity was unacceptable to us; we wanted a well-
defined facility upon which to base our models. Thus we decided to enhance the meta-model
of UML to support a more rigid form of Operation specification. Specifically, we derived a
new type of Method (a CompliantMethod) and a new type of Operation (a
ContractedOperation), as shown in Figure 5, which in combination permit the expression
of methods governed by contracts which they are unable to disobey.

CompliantMethod captures the abstract syntax for a new type of method – one that must
comply with its associated specification. Compliance is enforced by the execute method of
CompliantMethod, which (if you look at the code) will only succeed in executing a defined
method if that method satisfies its specification. It is this very property that we will take
advantage later in the settlement system to ensure that the perform methods of classes
derived from SettlementState are well behaved.

Each CompliantMethod, then, is associated with a specification with which it must
comply. That specification is of type ContractedOperation, derived from the standard
meta-level Operation class. Each ContractedOperation bears a contract (of type
Contract – a new class we define). A Contract consists of a pre-condition and a post-
condition. The pre-condition is a condition that must be true before the associated
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Method
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-body : ProceduralExpression
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CompliantMethod can start execution, and the post-condition is a condition which must be
true when that execution ends. A contract specification may be a DisjunctiveContract, a
ConjunctiveContract, or an AtomicContract. A DisjunctiveContract specifies two
alternative Contracts, and an implementation is said to satisfy the DisjunctiveContract if it
satisfies either, or both, of those alternatives. A ConjunctiveContract specifies two sub-
contracts, both of which must be satisfied. An AtomicContract must be satisfied in full, and
depicts a preCondition and a postCondition. In combination, the three forms of Contract
enable the construction of sophisticated Contract hierarchies.

The preCondition and postCondition of an AtomicContract are both of type Condition.
Condition exports a check method that returns a Boolean value based upon whether or not
the associated Condition body is satisfied. A Condition body is expressed as a UML
ObjectDiagram, and essentially depicts a set of objects that must exist for the Condition to
be said to be satisfied.

Figure 5. CompliantMethods and ContractedOperations
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4.4. Redefining SettlementState using the abstract syntax

In Figure 6, we completely redefine our SettlementState class using the abstract syntax
extensions of Figure 5.

Figure 6. SettlementState Re-visited via AbstractSyntax

In Figure 6, we have depicted the transition method of SettlementState, which is not
our prime concern here, via the normal abstract syntax for Method and Operation. Our real
interest lies in the perform operation which is depicted as an instance of our new
ContractedOperation class. Remember, in the SettlementState class we require only a
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specification for perform; actual implementations of perform are deferred to derived
classes. Hence, in the SettlementState class we see only a ContractedOperation for
perform but no corresponding CompliantMethod. Perform’s contract is a
DisjunctiveContract, specifying two alternate Contracts (which in this case are
AtomicContracts). The first alternate shows the existence of a SettlementState in its
postCondition that does not exist in the preCondition. For a perform method to satisfy this
preCondition/postCondition pair, then, it must have created a new SettlementState. In
addition, that newly created SettlementState is shown to be referred to in the return value
of perform. The second alternate AtomicContract simply allows perform to return a
NULL. All implementations of perform must satisfy one of these two alternate contracts,
otherwise those implementations will not be permitted to execute.

We can now add the actual settlement state classes (from JustMatched through to
Reported) that are derived from the abstract SettlementState class. Since Figure 6 is
already getting rather large and so we re-express a fragment of Figure 6 in Figure 7 and add
those actual settlement state classes there. Note that only two settlement state classes are
shown, since the approach would be basically identical for all other settlement states.

Figure 7. Adding the Actual Settlement State Classes

JustMatched and Reported are each shown in Figure 7 to provide a single
CompliantMethod (perform, of course), whose body is presented in C++, and whose
specification is shown to be the perform ContractedOperation of our base
SettlementState class. The implementation of perform by JustMatched creates and
returns a new Processed (a sub-class of SettlementState) object.and thus conforms to the
alternateContractA of the perform ContractedOperation depicted in Figure 6. Whereas,
the implementation of perform by Reported returns NULL, and thus complies with
alternateContractB. Since these implementations of perform are contract-complaint, both
will be allowed to execute, which is exactly what we want.  If we had attempted, however, to
add the an ill-behaved class, whose perform method simply returned a pointer to the object
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it was invoked on, its perform method would not have been able to be executed, since the
whole protection mechanism we have just built up prevents this.

5. Two-level modeling
Figures 6 and 7 clearly capture a rich and expressive model; by appealing to the abstract

syntax we have been able to express things which were simply inexpressible in the standard
UML concrete syntax. However, Figures 6 and 7 are obviously rather verbose. Modeling
using only abstract syntax, then, is long-winded and tedious work. Reading such models is
equally cumbersome. We would like to retain some of the succinctness of the concrete
syntax, without losing the expressive power of the (extensible) abstract syntax. To respond to
this problem we have derived a concept that we term two-level modeling.

Figure 8. A Two-Level Model of Settlement State

The basic realization underlying two-level modeling is that different fragments of a given
model place different expressibility requirements on the modeling language. In our
settlement system example, UML concrete syntax is perfectly adequate for much of our
model. The perform operation, on the other hand, requires direct appeal to the meta-model.
To force the wholesale expression of SettlementState and its derived classes in the verbose
abstract syntax just to accommodate the requirements of perform is clearly overkill. A more
appealing strategy is to use the concrete syntax wherever possible, and only appeal to the
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meta-model (i.e. the abstract syntax) where essential. We term this strategy two-level
modeling, since it mixes two modeling levels - the traditional concrete syntax level, and the
meta-model. In principle, this strategy could appeal to ever higher levels such as the meta-
meta-level, which defines the abstract syntax and semantics for the meta-model, and so on.
Two-level modeling is generalizable, therefore, into a multi-level modeling strategy. For our
example, however, two-level modeling is perfectly adequate and so in Figure 8 we re-
express the model captured in Figures 6 and 7, using a blend of concrete and abstract syntax.

The two most striking things about Figure 8, compared with Figures 6 and 7, are probably
its compactness and its greater readability. Much of the specification for the classes
SettlementState, JustMatched, and Reported is presented using standard UML concrete
syntax. There is, however, appeal to the meta-level: the perform operation of
SettlementState is shown to have a contract and a return parameter both captured using
abstract syntax. The JustMatched and Reported classes are shown to have perform
methods whose specification is provided by the perform operation, and each method’s body
is shown in C++ code. In summary, Figure 8 captures the same model as Figures 6 and 7, but
two-level modeling has, we believe, resulted in a far more appealing realization.

6. Conclusions and further work
In this paper we have proposed two-level modeling as a promising strategy for gaining the

expressiveness of abstract syntax without completely sacrificing the succinctness of concrete
notation. We are beginning to see for ourselves that this whole approach seems to have quite
broad applicability. For example, we have discovered that the specification of design patterns
[1] is often improved via a two-level modeling strategy [5]. We have now started to
investigate the idea of extending the concrete syntax of the modeling language, allowing the
association of new concrete graphical icons with our abstract syntax extensions. This should
enable our models to be expressed in an even more compact, readable, and intuitive form.
We term these concrete icons visual stereotypes. As our research with visual stereotypes
advances, we anticipate its subsequent documentation.

7. References

[1] E. Gamma, R. Helm, R. Johnson, and Vlissides.J.  Design Patterns: Elements of Reusable Object-Oriented
Software ,  Addison-Wesely, 1995.

[2] UML Consortium.  Unified Modeling Language 1.1, Notation Guide,  www.omg.org, 1997.

[3] UML Consortium.  Object Constraint Language,  www.omg.org, 1998.

[4] UML Consortium.  Unified Modeling Language 1.1, Semantics Guide,  www.omg.org, 1997.

[5] A. Lauder and S. Kent.  Precise Visual Specification of Design Patterns. In:  Proceedings of ECOOP '98, ed.
E. Jul.  Springer-Verlag, 1998.


