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Abstract
The Unified Modeling Language (UML) is a set of notations for modelling object-oriented

systems. It has become the de facto standard. Most of its notations are diagrammatic. An
exception to this is the Object Constraint Language (OCL) which is essentially a textual,
stylised form of first order predicate logic. We describe a notation, constraint diagrams, which
were introduced as a visual technique intended to be used in conjunction with the UML for
object-oriented modelling. Constraint diagrams provide a diagrammatic notation for expressing
constraints (e.g., invariants) that could only be expressed in UML using OCL.
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1. Introduction

The uptake in industry of notations for designing systems visually has been accelerated with
the recent standardisation of UML. But, in our opinion, UML is only the culmination of the first
stage in the development of this young field. It brings together a number of informal visual
notations (the possible exception being statecharts) that have proven useful to some parts of
industry. It has made little progress in integrating these notations; and it certainly does not
include anything that is radically different from the existing status quo (but then the goal was to
consolidate not to innovate).

In this paper, we provide some insight into what lies beyond UML. We describe a notation,
constraint diagrams, which were introduced in (Kent, 1997) as a visual technique intended to be

used in conjunction with the Unified
Modelling Language for object-oriented
modelling. Constraint diagrams provide a
diagrammatic notation for expressing
constraints (invariants) that could only be
expressed using the Object Constraint
Language (Warmer and Kleppe, 1998),
essentially a textual, stylised form of first
order predicate logic which is part of the
UML standard (OMG, 1997).

Constraint diagrams are a significant
advance on class diagrams in UML for the
visualisation of object structures. Whereas
class diagrams are only able to show that
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Figure 1 - A constraint diagram



there are relationships between certain kinds of object, constraint diagrams are able to visualise
properties of those relationships and compositions of those relationships. Whereas class
diagrams make no use of the relative positions of the diagrammatic elements (e.g. whether a
class overlaps with another class or not), the relative positioning of diagrammatic elements on
constraint diagrams is vital.

The constraint diagram in Figure 1 expresses (amongst other constraints) an invariant on a
model of a library system: for any library object, and any copy of that library which is on hold,
that copy's publication must be the same as that associated with the reservation for which it is on
hold:
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This reading is obtained by treating the *s as wildcards, universal quantifiers over the regions
which contain them, and arrows as showing the range of relations when their domain is
restricted to the set or element at their source. Venn diagrams are then used to show
relationships between all the sets and elements involved.

Pairs of constraint diagrams have also been used in post and contract boxes to express post
conditions and pre/post contracts for actions in a visual form (Kent and Gil, 1998), which forms
the basis of further work in three dimensional notations for software and systems modeling (Gil
and Kent, 1998). A form of the notation has also been used in the precise, visual representation
of design patterns (Lauder and Kent, 1998).

A second goal of this paper is to illustrate how hard it is to define a visual notation, and to
highlight some of the issues that arise. In the work on constraint diagrams it soon became
apparent that the notation was far more sophisticated than it first seemed. Specifically we
started to discover examples where, although there seemed to be an intuitive reading, it was not
obvious how that reading was derived in any general or systematic way. And whenever a new
piece of notation was added, the impact of that notation on what was already there was not
obvious.

A sub-notation of the language of constraint diagrams is the language of spider diagrams –
essentially constraint diagrams without the arrows. Spider diagrams are themselves a
development from Venn diagrams and Euler circles. The paper is structured in a similar manner.
Section 2 overviews the work on Venn diagrams and Euler circles, and places spider diagrams
in that context. Section 3 introduces and discusses the informal semantics of the notation for
spider diagrams, being careful to motivate and explore the consequences of decisions made.
Similarly, Section 4 introduces the notation for constraint diagrams. Section 5 summarises some
of the issues still outstanding before the formal definitions of syntax and semantics can be
completed.

2. Venn diagrams and Euler Circles

Circles or closed curves, which we will call contours, have been in use for the representation
of classical syllogisms since at least the Middle Ages (Lull, 1517). The Swiss mathematician
Leonhard Euler (1707-1783) introduced the notation we now call Euler circles (or Euler
diagrams) (Euler, 1761) to illustrate relations between classes. This notation uses the
topological properties of enclosure, exclusion and intersection to represent the set-theoretic
notions of subset, disjoint sets, and set intersection, respectively. Table 1 illustrates the possible
relationships between two contours.



The nineteenth
century logician
John Venn modified
this notation to
represent logical
propositions (Venn,
1880). In Venn
diagrams all
possible
intersections of the
closed curves must
be shown and
shading is used to
show that a
particular region
represents the
empty set. Figure 2
shows the standard

“clover” Venn diagram of three intersecting contours.
More (1959) gives an algorithm for adding a new

closed curve to a Venn diagram. In Figure 3, a new,
highlighted, contour has been added to the standard
clover. Note that all possible intersections between the
four contours occur.

In 1896, the logician Charles Peirce modified Venn
diagrams by introducing X-sequences to introduce
elements and disjunctive information into the system
(Peirce, 1933). Very
recently formal

semantics and inference rules have been developed for Venn-
Peirce diagrams (Shin, 1994) and Euler diagrams (Hammer,
1995).

In summary, Venn-Peirce diagrams are expressive, but
complicated to draw because all possible intersections have to
be drawn and then some regions shaded. Euler circles are
intuitive and easier to draw, but not so expressive because
they do not include provisions for shading and for “X-
Sequences”.

3. Spider Diagrams

Spider Diagrams are Euler circles augmented as follows:
1. Shaded Regions, just like in Venn Diagrams.
2. Spiders, which are similar to X-Sequences in Venn diagrams, used to denote that an element

exists in a set which is the union of one or more regions. They are different from X-
sequences because a region might have more than one spider in it, e.g. to denote that a set
has two or more elements. Spiders may also be connected by strands or ties in a region, to
indicate that elements denoted by the spiders may or must be the same in that region.

3. Projections, which can be used to show the intersection of more than three closed curves in a
clear and uncluttered way given the notorious difficulty of showing the intersection of more
than three sets on a Venn diagram.

Contours are disjoint, meaning
that the sets they denote are
disjoint.

Contours intersect, meaning that
the sets they denote may
intersect.

One contour may be contained in
another, with the corresponding
relationship between the sets they
denote.

Table 1: Relationships between contours

Figure 2 – Clover Diagram

Figure 3 – Four-contour
Venn diagram



3.1 Contours and Regions

A contour is a simple closed plane curve. Contours denote sets of arbitrary size. It is
convenient to draw contours as ellipses. However, this is not mandatory. Other iconic
representations may be used for making a visual distinction between different kinds of contour.
For example, in object-oriented modelling, rectangle contours are used to indicate that a set
corresponds to a class of objects. All concepts described in this section are independent of the
chosen iconic representations. In Venn diagrams, all contours must intersect. We do not require
this property in spider diagrams. As with Euler circles, two contours can stand in one of the
three relations listed in Table 1. A boundary contour is not contained in and does not intersect
with any other contour. We assume that a diagram has one and only one boundary contour,
which denotes the universal set for that diagram. However, most of the time we do not bother to
draw the boundary contour: it is assumed to be the bounding box for the diagram, be it the edges
of the drawing surface, the edges of a figure, etc.

A basic region is the bounded region of the plane enclosed by a contour. A region is defined
as follows: any basic region is a region; if r and s are regions, then their union, intersection, or
difference, are regions provided these are non-empty. A minimal region is a region having no
other region contained within it. Thus a minimal region is an area enclosed by one contour or
more which is not further divided by other contours, so the contours of a Spider diagram
partition the plane into disjoint minimal regions. Figure 4 shows all but one (the minimal region
outside the contours shown but inside the boundary contour is not depicted) of the minimal
regions of a standard “clover diagram”.

Regions can be generated by taking the union of any combination of the minimal regions. In

a Venn diagram with c contours, there are c2  minimal regions and 122 −
c

 regions. Thus, in
Figure 4, there are 28 – 1 = 255 regions in total, which is
the number of ways the 8 minimal regions (including the
one not shown) may be combined. The set denoted by a
minimal region is easily calculated: it is the intersection of
all contours that contain it, minus the union of all contours
that do not contain it.

A contour label is a Capitalized string of characters,
appearing outside some contour. A region label is an
underlined, Capitalized string of characters, appearing in a
minimal region. Underlining the region label allows region
and contour labels to be easily distinguished.

3.2 Spiders

A spider is a tree with nodes (called feet) placed in different minimal regions; the connecting
edges (called legs) are straight lines. A spider touches a minimal region if one of its feet appear
in that region. A spider may only touch a minimal region once. A spider is said to inhabit the
region which is the union of the minimal regions it touches; this region is called the habitat of
the spider.

Spiders are used to denote elements. Two distinct spiders denote distinct elements, unless
they are joined by a tie or by a strand (see below). A spider label is a lowercase string of
characters.

Figure 4 - minimal regions



In Figure 5, the spider labelled b inhabits a region which
is the union of four minimal regions. The semantics is that

b ∈ (B – C) ∪ (C – A)

a ∈ (A – B) – C

c ∈ (U – A) – B

where U is the universal set denoted by the boundary
contour. Also, all the elements are distinct, i.e., a ≠ b, b ≠ c,
and a ≠ c.

A strand is a wavy line connecting two nodes, from
different spiders, placed in the same minimal region. Two

spiders joined by a strand are referred to as friends. The web of spiders s and t is the union of
minimal regions each containing a strand between nodes of s and t.

Strands (of a web) are used to allow spiders to denote
the same elements in some circumstances. Specifically,
spiders s and t may (not must) denote the same element
if that element is in the set denoted by the web of s and t.
In Figure 6, it is possible that if the element denoted by c
happens to be in C then this may be the same as the
element denoted by b. More generally, the elements
denoted by s and t are distinct if they are in different
minimal regions or not in the web of s and t.

A tie is a double, straight line (an equals sign)
connecting two feet, from different spiders, placed in the
same minimal region. Two spiders joined by a tie are

referred to as mates. The nest of spiders s and t is the union of
minimal regions each containing a tie between feet of s and t. If
both the elements denoted by spiders s and t are in the set
denoted by the same minimal region in the nest of s and t, then s
and t denote the same element. Two spiders s and t may (but not
necessarily must) denote the same element if that element is in
the set denoted by the web of s and t.

A tie is stronger than a strand in the sense that it requires s
and t to denote the same element in any minimal region in
which the tie appears. Thus in Figure 7, bc =  when both

BACc −−∈ )(  and BACb −−∈ )( , otherwise bc ≠ . Clearly, if
there is a tie between feet, then a strand between those feet is redundant. Similarly, multiple
strands or ties between the same pairs of feet are redundant.

3.3 Shading and Schrödinger Spiders

Already, spiders can be used to place a lower limit on the
number of elements in a set. In Figure 8, the region A – B has
at least two elements, and the region B – A has at least one
element. Clearly one can place any number of spiders in a
region, hence express any lower bound.

A B

C

b

a

c

Figure 5 - Spiders
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In order to place an upper bound on the cardinality of a set,
we need a way of saying that a region is empty apart from those
elements denoted by spiders in the region. We do this by
shading. A minimal region is shaded if it contains a ×  or it is
actually shaded. A region is shaded if each of its component
minimal regions is shaded. Shading is visually appealing, but
difficult to draw freehand, a ×  is easier to draw freehand but is,
perhaps, not so visually appealing.

Figure 9 mixes both mechanisms to show that two minimal
regions are empty. It is equivalent in meaning to Figure 10.

Figure 11 shows a case, which is difficult to show
without shading. The difficulty is that all three sets
within the boundary need to intersect as the intersection
of all three may not be empty, but, if one is not careful,
this has the effect of introducing new regions. Shading
is then required to show that these new regions are
empty. So the effect of shading a region and placing no
spiders in that region, is to guarantee that the

cardinality of the set denoted by the region is zero.
Shading a region which includes spiders has the effect of

placing an upper limit on the number of elements in the set
denoted by the region. In Figure 12, A contains at most 3
elements; it may contain less as the elements denoted by
spiders a, b and c may be selected from other regions. B
contains exactly 2 elements; the spiders in the region mean a
lowerbound on its size of 2, the shading ensures that this is also
an upperbound. C contains between 1 and 3 elements.

In Figure 12, the sizes of sets A and C are related: the more
elements in A the less in C, and vice-versa. If we wished to
avoid this, then it would be necessary to always have an element in the universal set but not in
the sets represented by all other contours. In Figure 13, the same restrictions on the size of A

and C are in force, but this time if a, b and c denote
elements in A this has no impact on the size of C, as
the habitats of these spiders do not include C. But the
price to pay is that D must contain a single element if
the size of A and C both hit their lower bounds.

We are not sure whether this has any
practical significance when using spider
diagrams in modelling (except perhaps that it's
also awkward to draw). However, as
mathematicians we feel uneasy about such a
state of affairs. The fix is not difficult: a
Schrödinger Spider.

Figure 9 - shaded regions

Figure 10 - alternative to shading

Figure 11 – Shading is essential
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Figure 13 - Shading & spiders II



A Schrödinger Spider is represented by the symbol , and may appear in any region. It can
be friends or mates with other spiders. A Schrödinger
spider denotes a set whose size is zero or 1: rather like
Schrödinger's cat one is not sure whether the element
exists or not. Figure 14 is a reworking of Figure 13,
this time using Schrödinger spiders. D is not forced to
contain an element. The diagram is also less
complicated to draw.

Obviously there is a limit to the amount we can
express in this notation about the cardinality of sets.
For example, we are unable to say that the size of A is
the sum of the sizes of B and C. In the past, we have toyed with extending the notation to allow
this kind of constraint to be expressed (Kent and Gil, 1998), but have realised that all we were
really doing is adding textual annotations to the diagram. We can use labels to achieve a similar
effect: for example, it is easy to write |A| = |B| + |C|. Thus, in general, labels allow us to
combine constraints expressed visually with constraints expressed textually; diagrams can then
be used for those constraints which are intuitive to express using a diagram, and do not need to
be overburdened with textual annotations in an attempt to make them more expressive, but
which results in them being overly complex with corresponding loss of intuitiveness.

3.4 Projections

A projection is a contour, which is dashed in appearance. A projected label is a contour or
region label, written within brackets and appearing outside some projection.

The region containing a contour is the smallest region
that strictly contains the basic region for that contour.
Strictness ensures that the basic region itself is not the
region containing the contour. A projection denotes the set
obtained by intersecting the set denoted by its projected
label with the set denoted by its containing region, which
can always be calculated from the sets denoted by contours
other than the projection itself.

Figure 15 shows a simple example. The
dashed contour labelled X denotes the set
obtained by “projecting” the set A onto the
containing region D – B, i.e., )( BDAX −∩= .

The same semantics could have been obtained
by using More’s algorithm (More 1959) to draw
the Venn diagram with four contours, as in
Figure 16, in which )(21 BDAXXX −∩=∪= .

There are fascinating mathematical intricacies involving interacting projections.

4. Constraint Diagrams

Constraint diagrams are spider diagrams augmented by arrows and wildcards. Arrows
determine relationships between sets and wildcards denote universal quantification.
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 Figure 15 - Simple projection
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Figure 16 – Semantics of Figure 15



4.1 Arrows

An arrow has a label, a source and a target. The
source of an arrow can be a contour, a region or a
spider; it is the set or element from which
navigation (i.e., the relationship computation)
begins. In figure 18 the source of arrow f is spider x
and its target is contour B. The semantics of the
navigation expression is x.f = B, where x.f is
shorthand for {y : f(x, y)}.

In Figure 19 the source of arrow f is spider x and its target
is a contour contained in B. In this case, we have A.f ⊆ B. The
dot notation is overloaded; A.f is shorthand for applying f to
each element in A and then taking the union of the resulting
sets; i.e., it is the union of sets {y : f(x, y)} for each x ∈ A. The
contour on which f is targeted is a derived set; it is defined by
the arrow f.

The source of
an arrow can also

be a region. In Figure 20, the arrow has a double
source indicating that the source of the arrow is the
union of the two minimal regions denoting the sets
A – B and B – A. The target of an arrow should be a
set. However, the arrow f in Figure 20 is targeted on
a spider. This spider is treated semantically as a
derived singleton set. The interpretation of the
navigation expression is ((A – B) ∪ (B – A)).f ∈ C.
We are implicitly allowing coercion between a
singleton set and its element.

4.2 Quantification

Wildcards are introduced into constraint diagrams to
represent universal quantification. The wildcard spider * ranges
over all the elements of the set denoted by the  minimal region
in which it is situated.

In Figure 21, the wildcard
ranges over all elements of
the set A. The interpretation
of this diagram is that for
each x in A, x.f and x.g are
disjoint, i.e.,

{}... =∩•∈∀ gxfxAx

A wildcard can only be the source of an arrow. No arrow
can be targeted on a wildcard and a wildcard that is not the
source of an arrow cannot exist. A wildcard can be a foot of

an articulated spider (i.e., a spider with more than one foot), in which case all feet of the spider
are wildcards.

A f

x

B

Figure 18 – One-arrow constraint
diagram
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Figure 19 – Derived contour
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Figure 20 – Region as source and
spider as target of an arrow
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Figure 21 – Universal
quantification
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wildcard spider



In Figure 22, the source of arrow f is an articulated, wildcard
spider. The interpretation of this is that for each x in A ∪ B, x.f is
empty, i.e., {}.. =•∪∈∀ fxBAx

The navigation expression in Figure 23 is existentially
quantified. Its interpretation is that there exists an x in A such
that x.f is not empty, i.e., {}.. ≠•∈∃ fxAx

4.3 Navigation

So far, we have only considered single-arrow navigation expressions. In Figure 24, there is a
two-arrow navigation expression x.f.g. This is interpreted as {y : g(x.f, y)}; we apply g to each

element of the derived set x.f.
Furthermore, the set obtained by navigating from x via

arrows f and g is the same as that obtained by navigating from
x along h. Thus we have x.f.g = x.h.

In Figure 1, we had a similar expression involving a
constraint on a library system. One of the key strengths of
constraint diagrams is their ability to illustrate
diagrammatically navigation expressions and the relationships
between them.

5. Issues and Further Work

The formal semantics of spider diagrams, with
the exception of projections, are given in (Gil,
Howse, Kent 1999). Diagrammatic inference rules
have been developed for spider diagrams along with
rules for combining spider diagrams (Howse,
Molina, Taylor, Kent 1999).

There are, however, some difficult issues to be
considered before the formal semantics of constraint
diagrams can be given fully. As mentioned earlier,
there are some fascinating mathematical intricacies
involving interacting projections. For example,
consider Figure 25. X and Y are the labels of the projected contours and A and B are the
projected sets. How do we interpret X and Y?

By the definition of projected contours, we have two simultaneous set equations in X and Y:

)(

)(

XDBY

YCAX

∪∩=
∪∩=

These can be solved using a form of Gaussian
elimination and some results from set theory.
Unfortunately, there are many possible solutions. There
is, however, a unique “minimal solution” in this case:

)(

)(

ADBY

BCAX

∪∩=
∪∩=

This is the intuitive solution. The interpretation of
interacting projections in general is still being
investigated.
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Another difficult issue is that of circularity. Consider Figure 26. Each contour is a derived
contour defined in terms of the other contour. It is very difficult to interpret this and it is
doubtful whether such a situation should be allowed.

A related difficulty is that of the ordering of quantifiers. In Figure 27, there are at least two
logically different interpretations: gyfxByAx .., =•∈∃∈∀  and ..., gyfxAxBy =•∈∀∈∃
These are very different. In the second interpretation, it
is the same y for each x, while in the first, each x may be
associated with a different y.

We are developing a very sophisticated algorithm for
capturing the intuitive semantics of a constraint diagram
and translating it into a logical formula. One way of
tackling the problems of circularity and the ordering of
quantifiers is to insist that each quantifier is at a
particular unique “level”, and that any diagram not
satisfying this condition is deemed to be not well-
formed.
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