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Abstract

The safety analysis of an evolving software system has
to consider the impact that changes might have on the
software components, and to provide confidence that the
risk is acceptable. If the impact of a change is not
thoroughly analysed, accidents can occur as a result of
faulty interactions between components, for example.
However, the process of safety analysis can be enhanced
if appropriate abstractions are provided for modelling
and analysing software components and their
interactions. Instead of considering components as the
locus of change, the proposed approach assumes that
components remain unchanged while their interactions
(i.e. connectors) adapt to the different requirements
needs. The safety analysis is the performed using model
checking to verify whether safe behaviour is maintained
when interactions between components change. The
feasibility of the approach is demonstrated in terms of a
case study that deals with the safety procedures
associated with the launching of a sounding rocket.

1. Introduction

The causes for failures of software systems are
invariably related with the failure of multiple software
components, rather than with the failure of a single
component. The failure of multiple components is usually
associated with incorrect interactions between
components, also known as interface faults according with
the study conducted by Lutz [15]. This study is consistent
with previous studies, which have shown that systems
which have highly interactive components had
proportionately more errors that less interactive
subsystems [18]. In the wider context of system’s
engineering, causes of system accidents can also be traced
to errors occurring in the interactions between the
components, rather than the failure of individual
components [16].

A major reason for the existence of these interaction
faults is the inherent difficulty of extracting behavioural

dependencies from the specifications of components.
Moreover, if the identification of these dependencies is
left for the late stages of software development then the
task of performing the analysis of the safety properties of
a system becomes extremely complex, hence prone to
errors. The proposed approach identifies the dependencies
of a component at the early phases of the software
development. This provides the appropriate level of
abstraction for modelling and analysing the interactions
between components, in addition to the behavioural
analysis of individual components, which characterises the
more conventional approaches.

Evolution of software systems can be made more
robust to interaction faults if the appropriate modelling
abstractions are used for describing the architecture of the
software. Instead of relying on the provision of means and
mechanisms which focus on supporting the adaptation of
components [1,4], this paper presents an approach for the
evolution of software systems that is based on adapting
the interactions between components. The motivation for
this approach comes from the current trend of component-
based software engineering that relies on the re-use of
ready available software components, such COTS and
legacy software, that are not expected to undergo any type
of change. Hence, it is assumed that components remain
unchanged, while the behavioural dependencies between
the components may change according to the evolving
needs of the software.

In order to represent interactions between the
components for the purpose of facilitating the
incorporation of change, components and connectors are
employed as modelling abstractions: while components
embody computation, connectors embody the description
of interacting behaviour between components. However,
in the proposed approach, connectors in addition of
mediating interactions between components, they are also
able of describing collaborative behaviour between
components in terms of the roles played by the
components [2]. That is, connectors in addition of being
the place of communication between components, they are
also the place of state and computation. This approach has



some similarities with the features of collaboration-based
designs. In these designs, software systems are
represented as a composition of independently-definable
collaborations [20]. There are several design description
languages, which have rich vocabulary, and that are able
to describe in the form of collaborative diagrams
interactions between objects in terms of messages and
events [3], and to represent the implementation of
components as a composition of object roles [8].
However, these object-oriented languages lack the means
for describing the properties associated with object and
their interactions, which should be an essential feature of
architectural description languages. In this paper, we
employ the modelling abstraction co-operative action (CO
action) as an architectural entity for representing
collaborative activity between objects [6]. The notion of a
CO action has some similarities to that of an action in
DisCo [12], and joint actions (or use cases) in Catalysis
[8]. In the proposed approach the architectural
interpretation of an action  (i.e. connector) is obtained by
focusing on the specification of the participants, and the
conditions for the participants for starting, maintaining
and finishing a collaborative activity.

The rest of this paper is organised as follows. In
section 2, we define the architectural style that provides
the appropriate abstractions for modelling and analysing
the safety properties of a system in terms of interactions
between its components. Section 3 discusses the benefits
of the proposed architectural style when considering the
analysis of safety properties in evolving systems. In
section 4 we discuss the feasibility of the proposed
approach in terms of a case study which consists in
specifying the destruction of a sounding rocket with the
purpose of maintaining the safety requirements. Finally,
section 5 concludes with a discussion evaluating our
contribution.

2. Co-operative Object-Oriented Style

Architectural structures for systems tend to abstract
away from the details of a system, but assist in
understanding broader system-level concerns [19]. This is
achieved by employing architectural styles that are
appropriate for describing the software components, the
interactions between these components, and the properties
that regulate the composition of components.

In the following, we present the co-operative object-
oriented style that adopts basic features of object-
orientation, in which components are represented as
classes and connectors as co-operative actions, and the
instantiation of these abstractions are respectively, objects
and co-operations. Objects are able to participate in
several co-operations through the different roles that they
are able to play while co-operations co-ordinate the
interactions between the objects, through the roles that
objects play.

2.1. Architectural Elements

The architectural elements of the co-operative object-
oriented style are classes as the basic components, and co-
operative actions (CO actions) as the basic connectors.
Co-operative actions (CO actions) were introduced as
entities for modelling interactions between classes that
characterise collaborative behaviour [6]. The use of CO
actions is motivated by their ability of extracting from the
specification of a class those issues related with its
collaborative activities, thus avoiding a specification of a
collaboration to be scattered among classes

In the co-operative object-oriented style, CO actions in
addition of being the place of communications, they are
also the place for computation. The difference between
components and connectors is that classes perform local
computation, while CO actions can either co-ordinate the
computation performed by the participant classes, or
perform local computation that is not part of any
participant class. In a CO action, the role of a class is
prescribed by the activity of that class. A class may have
as many roles as the number of CO actions it participates
in. The composition of these roles defines the interface of
the class.

A CO action is described by a template with the
following fields: the CO action’s name, declaration of
attributes in terms of the names and types of the
participants of the CO action, constants and variables
local to the CO action, and the specification of the
collaborative behaviour of the classes participating in the
CO action. The behaviour field includes initial state of the
object, and the specification of the complete behaviour
space of the CO action, in terms of its normal,
exceptional and failure behaviours. The initial state of a
CO action represents its state when is activated, and is
dissociated from the pre-conditions of the CO action: it
either refers to the state of classes participating in the co-
operation or the state of the variables local to the CO
action. Associated with the description of normal
behaviour, pre-condition and post-condition establish
the respective conditions for a set of classes to start and
finish a particular collaborative activity, the invariant
establishes the conditions that should hold while the
collaborative activity is being performed, and the
collaborative operation to be performed by the CO
action. For the description of systems that are potentially
concurrent, there is the need to consider the conditions
that define the pre- and post-conditions to be trigger
(necessary and sufficient) conditions. The successful
execution of a collaborative operation occurs when the
pre- and post-conditions of the normal behaviour are
satisfied, and that the invariant associated with the
collaborative activity is not violated during its execution.

In addition of specifying the collaborative operation in
terms of what the CO action should do, it is equally



important to specify what the CO action should not do,
mainly those behaviours that can affect the safety of the
system. Two types of failure behaviours have to be
considered: failures of omission when no services are
delivered by the CO action, and failures of commission
when the service delivered by the CO action is different
from the required service. At the architectural level
description of the system, is expected that both omission
and commission failures are specified in terms of the
hazards of the system. For the specification of exceptional
behaviour, the operation is replaced by a handler that
identifies the exception event, together with the start and
finish events associated with the handler of the exception.

2.2. Configuration Rules

For the description of systems, the configuration rules
of the co-operative object-oriented style define how
objects and co-operations can be combined. In a co-
operative object-oriented architecture each class and CO
action has a unique name. Classes can participate in more
than one CO action, and at least two classes have to be
associated with a CO action, thus avoiding the “dangling”
of CO actions. A CO action defines and is defined by the
roles of the classes, thus creating the context in which
classes collaborate. Only CO actions contain relational
information. An advantage of this is that, once a co-
operative object-oriented architecture is instantiated, co-
operations can be added or removed without interfering
with the implementation of objects, thus restricting the
impact of change.

COMP1

COMP2 COMP3

CON1

COMP1
COMP2
COMP3

CON2

COMP2
COMP3

(i) Class diagram (ii) CO action diagram

Figure. 1. Co-operative object-oriented architecture.

For describing the architecture of a software system,
two different diagrams are employed: a class diagram
describing the relationships between components, and a
CO action diagram describing the relationships between
connectors. These diagrams provide a compact
representation of the software system, which can be
completed with a more detailed textual description.

An example of a co-operative object-oriented
architecture is shown figure 1: CO action CON1 has three
participants (COMP1, COMP2 and COMP3), and the

nested CON2 has two participants (COMP2 and
COMP3).

2.3. Evolving Co-operative Object-Oriented
Architectures

The architecture of a software system is an important
factor that affects the flexibility of software in adapting to
changes. The dynamics of an evolving system is
dominated by the slow changing components, which in the
case of software are the large granularity abstractions that
describe a software system. On the other hand, although
the small granularity components are bound to change
quicker, any change is certainly constrained by the slow
changing components. In other words, changes at higher
levels of abstraction are more likely to impact the
architectural description of the system, compared with
those made at the lower levels. Hence the need to focus on
architectural description languages for handling change.
The aim is to have languages that are able to restrict the
impact of change, thus allowing localised changes to be
incorporated more effectively by avoiding their
propagation into the rest of the system. This is not the
case, for example, in object-oriented design languages
where a change in the interface or name of an object can
have a great impact on the whole design of the software.

A co-operative object-oriented architecture of a
software system can either evolve by changing the
components (i.e. the interface of the components, or their
implementation), or by changing the connectors (i.e. the
roles of the components, or the collaborative operations).
When a component changes, its impact is restricted to the
connectors in which the component plays a role, because
the system connectors, and not the components, maintain
all the relational information in a co-operative object-
oriented architecture. In this case, the other system
components do not need to know that a component has
changed. Similarly, when a connector changes, the
components that play a role in the connector and the other
connectors of the software architecture do not need to
know about this change. The reason being that, first, there
is no need to change neither the component interface nor
its implementation when there is a change in one of the
roles of a component, and second, there is information
confinement across connectors.

The co-operative object-oriented architecture of figure
2 is an evolution of that of figure 1: the component
COMP4 was added to the original architecture, and
connector CON1 was replaced by CON3. The addition of
a new component should not have an impact on the other
components, but it is expected that connectors have to
change, by modifying the roles played by the other
components. From the CO action diagram, we infer that
CON2 and CON4 are nested CO actions of CON3, and



that CON2 and CON4 should be mutually independent
because they share a common resource (COMP3).

COMP1

COMP2 COMP3

COMP4

CON2

COMP2
COMP3

CON3
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COMP4

CON4

COMP3
COMP4

(i) Class diagram (ii) CO action diagram

Figure. 2. An evolving co-operative object-oriented
architecture.

3. Case Study: Destruction System for the
VS-40X Sounding Rocket

The purpose of sounding rockets is to carry scientific
instruments on the payloads into space. Their sub-orbital
flight follows a parabolic trajectory that is appropriate for
performing scientific experiments. The VS-40X is a two
stages sounding rocket which has a dual purpose within
the Brazilian Space Programme: apart from performing
scientific experiments, it will be used as an experimental
platform for the new equipment of the Brazilian Satellite
Launcher (VLS). In this case study, we analyse the safety
procedures for the destruction of a rocket when its
trajectory violates a pre-defined flight envelope.
Currently, the rocket is destroyed remotely by a safety
operator, but the intention is to replace it with an
automatic system for its self-destruction. However, before
introducing a complete new system, confidence has to be
obtained that this system is as safe as the existing manual
one. In order to obtain such confidence, two additional
intermediate configurations were considered in which the
two systems are redundant in their operation, with the
self-destruction system possessing different degrees of
autonomy.

The purpose of this case study is to show how
effective is a co-operative object-oriented architecture
when checking the stability of the safety properties of an
evolving system. Instead of having to re-model and re-
analyse the whole system, this paper claims that the
impact of changes can be restricted to the modelling and
analysis of the interactions between the system
components. Whether a system component is changed or
removed, or a new component added, the impact of
change is scoped by the co-operations between the
components.

3.1. Safety and Mission Requirements

The safety requirements of the VS-40X system aim to
maintain the integrity of the environment1 of the vehicle
(in terms of damage to property, injuries and loss of lives)
when there is a failure in the behaviour of the vehicle.

Depending on the flight phase and the flight trajectory
of the vehicle, we can identify two types of accidents:
• during the pre-launching or initial flight instants, an

unintentional destruction of the vehicle can cause
damage to the launching installations, injuries, or the
loss of lives;

• during the rest of the flight, the fall of debris after a
failure in the behaviour of the vehicle can cause
damages to property, injuries, or the loss of lives.

There are two hazards associated with the above
accidents, which can be stated and formalised as follows:
• during the pre-launching (v.preLauncPhase) and

initial flight instants (v.initialPhase), there is a
destruction of the vehicle (v.destroyed);

• during the intermediate phases of the flight
(v.intermediatePhase), the projection of the point of
impact of the vehicle’s trajectory crosses the limit line
of impact into the protected region (v.insidePR);

Based on the above hazards, the safety specifications
for the destruction system of the VS-40X system are the
following:
• during the pre-launching and initial phases of the

flight, the destruction of the vehicle should be
disabled;

• during the intermediate phases of the flight, once the
vehicle trajectory violates the safety plan the vehicle
should be destroyed2;

The above safety requirements have to be considered
in the context of the mission requirement for the VS-40X:
under normal conditions during the flight, the vehicle
should not be destroyed.

3.2. Evolving Architecture for the Destruction
System

In this section, we present a partial model of the
sounding rocket VS-40X from the viewpoint of the safety
requirements. The co-operative object-oriented
architecture of the system will focus on the components

                                                          
1 In this paper we are not concerned with the integrity of the actual
vehicle.

2 There are other two scenarios in which the vehicle has to be
destroyed, however, these scenarios are related with the integrity of the
vehicle rather than the integrity of the environment.



and interactions responsible for the destruction of the
sounding rocket.

According with the class diagram of figure 3, the four
basic components of the VS-40X System are the
SafetyOperator, OperatorConsole, Vehicle, and
LaunchingPad. In terms of the remote destruction
system, the relevant components of the OperatorConsole
are: CCTV which provides the visual information of the
vehicle’s flight trajectory, SISGRAF which provides
tracking information from the radar, and Telemetry
which provides measures of the key variables that define
the state of the vehicle. The relevant components of the
VS-40X Vehicle are: SafetyBox which provides the
protection mechanism to avoid the unintentional
destruction of the vehicle during the pre-launching and
initial phases of the flight, and RemoteControl which
receives and processes the control commands from the
OperatorConsole (it contains a self-diagnostic
mechanism which detects whether has failed or not). If
self-destruction is considered, two additional components
have to be included to the VS-40X Vehicle: Trajectory
which calculates the flight trajectory of the vehicle based
on information provided by the Inertial Reference System
(IRS), and the ProtectionSystem which establishes
whether the flight safety plan has been violated. These
two components have similar roles of those associated
with the OperatorConsole and SafetyOperator,
respectively.

The four diagrams of figure 3 show the evolution of
the destruction system in terms of the possible
configurations of the components of the VS-40X
System. In the following, these configurations are
defined in terms of the CO actions that define the co-
operations between the components. The CO actions
enable to extract from the definition of the components of
the VS-40X System those activities which are related to
the destruction system.
1. The destruction system is solely based on the remote

destruction – the two CO actions are the
EnableDestruction which describes the
collaborative activity between OperatorConsole,
SafetyBox and Vehicle for enabling and disabling
the destruction of the vehicle, and
RemoteDestruction which describes the
collaborative behaviour of components of the VS-
40X System for destroying the vehicle by the
SafetyOperator;

2. The destruction system is based on the remote or self-
destruction – in addition to the two CO actions of the
previous configuration, the other two CO actions are
the SelfADestruction which describes the
collaborative behaviour of components of Vehicle for
its self-destruction, and StateSISGRAF which

maintains consistent the states of SISGRAF and
RemoteControl thus providing a means for
enforcing mutual exclusion between remote
(RemoteDestruction) and self-destruction
(SelfADestruction);

Vehicle

VS-40X
System

Launching
Pad

Safety
Operator

Protection
System

Safety
Box

Remote
Control

Trajectory

Operator
Console

CCTV

SISGRAF

Telemetry

(i) Class diagram

(i) Remote destruction (ii) Remote or self destruction

(ii) CO action diagram
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Figure. 3. Evolution of the destruction system

3. The destruction system is based on the remote and
self-destruction – in addition to the two CO actions of
the first configuration, CO action SelfBDestruction



is a simplify version of SelfADestruction in which
there is no need for maintaining mutual exclusion
between remote (RemoteDestruction) and self-
destruction (SelfBDestruction);

4. The destruction system is based on the self-
destruction – in addition to EnableDestruction, the
other CO action is SelfBDestruction which is
responsible for the self-destruction of the Vehicle.

3.3. Modelling and Analysis of Components
Interactions

In this section, we formally specify the behaviour of
CO actions, and analyse the safety properties associated
with every CO action. The intent is to verify whether the
safety behaviour of the system is maintained by the
interactions between the system components. For sake of
brevity, we will focus on the fourth configuration of the
destruction system, although the safety analysis of the
other three configurations was equally performed.

3.3.1. Modelling Interactions

The behaviour of the CO actions is formally specified
in terms of Extended Real-Time Logic (ERTL) [5,9] (an
outline of ERTL is presented in the Appendix - the
occurrence and holding relations will be suppressed
without loss of detail.

The CO action EnableDestruction specifies the
collaborative activities of the components of the VS-40X
System involved in enabling and disabling the
destruction of the Vehicle. The normal behaviour pre-
condition establishes the start of EnableDestruction at
the instant that OperatorConsole sends a signal notifying
that it is safe to destroy (oc.safeDest). The collaborative
operations associated with EnableDestruction include: to
check whether the operator console (oc.safeDest)
activates the safety relay (v.sb.safeDest), and to initialise
a temporisation mechanism, which activates the inhibiting
relay (v.sb.enDest), after the disconnection of the
umbilical (v.disUmbil). The post-condition of
EnableDestruction is captured by a transition event
predicate that specifies the necessary and sufficient
conditions for the co-operation to end: either when the
destruction of the Vehicle is disabled (v.sb.enDest), or
when the Vehicle is destroyed (v.destroyed). The
specification of the failure behaviour for the
EnableDestruction follows directly from the hazards.
There is a commission fault
(commission1_enableDestruction), related to
hazard_A, when the EnableDestruction is operational,
Vehicle is either in pre-launching or initial phases of the
flight, and the destruction of the Vehicle is enabled
(v.sb.enDest). There is an omission fault
(omission_enableDestruction), related to hazard_B,

when during the intermediate phases of the flight, the
EnableDestruction is operational and the destruction of
the Vehicle is not enabled.
EnableDestruction:

attributes:
participants:

oc OperatorConsole
v Vehicle
v.sb SafetyBox

behaviour:
initial:

Φ(¬oc.safeDest ∧ ¬v.disUmbil ∧ ¬v.destroyed ∧
 ¬v.sb.enDest ∧ ¬v.sb.safeDest ∧ v.preLaunchPhase ∧
 ¬v.initialPhase ∧ ¬v.intermediatePhase, 0)

normal:
pre-condition:

∀t• Θ(ÉenableDestruction, t) ⇔  Θ(Éoc.safeDest, t)
operation:

∃T0: ∀t<T0• Θ(É oc.safeDest, t) ⇒ Θ(Év.sb.safeDest, t)
∃T0• Θ(Év.sb.safeDest, t) ∧ Θ(É v.disUmbil, T0) ⇒

Θ(Év.sb.enDest, T0+5)
post-condition:

∀t• Θ(ËenableDestruction, t) ⇔ Θ(Év.destroyed, t)
failure:

∀t• Φ(commission_enableDestruction, t) ⇔
Φ(enableDestruction, t) ∧ Φ(v.preLaunchPhase ∨
v.initialPhase, t) ∧ Φ(v.sb.enDest, t)

∀t• Φ(omission_enableDestruction, t) ⇔
Φ(enableDestruction, t) ∧ Φ(v.intermediatePhase, t) ∧
Φ(¬v.sb.enDest, t)

The CO action SelfBDestruction specifies the
collaborative activities of the components of the Vehicle
for its self-destruction. The normal behaviour pre-
condition establishes the start of SelfBDestruction at the
instant that SafetyBox enables the destruction of the
Vehicle (v.sb.enDest). The invariant and the
collaborative operations associated with
SelfBDestruction include: to activate the self-destruction
(v.ps.actDest) when the destruction system detects that
the trajectory taken by the vehicle has violated the safety
plan (v.tr.outsideSP), and to destroy the vehicle once the
self-destruction is activated. The post-condition states that
the components of the Vehicle should leave the
SelfBDestruction co-operation when the destruction of
the Vehicle is disabled, or when the Vehicle is destroyed.
There is a commission fault
(commission1_selfBDestruction), related to hazard_A,
when the SelfBDestruction is operational, Vehicle is
either in pre-launching or initial phases of the flight, and
the ProtectionSystem activates the destruction of the
Vehicle. There is another commission fault
(commission2_selfBDestruction), related to the
violation of the missionRequirement, when during the
intermediate phases of the flight, the SelfBDestruction is
operational, the flight trajectory of the Vehicle is not
outside the safety plan, but the ProtectionSystem
activates the destruction. There is an omission fault



(omission_selfBDestruction), related to hazard_B,
when during the intermediate phases of the flight, the
SelfBDestruction is operational, the flight trajectory of
the Vehicle is outside the safety plan, but the
ProtectionSystem does not activate the destruction.
SelfBDestruction:

attributes:
participants:

v Vehicle
v.ps ProtectionSystem
v.sb SafetyBox
v.tr Trajectory

behaviour:
initial:

Φ(¬v.ps.actDest ∧ ¬v.tr.outsideSP ∧ ¬v.sb.enDest ∧
 ¬v.destroyed ∧ v.preLaunchPhase ∧
¬v.initialPhase ∧ ¬v.intermediatePhase, 0)

normal:
pre-condition:

∀t• Θ(ÉselfBDestruction, t) ⇔ Θ(Év.sb.enDest, t)
invariant:

∀t• Φ(selfBDestruction, t) ⇔ Φ(v.sb.enDest, t)
operation:

∀t• Φ(selfBDestruction, t) ∧ Θ(Év.tr.outsideSP, t) ⇒
 Θ(Év.ps.actDest, t)

∀t• Φ(selfBDestruction, t) ∧ Θ(Év.ps.actDest, t) ⇒
 Θ(Év.destroyed, t)

post-condition:
∀t• Θ(ËselfBDestruction, t) ⇔ Θ(Év.destroyed, t)

failure:
∀t• Φ(commission1_selfBDestruction, t) ⇔

Φ(selfBDestruction, t) ∧ Φ(v.preLaunchPhase ∨
 v.initialPhase, t) ∧ Φ(v.ps.actDest, t)

∀t• Φ(commission2_selfBDestruction, t) ⇔
Φ(selfBDestruction, t) ∧ Φ(v.intermediatePhase, t) ∧
Φ(¬v.tr.outsideSP, t) ∧ Φ(v.ps.actDest, t)

∀t• Φ(omission_selfBDestruction, t) ⇔
Φ(selfBDestruction, t) ∧ Φ(v.intermediatePhase, t) ∧
Φ(v.tr.outsideSP, t) ∧ Φ(¬v.ps.actDest, t)

3.3.2. Safety Analysis of the Interactions

The analysis of the co-operative behaviour confirms
that the combined normal behaviour described in the CO
actions is able to maintain the safe properties of the
system, which are specified by the CO actions failure
behaviour. Evidence was obtained by using model
checking which is a formal verification technique based
on state exploration. Given a state transition system and a
property, model checking algorithms exhaustedly explore
the state space to determine whether the system satisfies
the property. The result is either a claim that the property
is true or a counter-example in terms of a sequence of
states that falsifies a property.

The model checker employed for performing the
verification of the CO action behavioural specification is
UPPAAL, an automated tool for the analysis of real-time
systems [14]. The operational representation of the system
behaviour is modelled using timed automata, which are
obtained from the specification of a CO action normal

behaviour, defined by ERTL formulas. This is a
straightforward transformation in which the ERTL
transition events that define the pre-, post-conditions and
collaborative operations are associated with the transitions
between the states of an automaton. The safety properties
to be confirmed are obtained from the specification of
failure behaviour of a CO action. The system context for
conducting the safety analysis of the destruction system
consists of the following automata: EnableDestruction
(4 states), SelfBDestruction (4 states), FlightPhases (7
states), FlightTrajectory (2 states), and
OCSafeDestruction (2 states). This particular
configuration is relatively simple to be analysed using
model checking.

The behavioural specification of CO actions
EnableDestrcution and SelfBDestruction in terms of
timed automata is shown in figure 4. The vertices of the
automata represent location, and the edges represent
transitions between locations, which are labelled with a
guard, an assignment, or a synchronisation label. The CO
action pre-conditions are represented by the outgoing arcs
from location ED0 (SBD0), and the post-conditions by
incoming arcs to ED0 (SBD0). The guards represent the
conditions that allow the state of the automaton to evolve.
For example, in the automaton SelfBDestruction the
state of v.sb.enDest is updated by automaton
EnableDestruction, and the state of v.tr.outsideSP is
updated by the automaton that simulates whether the
trajectory of the Vehicle is outside the safety plan
(FlightTrajectory).

For the analysis of the safety properties of the
destruction system, the first step was to check using
UPPAAL queries whether the normal behaviour of
SelfBDestruction would not violate its safe behaviour.
The next step was to check whether the combined
behaviour of CO actions EnableDestruction and
SelfBDestruction is able to maintain the safety of the
VS-40X System. The VS-40X System enters into a
hazard state (associated with a commission fault)
whenever the Vehicle is destroyed (v_destroyed==1)
during the pre-launching (FP.FP0 or FP.FP1) or initial
phases of the flight (FP.FP2). This scenario can be
represented in terms of UPPAAL query language the
states that are to be avoided:
A[] not (( FP.FP0 or FP.FP1 or FP.FP2 ) and

v_destroyed==1).

Using UPPAAL model checking capabilities we have
confirmed that the above property is not violated for the
specifications of CO actions EnableDestruction and
SelfBDestruction. We have also confirmed confirm that
the VS-40X System is safe for those hazards associated
with omission faults. When the vehicle is in the
intermediate phases of the flight (FP.FP3 or FP.FP4), it



is outside the safety plan (v_tr_outsideSP==1) but
the vehicle is never destroyed (v_destroyed==0):
E<> not (( FP.FP3 or FP.FP4 ) and

v_tr_outsideSP==1 and v_destroyed==0).

As a result we can conclude that the VS-40X System
is safe for those hazards associated with commission and
omission faults, and that the mission requirement is not
violated despite the safety mechanism:
E<> not (( FP.FP3 or FP.FP4 ) and

 v_tr_outsideSP==0 and v_ps_actDest==1).

SBD0

SBD1

SBD2

SBD3

v_tr_outsideSP==false

v_sb_safeDest==true

v_destroyed==true

v_destroyed==true

v_tr_outsideSP==true

v_tr_outsideSP==true
v_ps_actDest:=true
v_destroyed:=true

v_destroyed==true

ED0

ED1

ED2

ED3

v_destroyed==true

v_destroyed==true

v_destroyed==true

v_destroyed==true
safeDest?
oc_safeDest:=true
v_sb_safeDest:=true

v_sb_safeDest==true
disUmbil?
t:=0

v_sb_safeDest==true
t==5
enDest!
v_sb_enDest:=true

t<=5

(i) EnableDestrution

(ii) SelfBDestrution

Figure. 4.  Hybrid automata of EnableDestruction and
SelfBDestruction.

A similar safety analysis exercise using laborious

deductive and inductive analysis techniques was
performed of the same destruction system [13]. The
purpose of this exercise was not so much to compare
different techniques, but instead was to obtain diverse
arguments in the provision of evidence that the safety
properties of the system are not violated. The combination
of a co-operative object-oriented architecture and model
checking has shown effective when dealing with systems
that undergo constant change. However, caution must be
taken over the (false) confidence that can be obtained
when employing model checking [7].

Using a co-operative object-oriented architecture for
representing the destruction system of the sounding rocket
has proven to be effective way for performing the safety
analysis because of the few changes that needed to be
made between the different configurations. The basic
building blocks of the models used by the model checking
and the deductive and inductive techniques were
connectors of the architecture that incorporated the
changes between the different configurations. For that, we
had to assume that components remained unchanged
between the configurations, and that all the changes could
be implemented by modifying the interactions between the
components. This approach seems appropriate for systems
that contain components that are amenable to change.

4. Conclusions

This paper has presented an approach for checking the
stability of the safety properties of evolving software in
which the safety analysis is enhanced by extracting from
the definition of the system components the behavioural
dependencies associated with their interactions. The
proposed approach is different from existing approaches
that rely solely on the behavioural specification of system
components for obtaining confidence that the system
safety will be maintained whenever there is a change.

The basic claim of this paper is that the co-operative
object-oriented style can enhance the safety analysis of
evolving software systems. Compared with other
approaches the major difference of the proposed approach
is that, connectors in addition of being the place of
communication, they are also the place of state and
computation: they encapsulate roles of the components
and collaborative operations between the components.
Instead of having to spread change among a group of
interacting components, a co-operative object-oriented
architecture allows change to be localised in its
connectors. Assuming the roles played by the components
are mutually independent, the impact of change can be
restricted because all the relational information is
associated with the connectors, rather then the
components. The feasibility of the proposed approach was
demonstrated through the specification and verification of
the destruction system of a sounding rocket. While
keeping the components unchanged, the destruction



system has evolved by changing the interactions between
the components. Instead of having to consider the whole
system, the modelling and analysis of the safety properties
have focused on the interactions between the components.
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Appendix - Extended Real Time Logic
(ERTL)

The basis for Extended Real Time Logic (ERTL) is
the event-action model that provides a set of primitive
concepts for the modelling and analysis of phenomena
associated with the computer system and its environment.
In the event-action model, an event serves as a temporal
marker, an action is an operation which consumes a
bounded quantity of resources, and a system predicate is
an assertion about a system variable at a time point.

Extended Real Time Logic (ERTL) [5,9] is a first
order predicate logic for the modelling and analysis of
hybrid systems, taking as a basis Jahanian & Mok’s Real
Time Logic (RTL) [10,11]. RTL uses uninterpreted
predicates to relate events of a system to the time of their
occurrence, thereby providing the means for reasoning
about absolute timing properties of real-time systems. The
extensions provided by ERTL allow reasoning about
system behaviour in both value and time domains through
predicates defined in terms of system variables.

The occurrence relation (Θ) captures the notion of
real time by assigning a time value to each occurrence of
an event. Θ(e, i, t) defines that the ith occurrence of event
e occurs at time t.

∀t•∀i∈P: Θ(Motor_On, i, t)

The ith occurrence of event MotorOn has occurred
at time t.
A transition event is defined by the transition of a

system predicate from false to true, or from true to false,
at a particular time point. For a system predicate P, the
respective transition events are �P and �P.

∀t•∀i∈P: Θ(ËplateOnBeg, i, t) ⇔ 
Θ(É(plateOnEnd ∧ ¬beltOn), i, t)

The transition event which captures the instant
which of the predicate plateOnBeg becomes false is
equivalent to the transition event which captures the
instant that the conjunction of plateOnBeg and the
negation of beltOn becomes true.
The holding relation (Φ) captures whether a system

predicate holds true at a time point. Φ(f, i, t) defines that a
formula f holds for the ith time, at time t.

∀t•∀i∈P: Φ(moveDown, i, t) ⇔ 
Φ(¬bottom ∧ ¬plateOn, i, t)

The predicate moveDown holds true iff the
conjunction of the negating predicates bottom and
plateOn also holds true.
For simplicity, the unindexed versions of the

occurrence and holding relations have also been defined.


