
Model Translation:
A UML-based specification technique and active

implementation approach

A thesis submitted to
The University of Kent at Canterbury

for the degree of
Doctor of Philosophy

David H Akehurst
December 2000

To my Dad

Abstract
Many software applications involve models of data that are manipulated by the
application. There is often a need to transform (or translate) the data from one model,
into another in which the data is differently structured. In addition, there is an
increasing requirement to pass data between different applications, which invariably
have different formats for their data models.

Both of these issues require a translation of the modelled data from one form to
another. The process of translating a model from one form to another is known as
model transformation or model translation.

The literature on model transformation includes a number of techniques for
specifying transformations. However, the majority of these techniques are grammar-
based specifications, many of which use a textual grammar, although some make use
of graphical (graph) grammars. These subsequently lead to a monolithic one-step
implementation process that performs the transformation.

This thesis addresses two issues that are related to the area of model transformation.
Firstly, it addresses the need for a standard notation that can be used for writing
model translator specifications. Secondly, a technique for implementing model
translators is developed that actively performs the transformation. Rather than a
single step process, that must be executed every time the source model changes, the
active implementation approach presented performs a continuous translation updating
the target model every time a change is made to the source model.

The specification technique makes use of the standardised Unified Modelling
Language (UML) and Object Constraint Language (OCL) for specifying a
transformation relationship between two object-oriented models, each of which is
also specified using UML and OCL.

The implementation approach uses an event-based version of the observer pattern
enabling the construction of translator to be formed from a number of mini-translator
parts, each of which monitors a small set of components. These mini-translators act
upon events generated by the model components and update the transformed
components to reflect the changes.

The specification and implementation techniques described can be applied to many
problem areas. In particular this thesis discusses their application to Multiple View
Visual Languages (i.e. the UML itself) and automatic performance model generation.

Acknowledgements
Many thanks to my supervisors Dr. Gill Waters and Prof. Peter Linington for their
support and invaluable advice throughout the duration of the research and writing of
this thesis. Especially, my thanks to Peter for showing me how to form a coherent
argument from my initial collection of ideas.

Thanks also to the many others who have proof read various extracts and discussed or
argued about the ideas presented. In particular, thanks to Dr. John Derrick who read
my first attempt at putting the whole thing together. Thanks to him, my wife, and
supervisors for their advice on suitable writing styles and techniques for presenting
ideas in a written format.

Acknowledgements also to British Telecom for funding the Permabase project and
my initial introduction to the world of academic research. Thanks to all the members
of that project for the discussions held during it; in particular, to Andrew Symes with
whom I worked closely throughout the duration of the project (and is still speaking to
me).

Thanks to both my parents for their support, encouragement and tutelage during my
early years, without which I would never have got to the point of being able to
attempt a doctoral degree.

Thanks to Sally Fincher for her help in getting around the “features” of the word-
processor I used to type up this thesis; and to Behzad Bordbar for checking my maths.

Finally, thanks to my family – Kerry, Luc and Paul – for their tolerance and patience
during the final period of writing up.

Declaration
The content of this thesis is a product of the author’s original work except where
explicitly stated as otherwise.

Contents
Abstract...i
Acknowledgements ...ii
Declaration .. iii
Contents..iv
List of Figures...vi
List of Tables..ix
Chapter 1 Introduction...1

1.1 Translation and Inter-Consistency...2
1.2 Example Applications ...2
1.3 Objectives ..4
1.4 Thesis Overview..4

Chapter 2 Background...6
2.1 Model Driven Architecture (MDA)...6
2.2 Model Translation ...8
2.3 Compilation ...10
2.4 Multiple Viewpoint Environments ..16
2.5 UML ..21
2.6 Graph Grammars ...23
2.7 Patterns ..25
2.8 Summary..30

Chapter 3 Permabase ...31
3.1 Overview and History..31
3.2 Analysis of the Permabase Prototype System ...36
3.3 Implementing the Prototype ..36
3.4 Evaluation of the Prototype ...38
3.5 Summary..42

Chapter 4 Translator Specification..44
4.1 Introduction ...44
4.2 Graph Grammar Approach to Model Translation ...46
4.3 The UML/OCL Technique..50
4.4 UML/OCL Specification Style..62
4.5 Related Work...66
4.6 Conclusion...66

Chapter 5 Translator Implementation..68
5.1 Introduction ...68
5.2 Visitor/Builder Implementation...69
5.3 Observer based Implementation ..75
5.4 Summary..95

Chapter 6 Automation ...97
6.1 Java and OCL Based Translator Platform...97
6.2 Examples ...106
6.3 Summary..123

Chapter 7 Evaluation ...125
7.1 Cognitive Dimensions ...125
7.2 Evaluation Criteria...127
7.3 Use of the technique ..129
7.4 Results ...131
7.5 Summary..143

Chapter 8 Conclusion ..146
8.1 Thesis Summary ..146
8.2 Achievements ..148
8.3 Future work ...148

Appendix A Scanning Rules ...151
A.1 Textual Symbols ...151
A.2 Graphical Symbols ...152

Appendix B UML Diagrams ...153
B.1 Static Structure (Class) Diagrams...154
B.2 Packages..154
B.3 Classes ..155
B.4 Object Diagrams ...159

Appendix C Graph Theory ..160
C.1 Terms ..160
C.2 Graph types ...160

Appendix D DirectedGraph-to-Tree Translator ..162
D.1 DirectedGraph Model ...162
D.2 Tree Model ...162
D.3 DirectedGraph-to-Tree Translator Specification..163
D.4 DirectedGraph-to-Tree Translator Implementation..164
D.5 Vertex↔TNode Implementation..167
D.6 Edge<->(TNode,TNode) ..169

Appendix E Java-to-Tree Translator ...172
E.1 Specification..172
E.2 ‘mappings’ Package ..172
E.3 ‘translator’ Package...173

Appendix F SVG-to-Graph-to-Automaton Translator ..177
F.1 Specifications ..177
F.2 XMI ...178

Appendix G UML Actions-to-RiscSim...182
G.1 UML Actions..182
G.2 RiscSim...183
G.3 Translator Mappings...183

Bibliography..185

List of Figures
Figure 1 – Translation into a Simulation Model ...3
Figure 2 – Multiple UML expressions describing a single system3
Figure 3 – The Compilation Process ...10
Figure 4 – Phases and Translations in a Compilation Process11
Figure 5 – The Parsing Process ...12
Figure 6 – Compilation as Models and Translators...16
Figure 7 – Model of a Java SDE Using Packages and Translators20
Figure 8 – Graph Grammar for Trees..23
Figure 9 – Creating a Tree...24
Figure 10 – An Additional Grammar Rule..24
Figure 11 – Builder Pattern Architecture ..25
Figure 12 – Architectural Elements of the Visitor Pattern ..26
Figure 13 – Behaviour of the “accept” Method...27
Figure 14 – Behaviour of Observer Pattern...28
Figure 15 – Observer pattern support definitions..28
Figure 16 – Event notification pattern support..29
Figure 17 – Observable Event support ..29
Figure 18 – Permabase domains of interest [Martin_Utton]31
Figure 19 – Initial Permabase Architecture...32
Figure 20 – Permabase Architecture ...33
Figure 21 – Example Use of Access Point Connectors...42
Figure 22 – An Abstract Behaviour Syntax Tree ..45
Figure 23 – A Petri-net (directed) graph ...46
Figure 24 – Graph Grammar for Directed Graphs ..47
Figure 25 – Tree to Directed Graph transformation rules ...47
Figure 26 – Triple Graph Grammar based specification for Tree ↔ DirectedGraph

Translation...48
Figure 27 – Left � Right Interpretation of Figure 26 TGG, Rule 3...........................49
Figure 28 – Right � Left Interpretation of Figure 26 TGG, Rule 3...........................49
Figure 29 – Tree Class Specification...50
Figure 30 – Directed Graph Class Specification ...50
Figure 31 – General Architecture for Translator Specifications51
Figure 32 – A Mapping Specification (invalid UML)...52
Figure 33 – Supporting Class for a Cartesian Product ([Mandel_Cengarle_99])52
Figure 34 – Definition of Pair ...53
Figure 35 – Support for Cartesian Products ..54
Figure 36 – Formation of a Cartesian Product AxB..54
Figure 37 – UML Specification of a Mapping Relationship.......................................55
Figure 38 – Specification of a BjMapping between classes A and B55
Figure 39 – A Mapping Specification (valid UML)..56
Figure 40 – Full expansion of the specification shown Figure 3956
Figure 41 – General Mapping Specification ...57
Figure 42 – Semantic interpretation of Figure 41 ...58
Figure 43 – Ill-formed Mapping Specification..59
Figure 44 – Well-formed Mapping Specification ...60
Figure 45 – UML/OCL specification of a Tree↔Directed Graph Translator61
Figure 46 – An Example DirectedGraph...62
Figure 47 – Possible Tree Translations of Figure 46 ..62

Figure 48 – Graph Transformation based specification for Tree ↔ DirectedGraph
Translation...64

Figure 49 – Visitor/Builder Translator Architecture ...70
Figure 50 – DirectedGraph ↔ Tree Translator Specification.....................................71
Figure 51 – Visitor and Builder Interfaces ..72
Figure 52 – Traversal Order for DirectedGraph Visitor..72
Figure 53 – Traversal Order for Tree Visitor ..73
Figure 54 – Architecture for an Observer Based Translator Implementation76
Figure 55 – UML definition of a generic MappingManager.......................................76
Figure 56 – Example set of Mappings...77
Figure 57 – Observable Events..79
Figure 58 – Observable data and collection types...80
Figure 59 – Behaviour and Structure of a Mapping Object ..81
Figure 60 – Edge↔(TNode,TNode) Mapping Component ..81
Figure 61 – Hypothetical mapping specification...82
Figure 62 – Mapping Update Live-Lock...85
Figure 63 – A Looped Chain of Mappings..88
Figure 64 – DirectedGraph↔Tree mapping specification..88
Figure 65 – The Automatic Translator Framework...98
Figure 66 – An Example Mapping ..98
Figure 67 – General Architecture of a translator package...99
Figure 68 – Java Interfaces for the Basic OCL Types...101
Figure 69 – Mutable OCL Types...104
Figure 70 – Model Update Action Sequence w.r.t a Mapping Object106
Figure 71 – The Tree Model..107
Figure 72 – The Java Model..107
Figure 73 – Java ↔ Tree Mapping Specifications ..108
Figure 74 – Generated Files for Translator Implementation110
Figure 75 – An Automata Model...114
Figure 76 – A Labelled Directed Graph Model...114
Figure 77 – A Partial SVG Model...115
Figure 78 – DirectedGraph↔Automata Translator Specification115
Figure 79 – SVG↔DirectedGraph Mapping Specification116
Figure 80 – (Group,Rect,Text) ↔ Vertex Mapping Specification116
Figure 81 – (Group,Line,Text) ↔ Vertex Mapping Specification116
Figure 82 – Group↔Vertex Mapping Specification...117
Figure 83 – Translator Architecture for a Visual Language......................................130
Figure 84 – Contours and Regions ..149
Figure 85 – Distinct Graphical Symbols ...152
Figure 86 – Concrete Syntax of Packages and their Inter-Relationships154
Figure 87 – Concrete Syntax for Illustrating Package Contents155
Figure 88 – Concrete Syntax for a Class ...155
Figure 89 – Concrete Syntax’s for Generalisation and Association Relationships...156
Figure 90 – Concrete Syntax for Various Adorned Associations157
Figure 91 – Concrete Syntax for an Interface and Implementation Relationship158
Figure 92 – Concrete Syntax for Parameterised and Bound Classes158
Figure 93 – An Example Object Diagram...159
Figure 94 – DirectedGraph Package..162
Figure 95 – Tree Package ..162

Figure 96 – DirectedGraph↔Tree Package ..163
Figure 97 - DirectedGraph↔Tree mapping specification...164
Figure 98 – Vertex↔TNode mapping specification ...167
Figure 99 – Edge<->(TNode,TNode) mapping specification169
Figure 100 – Java ↔ Tree Mapping Specifications ..172
Figure 101 – SVG↔DirectedGraph Mapping Specification177
Figure 102 – (Group,Rect,Text) ↔ Vertex Mapping Specification177
Figure 103 – (Group,Line,Text) ↔ Vertex Mapping Specification177
Figure 104 – DirectedGraph↔Automata Translator Specification178
Figure 105 – A Partial UML Actions model ...182
Figure 106 – Partial RiscSim Model ...183
Figure 107 – Mapping Between Pseudo Code Actions and PetriNet Segments184
Figure 108 – Partial UMLActions↔RiscSim Translator Specification....................184

List of Tables
Table 1 – Permabase Issues and Avenues for Solutions. ..43
Table 2 – Pseudo Code..45
Table 3 – Mapping Specification ..51
Table 4 – Constraints for DirectedGraph ↔ Tree Translator61
Table 5 – XSLT for Tree to Graph Translation...63
Table 6 – Implementation of the Tree to DirectedGraph Translator...........................73
Table 7 – Implementation of DirectedGraph to Tree Translator.................................74
Table 8 – Events and their relevance to the constraint ..83
Table 9 – Implementation template for Figure 61 mapping specification84
Table 10 – Event Loop Safe Implementation of a String Attribute’s Update Code....86
Table 11 – Alternative Event Loop Safe Implementation of example Update Code..87
Table 12 – Analysis of Figure 64 constraints..89
Table 13 – Implementation template for DirectedGraph↔Tree mapping class89
Table 14 – Implementation of actions resulting from adding a vertex........................91
Table 15 – Implementation of actions resulting from removing a vertex92
Table 16 – Implementation of actions resulting from adding an edge93
Table 17 – Implementation of actions resulting from removing an edge....................93
Table 18 – Actions to execute when an Edge is Added to a Vertex94
Table 19 – Actions to execute when an Edge is Removed from a Vertex95
Table 20 – Implementation of actions resulting from changing the root95
Table 21 – An example showing the use of OclExpressions in a Java class.............102
Table 22 – Java code illustrating a generated expression class.................................103
Table 23 – Example use of a Monitor object. ...104
Table 24 – XMI for Java↔Tree Mapping Specification ..109
Table 25 – Code for Directory↔TNode ConsistencyMapping111
Table 26 – Java Generator Class ...112
Table 27 – Two Tuple Classes ..118
Table 28 – SVG↔DirectedGraph Consistency Mapping Class119
Table 29 – SVG Generator Class ..121
Table 30 – The Thirteen Cognitive Dimensions ...127
Table 31 – Diffuseness of DirectedGraph ↔ Tree Example135
Table 32 – Number of Lines of Code to Implement the Translator141
Table 33 – Additional Model Code for the Visitor-Based Implementation..............142
Table 34 – Additional Model Code for the Observer-Based Implementation143
Table 35 – Cognitive Dimension Evaluation Summary..145
Table 36 – Distinct Textual Symbols ..151
Table 37 – Implementation Framework for DirectedGraph↔Tree Mapping Class .165
Table 38 – Actions to execute when an Edge is Added to a Vertex165
Table 39 – Actions to execute when a Vertex is Added to a DirectedGraph............165
Table 40 – Actions to execute when a Vertex is Removed from a DirectedGraph...166
Table 41 – Actions to execute when an Edge is Added to a DirectedGraph.............166
Table 42 – Actions to execute when an Edge is Removed from a DirectedGraph ...166
Table 43 – Actions to execute when an Edge is Added to a Vertex167
Table 44 – Actions to execute when an Edge is Removed from a Vertex167
Table 45 – Actions to execute when the root attribute of a Tree is Changed............167
Table 46 – Implementation Framework for Vertex↔TNode Mapping Class168
Table 47 – Actions to execute when an outgoing Edge is Added168

Table 48 – Actions to execute when an outgoing Edge is Removed169
Table 49 – Actions to execute when a Subnode is Added ..169
Table 50 – Actions to execute when a Subnode is Removed....................................169
Table 51 – Implementation Framework for Edge↔(TNode,TNode) Mapping Class

...170
Table 52 – Actions to execute when the start Attribute is Changed170
Table 53 – Actions to execute when the finish Attribute is Changed171
Table 54 – Actions to execute when a Subnode is Added ..171
Table 55 – Actions to execute when a Subnode is Removed....................................171
Table 56 – Actions to execute when a Subnode is Removed....................................171
Table 57 – Directory↔TNode Mapping Class ...172
Table 58 – DirectoryEntry↔TNode Mapping Class (Unused)173
Table 59 – CompilationUnit↔TNode Mapping Class ...173
Table 60 – ConsistencyManager Class..173
Table 61 – Translator Class...175
Table 62 – Java Generator Class ...175
Table 63 – Tree Generator Class ...176
Table 64 – XMI for SVG↔DirecteGraph...180
Table 65 – XMI for DirectedGraph↔Automaton...181

Chapter 1

Introduction

Modelling is a principal exercise in software engineering and development and one of
the current practices is object-oriented modelling. The Object Management Group
(OMG) has defined a standard object-oriented modelling language – the Unified
Modelling Language (UML).

The OMG is not only interested in modelling languages; its primary aim is to enable
easy integration of software systems and components using vendor-neutral
technologies. The latest step towards this goal is its announcement of the Model-
Driven Architecture (MDA) as the basis for future OMG standards.

One of the keys aspects of the MDA is the separation of platform-independent models
and platform-specific models. A platform-independent model can be mapped (or
translated) to any number of different platform-specific models. Additionally the
MDA recognises other separations between models of the same system, from
different viewpoints and at different levels of abstraction.

Many problems within software engineering make use of models and translations,
and as stated by the authors of [Blaha_Premerlani_96]:

“Models allow a developer to focus on the essential aspects of an
application and defer details. Transformations extend the power of
models, as the developer can substitute refinement and optimisation
of models for tedious manipulation of code.”

UML is the industry standard language for modelling. UML class diagrams have
become a standard way of defining the structural aspects of conceptual models.
However, little investigation has been done on using UML to specify relationships
between such structures. If UML could be used for this purpose, then it would not be
necessary to learn a different language to define those relationships.

The aim of this thesis is to investigate the possibilities of using UML to specify
relationships (e.g. translations) between models. Specifically, we will focus on
Object-Oriented (OO) models, which can be expressed in terms of UML classes,
associations and well-formedness constraints. This includes meta-models, which are
essentially OO models of the abstract or concrete syntax of languages.

The remainder of this introduction is structured as follows. Section 1.1 discusses two
types of relationship that can be specified between models – Translation and Inter-
Consistency. Section 1.2 illustrates a number of example applications that make use
of such relationships. Section 1.3 states the two primary objectives of this thesis and
section 1.4 concludes with an overview of the other chapters.

Introduction 2

1.1 Translation and Inter-Consistency
The relationship between two distinct models can be specified as a translation, i.e. the
specification of how to create one model from the information provided by the other.
In the case of the MDA, the relationship from platform-independent model to
platform-specific model is a translation.

Alternatively, the relationship can be more of a peer-to-peer mapping (i.e. a function
and its inverse). Neither model is generated from the other, but the models are
specifying the same system from different perspectives, possibly containing
overlapping information that must be consistent.

From a declarative perspective, the specifications of both of these types of
relationship are the same. The relationship defines a mapping between components
from one model and components from the other, the difference is in the actions
performed as a result of the declarations being invalid.

For a translator, if the mappings specified are invalid, the actions must indicate how
to create components of the target model such that the mapping becomes valid. For an
inter-viewpoint relationship, the actions may simply flag up an inconsistency, or may
attempt to change one or other model to revalidate the mapping specifications.

Models and the relationships between them (whether translations or peer-to-peer
mappings) pervade many different types of software system and have been in use for
many years, although not always specifically referred to as translations.

There is much work in various domains to which translations are applied.
Applications such as compilers, interpreters and pretty printers all perform a
translation and the tools for generating them have been called translator-writing
systems. Modern Integrated Development Environments (IDEs) and Software
Engineering Environments (SEEs) provide multiple views of the same specification,
sometimes using the same languages and notations and often using a variety of
different ones. There are also complete research fields dedicated to viewpoint
specification and their inter and intra consistency.

The questions we ask in this thesis are “Can UML be used to specify translations, or
mappings between models, such that the specification of these systems is possible
within a single linguistic framework?” Secondly, “Are those specifications a suitable
basis for the provision of an implementation?”

The next subsection introduces three application areas whose specifications could be
described as model translations.

1.2 Example Applications
Model and translation based specifications are suited to a number of different
software systems. Some contain distinct translations, such as performance model
generation, where as others such as multi-view systems are more suitably described
as containing mappings between different models. Additionally there are those types
of system that can be seen as either a mapping or a translation depending on the style
of implementation. Compilers, whether for textual or visual languages, relate concrete
and abstract syntax models. A batch, single step style of implementation is easily seen
as a translation from concrete syntax to abstract syntax to target syntax. Whereas, an

Introduction 3

incremental compiler attempts to map concrete components onto their abstract
counterparts, performing updates (incrementally) as changes are made.

The following sub-sections discuss a number of possible applications suited to this
style of specification.

1.2.1 Automatic Performance Model generation
The model translation technique can be applied to the area of Performance Modelling.
This directly illustrates the requirement to convert one model of a system into an
alternative model that represents the system using a different set of concepts.

System Design
Model

Discrete Event Simulation

Figure 1 – Translation into a Simulation Model
Figure 1 illustrates a translation from a design model of a system into a Discrete
Event Simulation (DES) model of the same system. The translation is specified from
design model to DES in order to generate the simulation model and in the reverse so
that the results of the simulation can be seen in the context of the original model.

Both models represent the same system but use different concepts to construct their
representations. The abstract model could be defined using UML concepts, whereas
the DES is defined using queued servers, delays and transactions.

A project (Permabase) that investigated the implementation of this type of system is
discussed in Chapter 3.

1.2.2 Visual Language Specifi cation and Editor Implementation

Abstract Syntax
System Model

Class Diagrams

Sequence Diagrams

State Diagrams

Figure 2 – Multiple UML expressions describing a single system
The technique can be applied within the domain of Visual Languages to give a
technique that allows multiple syntactic expressions to define concurrently a single
abstract model of the information described ([Akehurst_00]).

This technique is illustrated within Figure 2 with respect to supporting modelling
languages such as the Unified Modelling Language (UML). UML embodies a number

Introduction 4

of different diagrams types (and syntaxes), which are used to produce multiple
diagrams that collectively describe a single system.

1.2.3 Multi User/View Repository Systems
A third possible application of this technique is within the domain of multi user and
multi view systems. Such systems often make use of a central repository to store and
co-ordinate the information entered by each of the users (or views). It can be a
problem, in such systems, to enable each user to have a consistent and up to date view
of the information entered and to ensure consistency between multiple views. This
type of system is discussed in [Marlin_96], who describes a distributed architecture
for supporting multi-view systems using a canonical (central) representation of all
views, and uses a broadcast mechanism to propagate changes to each view.

The continuous or active translation approach described by this thesis enables the
central repository and each of the user’s individual view models of the central
information, to be continuously updated. A similar mechanism is used, although it is
described as use of an ‘Observer Pattern’, rather than as a broadcast.

1.2.4 Compilation
The translation technique could also be applied to the task of compiler generation. A
program compiler could be built using this technique. Such a compiler would
translate between the source code of a program and the destination target language,
either an intermediate assembly code or the machine specific instructions.

This style of compilation would give immediate feed back on the validity of the
syntax and would not require a separate compilation step. The program would always
be executable (assuming the syntax was valid) without requiring compilation after
each change. This would give a compiled language a similar appearance to an
interpreted one.

Having illustrated four types of system to which we could apply a model and
translator based style of specification; the next section highlights the main objectives
of the thesis.

1.3 Objectives
The objectives of this thesis are:

1) To investigate the feasibility of using UML as a basis for a technique
that can be used to specify a declarative translation or mapping
relationship between two distinct object-oriented models.

2) To illustrate whether or not this style of specification can be used to
provide an ‘active’ translator implementation using an approach that
can be, at least partially, automated.

1.4 Thesis Overview
To achieve these objectives the thesis follows the following format:

Chapter 2 Background: provides more detail surrounding the MDA; discusses
other work related to the topic of model translation; introduces object-

Introduction 5

oriented modelling and the Unified Modelling Language (UML);
discusses Graph Grammars and Graph Transformation; and introduces
the concept of Patterns, describing in particular the Patterns used in
this thesis.

Chapter 3 Permabase: describes the objectives, tasks, results and problems
involved in the Permabase project. This chapter illustrates the
background that led to the requirement for solutions to the problems
addressed by this thesis.

Chapter 4 Translator Specification: defines a UML and OCL based declarative
technique for specifying translations or mappings between models.

Chapter 5 Translator Implementation: discusses two possible methods for
implementing a model translator given a specification of the form
described in the previous chapter.

Chapter 6 Automation: discusses an approach for automatically generating a
translator implementation from the UML/OCL based specifications.

Chapter 7 Evaluation: discusses the UML/OCL specification technique and the
suggested methods of implementation. The specification technique is
evaluated in the context of Cognitive Dimensions and the
implementation approaches are compared. Discussion surrounding the
use of the techniques on various examples is also included.

Chapter 8 Conclusion: highlights the contributions of the work presented in this
thesis showing how the UML/OCL specification technique and the
implementation approaches meet the objectives outlined in Chapter 1.
This section also proposes some future research that could lead on
from the results of the work presented here.

Chapter 2

Background

This chapter starts by discussing the OMG’s Model Driven Architecture (MDA)
indicating how the work in this thesis relates to their framework. The chapter also
describes other work related to the area of model transformation, both directly, and
indirectly discussing topics where model translation and mapping is applied. Also
included is an overview of topics that aid the understanding of the research presented
in the following chapters.

Section 2.1 discusses the OMG’s MDA illustrating how the work in this thesis is
timely and ideally suited for use within that framework. Section 2.2 looks at work
specifically related to model translation. Section 2.3 discusses compilation as a
translation technique. Section 2.4 discusses the concept of viewpoints and how model
translation is applicable to supporting viewpoint consistency and integration. Section
2.5 presents a brief introduction to the language and notations of UML and OCL.
Section 2.6 introduces Graph Grammars and Graph Transformations. Section 2.7
finishes the chapter with a description of some modelling Patterns used as part of the
proposed implementation technique for model translators.

2.1 Model Driven Architecture (MDA)
MDA is the OMG’s latest initiative towards providing a framework that enables
vendor independent and future-proof software-system integration. Starting with
CORBA, the OMG has been responsible for the standardisation of a number of
different (object-based) technologies. The first of these, CORBA [OMG_00oct] is a
standard for supporting interoperability across multiple middleware platforms. UML
[OMG_99jun] is the OMG’s standard modelling language and is widely adopted
across the industrial software engineering community. XMI [OMG_98oct] has been
developed as a standard for enabling communication of UML models and CWM
[OMG_00jan] as a standard technology for data warehousing.

MDA is an initiative that addresses integration and inter-operability across the
software-system life cycle, from initial modelling through design, implementation,
management and evolution. Documents such as [Dsouza_01mar] and [OMG_01feb]
give good accounts regarding the details of the initiative. The primary relevance of
the MDA work in relation to the content of this thesis is its focus on models and the
transformations and mappings between them.

A number of concepts, key to the MDA approach, are defined in [OMG_01feb].
These definitions are included here to aid understanding of the following overview of
the MDA.

Background 7

Model A model is a formal specification of the function, structure and/or
behaviour of a system.

Abstraction Abstraction is the suppression of irrelevant detail.

Viewpoint A viewpoint is a model of a system based on specific abstraction
criteria.

Platform A platform encompasses technological and engineering details that
are irrelevant to the fundamental functionality of a software
component.

Given these definitions, we can state that the purpose of the MDA is to provide a
mechanism for writing specifications that are based on a platform-independent model
(PIM). These specifications could be at any level of abstraction and from any
viewpoint but fundamentally, the MDA enables integration of several such
specifications about the same system.

The MDA focuses on the functionality of a system, not on the technologies that are
used to implement it. Hence, it provides for specifications that are independent of
specific vendors and of the continuously moving target of the “current best
implementation technology”.

Implementation of a model is supported by the generation of a platform-specific
model (PSM). A platform-specific model is created by transforming the platform-
independent model into a model based on the fundamental concepts of the target
platform.

UML is proposed as the ideal means for specifying a PIM and [OMG_01feb]
proposes that UML can be used to construct profiles for each required PSM. Such
profiles are already starting to come into existence, for example the UML profile for
CORBA [OMG_00feb].

The mappings between the different models are as important as the specifications of
the models themselves. However, no standard technique has been proposed as a
mechanism for specifying these mappings.

Within documents such as the IDL to Java Language Mapping [OMG_99jun3] or the
IDL to C++ Language Mapping [OMG_99jun2], the specification of the mapping
details is achieved using a mix of informal text and examples. Other examples of
translations specification within the OMG are those relating to XML. The XML
Metadata Interchange (XMI) Specification [OMG_98oct] defines how to translate a
MOF model [OMG_00mar] into an XML DTD [W3C_98feb] and the technique for
describing the translation uses some formality in its use of EBNF [ISO/IEC_96] and
OCL.

The informal mechanism adopted for the IDL mapping specifications makes the
documents amenable to human interpretation. However, the specifications are not
useable as input for the provision of an automatic translator. The MOF to XMI
translation is specified more formally; however the introduction of an additional
language, EBNF, raises the question “Would the specification of the translations be
possible using UML?”

Given that it is the OMG’s philosophy to be consistent in using UML to express the
definition of models, is it also possible to use UML to express mappings between

Background 8

models? The work described in this thesis investigates this possibility and proposes a
possible approach.

The next section of this chapter reviews work that is directly related to the topic of
model translation.

2.2 Model Translation
Not much reported work directly refers to itself as model translation. However, there
is some and this section discusses some of these bodies of work.

2.2.1 Transformation Rules Based on Meta-Modelling
Lemesle presents [Lemesle_98] a transformation technique based on representing the
meta-model of both source and target models in formalism based on sNets, a
particular style of semantic network with typed nodes [Bézivin_etal_95].

The approach is sound and very similar in theory to the UML/OCL (see sections 2.5
and 2.5.1) approach presented in this thesis. However, the use of a non-standardised
notation limits the extent to which it is likely to be adopted.

Any general transformation specification needs to be defined in terms of the source
and target meta-models; Lemesle’s technique uses sNets to define the meta-models
and a set of textual grammar rules to define the transformations between meta-model
components.

2.2.2 A Catalogue of Object M odel Transformations
The authors of the paper [Blaha_Premerlani_96] give a succinct overview of the
theory of model transformation in the context of object-oriented modelling. They
describe three classifications of transformation:

1. Equivalence Transformation. There is a unique one-to-one relationship between
instances of the source and target object models described. Incidental
information (such as association or role names) may be lost, but all of the
modelled information is retained.

2. Lossy (Information-losing) Transformation. The source model is more
constrained than the target model. All instances of the source model can be
mapped to target models but not all target models can be mapped to a valid
source model. Information is lost as part of the transformation.

3. Information-gaining Transformation. The source model is less constrained than
the target model. A source model instance may not have a valid target model
instance, but all target model instances can be generated from a source model
instance. Information is gained as part of the transformation, which must be
supplied from another source.

The bulk of the paper is concerned with documenting an extensive set of twenty
primitive transformations (i.e. transformations that cannot be decomposed into
simpler ones). These transformations describe operations that can be carried out on an
object-oriented model to produce a different model. The transformations described
include operations such as:

• adding or removing a basic component (class, association, attribute, etc.);

Background 9

• changing the properties of a component (e.g. altering the multiplicity of an
association);

• moving a component from one container to another;
• combining or splitting two similar type of component;
• converting one type of component into another (e.g. converting an association

into a class or vice-versa).
The transformations can be seen as describing the operations a developer would need
in order to create a model. They can also be used as the basic building blocks for
describing how to convert one model into another, and as such could aid in the
identification or description of patterns of inter-model transformations.

2.2.3 ALCHEMIST
ALCHEMIST is described in [Tirri_Lindén_94] as a general-purpose object-oriented
transformation generator. It is especially suited to defining mappings between
database data-models. Source and target models are described using a textual context-
free grammar; the transformation rules are specified using Tree Transformation
grammars (TT-grammars, [Keller_etal_84]).

A TT-grammar is a textual specification of a relationship between two syntax trees,
each of which is described by a grammar. The specification can be used to perform a
transformation in either direction.

The ALCHEMIST toolkit enables the generation of file-to-object, object-to-file and
object-to-object translators. Additionally it provides an extensive set of applications
for supporting the following tasks: editing source and target grammars; editing the
transformation grammar; reusing existing transformations; and managing the
transformation specifications.

The approach is limited by its assumption that object models are always tree
structures. This may be the case with many database models, but in general, an object
model may not follow the structure of a tree. However, the approach provides good
evidence that it is possible to implement a general toolkit supporting model translator
specifications, and could be useful with respect to the transformation of XML models.

The system could be improved by the addition of graphical notations for specifying
the source and target models and the transformation specification. It is the use of
textual context-free grammars that limits the technique to tree structures, a move to
graph grammars or UML/OCL specifications would remove this limitation.

2.2.4 XSL Transformations (X SLT)
The definitive guide to XSLT is the W3C standard [W3C_99nov], however other
sources provide better introductions and tutorials for those wishing to learn the
language (e.g. Chapter 14 of the XML Bible, [Harold_99jul]).

XSLT is part of the XSL (Extensible Style Language) set of standards, which are an
effort to develop a standard for the presentation of XML (Extensible Modelling
Language, [W3C_98feb]). XSL is divided into the formatting part, XSL:FO
(Formatting Objects), and the transformation part, XSLT.

A specification in each of these parts can be represented as an XML document. XSLT
is, therefore, a language for describing how to transform one XML document into
another. XSLT was originally intended for specifying the relationship between a

Background 10

source XML document and a target XSL:FO specification of how to present that
source document. However, as the format specification language is also an XML
document, XSLT became a language that can be used for specifying a transformation
between any two XML documents.

As XML is intended as a language for communicating and representing data models,
XSLT can be applied as a model transformation language. Work discussing this
application of XSLT is documented in [Peltier_etal_00].

The work by Peltier et al describes a formalism for expressing transformation rules in
a more succinct notation than pure XSLT. They also propose an architecture where
models are defined in a higher level notation than XML, e.g. UML or MOF, and
transformations are specified in their own notation. These specifications are
subsequently mapped to the lower level XML and XSLT representations for
executing the transformation.

The use of UML to specify the transformations and a specification of the mapping
between that use of UML and XSLT would be more consistent than introducing a
new notation. It would be quite feasible to specify such a mapping from the
UML/OCL transformation technique specified in this thesis to the XSLT language.

Having looked at bodies of work that directly address the concept of model
translation, the next sections discuss larger bodies of work that can be considered as
investigating model translation although not explicitly stating so.

2.3 Compilation
A compiler is a tool for performing a translation between two languages. In
particular, within the domain of Computer Science, a compiler translates a set of
instructions from a higher level language into a lower level language1. Compiler
technology is also used for other processes such as text formatting or interpreting
database query expressions. A good introductory text covering the majority of aspects
is [Aho_etal_86].

This section introduces the process of compilation from the perspective of looking at
it as a translation. The first sub-section discusses the overall architecture of a
compiler, showing how it can be viewed as a cascade of sub-translation processes.
The second and third sub-sections discuss in more details the syntax and semantic
analysis processes. The final sub-section reflects on compilation as a translation
mechanism, in terms of the specification techniques used, and the implementation
approaches.

Source
Language

Target
LanguageCompiler

(Translator)

Figure 3 – The Compilation Process

1 The terms higher and lower are relative to the relationship between the two languages, with lower implying that the language
primitives are simpler instructions.

Background 11

2.3.1 The Compiler Architectu re
We can view a compiler as being a translator between a source language and a target
language (Figure 3). However, this translation process can be sub-divided into a
number of sub-translations, as shown in Figure 4.

Source
Text

Token List

Parse Tree

Abstract
Syntax Tree

Intermediate
Code AST

Target
Code AST

Optimised
Target AST

Target
Code

Lexical Analysis
(Scanning)

Syntax Analysis
(Parsing)

Semantic Analysis
(Generation)

Figure 4 – Phases and Translations in a Compilation Process
Compilation starts with Lexical Analysis. This very simple translation process
recognises patterns in sequences of characters and outputs a list of tokens
representing each recognised pattern. The patterns are defined by associating a
regular expression with a token name that represents the recognised pattern. This
process is also known as scanning.

The output of the scanner is parsed (Syntax Analysis) to generate a parse tree
structure based on the source language phrase grammar. The phrase grammar
specifies rules that group particular tokens into groups (phrases). The parse tree is
subsequently converted into a more compact representation, the abstract syntax tree
(AST). This step from token list to abstract syntax tree is often implemented as a
single translation, skipping the intermediate representation of a parse tree.

Semantic Analysis is the process of interpreting the meaning of a source language
expression; the abstract syntax tree is the prime source of information used to carry
out the analysis. To analyse the semantics of an expression, it is necessary to have
some information regarding the semantic rules of the language. Semantic rules are
defined by associating attributes to nodes in the parse tree (or AST), and giving
values to the attributes using functions over other attributes. If none of these functions
have any side effects, the grammar (and semantic rules) can be known as an attribute
grammar.
More usually, the functions in semantic rules do have side effects; such actions are
used to generate output for sentences parsed by the grammar. In this situation, we
have a translator; the input source expression is scanned, parsed, and analysed to
produce output. If the output is in the form of text, then we have a simple, String-to-
String, translator.

Alternatively, the output can be a different data structure (or structures) that can be
further processed, constructing translators that are more complex. For instance, the
output can be a model (AST) of the target code of the compiler, which in turn
undergoes optimising transformations before the output target sentence is produced
by the compiler.

The next two sub-sections look in more detail at the syntax analysis and semantic
analysis phases of compilation.

Background 12

2.3.2 Parsing
This sub-section discusses the syntax analysis (parsing) process, both as a batch
process and as an incremental process. It looks at both the standard technique
employed to specify a parser and at the variations in implementation approach.

token token token token token token Parser

Figure 5 – The Parsing Process
Parsing is a process of translating a sequence of tokens into a tree like data structure
(Figure 5). The characteristics of and manner in which the tree is constructed are
defined using a grammar and particular parsing technique (LL, LR, LALR
[DeRemer_74:1]).

Grammars are defined by a set of terminal symbols, a set of non-terminal symbols, a
starting non-terminal and a set of production rules. The terminal symbols match the
tokens output from the lexical analysis process and form the primitives used to
construct a sentence. The production rules define associations between groups of
symbols (terminal and non-terminal), these rules define how the primitive tokens may
be combined to form valid sentences for that particular grammar.

The specification of grammars using this technique has a well-defined mathematical
foundation [DeRemer_74:1]. Using set theory, a grammar G is defined as a 4-tuple:

G = (N, T, S, P)
 N = { non terminal symbols }
 T = { terminal symbols }
 S = start symbol
 P = { production pairs, (α,β) written α → β |
 α ∈ V*
 β ∈ V*
 V = N U T }
(V* is the set of all strings formed from V, including the empty or null string ε)

A derivation is a sequence of strings α1...αn (for n>0) such that there are productions:
α1 → α2 → α2 ... → αn (often denoted as α1 � αn)

Any string η derivable from S (such that there is a derivation S � η) is called a
sentential form. If η consists only of terminal symbols then it is called a sentence of
the language generated by the grammar L(G). The language L(G) is the set of all
sentences that can be generated by the grammar G, i.e.:

L(G) = { η ∈ T* | S � η }

Grammar specifications can be classified based on the complexity of the languages
they define and the patterns of symbols present in the left and right hand sides of the
production rules, this is known as the Chomsky Hierarchy [DeRemer_74:1]. The
majority of programming languages fall into the classification of context-free, and the
parsing algorithms discussed in this sub-section all operate over this class of
language.

Grammars are also classified based on the applicability of parsing techniques. Parsing
algorithms are based on the direction of scanning the input, order in which a

Background 13

derivation is built up, and the number of look-ahead tokens necessary to distinguish
between productions. The scanning direction is either: left to right (L); or right to left
(R). The construction of the derivation sequence can be either: top-down or bottom-
up. Top-down signifies that the starting point is the start symbol and the derivation is
built up moving left to right (L) along a derivation sequence as written above.
Bottom-up, signifies that the technique starts with the terminal symbols and builds the
derivation sequence in reverse, i.e. right to left (R) as written above. The number of
look-ahead tokens is simply indicated using an integer.

By putting these together, we end up with a notation for indicating the classification.
The classifications for the most typically used parsing techniques are as follows:

• LR(k) – left-to-right, bottom-up, k look-ahead tokens;
• LL(k) – left-to-right, top-down, k look-ahead tokens.
• LR(1) – left-to-right, bottom-up, 1 look-ahead token;
• LL(1) – left-to-right, top-down, 1 look-ahead token;
• LR(0) – left-to-right, bottom-up, no look-ahead;

Further more LR(1) grammars can be sub classified into SLR (simple LR) and LALR
(look ahead LR) grammars. More information regarding these parsing techniques can
be found in [Aho_etal_86].

The above definition of a grammar and an appropriate parsing technique enables
syntactic analysis of an input sentence. Parsing is the process of determining a
derivation that enables the parsed sentence to be generated from the starting symbol;
if the parse is successful, the sentence is syntactically valid. Errors in the syntax of a
sentence can be indicated and in some cases, possible corrections can be suggested.

Both the lexical grammar and the parser (phrase structure) grammar can be simply
defined using respectively a regular expression language and a grammar language
(such as Backus-Naur Form, BNF, or Extended-BNF [ISO/IEC_96]).

The process of lexical analysis is easily modelled using a state machine, and hence
automatic construction of a scanner from the input description is possible. The same
is true for some classes of phrase structure grammars and specific parsing techniques.

Programs that perform this automatic construction take as input the description of a
grammar and output a program that can be used as a parser for the input grammar.
Such programs are called Compiler-Compilers or Translator Writing Systems.
Particularly well known are the ‘lex’ and ‘yacc’ tools [Levine_etal_92] and their
successors such as Flex and Bison [Donnelly_Stallman_00], or one of many other
variants.

Irrespective of the particular parsing technique employed, the parsing process is one
of identifying a particular sequence of production rules (called a derivation) that can
be applied to construct the input sentence. The process of identification was initially
seen as a single batch process, requiring the whole sentence to be parsed in order to
create the output parse tree. Changes to the input sentence required re-parsing the
entire sentence.

Incremental parsers retain the structures produced during the parsing process and
reuse them to update the output when changes are made to the input. Primarily this
enables reuse of unchanged parts of the parse tree, consequently speeding up the
production of the output after edits on the input.

Background 14

Work by Ghezzi and Mandrioli ([Ghezzi_Mandrioli_79], [Ghezzi_Mandrioli_80])
used the notion of threaded parse trees to store information about the state of a parse.
Subsequent changes to the input text are state matched to specific points in the
parsing process, indicating branches of the parse tree that can be re-used, and those
that need to be replaced.

Ghezzi and Mandrioli’s algorithm is a bottom-up LR(0) approach to parsing, an
alternative approach using state matching is proposed by Jalili and Gallier
[Jalili_Gallier_82] and can handle LR(1) grammars. There are also other approaches
such as [Celentano_78], which is more space efficient, or [Wegman_80] achieving
maximal node reuse. These works have been built on in texts such as
[Larchevêque_95] which extends Ghezzi and Mandrioli’s approach to LR(k)
grammars, and [Yeh_Kastens_88] which presents termination conditions for
incremental parsing enhanced by a skipping heuristic introduced by Wegman.

All of the approaches have different features, being suitable for different classes of
grammar, with different space and complexity measures and impose varying
constraints on the types of edit that can be performed. Modern work, such as
[Wagner_Graham_98], defines a more flexible approach and supports a larger class
of grammars. Their approach also uses a parse tree, but, rather than recording and
matching the state of the parser at each node, they use a more powerful technique
called sentential-form parsing. This approach enables the parser to match a non-
terminal to an already built segment of parse tree, and re-uses it rather than re-
building it.

Parsing produces a parse tree, or AST, and checks that the syntax of the sentence is
correct. The next step is to interpret the meaning (semantics) of the parsed sentence;
we discuss this process in the next sub-section.

2.3.3 Semantic Analysis
Attribute Grammars [Knuth_68] were initially introduced by Knuth for the purpose of
semantic analysis. They extend a standard grammar by attaching attributes to the
symbols of the grammar (terminal or non-terminal). Each grammar production is
associated with a set of semantic equations, which define the value of the attributes in
terms of functions applied to other attributes. There are two classes of attribute,
synthesised and inherited. The difference is most easily understood by associating the
symbols with their nodes in the parse tree; a synthesised attributes is calculated from
attributes of sub-nodes and inherited attribute are calculated from attributes of parent
or sibling nodes. The attributes of terminal symbols are often assigned values by the
lexical analysis process.

In addition to assigning values to attributes, a semantic function can be defined to
perform some kind of action, for example an output action. Thus, as a sentence is
parsed, not only are the values of symbol attributes updated, but also output can be
produced. For simple compilers, the output actions can drop the generated output of
the compiler; however, situations that are more complex require a secondary data
structure to be created.

The output actions can be defined such that they build an alternative data structure,
for example a model representing the abstract syntax of the target language of the
compiler. In this case the execution of the actions performs a Tree-to-Tree

Background 15

transformation and the grammar (including the semantic actions) can be called a
transformational grammar [DeRemer_74:3].

Further work with Attribute Grammars has identified Ordered Attributed Grammars
[Kastens_80]. These are a subclass of Attribute Grammars, which enable automatic
construction of compiler algorithms.

Often, parsing and semantic analysis are mixed up in a single execution process; the
parse tree or AST is not explicitly built. Rather, as each grammar symbol is matched
the semantic functions are executed.

The use of an incremental parser raises problems with this mixing of semantic actions
into the parsing process. Edits to the source text causing changes in the parse tree will
imply different values for symbol attributes, and possibly require the output to be
different. If the output actions have already been executed, any change to the parsing
order may change the order in which the output actions would have been executed if
the sentence had been parsed as a whole. Consequently, an incremental semantic
analyser must be used instead.

One approach, described in [Reps_etal_83] is to define everything using attributes,
i.e. no actions, and to re-evaluate the affected attributes when changes are made. An
alternative, semantic-action, approach requires a designer to specify actions for
producing output and additional actions for retracting or undoing the effects of an
output action. Generators such as those documented in [Krafft_81] and [Medina-
Mora_82] use this approach and an alternative version using a hybrid of the two
approaches is proposed in [Johnson_Fischer_82].

To conclude the discussion on compilation, the next sub-section looks at the
compilation techniques with respect to the model driven approach and requirements
as discussed in Chapter 1.

2.3.4 Analysis / Reflection
From the perspective of compilation, a translator is seen as a generative process as
opposed to a relationship between two distinct models. This is particularly apparent
with respect to the specification mechanism, a grammar. A grammar describes how to
generate a set of sentences. Consequently, any specification based on a grammar will
naturally have a generative flavour.

Both lexical parsers based on regular expression grammars and the more complex
syntax parsers use a grammar specification in reverse. They detect whether a
particular sentence could have been generated from the specified grammar and in the
case of syntax analysis, they determine how the sentence could have been produced in
terms of the defined grammar rules (productions). The most common technique used
to perform this process is by constructing a pattern matching state machine in
accordance with the rules of the grammar. Actions associated with the transitions
between states create the output of the translation system.

Over time, the implementation techniques for these kinds of translator have become
very efficient, even with respect to the more complicated incremental
implementations. Automatic compiler construction tools have been built, which
significantly ease the process of building a compiler. Eli [Gray_etal_92] is one such
compiler construction tool, based on the extensions to Attribute Grammars described
in [Kastens_Waite_94]. It takes as input a number of specifications defining the

Background 16

source language, translation process and output machine code and generates a
complete compiler as output.

In accordance with the objectives of this thesis, we try to show that it is possible to
use UML and OCL to define such translation processes. This is as an alternative to
the standard approach to specifying and implementing the translators based on
grammar specifications.

A model driven architecture for the scanning and parsing segments of a compiler
could be as shown in Figure 6. The original text, the sequence of tokens and the
abstract syntax can all be seen as separate models, with a translation between them.

Abstract
Syntax Tree

Tokenised
Sentence

Text
Document Scan Parse

Figure 6 – Compilation as Models and Translators
The specification of the text document is simply a sequence of characters. In
accordance with the specification of a lexical analysis grammar, the Tokenised
Sentence model must define a number of token types, each matching a specific
pattern as defined by a regular expression. The Abstract Syntax Tree (AST) model
must (obviously) define the components of the abstract syntax of the language being
parsed, and the relationships between them. The translators, ‘Scan’ and ‘Parse’ map
text strings to tokens and groups of tokens to parts of the AST.

The implementation of systems specified in this manner could be achieved as batch
process or as incremental (or active) translations. The choice is a question of mapping
the platform-independent specification to a particular platform-specific programming
pattern and set of libraries.

A current approach to implementing parsers is to use a state machine, for both
incremental and batch based implementations. The incremental approaches save state
information in the context of particular input tokens; changes to those tokens can be
subsequently parsed by starting the state machine analysis in the appropriate related
states.

One could use the proposed constraint based approach in this thesis to specify a
parser and take a validation / action approach to implementing one. This approach
treats a parser in a similar way to a mapping between two different views as discussed
in the next section.

2.4 Multiple Viewpoint Environments
The OMG MDA initiative presents viewpoints as a possible means to divide the
specification of a system into a number of separate model specifications. Although
separate models, each of the specifications defines details about the same system and
hence, there is a requirement to show that they are not inconsistent.

The issue of viewing a specification from multiple viewpoints has been under
investigation for several years and there is a large body of research discussing the
related problems and their solutions. The next sub-section (2.4.1) traces a path from
the domain of compilation (discusses previously) through to the research areas
discussing multiple viewpoint specification. The succeeding sub-section (2.4.2)

Background 17

describes some of that research and 2.4.3 illustrates how the ideas presented in this
thesis can be used within the field.

2.4.1 From Compilers to Mult iple Viewpoint Environments
Over the last 30 years, tool support for programming and software engineering has
evolved from structured editors, to software development environments (SDEs), to
the current state of the art in multi-view development environments (MVDEs).

As software-systems have become larger and the languages for building them more
complex, tools have been built to aid the software engineer prior to receiving error
messages returned by a compiler. In addition, other tools have been built that
automate or aid the construction of software development tools, based on the
specification of the language in use.

Starting in the 1970’s, technologies emerged for constructing structured (or syntax-
directed) editors for text based programming languages, such as the Cornell Program
Synthesizer [Teitelbaum_Reps_81], MENTOR [Donzeau-Gouge_etal_84] and
GNOME [Garlan_Miller_84]. These tools aim to give assistance to a programmer by
helping them to write the correct syntax for the language. Initial tools imposed
restrictions, limiting the types of possible editing actions. Probably due to these
limitations, structured editors never caught on as a general use tool; even so, the
associated technology continued to be explored. More advanced systems, such as
PECAN [Reiss_85mar], provide multiple views on the code including, in addition to
a standard text view, a flow graph view or a view of the incrementally built symbol
table.

Along side the development of tools to aid the programming process in a particular
language, is the development of technologies to automatically generate those tools for
application to any language. These extend the functionality provided by a compiler-
compiler, to automatically create structured editors for the input language in addition
to the compiler.

These technologies evolved, to provide a complete suit of tools for aiding a
programmer. Tools such as The Synthesizer Generator [Reps_Teitelbaum_84]
[Reps_Teitelbaum_88] (evolving from the Cornell Program Synthesizer), CENTAUR
[Borras_etal_88] (evolving from MENTOR), GANDALF [Habermann_Notkin_96]
and PSG [Bahlke_Snelting_86] generate additional tool support such as static
analysers, incremental compilers (see above), browsers, and debuggers.

The CENTAUR system for generating programming environments takes as input the
specification of a language (syntax and semantics) and it generates a set of tools for
aiding programming in that language – text editor, structured editor, pretty-printer,
and interpreter/debugger. Additionally, the generated environment allows a user to
use multiple views at one time.

With the introduction and wide spread use of languages supporting a modular
architecture, additional support is required in order to manager the overall
architecture of the systems under construction. These tools became known as
Integrated Development Environments (IDEs) and in addition to textual views of the
source code, they start to include views that use graphical languages to express some
information.

The PROGRES tool [Schürr_94nov] [Schürr_etal_95] is one such, graph grammar
based, tool that uses a mixture of graphical and textual syntax to provide multiple

Background 18

views on the specifications generated by the tool. Additionally, this tool has been
used to define other software engineering tools [Schürr_97] (and see below).
Moving beyond environments focussed on specifically supporting the programming
task in software development, we get into Software Engineering Environments
(SEEs) or Integrated Project Support Environment (IPSEs) that aid the whole
software system development process. These support multiple views on the software
system, from different perspectives – the program code is not considered the only
important factor.
The IPSEN project [Engels_etal_92] makes use of the PROGRES tool to define
highly integrated software engineering environments, using attributed graphs to
model object structures, software documents and their relationships. The PROGRES
language specifies the environment using a mixture of UML like class diagrams and
sets of graph re-writing rules, in addition to textual parts and views of the
specification.

Earlier work [Engels_etal_86], related to the IPSEN project, presents a technique for
structuring structured editors. The approach is based on Attributed Graphs as a means
for data storage and it discusses the different types of changes (user increments) that
can be performed on the underlying structure.

In the next sub-section, we look at the issues surrounding multiple viewpoint
environments. The sub-section ends with a reflection on how the translation
techniques proposed by this thesis could be applied to the specification and
implementation of such environments.

2.4.2 Viewpoints
Within any complex, large scale system there are likely to be a number of different
agents or interested parties. Each agent will have a different view of or perspective on
the system and be interested in a different subset of the total information about a
system. Each agents perspective does not totally describe the system, but it should
totally describe the system from that viewpoint, i.e. it should define all information
relevant to the particular agent.

Research in the field of viewpoints extends beyond the provision of multiple view
programming environments; in fact, a large section of the field is not tool-based
research at all. Technologies such as the RM-ODP [ISO/IEC_95:1] define a non-
prescriptive framework in which to define distributed systems.

The RM-ODP framework consists of five viewpoints – enterprise, information,
computational, engineering, and technology – which cover the required perspectives
of all parties involved in the design process. There is significant research
investigating the inter-consistency of specifications written from each of these
viewpoints [Boiten_etal_95], [Bowman_etal_96jan], [Dustzadeh_Najm_97].

In [Meyers_93] the author provides an extensive discussion of different architectures
for constructing multiple view environments. He favours a canonical representation,
in which each view communicates with a common central model. This is contrary to
the approach adopted by the RM-ODP, in which each viewpoint contains a separate
model and inter-viewpoint consistency is determined on a pair by pair basis.
However, if the central model is taken to be a view in its own right, then there is little
difference in the approaches.

Background 19

Finkelstein et. al. [Finkelstein_etal_92] [Nuseibeh_etal_94] describe a viewpoints
framework, giving a general definition of what is required in the definition of a
viewpoint. They additionally define the need and mechanisms required for defining
inter-viewpoint relationships in a generic fashion. For any two viewpoints, there is a
set of rules relating each viewpoint. Interestingly, they specify that the rules reside in
one or other of the viewpoints as opposed to being part of a separate specification.
They make a clear distinction between checking the validity of a rule and the action
taken due to a rule being invalid; this they call inconsistency management. The
authors clearly support the notion that it is not always possible to resolve an
inconsistency, but it is generally informative to indicate them, so that appropriate
action can be taken if necessary.

Work reported in [Emmerich_96], [Emmerich_etal_97] and [Abiteboul_etal_94]
discuss a suite of tools for specifying multiple view software engineering
environments. Central to the approach is a General Object-Oriented Database
developed as part of the GOODSTEP project, and the GOODSTEP Tool
Specification Language (GTSL). GTSL is used for specifying static and dynamic
properties on the central data model as well as mappings between the central model
and external views on it.

The requirements for the GOODSTEP database are set out in
[Emmerich_etal_93esec] and [Emmerich_etal_93dexa]. Essentially the requirement is
for a database system suitable as a central repository for an SDE or process-centred
SDE, as described in [Emmerich_95]. The GOODSTEP database extends an existing
object-oriented database management system, O2 [Bancilhon_etal_92], to have
additional functionality. In particular, the system is enhanced so that it fires “triggers”
whenever a model changes; in essence making the data-models supported by the
system, observable (see section 2.7.3).

GSTL is used to define the central model, viewed as an abstract syntax graph, and to
define actions that should be performed as a result of changes to that model.
Interactions are similarly specified using a condition and sequence of actions. (All the
GOODSTEP and GTSL work is based on Emmerich’s work as part of his thesis
[Emmerich_95]).

2.4.3 Analysis / Reflection
The specification of multiple viewpoint systems can be seen as the specification of a
number of models and the specification of the relationships between those models. In
the context of compilation translation is a process; however, with respect to a multi-
view system, the relationship between two (viewpoint) models is not so easily
described as a translation process.

The relationship is an active relationship between the models. Changes in either
model must be reflected in the other model, or flagged as being different; i.e. the
information presented in different viewpoints is related via a notion of consistency.

In general, it is possible to provide an abstract model for the information presented by
a viewpoint, and it is possible to express the model of this information using the
UML. For example, work such as [Linington_99sep], [Steen_Derrick_00] and
[Bordbar_etal_01] define UML models of the RM-ODP Enterprise and
Computational Viewpoints.

Background 20

In a multi-view system, specifying the viewpoint models is only part of the
specification; it is also necessary to specify the relationship between the models.
There is no report of an attempt at specifying the relationship between viewpoints
using UML, although work related to the MDA implies that this would be useful.

There are two parts to consider with respect to specifying the relationship between
models:

• Detection of an inconsistency.
• The actions to perform when an inconsistency is detected.

Finkelstein’s and Emmerich’s works discuss this issue, each promoting a distinction
to be made between a declarative specification of the relationship and the actions to
be performed if the constraints are violated. Work in [Feather_96] also discusses the
issue, explicitly stating that violation of consistency must be treated in different ways
depending on the system. The ability to ignore inconsistencies under certain
conditions is crucial for implementing systems capable of supporting partial
consistency.

The approach presented in this thesis enables UML to be used as a means to express
the relationship between different views in a multiple view environment. This could
be in the context of a multi-view SDE (such as the TogetherJ environment
[Together]) providing textual and graphical views on the same body of source code
(e.g. see Figure 7). Elements of such a system are used to illustrate the use of the
techniques proposed in this thesis.

Java CodeTextual View

Class Diagram
View

Directory
Tree View

Figure 7 – Model of a Java SDE Using Packages and Translators
Marlin [Marlin_96] presents a similar multi-view architecture based on a canonical
representation of the data. Different views are defined, which visualise subsets of the
data. The proposed architecture is distributed, with each view a separate process.
Changes made in one view are communicated with the central model, which
‘broadcasts’ the changes to the other views as appropriate. His architecture is similar
to that proposed in this thesis and his techniques could be used to extend the approach
of this thesis to support a distributed implementation.

Another system using a similar mechanism is the FIELD environment [Reiss_90jun].
This is a system for integrating existing tools into a common SDE. It uses an
underlying message passing mechanism for communication between the tools. A tool
registers its interest in a particular pattern of message with the message server, which
will subsequently forward matching messages to the interested tools.

Both of these approaches, broadcasting and message passing are architecturally
similar to the Observer Pattern used as the communication mechanism between

Background 21

model components in the active implementation approach presented in Chapters 5
and 6.

Alternatively, the technique could be used in a more specification-oriented context,
such as to define the relationship between the concepts in the RM-ODP viewpoints. A
feature of the proposed technique in such a specification is that it does not specify any
action that must be taken if the constraints on the relationship are broken. It just
enables the specification of such constraints, supporting the separation between
validation checking and actions discussed in [Nuseibeh_etal_94].

OCL is a suitable language for expressing consistency constraints, however, UML
does not currently include a suitable action specification language. It is hoped that the
action semantics work [OMG_98nov] may provide this in the future. Consequently,
the work in this thesis concentrates on the specification of the mapping conditions,
leaving the actions to be specified in a platform-specific manner; the specification of
actions is left for future work.

2.5 UML
UML stands for Unified Modelling Language; it is the unification of a number of
object-oriented notations that existed at during the first half of the 1990’s. Originally
starting as the combination of the Booch and Object Modelling Technique (OMT)
notations, it proceeded to take input from other sources, most notably Jacobson’s
Object-Oriented Software Engineering (OOSE). When the OMG issued a Request for
Proposal (RFP) of a standard object-oriented notation, the UML soon became the
focus of an industrial consortium of partners who saw it as the solution. This led to a
strong UML 1.0 definition submitted in 1997 as a response to the RFP. Other
submitters joined forces with the UML partners and under the management of an
OMG working group developed UML 1.1.

The UML consists of a notation and semantics. The notation is the collection of
diagrams and the graphical and textual features used within those diagrams, and the
semantics defines the meaning of the diagrams and features. The definitive
description of the UML is the latest version of the OMG document – [OMG_99jun],
however there are a number of books (e.g. [Fowler_Scott], [Booch_etal],
[Rumbaugh_etal_99]) which describe the language more informally, though it is
important to check which version of the UML they are based on. There is also a
tendency for the authors of the books to only include those aspects of the UML with
which they have experience, hence some elements of the UML are often left out –
when in doubt refer to the OMG document.

There is currently a large amount of work going on in the UML community. The key
aspects of this research that are relevant to the work of this thesis is that aimed at
improving the definition of the UML semantics. There are papers discussing the
problems with the UML and its semantics, e.g. [Breu_etal97], [Akehurst_Waters],
[Evans_etal98jun], those that suggest the use of particular semantic models for
specific parts, e.g. [Gogolla_Presicce], [Lano_Bicarregui], [Övergaard], and those
that address the semantics of UML as a whole or in general such as [Kent_etal].

The research in this thesis draws on some of this UML related semantics work (along
with others) and relates it to the problems of interpreting individual UML diagrams
and the distinction between concrete syntax, abstract syntax, and semantics. It is
hoped that some of the work of this thesis will form part of the background to

Background 22

contributions proposed to the OMG for version 2.0 of the UML, and in particular
relate to the work of the pUML community ([pUML]).

For a good introduction to UML, the references mentioned above are recommended,
however for the purposes of this thesis, a brief overview of the various concepts and
diagrams is included in Appendix B. Primarily, the work in this thesis makes use of
Static Structure (Class) Diagrams and OCL.

2.5.1 The Object Constraint Language (OCL)
The Object Constraint Language was added to UML as of version 1.3. The language
is used for specifying constraints about the concepts illustrated within UML
diagrams. OCL contains many similar concepts to other formal specification
languages, but uses a textual notation that is based solely on the ASCII character set;
making it allegedly easier to understand from a software engineer’s perspective. A
good description of the language and its use can be found in [Warmer_Kleppe], and
the definitive OMG issued UML document contains a section on OCL.

The language has a set-based semantics that is very similar to Object Z
([GSmith_99oct]), though the quantifiers and operators are illustrated by using a
notation that looks like calling a method on an object in a programming language,
rather than by using Greek characters. For example, the following OCL specifies that,
for a set of classes, any two different classes must have different names:

SetofClasses->forAll(c1, c2 | c1 <> c2 implies c1.name <> c2.name)

The equivalent object Z is shown as follows:
�c1,c2 � SetofClasses � c1 � c2 � c1.name � c2.name

Other than this syntactic difference, which often seems unnecessary to those with a
formal background, there are other more significant characteristics of the language
that determine the way in which it is used within a UML specification.

A constraint is always attached to a model element that gives the constraint a context.
For example, the most common usage of OCL constraints is to specify pre and post
conditions for an operation, or as invariants for classes in a data model. The operation
gives the constraint a context, and hence defines variables that can be used within the
constraint – in this case the parameters to the operation and the fields of the class on
which the operation is declared.

• There are four basic, predefined, data types: Boolean, Integer, Real, String,
which have a number of standard operators defined on them (see the OCL
section in [OMG_99jun] for a complete list).

• Any class defined in a UML model of which a constraint is part is a valid type
to use within that constraint.

• There are a number of collection types that can be used: Sets, Bags, Sequences,
and the generic Collection type.

• The ‘.’ and ‘->’ operators navigate through the class and object structure. The
‘x.y’ gives a reference to the value of property ‘y’ of object ‘x’, the value being,
another object, a collection, or a basic data type. The ‘->’ operator is used in an
expression such as ‘s->t’, when s is a collection type, and t is a property or
operation on that type.

A number of predefined operations are defined for the various collection types. A list
of these is included within the OCL section of the UML standard ([OMG_99jun]).

Background 23

Within this thesis, any OCL statement will show the pre-defined operations and
attributes using an italic font.

2.6 Graph Grammars
An object configuration can be thought of as a graph; objects correspond to vertices
and links between objects correspond to edges. Hence, it follows that it may be
possible to use Graph Theory based techniques, such as Graph Grammars and Graph
Transformations to describe models of object configurations and transformations
between them. [Bollobás_79] gives a good introduction to graph theory, or see
[Wilson_72] for a less formal approach. Appendix C contains an overview of the
terms and graph types used in Graph Theory.

String grammars were originally introduced by Chomsky ([Cook_Newson_96]) as a
way of creating sentences. Subsequently Graph Grammars ([Claus_etal_78],
[Rozenberg_97]) have been developed as a means to describe the creation of a graph
(an n-dimensional sentence).

A Graph Grammar is a collection of rules that specify how to create the set of graphs
for which the grammar (as a whole) is a valid description. Each rule is a pair, the left
hand side (LHS) and right hand side (RHS).

The grammar is interpreted by looking for the pattern of nodes and arcs in the LHS of
a rule, if this is found then the graph can be extended as described by the RHS. For
example, the grammar shown in Figure 8, is interpreted as described below.

: Tree : Tree

: TNode

: TNode

: TNode : TNode

::=

::= parent
subnodes

root

: Tree::=λ

[3]

[1]

[2]

Figure 8 – Graph Grammar for Trees
1. states that a Tree object can be created as a starting point.
2. states that, given a Tree object, a TNode object can be added as its root node.
3. states that, given a TNode object, another TNode object can be added as

subnode of the first one.
Thus, a tree-like graph could be built up as illustrated in the sequence of diagrams
shown in Figure 9.

Background 24

: Tree

: TNode

: TNode

parent

subnodes

root

: Tree

(a)

: TNode

root

: Tree

: TNode

parent

subnodes

: TNode

root

: Tree

: TNode

parent

subnodes

(b) (d)(c) (e)

: TNode

parent

subnodes

: TNode

root

: Tree

: TNode

parent

subnodes

siblings

invalid

Figure 9 – Creating a Tree
The final diagram (Figure 9e) is not a possible step. This graph cannot be produced
from the rules defined above. A change to the graph that connects two TNodes is not
a rule that has been defined, the only way to connect TNodes is by creating a new
TNode, which is subsequently connected to an existing one. If rule [4] were added as
shown in Figure 10, then it would be valid to add connections between two existing
TNodes.

::=

siblings

[4]

: TNode

parent

subnodes

: TNode

: TNode

parent

subnodes

: TNode

parent

subnodes

: TNode

: TNode

parent

subnodes

Figure 10 – An Additional Grammar Rule
The notation for illustrating graph grammars is copied from that used in
[Rekers_Schürr_96] and [Rekers_Schürr_97]. The shading is an aid (more obviously
in Figure 8) to identifying the original LHS components in the RHS subgraphs. The
graph built is an object-graph, hence the use also of Object Diagram syntax.

A graph grammar is similar to a string grammar but with the distinction that the rules
(or productions) have left and right hand sides which are graphs as opposed to linear
groups of strings (tokens).

“A graph grammar is a system of productions that generates, starting
with a distinct axiom (start graph), a certain language of terminal
graphs and produces nonterminal graphs as intermediate results.”2

Graph rewriting (or transformation) systems are closely associated with graph
grammars:

“A graph rewriting system is a set of rules that transforms one
instance of a given class of graphs into another instance of the same

2 [Schürr_94nov], section 1

Background 25

class of graphs without distinguishing terminal and nonterminal
results.”3

Graph-rewriting rules alter an existing graph, whereas a graph grammar creates a (or
checks an existing) graph according to the defined rules. The term ‘graph
transformation’ can be used synonymously with the term ‘graph rewriting’. (A further
discussion of Graph Transformation is included in Chapter 4.)

2.7 Patterns
A Pattern, in this context, is a recognised and well-defined solution to a recognised
and well-defined problem. They apply to may different domains and in fact, first
recognition of them is attributed to Christopher Alexander with respect to the
building and architecture industry. He states that:

“Each pattern describes a problem which occurs over and over again
in our environment, and then describes the core of the solution to that
problem, in such a way that you can use this solution a million times
over, without ever doing it the same way twice” [Alexander_etal_77]

With respect to object-oriented design, the current best introduction to design patterns
is the book “Design Patterns, Elements of reusable Object-Oriented Software”
([Gamma_etal_94]). This book is intended as a catalogue of currently recognised
design patterns and describes 23 different patterns covering creational, structural and
behavioural problems.

This thesis makes use of three of these patterns with respect to providing an
implementation of a model translator (Chapter 5); these patterns are described in the
following subsections.

2.7.1 Builder Pattern
This creational pattern is used to separate the construction of a complex object from
its representation. In essence, it provides a way of creating a complex network of
objects without needing to explicitly know how to create those objects.

Director

Concrete
Builder

«interface»
Builder

buildPart()

Productresult

builder «interface»
Product
Interface

result

Figure 11 – Builder Pattern Architecture
Figure 11 shows a UML class diagram illustrating the architecture of the participants
in a builder pattern. There are four participants in the pattern; these are:

1. The Director; is the object causing the complex product to be built; there may
be more than one director involved in building the same product.

3 [Schürr_94nov], section 1

Background 26

2. The Builder interface; is an abstract interface defining the instructions
(methods) that can be used to create the product.

3. The Concrete Builder; is a specific implementation of the builder interface. It
builds and keeps track of a particular implementation of the product.

4. The Product; is the complex object or network of objects being built. The
product would generally have a set of abstract interfaces that define the product
and it’s components; these are referenced by the Builder and other users of the
product. The Concrete Builder creates a particular implementation of those
interfaces.

For the purposes of the implementations described in this chapter, the Product is a
particular model. This pattern enables the model components to be defined using a set
of interfaces; particular implementations of the model also implement a Concrete
Builder and can hence be constructed without knowledge of the particular model
implementation.

2.7.2 Visitor Pattern
The Visitor pattern implements a method of enumerating over every element of an
object structure (model). It is used to add operations that are performed on the entire
object structure, without altering the classes that define the structure.

The Visitor pattern implements a technique called “double-dispatch”; most OO
languages implement a form of single-dispatch. In single-dispatch languages, two
criteria determine which operation fulfils a request for a method call – the name of
the method and the type of the target for that method. Double-dispatch means that the
operation that fulfils the method depends on the method name and the types of two
target objects.

With respect to the use of the Visitor pattern, an architecture is arranged so that a
“visit” method call is fulfilled by an operation depending upon the type of the element
to be visited and the type of the object doing the visiting.

«interface»
Visitor

visit(ElementA)
visit(ElementB)
…

Concrete Visitor 1 Concrete Visitor 1
ElementA

ElementB

«interface»
Visitable

accept(Visitor)

Object Structure

Figure 12 – Architectural Elements of the Visitor Pattern
The class diagram in Figure 12 illustrates the architecture and participants in a Visitor
pattern. Each element of the object structure implements the Visitable interface. A

Background 27

Visitor interface for the object structure is defined, containing a visit method for each
element and multiple Concrete Visitors can be created that implement this interface.

The Visitor pattern is classified as a behavioural pattern; it is the behaviour defined
by the accept method that is the important part of the patterns definition. This method
provides the implementation of the double-dispatch behaviour. Figure 13 illustrates
this behaviour and it is described below.

aVisitableElement aConcreteVisitor

accept(aConcreteVisitor)

visit(this)

Figure 13 – Behaviour of the “accept” Method
In order for it to be ‘visitable’, each element in the object structure must implement
an “accept” method (defined by the Visitable interface). This “accept”
implementation calls the visit method for that particular type of element on the
particular Visitor that is passed to it.

Any number of Concrete Visitor objects can be implemented, defining different
behaviour within its visit methods; this gives the mechanism for adding behaviour to
the object structure without changing the elements themselves.

The enumeration or traversal path across the object structure can be defined either
within the Concrete Visitors or within the implementations of the “accept” methods.
Implementing the traversal within the visitors allows different traversal paths to be
taken by different visitors. However, often only one path is required, in which case it
is more efficient to implement the path within the accept methods reducing the
behaviour that must be defined in the visitors.

2.7.3 Observer Pattern
The Observer pattern is a behavioural interaction between objects conforming to two
participants – an Observable object and an Observer. Each Observable object may be
observed by a number of Observers, but the interaction between Observable and
Observer is the same in each case.

The Observer listens to or watches the Observable object and causes some action to
occur as a result of changes to the observed (Observable) object. The implementation
of this pattern usually takes a form following the sequence of events as illustrated in
Figure 14 and described below.

Background 28

Observable Observer

notify
update

action

Figure 14 – Behaviour of Observer Pattern
1. the Observable object is updated or changed,
2. it notifies its Observers,
3. the Observers execute the defined action.

Components supporting the implementation of this pattern can take on a number of
forms, these are discussed in the following subsection.

2.7.3.1 Observer Pattern Support
Implementation of the Observer pattern is usually supported by an ‘Observer’
interface and an abstract ‘Observable’ support class. Figure 15 shows a UML
specification of a basic pair of components that support implementation of the
pattern.

«interface»
Observer

notify()

ObservableSupport

addObserver(Observer)
notfyAll() *

observers

Figure 15 – Observer pattern support definitions
Observable objects extend the ObservableSupport class and observers implement the
Observer interface. Observers must register themselves with the Observable object,
which ‘notifies’ all its observers whenever something changes its observable state.

This implementation is acceptable for the simplest of situations. However, often
observers require information regarding the nature of the change that has occurred,
needing at least to know which object has changed (the source of the notification) and
often some description of the change that has occurred. This leads to a more complex
implementation of the pattern and it’s supporting classes.

One option, support for which is provided in the Java class library ‘java.util’, is to
pass extra information to the observer via the ‘notify’ method. However, a more
flexible method uses the concept of events.

The event notification variation on this pattern often renames Observers as
“Listeners”. Observable objects “fire” events, which are received by its Listeners. The
listener may have a number of different ‘receive’ methods that are used for different
event types. An Event object is “fired” (created and passed to the appropriate receive
method), which contains information describing the occurrence of that event.

Background 29

«interface»
Listener

receive(Event)

ListenerSupport

addListener(Listener)
fire(Event) *

listeners

Figure 16 – Event notification pattern support
Figure 16 illustrates the definition of a basic support class and interface for the event
notification observer pattern, which includes support for an event object. Other than
the names of the classes and methods, it can be seen to be very similar to the basic
observer support components shown in Figure 15. Behaviourally the ListenerSupport
and Listener components operate almost identically to the ObservableSupport and
Observer classes; the difference being the passing of an Event object to the Listener.

This implementation of the observer pattern is used extensively throughout the Java
class libraries. The libraries 'java.awt’, ‘java.beans’ and in particular ‘javax.swing’,
all provide various event notification implementations of the observer pattern.

The implementations described in this thesis require the use of the event notification
style of observer pattern support. However, none of the sets of components described
above provides ideal support for it. The ‘java.util’ components do not cleanly support
use of the event notification mechanism, and the ‘listener’ based support components
do not reflect the names “observer” and “observable” as used by the pattern
definition.

Consequently, bespoke implementations have been produced. Within the examples
and discussion contained in this thesis, the Observer pattern is supported using the
components shown in Figure 17. These are a variation on the observer and event
notification components discussed earlier (Figure 15 and Figure 16), but are defined
using names that more appropriately indicate their use.

«interface»
Observer

observe(ObservableEvent)

ObservableSupport

*

observers

«interface»
Observable

addObserver(Observer)
removeObserver(Observer)
fire(ObservableEvent)

ObservableEvent

source : Observerble
name : String

Figure 17 – Observable Event support
The supporting components shown in Figure 17 define both Observable and Observer
interfaces. The ObservableSupport class implements the Observable interface and the
ObservableEvent class is used as the event information carrier; it contains two
attributes that can be used to describe the event:

• a source – referring to the Observable object that generated the event; and
• a name – that can be used to provide additional information describing the

event.

Background 30

2.8 Summary
This chapter has discussed a variety of topics that, together, form a foundation for the
research contained in the rest of this thesis.

The chapter has shown how a UML based specification mechanism for translators is
timely and useful with respect to the OMG’s Model Driven Architecture initiative and
that little existing research directly addresses this issue. However, the idea of
translation between language models has a large body of research in the field of
compilation and the concept of consistency between multiple viewpoint models also
has a significant research background. The chapter has shown how these bodies of
research relate to the ideas presented in this thesis.

Additionally, this chapter has introduced the concept of Graph Grammars, which are
discussed further in relation to graph transformations, in Chapter 4. It also gives some
background and an overview of the UML and related OCL, which are used
extensively throughout the thesis. Finally, the chapter describes some modelling
patterns that are used in Chapter 5 to describe translator implementation frameworks.

The next chapter introduces the Permabase project. This project illustrates a particular
requirement for a translator specification technique and the authors work on this
project provided some initial experience in constructing model translators.

Chapter 3

Permabase

A significant portion of the research, in particular the practical experimentation,
carried out as part of this thesis has been drawn from the author’s work on the
Permabase project. This chapter gives an overview and evaluation of the project
showing how the project gave rise to the issues addressed by this thesis.

For clarity, Section 3.1.1 provides a distinction between the elements of the project
that were specific contributions by the author and those that were joint work between
the author and other project members.

3.1 Overview and History
The Permabase project ([Waters_etal], [Utton_Hill], [Utton_Martin]) aimed to
provide performance feedback as part of the object-oriented design process for
distributed systems. Permabase hides the expertise needed to create a performance
model (simulation or analytic) from the system designer, by automatically generating
the performance model from the design model. The feedback provided by the
performance model allows the designer to change, alter, or confirm, design decisions
as necessary throughout the system design process.

Application

Workload

Execution
Environment

Figure 18 – Permabase domains of interest [Martin_Utton]
The project identified three domains of interest within the specification of a
distributed system. Each of these areas must be specified to give sufficient
information such that a performance model could be created. These separate domains
were originally defined as follows:

Workload Specification – The specification of the “work force” driving the system.
These may be human operators, other systems, or simply a model of “miscellaneous”
other work being carried out on shared system components.

Permabase 32

Application Specification – The specification of the system logic. Primarily this is
assumed to be software, but it may be hard-wired (firmware) or hardware logic.

Execution Environment Specification – The specification of the physical environment
of processors, networks, and other resources that the system operates over.

The intention was that each of these specifications should be described in an
appropriate (standard) notation, and by using a suitable CASE tool for that notation.
The details entered into the CASE tools form the source of the specifications to be
used by the automatic generation process.

The generation process consists of three stages (as shown in Figure 19):
1. Composition of the information from the three specifications into a “Composite

Model Data Structure” (CMDS). This involved the mapping and translation
from the representation of the specification in the visualisation input tools in to
the concepts defined in the CMDS.

2. Transformations on the CMDS to check for inconsistencies, and to refine the
model. Such transformations included transposing the input representation of
the system behaviour (in the form of multiple interaction diagrams) into a class-
centric representation, more suited to the technique used for performance model
generation.

3. Translation from the CMDS into the performance model. This involved the
definition of a mapping from the (meta-level) CMDS concepts to the
components of a particular performance model engine, and the subsequent
algorithm for translating instances of the CMDS (specific design models) into a
performance model. One such mapping was to queues, delays and transactions
for a discrete event simulation engine, and another to places and transitions for
a coloured petri-net style of engine.

feedback
Workload

Specification

Application
Specification

Execution Environment
Specification

CMDS Performance
Model

Transformations

Figure 19 – Initial Permabase Architecture
The decision was taken (based on BT software design practice), to focus on the use of
object-oriented designs for the application specification, but there did not appear to be
any standard for the specification of the information required in the workload or
execution environment specifications. BT practice for object-oriented software design
was, when the project started, to use the Booch notation and method (or a slight
adaptation of it, [Harwood]), supported by the Rational Rose modelling tool
[Rational].

Initially the project looked to this notation for the facility to specify the workload and
execution environment information, but the notation did not appear to address

Permabase 33

workload specification at all, and physical environment specification was limited4.
Due to this lack of a standard notation, the project adopted a BT in-house tool that
was used for capturing network and system design information. There is no standard
notation that the tool supports, it simply allows for the specification of types of node,
attributes of the nodes, and connections between the instances of nodes.

As the project evolved it became apparent that these three specifications did not
contain all the required information. Although the areas, between them, contained the
specification of all the components, it was realised that how the components from
each area are connected is of concern. An initial thought was to show in the
Execution Environment Specification the connections to the components defined in
the other areas. However, this caused the specification to become cluttered and
invalidated the definition (see above) of this specification area, as it no longer defined
only execution environment information.

The need to specify the interconnections of components from the three specification
areas led to the introduction of a fourth specification area – the system scenario
specification – which alters the architecture to that shown in Figure 20.

Workload
Specification

Application
Specification

Execution Environment
Specification CMDS Performance

Model

Transformations

System Scenario
Specification

feedback

Figure 20 – Permabase Architecture
The existence of the system scenario specification led to the redefinition of the other
three specification areas to be types of component. This redefinition occurred in part
for efficiency, so that there did not need to be repetition of the specification of parts
of the system, and in part to draw the whole specification style closer to the object-
oriented design pattern of templates and instances. Hence, the four specification
areas, required for the definition of a distributed system (for performance analysis
purposes), evolved to:

1. Workload Specification – The specification of the types of “work force”
component driving the system.

2. Application Specification – The specification of the types of system logic
component.

3. Execution Environment Specification – The specification of the types of
component to be used in the physical environment.

4 Although some of those limits were imposed by the lack of support by the Rational Rose tool, rather than by the notation itself.

Permabase 34

4. System Scenario Specification – The specification of a particular (distributed)
system instance, in terms of the instances of the types (or classes) of component
defined in the other three specifications and how they are connected.

During the lifetime of the project, the UML [OMG_99jun] arose to its position, as the
leading (standard) notation for the specification of object-oriented systems.
Consequently, it was adopted by Permabase to replace the Booch notation, due to the
extra features and improved usability it offered, and because BT adopted it as their
standard practice. The use of UML within the project caused a re-assessment of the
methods used to describe the source specifications. In particular the extensibility
feature of UML opened up the possibility of using it as a standard notation for all
(four) specification areas.

In practice, the project used UML for the three ‘component type’ specification areas –
Workload, Application and Execution Environment. The specification of the system
scenario was left to the BT in-house tool, as the initial versions of UML did not
contain adequate facilities to specify this information. Subsequent revisions to UML,
and changes to the way system scenario specifications are defined, enable a mixture
of UML class, object, and deployment diagrams to be used; however this was not
implemented during the life-time of the Permabase project.

The project ideas were implemented in the form of three prototypes:
1. The first used Booch notation and the Rational Rose tool for input of the

Application specification, and bespoke notations supported by the BT in-house
tool for the other specifications. The Behaviour of the application components
was specified using state machines. The Performance model engine used was a
Discrete Event Simulation (DES) engine.

2. The second prototype was based on the UML notation, supported by a new
version of Rational Rose. The architecture evolved to that shown in Figure 20
above, and hence we made more use of the UML notation. Feed back from BT
based on their use of the first prototype indicated that they would prefer to
specify behaviour using Interaction (Sequence or Collaboration) Diagrams, so
this became the supported technique. Performance model generation and
execution proved to be time consuming using the DES engine, and a faster
mechanism was required, particularly for simple designs. Therefore, the second
prototype made use of a tool, named RiscSim, built at UKC based on Coloured
Petri-nets ([Linington_99apr]), and incorporating some facilities for time and
resource usage. This performance engine proved to be much faster for building
and executing models; however, it did not provide support for the dynamic
binding or dynamic object creation functionality required by some applications.

3. The third prototype used the same input techniques (with minor evolutionary
improvements), but added some validation algorithms to be performed over the
CMDS. It used an improved version of the DES performance engine, which
supported dynamic functionality, and used faster transformation and execution
techniques than the first prototype. The DES solution could not match the Petri-
net one in terms of speed, but it did provide the functionality required for the
main test Case Study.

The final prototype was tested using a Directory Enquiry System case study, specified
by BT. The system involved a high work-rate of several thousand calls per hour,
processed by a network of over three thousand processing nodes. The performance
output of the prototype generated performance model was compared with the output

Permabase 35

of another performance model, hand generated by an expert performance-modelling
engineer, for validation purposes.

The results of the automatically generated model were statistically equivalent to the
hand-generated model. However, the main disadvantage found with the automatically
generated model is that it took significantly longer to execute, and hence produce
results. This is believed to be a problem common to automatic generation in general
and is, in particular, similar to problems encountered within the compiler community.
Compiled code used to be renowned for being slower than hand coded assembler,
though as can be seen with modern-day compilers the problems have been largely
eliminated. It is believed that these techniques could be applied to the automatic
performance model generation to aid the improvement of the generated model’s
execution speed.

3.1.1 Identification of the author’s work
This subsection defines which parts of the work carried out within the Permabase
project, that are of relevance to this thesis, are solely contributions provided by the
author.

The development of the architecture of the Permabase prototype was the result of
joint discussion with all members of the project team. The author and one other
member (Andrew Symes) were given the task of implementing the prototype based
on this architecture. This involved:

• the specification and implementation of the models involved in the system;
• the development of an implementation technique for transforming data from

one model into another; and
• implementation of each of the transformations involved in the system.

The authors contributions were as follows:
• specification of how to use UML for specifying systems in such a way that

performance models can be generated;
• development of the technique for implementing the translators;
• specification of the CMDS using UML;
• implementation of the CMDS, including

• development of a set of library components supporting basic persistent
storage and searching functionality

• implementation of an automatic generator for the implemented CMDS data
model from its UML specification;

• specification and implementation of the translator from the input, UML,
diagrams to the CMDS;

• implementation of the translator from the CMDS to the RiscSim performance
engine;

Implementation and specification of the other models and translators was carried out
jointly with, or solely by, other project members. This included:

• specification of the translator from the CMDS to the DES engine;
• implementation of the translator from the CMDS to the DES engine;
• specification of the translator from the CMDS to RiscSim;
• specification and implementation of the translator from the BT Configurator

tool to the CMDS.

Permabase 36

3.2 Analysis of the Permabase Prototype System
The Permabase prototype consists of two types of component, models and translation
processes. There are a number of different models within the system and a number of
translation processes that convert information from one model into another.

At one side of the system, there are concrete syntax models capturing the input
specifications of the system. These are translated into a common composite model –
the CMDS.

Within the CMDS, there are different model representations of some parts of the
specification. For instance, the behaviour is stored as a set of interaction descriptions
(drawn from sequence and collaboration diagram inputs); this is converted by one of
the transformations into an alternative ‘class centric’ model of the behaviour.

Each of the performance modelling engines requires a different type of model as
input and the information from the CMDS must be translated into the appropriate
model form for input to these engines.

The results produced by the performance engines must be translated back into the
CMDS model and subsequently into the original specification models entered by the
user in order that they are presented in an understandable context.

Considering only the final version of the Permabase system, it contains:
• Four input specification-models,
• A central repository model,
• Two different performance-engine models, and
• Eight translations between models.

3.2.1 Specifying the Prototype
Given that the system consists of a collection of models and translation processes, the
specification of the system is correspondingly a specification of models and
translators.

There are many ways to specify a model; the current practice in modelling is to use an
object-oriented modelling style and consequently an object-oriented modelling
language. The UML is the current standard for object-oriented modelling and
consequently this language was chosen as the system specification language.

For specifying the models, UML is perfectly suited; however, the specification of the
translation processes or translators was not possible. During the project lifetime, no
recognised technique was discovered for specifying translations or relationships
between models using the facilities of the UML language.

3.3 Implementing the Prototype
There are two aspects to consider with respect to the implementation of the prototype,
the implementation of the models and the implementation of the translators.

3.3.1 Model Implementation
Model implementation was straightforward. A small tool was created for
automatically creating the model implementations from a UML model specification.

Permabase 37

The tool takes a UML specification as input using the Rational Rose tool and
generates a C++ or Java based model implementation.

The generated model implementations were tailored for use with a pre-defined library
of components that give some support for basic database functionality such as
searching the model and persistent storage.

This enabled fast generation of the model implementations as the models evolved
over the duration of the project. Its main use was the generation of successive
versions of the CMDS.

3.3.2 Translator Implementat ion
The other aspect, of implementing the translators, was more complex. Four main
translators were implemented over the course of the project. Two translators were
used to process the input specifications and create a composite model of the system in
the CMDS.

1. Rational Rose � CMDS. A number of variations on the Rose to CMDS
translators were built, some were evolutions as either the Rose tool or the
CMDS changed version. In the final prototype, three separate translator
variations were used to convert and merge the Application, Execution
Environment and Workload specifications into the CMDS.

2. Configurator � CMDS. The final prototype makes use of the BT in-house tool
called ‘Configurator’ to input System Scenario specifications, hence a translator
was built to convert and merge this information into the CMDS.

The other two translators were used to process a CMDS model and generate a “back-
end” performance model. These were the more complex translators to implement as
the target domains were composed using a very different structure to the source
CMDS model.

1. CMDS � SES. Two versions of the CMDS to SES translator were built. One
for the first version of the prototype and one for the final version. These
translators were the most complex to implement as SES did not have a simple
mechanism for automatically generating input models. The scripting language
available was targeted at querying existing models rather than building them
from scratch, however, the task was achieved using this language.

2. CMDS � RiscSim. This translator was not difficult to implement, once a
satisfactory translation process had been determined. The input is of the form of
a text file with a well-defined structure.

Related to both of these last two translators are translators in the reverse direction,
which feedback the results generated by the performance engine into the CMDS.

The technique used to implement each of these translators is an approach similar to
compilation. The source model is traversed (parsed) and the target model is created
during this traversal.

The main difficulty with implementing each of these translators was not being able to
create the implementation in accordance with a suitable specification. As stated
previously the models were easily specified using UML class diagrams, but there was
no suitable technique for specifying the translation process. This is relevant not only
from a specification perspective, but also from the point of view of implementation; it

Permabase 38

is much easier to implement from a specification than it is to create an
implementation directly.

3.4 Evaluation of the Prototype
The final Permabase prototype was a successful proof of concept demonstrator. It
proved that it was possible to automatically create a performance model from a
system design; this was the aim of the project.

The architecture of the prototype system proved to be a good model on which to base
the construction of this type of tool. The architecture involved the use of different
models to represent data in the most suitable form for its most immediate processing,
be that input of the data (for the source specifications) or execution of the model
within the performance engine. These models were subsequently translated into a
central data model and out to other forms for alternative processing.

This architecture enabled the addition of new processing techniques (such as
alternative specification tools, or additional performance engines) without
compromising or needing to modify existing functionality.

However, there were significant disadvantages, both with respect to the use of UML
as an input specification language and with the technique used to implement the
translations. The following subsections discuss some of the issues.

3.4.1 Translation Processes
The main problem with the translation process is the time it takes to execute a
translation. The models can be very large, in the order of tens of thousands of objects,
and consequently the translation processes can take many minutes or even hours to
finish. In addition, any change to the source model requires the entire translation
process to be re-executed; hence building the required target model can be a very time
consuming process.

This was not the intention of the project; the generation of performance models is
intended to aid the designer giving quick feedback regarding the design.

Although the size of the models could be reduced by using different representations
of the data and by making more use of repetition attributes5 the models can still be
quite large and translations take a significant time to execute.

The speed of the translation processes is a by-product of the technique used for
implementation. A traversal technique was used, this technique required that the
target model be built as the process traverses the source model.

This implementation technique focuses on the specification of the source and target
models and the translation is a secondary aspect. The specification of the source and
target models is possible where as there is no specification of the translation process.

This led to the traversal-based implementation approach, which focuses on
implementing the parts of the problem that are specified; however, the approach
causes the performance problems outlined above. The performance could be partially
improved by marking altered subtrees and only traversing the necessary parts.

5 An attribute in a data object indicating that it represents many instances of identical objects.

Permabase 39

A better implementation technique would be one that focuses on the translations and
one that would enable incremental updates to a particular model’s translation. To
achieve this a specification technique such as that proposed in this thesis would be
necessary.

3.4.2 Problems with UML
This subsection describes the requirements of the UML for the purpose of
performance model generation. It identifies the key deficiencies of the UML and the
interpretation of its meta-model for this purpose and gives a brief account of some of
the proposed solutions. These issues, originally based on the specification of UML
version 1.1, were presented in [Akehurst_Waters] at the Workshop on Rigorous
Modelling and Analysis with the UML.

3.4.2.1 The refinement from des ign concepts to implementation concepts.
A performance model predicts the performance of an implementation of the designed
system. Thus, to interpret a design model in this context, it is necessary to have a
precise understanding of how each design concept relates to the implemented system
functionality and how it affects the other concepts to which it is related.

This understanding enables the specification of a translation process from design
concepts to possible implementation concepts and hence into performance model
concepts that will correctly model the behaviour of the designed system.

The initial versions of UML (used within Permabase) were imprecise and ambiguous
in the meaning of its concepts in many areas. For example, the relationship between
Associations, Attributes, States and Classes; Classes are related to each of these
concepts, but how are they related to each other?

From the perspective of an implementation model some of these concepts could be
considered notational, but exist as part of the meta-model definition. There is no
definition of how they are intended to be refined into implementation concepts. For
example, Associations and States can both be implemented as Attributes; within a
design or analysis model they can exist as separate concepts, but common
implementation languages (C++, Java) do not contain such concepts.

The proposed notion of UML profiles may provide a solution to this. Implementation
language profiles could be defined and the refinement relationship between the
analysis or design concepts and their implementation counterparts can be specified.

3.4.2.2 Separation and precise r elationship between syntax and concepts
The UML meta-model defines a set of modelling concepts, which have a separate
description to the UML notation used to visualise the concepts; the UML standard
uses a textual description to define the relationship between the two. This can cause
confusion or ambiguity when trying to establish a precise interpretation of a diagram
in order to extract a model of the expression specified by the diagram.

An alternative approach is to define separately the notational model and meta-model,
then precisely define a mapping from one to the other. This would also enable easy
specification of alternative syntax representations of the same meta-model concepts,
as is currently the case with sequence and collaboration diagrams. The technique
presented in this thesis could be used for this purpose.

Permabase 40

3.4.2.3 Need for software, hardw are and behavioural specifications.
The most mature area of the UML is that used for the specification of the software
structure. However, in order to generate a performance model, it is equally important
to specify the behaviour of the system and to specify the hardware on which it will
execute.

The hardware provides the system resources and the depletion of these is what
ultimately limits the performance. The behaviour of the system determines the order
and quantity of the resources used.

The hardware and behaviour specification areas of the UML still require a significant
amount of work to enable them to satisfactorily meet this requirement, as discussed
below.

Behaviour Specification
A number of areas and components in the UML meta-model address the specification
of behaviour:

• The Common Behaviour Package containing Actions and Signals etc.;
• The State Machine and Activity Packages containing state based behavioural

concepts;
• The Collaboration Package containing interaction concepts; and
• The Use Case Package containing Actors and Use Cases etc.

Each of these groups of behavioural elements effectively addresses the specification
of behaviour using a different set of concepts. They are all loosely linked to the
structural specification elements of the meta-model (classes, relationships, etc.) but
not consistent or integrated with each other, nor fully and unambiguously integrated
with the structural elements.

For example, how is a particular Use Case related to the behaviour of other classes in
the system, how does the activation of a Transition in a state machine relate to
behavioural actions in the common behaviour package. There are associations defined
that connect these components, but no clear explanation of the relationship between
the semantics.

A single set of behavioural concepts should be identified, which can be mapped to
different visualisations of that behaviour – either state based or interaction based. The
visualisation should subsequently be exactly that: alternative visualisations of the
same meta-model concepts, viewed differently to emphasise different aspects of the
behaviour.

To achieve this it is necessary to identify the common behavioural concepts, between
the different forms of behaviour visualisation. This in turn requires a clear
understanding of two aspects of object behaviour. Firstly the generic behaviour (or
semantics) of an object, in a possibly multi-threaded environment, and secondly how
the concepts for defining specific object behaviour interact with the (structural)
network of objects and with each other.

There is currently a body of work entitled “Action Semantics for UML” with an RFP
([OMG_98nov]) from the OMG. This may eventually address the behavioural
problems with UML.

Hardware Specification

Permabase 41

For a specific distributed system, the specification of the hardware used within the
system is a significant part of the system design. The provision, within the UML, of
Deployment diagrams and the concept of a Node does not adequately support the
specification of the hardware technology forming part of a distributed system.

The definition of a Node as a subclass of Classifier should enable the specification of
characteristics and a possible type hierarchy for hardware components. The notation
descriptions in the literature do not show much use of these aspects – and it is thus
not clear how such specifications should be constructed. The apparent lack of
discussion of these aspects within the UML community raises the question as to
whether the hardware specification concepts are adequate, unnecessary or simply so
good that no aspect of their use raises significant interest.

The Permabase solution was to use class diagrams for hardware specification;
however a preferable solution would be to use the UML as it is intended, with
improvements to its hardware specification facility.

3.4.2.4 Need for an implementa tion model.
A system performance model predicts the performance of a particular system. A
number of different systems could be implemented from a certain system design
model. An implementation model defines a specific system, defining details about the
number of instances of particular design components and their subsequent
configuration and connectivity.

The details that distinguish one system implementation from another are information
such as the number of clients connected to a particular server, the characteristics of
those connections and the characteristics of the particular computing platform
supporting the server. These detailed definitions are needed to characterise specific
systems in order to predict their performance.

The UML facility for implementation model specification is significantly immature
and does not satisfactorily meet this requirement.

The deployment and component diagrams are defined by the UML as implementation
diagrams. However, they lack a clear description of how they should be used for the
specification of (possibly large) distributed system implementation models.

One primary example is a clear definition of how the subsystem concept is applicable
to implementation models. The concept of a subsystem exists within the meta-model
as a subtype of both a classifier and a package and is defined to contain both
“specification elements and realisation elements”. But how instances of such a
defined subsystem are to be connected to other implementation components (e.g.
Nodes) is not addressed at all.

Our solution to this problem is to introduce the concept of a subsystem containing a
number of “access points”. An access point has a set of internal and a set of external
connections. The internal connections are defined within the specification of the
subsystem contents. When instantiated the subsystem is connected to its environment
via the external connections of its access points.

Permabase 42

off-site

user_terminal : Standard_PC
{multiplicity = 10}

server : Power_PC

LAN : Ethernet

«SubSystem»
: Site_Network
{multiplicity = 2} off-site

WAN : ATM_link

Subsystem – Site_Network

Figure 21 – Example Use of Access Point Connectors
Figure 21 shows an example deployment diagram using the notion of access points.
The subsystem is defined to contain 10 user PCs connected via an Ethernet local area
network (LAN). The LAN is connected to an access point that enables its connection
to components external to the subsystem. The right hand side of the figure shows the
instantiation of two instances of the subsystem, both of which are connected via the
access point to an ATM wide area network (WAN). The WAN is connected to a
powerful server PC.

As with the specification of hardware components, it is expected that the
understanding of this area of the UML will improve and mature only if it gains
increased use within the community. However, unless there is some attempt at a clear
definition within the meta-model, this is unlikely to happen.

3.5 Summary
The Permabase project, which aimed to prove the concept that automatic generation
of performance models from design specification, was overall successful. A prototype
tool has been built that can be used to generate performance models.

However, although successful in concept, any future commercial tool to employ the
techniques must acquire solutions to a number of problematic issues. These issues are
listed in Table 1 along with an avenue for possible solutions.

Issue Avenue for Solution
Translator specification and implementation
techniques required.

Use the techniques proposed in this thesis.

Translations should be continuous/incremental.
I.e. not require a long execution time.

The technique proposed in this thesis
meets this requirement.

Results feedback not implemented,
Translations need to be bi-directional, to aid
feed back of results.

The technique proposed in this thesis
meets this requirement.

UML (and its meta-model) needs to be more
precise.

May be improved by UML version 2.0
([OMG_99aug]) and in particular by the
proposals of the precise UML group
([OMG_99dec]).

UML behavioural concepts require more
precision and integration.

Improvements should follow from the
Action semantics Request for Proposal
([OMG_98nov]) and submissions
([OMG_00aug]).

Permabase 43

More functionally rich object-oriented
database required to support the CMDS.
Should include, configuration control,
incremental changes + rollback, and enable
efficient storage of variations on a base model.

No particular solution proposed, though
many database engines exist that would
meet at least some of these requirements.

Make better use of UML features for
specifying Execution Environment, Workload,
and System Scenario specifications.
Enable more support for distributed system
and multi-media features.

Solutions possibly by making use of UML
profiles ([OMG_99jun], chapter 4).
Ongoing work at University of Kent at
Canterbury under the project “Design
Support Environments for Distributed
Systems”.

Table 1 – Permabase Issues and Avenues for Solutions.

Chapter 4

Translator Specification

The aim of this chapter is to provide a specification technique that is suitable for
specifying translations between object-oriented models. It is a requirement that the
specification technique uses the Unified Modelling Language (UML) language, in
order that it is easily useable within a framework of other UML based specifications.

The approach to specifying model translators, introduced in this chapter, uses the
UML and associated Object Constraint Language (OCL). UML Associations are used
to define course-grained relationships between components from source and target
models. The mappings defined by these Associations are refined with extra detail,
where necessary, by adding OCL expressions in the context of the Association.

4.1 Introduction
Chapter 1 discussed some possible applications of a model translation process. In
order to implement such applications it is necessary, as with any design process, to
have a clear specification of what the translation process is intended to do. That is to
say, a translator specification technique is required.

A translator is a function that takes one model, the source model, and creates a second
model, the target model, based on the structure and information stored in the source
model. For any particular source model, the target model should be unique.

Some applications require a translation in both directions; thus, each model takes on
the role of source and target with respect to each of the translator functions. In this
situation, the combination of the two translators can be seen as a translator relation,
where each of the two models uniquely maps to the other. This relationship is
particularly useful for applications such as that produced within the Permabase
project, enabling information to be added to either model and reflected in the other;
for example feedback of performance results into the system design specification.

An important issue is what to do if a translation cannot be performed. However, this
is an issue related to the execution of actions and is hence left for discussion in
relation to the implementation of translators. This chapter discusses the specification
of translators in a declarative fashion – the specifications define what is or isn’t a
valid translation, not how to perform the translation or what to do if it can not be
performed.

In order to identify a general technique for specifying translators, it is first necessary
to look at what the translators are translating between – in this case, object-oriented
(OO) Models.

Translator Specification 45

An OO model is a network of linked objects. Each object represents a component of
the subject being modelled, and the links represent the relationships between the
components.

This network of objects and links can be viewed as a graph, where objects are viewed
as vertices and links viewed as edges. Using this view of an OO model, it is a logical
step to attempt the application of Graph Transformation techniques for translating one
OO model (graph) into another. Section 4.2 illustrates two different Graph Grammar
based approaches to specifying model translation.

The traditional way of describing OO models is to use a set of Class specifications,
often described using one of the many variations of ‘Class Diagram’. Class Diagrams
on their own are not such an expressive specification technique as Graph Grammars,
however by adding a constraint language, a similar expressiveness can be achieved.

Section 4.3 of this chapter describes the technique for specifying model translators
using the UML and OCL. Section 4.4 includes a general discussion regarding the
style of specification employed by the UML/OCL technique, pointing out some
interesting characteristics of this style. Section 4.5 discusses some related work and
section 4.6 concludes the chapter.

4.1.1 The Example
The example used throughout this chapter is a translator for converting between a
Directed Graph and a Tree data structure. In itself this could seem to be a very
academic exercise, however, it can be seen as a generalisation and simplification of a
number of more realistic translation problems, as discussed below.

Within the Permabase project, part of one of the translation processes was to convert
the specification of an object’s behaviour into a Discrete Event Simulation (DES)
model and into a Petri-net model of that behaviour.

The object behaviour is stored as an abstract behavioural syntax tree (e.g. as shown in
Figure 22, or as pseudo code in Table 2) and the DES and Petri-net models are both
extensions to the notion of a directed graph (e.g. as shown in Figure 23).

Method

While (condition)Statement 2

If (clause)Statement 1 Statement 5

Statement 4Statement 3

Sequence

Sequence

Figure 22 – An Abstract Behaviour Syntax Tree

Statement 1;
IF (clause) THEN {
Statement 2;

} ELSE {
WHILE (condtion) {

Statement 3;
Statement 4;

}

}
Statement 5;

Table 2 – Pseudo Code

Translator Specification 46

Figure 23 – A Petri-net (directed) graph

The Directed Graph ↔ Tree translator is a simplification of this task; in actuality, the
translation doesn’t have a one-to-one correspondence between nodes in the syntax
tree and vertices in the Petri-net or DES models.

An alternative application of the Directed Graph ↔ Tree translator example is in the
domain of visual languages. Editors for entering tree-like data structures are often
based on a directed graph model to give the user more flexibility – allowing invalid
trees to be specified as intermediate steps.

For example, an editor for specifying a class inheritance hierarchy would consist of
class vertices and arrow edges that would allow loops in the input specification. The
valid inheritance hierarchy would have to be a tree and a translator could form part of
the editor implementation. This would involve the issue of what to do if an attempt is
made to translate a directed graph into a tree when the graph does not map to a tree;
i.e. if there were loops in the inheritance hierarchy. This issue is discussed further in
the next chapter.

The Directed Graph ↔ Tree translator specification problem has a number of issues,
but it is not the intention of this thesis to address or discuss the merits of one
specification over another. This translator specification is simply used as an example
to illustrate the specification technique.

4.2 Graph Grammar Approach to Model Translation
By viewing an OO model as a graph, we can look at Graph Grammar base
specification techniques as possible means for specifying model translators. The
following two subsections illustrate the Graph Transformation and Triple Graph
Grammar approaches to specifying a translation.

4.2.1 Graph Transformation
The Graph Transformation approach for specifying a translation from one graph
(model) to another is to conceptually combine the two graphs and define grammar
rules that build the combined graph. The rules describing the source graph are taken
as a starting point and are added to in such a way so that the target graph is created as
though it was part of the source graph. The resulting target graph is subsequently a
sub-graph of the combination.

To illustrate this, consider an example translation from a Tree model into a Directed
Graph model.

A Directed Graph consists of Vertices and Edges and a Graph Grammar description
of this is given in Figure 24, the interpretation of which is described below.

Translator Specification 47

: DirectedGraph

: DirectedGraph : DirectedGraph

: Vertex

: Vertex

: Vertex

: Edge

::=

::=

start

edges_out

: DirectedGraph::=λ

[3]

[1]

[2]

: Vertex : Vertex
edges_in

finish

: DirectedGraph

vertices

verticesvertices

vertices

vertices

edges

Figure 24 – Graph Grammar for Directed Graphs
Rule [1] states that a DirectedGraph object can be created as a starting point.
Rule [2] states that, given a DirectedGraph object, a Vertex object can be
added.
Rule [3] states that, given two Vertex objects, an Edge object can be added,

linking the two Vertex objects as shown.
A Graph Transformation grammar (or set of rewrite rules) is based on the grammar
for the source graph, i.e. in this case on the grammar for Trees. The Directed Graph
grammar is not explicitly used, though in this simple example traces of it are visible
within the transformation rules.

: DirectedGraph

: TNode

: TNode

::=

parent

subnodes

: Tree ::=

[3]

[1]

[2]

: Vertex

: Vertex

: Edge

::= start

edges_out

root

edges_in

finish

vertices
: Tree

: DirectedGraph: Tree

: DirectedGraph: Tree

: TNode : Vertex

vertices

: DirectedGraph

: TNode : Vertex

vertices

: DirectedGraph

vertices
edges

Figure 25 – Tree to Directed Graph transformation rules
Figure 25 shows the Graph Transformation rules for a Tree � Directed Graph
translator. A description of the rules is given below.

Rule [1] states that given a Tree Object a DirectedGraph object can be created.
Rule [2] states that, adding a TNode object to a Tree means a Vertex object

must be added to the Directed Graph.
Rule [3] states that, adding a TNode object as a subnode of another means

another Vertex must be added to the Directed Graph, and it must be
linked via an Edge object to the Vertex that represents the original
TNode.

Translator Specification 48

4.2.2 Triple Graph Grammar s
Triple Graph Grammars (TGG) are an approach published in [Schürr_94jun] that
extend the idea of Pair Graph Grammars [Pratt_71]. The TGG approach enables a
clear distinction to be made between source and target graphs; it also keeps the extra
links needed for specifying the transformations as a separate specification. Using this
approach, separate grammars are produced for each of the graphs involved. The key
is the production of a set of correspondence rules (the third grammar), which specify
the homomorphic mapping between the two graphs.

A TGG specification is a declarative definition of the mapping between the two
graphs and a translator in either direction can be implemented from the specification.

: DirectedGraph

: DirectedGraph : DirectedGraph

: Vertex

: Vertex

: Vertex

: Edge

::=

::=

start

edges_out

: DirectedGraph::=λ

[3]

[1]

[2]

: Vertex : Vertex
edges_in

finish

vertices

vertices

: DirectedGraph

(a) (b)

(c)

1

1 1 2: Tree : Tree

: TNode

: TNode

: TNode : TNode

::=

::= parent
subnodes

root

: Tree::=λ

[3]

[1]

[2]

1

1 1 2

1 1 2

1 1

2 2

4

3

::=

::=

(1,1)

::=λ

[3]

[1]

[2]

(1,2)(1,2)

(2,2)(1,1)

(1,1)

(2,3)

3
vertices

vertices

vertices

edges

Figure 26 – Triple Graph Grammar based specification for Tree ↔↔↔↔
DirectedGraph Translation

Figure 26 shows a Triple Graph Grammar specification of the Tree↔Directed Graph
translator. Figure 26a and Figure 26b show the grammars for the Tree and Directed
Graph and Figure 26c shows the third grammar – the correspondence rules.
The vertices in the Tree and Directed Graph grammars are numbered and referenced
by the correspondence rules. Each correspondence rule shows dashed vertices (x,y)
that relate a vertex x in the corresponding left hand side (Tree) grammar rule and a
vertex y in the corresponding right hand side (Directed Graph) grammar rule.

Effectively the correspondence rules define the extra links that are introduced to
connect the two graphs when defining Graph Transformation rules for converting one
graph into the other.

For example, rule 3 from the TGG shown in Figure 26 can be read from left to right
showing how to generate an edge depicting the parent/subnode relationship between
two Vertex/TNodes. Figure 27a shows the relationships between the three graph
components, and Figure 27b illustrates the subsequent, combined, graph generation
rule. See how this matches rule 3 of the Tree�DirectedGraph transformation rule
defined in Figure 25. The rule should be read as follows:

Translator Specification 49

“If there exists a Vertex/TNode pair, then adding a second TNode as a subnode of the
first requires that a second Vertex be added along with an Edge directed from the first
Vertex to the second.”

: DirectedGraph

: Vertex : Vertex

: Edge::=

start

edges_out

: Vertex : Vertex
edges_in

finish

vertices

vertices

: DirectedGraph

: TNode : TNode : TNode::= parent
subnodes

1 1 2

1 1

2 2

4

3

::= (1,2)(1,2) (2,3)

3
vertices

vertices : Vertex : Vertex

: Edge

start

: Vertex

finish

: TNode : TNode : TNodeparent
subnodes

(1,2)
(1,2)

(2,3)

::=

(a) (b)

: DirectedGraph

: DirectedGraph
vertices

vertices

vertices

edges_out

edges_in

Figure 27 – Left ���� Right Interpretation of Figure 26 TGG, Rule 3
Or the rule can be read from right to left showing how a parent/subnode relationship
in a tree should be created to reflect the addition of an edge to the directed graph.
Figure 28a shows the relationship between the three TGG graphs and Figure 28b
shows the subsequent, combined graph transformation rule. This rule should be read
as:

“If there exists two Vertices, one of which is mapped to a TNode, adding an edge
between these two vertices requires that a second TNode is created as a subnode of
the first.”

: DirectedGraph

: Vertex : Vertex

: Edge::=

start

: Vertex : Vertex

finish

vertices

vertices

: DirectedGraph

: TNode : TNode : TNode::= parent
subnodes

1 1 2

1 1

2 2

4

3

::= (1,2)(1,2) (2,3)

3
vertices

vertices : Vertex : Vertex

: Edge

start

edges_out

: Vertex

finish

: TNode : TNode : TNodeparent
subnodes

(1,2) (1,2)

(2,3)

::=

(a) (b)

: DirectedGraph

: DirectedGraph
vertices

vertices

vertices

: Vertex

vertices

edges_in

edges_out

edges_in

Figure 28 – Right ���� Left Interpretation of Figure 26 TGG, Rule 3
This technique enables the specification of each graph to be distinctly specified as
separate grammars. The use of the third grammar defining the correspondence rules
encapsulates the specification of the links that join the two graphs in a separate
definition.

Translator Specification 50

4.3 The UML/OCL Technique
The current standard language for OO design is the UML. This language (or family of
languages) is widely understood within the OO community. Hence, it would be
advantageous to be able to specify translators using this language.

The Graph Grammars define the set of graphs that validly match a certain
specification. They achieve this for object models by defining valid patterns of object
graph that may exist within the model as a whole.

Within the OO community there is an alternative technique for specifying valid
patterns of object model – the class specification. Pictorially, class specifications are
usually defined using a variant of the Class Diagram.

Class Diagrams are used across the OO community for specifying a required set of
valid object models. The Class Diagram on its own has been recognised as not being
expressive enough to capture all the constraints required for some model
specifications, hence the OCL has been adopted as a means to extend the
expressiveness ([Kleppe_etal_98]).

4.3.1 Example
As an example, the class specifications for the Tree and Directed Graph models are
shown in Figure 30 and Figure 29.

A Directed Graph consists of a number of Vertices and Edges; each Edge starts from
one Vertex and finishes at another. An instance of the Tree data-structure contains one
root TNode, which can contain a number of sub TNodes that in turn can contain sub
TNodes etc.

In general the graph to tree mapping could be define such that:
• each graph Vertex maps to a tree TNode
• each Edge in the graph maps to a parent subnode link between two TNodes

By specifying the mappings informally, using English text, a reader can get an
understanding of the mapping, but it is easy to leave out details or be ambiguous. For
instance, the above descriptions do not describe that the direction of the Edge defines
which TNode is the parent and which is the subnode.

A technique is required that allows formal checking of the specification and makes it
easier to see if the constraints are incomplete.

Tree

Tree

TNode

root

parent

subnodes

1

*

tree

all_nodes
*

Figure 29 – Tree Class Specification

DirectedGraph

DirectedGraph

Vertex Edge

graph graph

edgesvertices start edges_out

finish edges_in

* *

*

*

Figure 30 – Directed Graph Class Specification

Translator Specification 51

4.3.2 A Translator Specification Architecture
The specification of each model can be grouped separately into two Packages. A
‘Package’ is a UML concept for enabling specifications to be defined in a modular
fashion.

The specification of a translator between these two models can subsequently be
defined by a third Package that ‘uses’ (depends on) each of the model definitions.
This is illustrated in Figure 31.

Model 1 Model 2

Translator

Figure 31 – General Architecture for Translator Specifications
The figure shows the specification of two ‘Model’ packages, both of which are ‘used’
by the Translator package. The dotted arrow indicates a dependency relationship
between packages.

The example translator between a Tree and a Directed Graph is mapped onto this
architecture as follows. The Model 1 and Model 2 packages must contain the
definitions of the Tree and Directed Graph class specifications, and the contents of
the Translator package must specify the mappings described in Table 3.

1. each graph Vertex maps to a tree TNode
2. each Edge in the graph maps to a parent subnode link between

two TNodes
3. the direction of the Edge indicates the direction of the parent

and subnode link
Table 3 – Mapping Specification

4.3.3 Translator Specification
The specification of the translator is a specification of the relationship or mapping
between the types of component from each model, i.e. a specification of the mappings
between classes from each of the two models.

Logically a translation is a process of converting one model into another. However, as
the requirements of the Permabase project show, a translation in one direction often
precedes the reverse translation back again. Hence, it would be advantageous if the
translator specification was bi-directional.

That is to say that the translator specification should declaratively define the mapping
relationship between the two models, rather than define how to create or generate one
model from the other.

The specification of a mapping between one model and another can be broken down
into the specification of mappings between the components of each model. The
mappings between the components can subsequently be modelled as relationships
between the components with a number of constraints imposed on them.

Translator Specification 52

Adding a relationship between two components in UML is achieved by adding an
association between the two related components. The constraints can then be written
formally using a constraint language such as predicate logic, or as UML is being
used, using OCL as a more compatible constraint language.

X Y

C(x,y)
x y

Figure 32 – A Mapping Specification (invalid UML)
Following this convention, a mapping specification would look like that shown in
Figure 32. However, this is not strictly valid UML; the OCL constraint (“C(x,y)”) is
attached to the association, which is valid according to the UML meta-model, but the
semantics of such a constraint are not defined.

Logically this is the correct place for the constraint, however as discussed in
[Cook_etal_99] the UML 1.3 standard ([OMG_99jun]) is rather ill defined as to
where OCL expressions may be specified. The standard only discusses the context of
an OCL constraint in relation to an invariant on a Classifier or pre/post conditions on
an Operation. Although, according to the meta-model definition, OCL expressions
can form the body of a Constraint, which can be attached to any ModelElement.
Secondly, the semantics of a standard association are not quite the relationship
between X and Y that is required. The specification is intended to define a
relationship with the same semantics as a bijective binary relation as defined in set
theory. However, there is currently no direct support for this type of relationship
within the combination of UML and OCL.

4.3.4 Providing Support for B inary Relations
Specifically a binary relation R between two sets A and B is defined to be the set of
pairs formed from the elements of A and B; expressed as follows:

R : A ↔ B or
R � AxB

To define the particulars of this subset, the relation must be further constrained to
select the required pairs from the Cartesian Product. For example, if we have a set of
Parents (P) and a set of Children (C), then the relation F denoting fatherhood can be
defined as follows:

F = { (p,c) | p is male and p is a father of c } � PxC

Unfortunately, a Cartesian product (i.e. “AXB”) is not directly expressible using OCL
and neither is the concept of a relation or an Ordered Pair. It is this lack of Ordered
Pairs that is the fundamental problem. This and other issues related to the expressive
power of OCL are discussed in some depth by the authors of [Mandel_Cengarle_99].

R S

constraint

1
RS* * 1

Figure 33 – Supporting Class for a Cartesian Product ([Mandel_Cengarle_99])

Translator Specification 53

They suggest that the solution to defining a Cartesian product is to define a class that
represents the required type (e.g. as shown in Figure 33). The following constraint6

must subsequently be attached to the defined class to ensure that the set of instances
of the class does in fact form the Cartesian product.

R.allInstances->union(S.allInstances)->forAll(r,s : oclAny |
 if r.oclType.name == s.oclType.name then
 true
 else
 RS.allInstances->exists(t : RS |
 t.r == r and t.s == s)
 endif
)

The constraint defines that there must be an instance of class RS for every pair of
objects taken from the union of the instances of R and S, when the paired objects are
of different types.

However, there are problems with this definition. If there is a subtype relationship
between classes R and S then some of the instances of R and S are lost when the
union is formed; hence, some of the members of the Cartesian Product will not be
included.

Mathematically a Cartesian Product is formed as follows:

By defining the notion of a pair formed from elements of two sets; i.e. if there are sets
A and B and x is an element of A and y is an element of B then the pair consisting of
x and y is denoted as:

(x,y)
For any two such pairs, if the co-ordinates are the same then the pairs are equal, i.e. as
shown below:

(a,b) = (x,y) � (a=x and b=y)

This notion of pair is subsequently used to define a Cartesian Product AxB as the set
of all pairs where the first co-ordinate is taken from A and the second taken from B,
i.e. as shown below:

AxB = { (x,y) | x � A � y � B }

To do the same thing using the concepts of UML and OCL, a class Pair is defined
with a constraint defining the equality of two pairs to depend on the equality of the
members of the pair. This is shown in Figure 34.

Pair

Pair.allInstances->forAll(p, q |
 (p == q implies p.fst == q.fst and p.snd == q.snd) and
 (p.fst == q.fst and p.snd == q.snd implies p == q)
)

OclAny
fst

snd

Figure 34 – Definition of Pair
The Pair class is extended with the definition of a parameterised CartesianProduct
class as shown in Figure 35.

6 Taken from ([Mandel_Cengarle])

Translator Specification 54

Pair OclAny

constraint

fst

CartesianProduct

snd

t1 : OclType
t2 : OclType

Figure 35 – Support for Cartesian Products
The CartesianProduct class must have an attached constraint that ensures that all
instances of the class exist in accordance with the instances of the classes passed as
parameters. The parameterised class defines the Cartesian Product t1 x t2 and the
invariant constraint on the class must therefore be defined as follows:

t1.allInstances->forAll(x |
 t2.allInstances->forAll(y |
 CartesianProduct<t1,t2>.allInstances->exists(p |
 p.fst = x and p.snd = y
)
)
) and
CartesianProduct<t1,t2>.allInstances->forAll(p |
 t1.allInstances->exists(x |
 t2.allInstances->exists(y |
 p.fst = x and p.snd = y
)
)
)

The first part of the constraint ensures that all members of the Cartesian Product exist
as instances of the class CartesianProduct. The second part ensures that new
instances of the class CartesianProduct can not be created from instances of A and B
in such a way that they form an object that is not a member of the Cartesian Product
of the instances of A and B.

Any particular Cartesian Product can be formed by using a ‘Bound Element’ – a class
definition that provides values for the parameters of a ‘Parameterised Class’. For
example, Figure 36 shows a Cartesian Product of classes A and B.

AxB

CartesianProduct
t1 : OclType
t2 : OclType

A

B

«bind»(A,B)

Figure 36 – Formation of a Cartesian Product AxB
The constraint on CartesianProduct ensures that only appropriate instances of AxB
exist.

Translator Specification 55

4.3.5 Constructing a Bijective Relation
The required semantics of our mapping relationship is that each instance of the class
at one side of the association must have a one-to-one correspondence with an instance
of the class on the other side of the relationship. This is known as a bijective relation.

A bijective relation can be supported in UML by extending the CartesianProduct
class and adding an extra constraint defining the required properties.

To define these properties on a relation, firstly we define that the relation is a function
(F), as show below:

F = { f � AxB | �p � f (�x� A (p.fst = x) ���� (�p,q � f (p.fst == q.fst � p == q) }

Secondly, this constraint is extended, defining that a bijective relation is a function
for which the inverse relation is also a function. This can be specified as shown
below:

BjM == { f � AxB | �p � f (�x� A (p.fst = x) ���� (�p,q � f (p.fst == q.fst � p == q) ����
 �q � f (�y� A (q.snd = y) ���� (�p,q � f (p.snd == q.snd � p == q) }

CartesianProduct
t1 : OclType
t2 : OclType

constraint

BjMapping

t1 : OclType
t2 : OclType

Figure 37 – UML Specification of a Mapping Relationship
Figure 37 shows the definition of a BjMapping class using UML; it extends the
CartesianProduct and consequently is also a parameterised class, requiring the two
class type parameters to be bound. The constraint on the BjMapping class is defined
as follows:

BjMapping.allInstances->forAll(p, q |
 t1.allInstances->exists(x | p.fst == x) and
 t2.allInstances->exists(y | q.snd == y) and
 (p.fst == q.fst implies p == q) and
 (p.snd == q.snd implies p == q)
)

Using this parameterised class, specific mappings can be defined between arbitrary
pairs of classes. Figure 38 shows an example, defining a mapping between classes A
and B.

A↔B

BjMapping
t1 : OclType
t2 : OclType

A

B

«bind»(A,B)

Figure 38 – Specification of a BjMapping between classes A and B

Translator Specification 56

Mathematically, a bijective relation cannot always be defined between two sets.
Consequently, a bijective relation can only be formed from classes A and B if the sets
of instances of those classes are such that the constraints on the BjMapping,
CartesianProduct and Pair classes are not invalidated. Subsequently, any new
instance of classes A or B must be created along with the corresponding A or B
instance so that the constraints are not invalidated.

4.3.6 Semantics of the mapping relationship
Given these supporting definitions a stereotyped association can be defined with the
appropriate semantics. Going back to the original mapping specification shown in
Figure 32, all that is necessary to convey the correct semantics is to add a stereotype
label to the association, as illustrated in Figure 39.

X Y

C(x,y)
x y

«mapped_to»

Figure 39 – A Mapping Specification (valid UML)
Given this specification the semantics of the stereotype are defined to imply the
specification shown in Figure 40.

Pair OclAny

constraint

fst

CartesianProduct

snd

t1 : OclType
t2 : OclType

OclAny

BjMapping
t1 : OclType
t2 : OclType

X ↔ Y

«bind»(X,Y)

constraint

let x = self.fst in
let y = self.snd in
C(x,y)

X Y

Figure 40 – Full expansion of the specification shown Figure 39
This expansion of the specification defines firstly, a binding of the BjMapping class
that creates a specific mapping class between the two classes from each of the ends of
the association – the class X↔Y.

Secondly, the constraint attached to the association is interpreted as a constraint on
the specific mapping class. To ensure that references within this constraint validly
refer to the mapped objects two ‘let’ expressions (enclosing the constraint) assign the
rolenames of the association to be the two objects connected. These are respectively
the objects fst and snd of the mapping inherited from Pair.

Translator Specification 57

4.3.7 One-To-Many or Many-T o-Many Mappings
In many cases it is not sufficient to specify only one-to-one mappings between the
components from each model, more often 1-to-n or n-to-m mappings are required. (A
1-to-n mapping is a special case of n-to-m and does not need to be separately
discussed.)

To specify these graphically an n-ary association7 is used. This does however, cause a
problem with the semantics and subsequent interpretation of the specification. The 1-
to-1 case makes use of the fact that the association has two ends – one for a
component from each model. With an n-ary association however, there are as many
ends as there are components involved in the association.

A solution to this problem would be to make the distinction based on the names of the
components involved. Each component is drawn from one or other of the two models
over which the mapping is being specified – thus it is simple to deduce which
components involved in the n-ary association are from which model. However, this
requires a reader of the specification to refer to the model definitions in order to
interpret the specification and gives no means for a precise semantic interpretation.

Another solution, giving visual indication more locally to the specification would be
to “tie” the association ends together for components from the same model. This
technique makes use of valid UML syntax, though the exact semantic meaning of it is
not clearly specified within the UML standard ([OMG_99jun]). Section 3.41 of the
standard shows use of the “tie” for defining an XOR association; it is used here to
define a grouping of association ends.

Figure 41 illustrates the graphical specification of a general n-to-m mapping between
components V,W and X from one model and components Y and Z from another, with
the constraint C(v,w,x,y,z) on the mapping.

z

X

Y

C(v,w,x,y,z)

«mapped_to»
x

y
W

Z
vV

w

Figure 41 – General Mapping Specification
In Figure 41 the dotted lines between the two pairs of association ends indicate that
classes V,W and X come from one model, and classes Y and Z come from the other.
Thus, the mapping class relates two tuples of objects – a 3-tuple from VxWxX to a
pair from YxZ.

The semantic interpretation of this is shown in Figure 42. A BjMapping class is
defined between the nTuple and Pair classes, with the attached constraint equal to the
constraint attached to the n-ary association, preceded by a number of let expressions
and type checking constraints.

7 See Chapter 2 for a description of UML concepts such as n-ary association.

Translator Specification 58

BjMapping
t1 : OclType
t2 : OclType

XWV ↔ YZ

«bind»(nTuple,Pair)

constraint

let w = self.fst.at(1) in let x = self.fst.at(0) in let v = self.fst.at(2) in
let y = self.snd.fst in let z = self.snd.snd in
w.oclType = W and x.oclType = X and v.oclType = V and
y.oclType = Y and z.oclType = Z and
C(v,w,x,y,z)

X

Y

W

Z

V

Figure 42 – Semantic interpretation of Figure 41
The let expressions, as with the one-to-one case, define the role names of the n-ary
association to refer to the mapped objects. The type checking constraints are required
due to the use of the un-typed nTuple and Pair classes for grouping the objects on
either side of the mapping.

4.3.8 «mapped_to» operator

Within the specification of the constraints defined on a particular mapping, it is
sometimes necessary to refer to a mapping between other components. To enable this
an operator is introduced to OCL that facilitates succinct reference to mappings.

The operator is given two forms of syntax, ‘↔’ or ‘«mapped_to»’ for use if the more
graphical symbol is unavailable. The operator can be used as follows, in three
different cases:

4.3.8.1 Object «mapped_to» Object

This is the one-to-one case of one object mapped to another; it specifies that a
mapping must exist between the two objects. More formally, the semantics of the
operator can be interpreted as follows:

o1 ↔ o2 � BjMapping<o1.oclType,o2.oclType>.allInstances->exists(m |
 m.fst == o1 and m.snd == o2)

4.3.8.2 N-tuple «mapped_to» M -tuple

This is the n-to-m case of mapping n components to m other components, its
interpretation is similar to the one-to-one case. Ignoring, for a moment, that tuples are
not expressible in OCL, a ‘n-tuple ↔ m-tuple’ specification defines that a mapping
object must exist that relates these two tuples.

To get around the problem of representing tuples in OCL either, a Sequence can be
used, or a specifically sized tuple class can be defined (as discussed in
[Akehurst_Bordbar_01]). The second method is preferred as this avoids confusion
with the third use of the operator (see below).

The definition of an explicit Sequence is by using curly braces preceded by the term
‘Sequence’ as shown in the example below (see section 7.5.12 of the UML standard):

Translator Specification 59

Sequence { a, b, c }

Thus, if there are tuple classes defined, and OCL can be extended to allow definitions
of explicit user defined classes (similarly to the explicit definition of Sets, Bags and
Sequences) an expression:

(a, b, c) ↔ (x, y)

can be interpreted as:
BjMapping<n3Tuple, Pair>.allInstances->exists(m |
 m.fst = n3Tuple { a, b, c } and
 m.snd = Pair { x, y })

4.3.8.3 Sequence «mapped_to» Sequence

This third use of the operator is for referring to several mappings. It should be
interpreted to mean that there is a bijective relation mapping each object in one
sequence to an object from the other sequence. This can be expressed formally as
shown below:

seq1 ↔ seq2 � seq1->size == seq2->size and
 Sequence {0..seq1->size} ->forAll(i |
 Let a = seq1->at(i) in
 Let b = seq2->at(i) in
 BjMapping<a.oclType,b.oclType>.allInstances->exists(m |
 m.fst == a and m.snd == b))

If the operator is used between collections that are not specifically Sequences, then
the predefined OCL ‘asSequence’ operation can be used.

4.3.9 Well-formed Mappings
When creating a mapping specification, the issue of its ‘well-formedness’ must be
addressed; i.e. is the mapping a valid specification.

A mapping relates a number of classes and constrains the relationship using the
attributes of the related classes. Hence, if an attribute or rolename is used in the
constraints specified for a mapping, then the class from which that attribute or
rolename is navigable must be related as part of the mapping. (This becomes
particularly relevant with respect to implementing the mapping, see next chapter.)

To illustrate this, Figure 43 shows a mapping between the DirectedGraph and Tree
classes. It would seem to be an obviously correct relationship between the two
classes. However, by analysing the constraints it can be seen to be ill-formed.

Directed
Graph Tree

«mapped_to»graph tree

graph.vertices «mapped_to» tree.all_nodes and
Let no_incoming = graph.vertices->select(v | v.edges_in->size == 0)->asSequence in
 no_incoming->first «mapped to» tree.root and
 no_incoming->size == 1

Figure 43 – Ill-formed Mapping Specification
As the containing objects for each of the mapped models, it is correct to create a
mapping between these two classes. The constraints refine the mapping to ensure
that:

Translator Specification 60

1. Each Vertex is mapped to a TNode, and
2. One of the Vertices with no incoming Edge is mapped to the root of the Tree,

and
3. That there is only one Vertex with no incoming Edge.

The first part of this constraint, uses rolenames ‘vertices’ and ‘all_nodes’ which are
navigable from the DirectedGraph and Tree classes (see Figure 45 below).

The second two parts of the constraint use ‘no_incoming’, defined by the Let
expression to be the Sequence of vertices with no incoming edges. The definition of
no_incoming uses the rolename ‘edges_in’, which is navigable from a Vertex not
from the DirectedGraph class; thus its use in the constraint implies that the Vertex
class must form part of the mapping.

Through thinking about the purpose of the second two parts of the constraint, it can
be seen that this does make sense. They define a mapping between one of the Vertices
in the graph and the root of the Tree. In order to determine which Vertex to use, it
follows that all of the Vertices must be looked at to see if they are valid candidates for
mapping to the root.

There is no way to form the constraint that only refers to attributes or rolenames of
the DirectedGraph and Tree classes. One could use an alternative form that used
rolenames of the Edge class instead of the Vertex class, e.g.:

Let no_incoming = (graph.vertices – graph.edges.finish)->asSequence in

Here, the rolename ‘finish’, navigable from the Edge, class is used and hence all of
the Edges in the graph must form part of the mapping instead of all of the Vertices.

Using the original form of the Let expression, the well-formed mapping is as shown
in Figure 44.

A collection of instances of the Vertex class is included in the mapping; this
collection is defined by an additional part of the constraint to be the set of vertices
contained in the graph.

Directed
Graph

Tree

«mapped_to»

graph

tree

graph.vertices == vertices and
vertices «mapped_to» tree.all_nodes and
Let no_incoming = vertices->select(v | v.edges_in->size == 0)->asSequence in
 no_incoming->first «mapped to» tree.root and
 no_incoming->size == 1

Vertex vertices
*

Figure 44 – Well-formed Mapping Specification

4.3.10 Example
Using the specification ‘language’, as explained in the previous subsections, the
definition of our example Translator can be written as shown in Figure 45.

Translator Specification 61

DirectedGraph

DirectedGraph

Vertex Edge

graph graph

edgesvertices start edges_out

finish edges_in

* *

*

*

DirectedGraph ↔ Tree

Vertex TNode«mapped_to»v tn

Directed
Graph

Tree

«mapped_to»

graph

tree

Vertex vertices
*

Edge

TNode
C3

e

tn1

«mapped_to»
TNode

tn2

C2

C1

Tree

Tree

TNode

root

parent

subnodes

1

*

tree

all_nodes
*

Figure 45 – UML/OCL specification of a Tree↔↔↔↔Directed Graph Translator
The figure shows the three packages containing the different parts of the translator
specification architecture. The top two packages are the distinct definitions of the two
models and the bottom package contains the mapping specifications that define the
translator.

The constraints C1 to C3 that are specified in the DirectedGraph↔Tree Translator are
as shown in Table 4, along with an OCL comment explaining the constraint.

C1 -- All vertices are mapped to TNodes and the graph must contain only one vertex with no
incoming edges, which is mapped to the root of the tree.
graph.vertices == vertices and
vertices «mapped_to» tree.all_nodes and
Let no_incoming = vertices->select(v | v.edges_in->size == 0)->asSequence in
 no_incoming->first «mapped to» tree.root and
 no_incoming->size == 1

C2 -- All edges starting from the Vertex are mapped to TNode pairs, where the fst of the pair is
the TNode mapped to the Vertex, and the second is a subnode of the TNode.
v.edges_out «mapped_to» tn.subnodes->iterate(ts; acc:Set |
 acc->includes(Pair{tn, ts})

C3 -- Each edge is mapped to the relationship between two TNodes, the TNode mapped to the
Vertex at the end of the Edge is a subnode of the TNode mapped to the Vertex at the start of
the Edge.
e.start «mapped_to» tn1 and
e.finish «mapped_to» tn2 and
tn1.subnodes->includes(tn2)

Table 4 – Constraints for DirectedGraph ↔↔↔↔ Tree Translator

Translator Specification 62

Using this specification it is possible to determine whether or not two model instances
(i.e. a DirectedGraph and a Tree) are valid translations of each other. However, as
stated in the introduction, the specification does not describe what should happen if
the models are not valid translations.

For example, the graph shown in Figure 46 does not translate into a valid tree (Figure
46a shows a visual representation of the graph, Figure 46b shows an object diagram
representation of the graph).

:Vertex

:Vertex

:Vertex

:Edge
:Edge

:Edge

start

finish

start

start

finish

finish

(a) (b)

Figure 46 – An Example DirectedGraph
 Each of the trees shown in Figure 47 could be a possible interpretation of the graph –
if one or other of the graph edges were removed. The positions of the respective
translated removed edges are shown dashed.

(a) (b)

Figure 47 – Possible Tree Translations of Figure 46
It is not the purpose of the translator specification to define which (if either) of these
trees is the correct translation, the specification simply states that there is not a valid
translation between the graph and either tree.

4.4 UML/OCL Specification Style
The proposed UML/OCL translator specification technique is a Graphical, Object-
oriented, Bi-directional, Declarative specification of the relationship between two
object models. This section discusses each of these characteristics, enabling the
reader to determine whether the specification technique is appropriate for a task they
have in mind.

4.4.1 Graphical
The mapping specifications that form a translator specification are defined using a
standardised Graphical language – the UML. In contrast, another standardised

Translator Specification 63

language – XSLT [W3C_99nov] – can be used to specify (or even implement) a
translation from one XML model to another; however, XSLT is a textual language.

The graphical nature of UML gives a high-level view of the components from each of
the related models and their relationship, which enables immediate recognition of the
association between components. The details of which can be subsequently derived
from the attached OCL constraints.

An XSLT specification, in contrast, is directly executable. However, its textual nature
means that it is more complex to interpret at a high-level by a human reader. An
example XSLT specification defining the translation from an XML model of a Tree
into an XML model of a Directed Graph is included in Table 5. This can be compared
with the UML/OCL specification found in Chapter 4 and Appendix D.

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/TREE">
<GRAPH>

<xsl:text>
 </xsl:text>
<VERTICES><xsl:text>
</xsl:text>

<xsl:apply-templates select="//TNODE" />
<xsl:text> </xsl:text>

</VERTICES>
<xsl:text>
 </xsl:text>
<EDGES><xsl:text>
</xsl:text>

<xsl:apply-templates select="//SUBNODES" />
<xsl:text> </xsl:text>

</EDGES>
<xsl:text>
</xsl:text>

</GRAPH>
</xsl:template>

<xsl:template match="TNODE">
<xsl:text> </xsl:text>
<VERTEX>

<xsl:attribute name="id">
<xsl:value-of select="generate-id()"/>

</xsl:attribute>
<xsl:text>
</xsl:text>
<xsl:text> </xsl:text>
<DATA><xsl:value-of select="DATA"/></DATA>
<xsl:text>
 </xsl:text>

</VERTEX>
<xsl:text>
</xsl:text>

</xsl:template>

<xsl:template match="SUBNODES">
<xsl:for-each select="TNODE">

<xsl:text> </xsl:text>
<EDGE>

<xsl:attribute name="from">
<xsl:value-of select="generate-id(../..)"/>

</xsl:attribute>
<xsl:attribute name="to">

<xsl:value-of select="generate-id()"/>
</xsl:attribute>

</EDGE>
<xsl:text>
</xsl:text>

</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

Table 5 – XSLT for Tree to Graph Translation

4.4.2 Object Oriented
The use of UML as a specification language enables the use of the technique
alongside the specification of models using the current industry standard and Object-
Oriented approach to software engineering. Irrespective of the merits or problems

Translator Specification 64

regarding Object-Oriented specification and the use of UML, they are in current
widespread use within the industrial community.

The use of UML as a language for specifying model translators enables the use of
translators as a concept to be more seamlessly integrated with the specifications of
other aspects of a software system. Hence, this will enable translators to become more
widely adopted as a software engineering technique.

Alternative specification techniques, such as Graph Transformations, are not Object-
Oriented. Although having a long history and large supporting research community,
Graph Transformations have not been as widely adopted by industry (although there
has been and still is some use). Figure 48 shows a Graph Transformation based
specification for the Tree to Graph translator example.

: Tree : Tree

: TNode

: TNode

: TNode : TNode

::=

::= parent
subnodes

root

: Tree::=λ

[3]

[1]

[2]

(a) (b)

(c) (d)

: DirectedGraph

: TNode

: TNode

::=

parent

subnodes

: Tree ::=

[3]

[1]

[2]

: Vertex

: Vertex

: Edge

::= start

edges

root

edges

finish

vertices
: Tree

: DirectedGraph: Tree

: DirectedGraph: Tree

: TNode : Vertex

vertices

: DirectedGraph

: TNode : Vertex

vertices

: DirectedGraph

vertices edges

: DirectedGraph

: TNode

: TNode

::=

parent

subnodes

::=

[3]

[1]

[2]

: Vertex

: Vertex

: Edge

::= start

edges

root

edges

finish

vertices
: Tree

: DirectedGraph : Tree

: TNode: Vertex

vertices

: DirectedGraph

: TNode: Vertex

vertices

: DirectedGraph

vertices

edges

: DirectedGraph : Tree: DirectedGraph

: Vertex
vertices

: DirectedGraph

: DirectedGraph : DirectedGraph

: Vertex

: Vertex

: Vertex

: Edge

::=

::=

start

edges

: DirectedGraph::=λ

[3]

[1]

[2]

: Vertex : Vertex
edges

finish

: DirectedGraph

vertices

verticesvertices

vertices

vertices

edges

Figure 48 – Graph Transformation based specification for Tree ↔↔↔↔
DirectedGraph Translation

Parts (a) and (b) of the figure show a Graph Grammar for the Tree and DirectedGraph
models. Part (c) defines a set of Graph Transformation Rules for building a
DirectedGraph from a Tree, and part (d) defines the inverse rules for building a Tree
from a DirectedGraph.

Although there is a long history of research within the Graph Grammar community it
is only recently that knowledge and use of them has become more wide spread. As
stated in [Bardohl_etal_99] (in the context of Graph Transformations used within the
domain of Visual Languages) Graph Transformation techniques suffer from a
“scaling-up problem” and a lack of efficient tools.

Translator Specification 65

The gradual improvement and development of Graph Grammar based tools (such as
that described in [Schürr_etal_95]) has been a contribution towards the expansion of
the Graph Grammar Community.

4.4.3 Bi-Directional
The UML/OCL specification technique is bi-directional. In reading or writing a
translator specification using this technique, no assumption is made as to which is the
source model and which is the target model. Either side of the specification can be
source, target or both depending on how the specification is applied.

The UML/OCL translator specifications are a specification of the required
relationship between two models, rather than a specification of how to generated one
model from the other. In contrast, both the XSLT and Graph Transformation
approaches are unidirectional. The specifications make a clear distinction between
source and target models and explicitly define a set of rules describing how one
model should be created from the components of the other.

The Triple Graph Grammar (TGG) approach developed by Andy Schürr
[Schürr_94jun] is an adaptation of the Graph Transformation technique that provides
a bi-directional specification. The technique as been discussed in Chapter 4 and can
be seen to provide a comparable, bi-directional and graphical specification of a
translator (or transformation). The main drawback of the approach, with respect to the
requirements addressed by this thesis, is that it is not Object-Oriented.

Both the UML/OCL and TGG bi-directional techniques provide a concise
specification of a translation relationship between two models. Single direction
translators can be implemented from the bi-directional specifications and additionally
(as described in Chapters 5 and 6) bi-directional translators can be implemented.

4.4.4 Declarative
A UML/OCL translator specification is declarative. It does not specify how to create
one model from another, the specification defines what conditions must be met by
each model in order that they are valid translations of each other.

The classic distinction between declarative and imperative programming languages
bases the distinction on the evaluation of expressions in the language. Declarative
expressions evaluate to true or false, where as imperative expressions may be
commands or questions and may evaluate to any value or none. An imperative
program is a sequence of commands that defines how to solve a given problem. A
declarative program is a set of expressions that define what the problem is; how it is
solved is left to the interpretation of the expressions.

According to this definition, each of the techniques mentioned in this thesis, are
declarative. The XSLT and Graph Transformation techniques are evaluated by using
a complex pattern-matching algorithm that detects instances of a defined (Left Hand
Side, LHS) pattern and replaces it with an instance of an alternative (Right Hand
Side, RHS) pattern.

In contrast, the UML/OCL technique does not define replacement rules. Although
there are notionally two sides (one for each model), they are not defining classical
grammar-like ‘Production Pairs’. The mapping definitions don’t define patterns to be
replaced by other patterns.

Translator Specification 66

Primarily, the difference is the semantics of the components used in the specification.
UML/OCL translator specifications are constructed from Classes and Associations;
however, the models that they are defining a translation for, are constructed from
Objects and Links. With both the XSLT and GT specifications, the rules are defined
in terms of the elements that make up the models, i.e. nodes and edges or XML
elements.

The UML/OCL specification uses a higher-level abstraction of the model elements in
order to define the translation. Classes and Associations are abstractions of Objects
and Links that define valid patterns of Objects and Links for a particular model.

Pattern recognition is still forms part of the overall interpretation. Rather than being
part of interpreting the translator specification (transformation rules), it is an integral
part of the semantics of the model definition language (Class Diagrams). The
interpretation of the translator specification does not require a separate pattern-
matching element; it can be understood at the same abstract-level (meta-level) as a
Class Diagram specification.

Consequently, various sets of refinement rules can be defined that map the abstract
(UML/OCL) translator specifications to a number of alternative lower-level
definitions, such as:

• an XSLT specification;
• a set of Graph Transformation rules;
• a one way translator implementation (see Chapter 5); or
• an active (two-way) translator implementation (see Chapter 5 and 6).

4.5 Related Work
The authors of [Fischer_etal_99] describe a new graph grammar language called
“Story Diagrams”. The authors identify the problems with graph grammar notations
and the lack of integration with the OO philosophy and propose Story Diagrams as a
solution to these problems.

Story Diagrams use a combination of UML class diagrams, UML activity diagrams
and UML collaboration diagrams to represent graph grammars and graph rewriting
rules. The semantics of Story diagrams are based on Progres; earlier work
documented in [Schürr_etal_95], [Schürr_97] and others.

This work is complimentary to the technique proposed in this chapter, adding
confidence to the proposed use of UML as translator specification tool.

Other work, by Jahnke and Zündorf ([Jahnke_etal_96], [Jahnke_Zündorf_98] and
[Jahnke_Zündorf_99]), also builds on Progres. Their work makes use of the Triple
Graph Grammar approach to enable the implementation of a design environment for
specifying translators between relational and object-oriented database schemas.

4.6 Conclusion
This chapter has illustrated three different techniques for specifying translations
between object-oriented models. Two of the techniques are based on Graph Grammar
theory and non-standardised notations. The main part of this chapter has described a
UML and OCL based technique for specifying model translators. All of the
techniques have been used to define the same example translator specification.

Translator Specification 67

The UML/OCL technique is not intended as a replacement for the Graph Grammar
based approaches. Nor is it claimed to be better in any fashion, although there may be
advantages and disadvantages of each technique.

The proposed technique is a natural way of defining a two-way mapping between two
distinct models within an object-oriented modelling domain. The use of UML and
OCL to describe the mappings integrates seamlessly with the Object Management
Group’s Model Driven Architecture initiative, enabling UML to be used as a
language for specifying model translations.

4.6.1 Future Work
A useful area for future research would be an investigation into how to conclude if
the mapping specifications are complete. I.e. to answer the question “Given a set of
defined mappings can any instance of one model be mapped into the other?”

With respect to the Permabase project (see chapter 3), this technique could be used to
define the translation from the concepts of the abstract design model into a model of
other concepts suitable for a particular analysis engine. This technique defines a two-
way mapping, hence aiding the implementation of feeding back the results of analysis
into the abstract system model and subsequently to the concrete representation.

A possible extension to the specification technique would be to enable the use of the
association between classes to reduce the complexity of some mapping relationships.
For instance, the DirectedGraph↔Tree translator specification defines a mapping
between an Edge class from the graph model and two TNodes from the tree model. It
may be possible to specify the mapping as a relationship between the Edge class and
the parent/subnode association between the two TNodes.

Chapter 5

Translator Implementation

The previous chapter has discussed techniques for specifying model translators and
indicated a number of advantages for using the UML/OCL based technique. If this
approach to specifying translators is adopted, an implementation technique that is
compatible with it is required.

This chapter illustrates an initial manual approach to providing an implementation. It
defines an implementation framework and a technique for implementing model
translators based on their specification using the UML/OCL technique. The
implementation approach described in this chapter provides a basis for the automatic
approach described in the following chapter.

5.1 Introduction
A model translator specification is assumed to contain the specification of three parts:

1. the definition of the two models, in UML; and
2. the definition of the mapping relationships and associated constraints between

the models and component parts.
The chapter discusses an overall implementation architecture and discusses the
generic behavioural characteristics of the model and translation components.

The primary aim of any translator implementation is to keep the specified constraints
valid; this is achieved by altering one or other model so that each constraint evaluates
to true.

A secondary objective of the translator implementation is that the implementation of
the models themselves are unaffected (or at least minimally affected) by the
translation components. That is to say, that the implementation of the models should
be independent of whether or not they are to be translated.

To achieve this two implementation approaches are discussed; one based on the
Visitor pattern and one that uses the Observer pattern8. Both of these approaches
require limited additions to the model components, which may be needed anyway as
part of the implementation of other requirements in the application as a whole.

The Visitor based approach has been successfully used to implement the translations
forming part of the Permabase project. The approach is straightforward but is a one
step process and requires two translators to be built – one for translating in either
direction. The major drawback of this approach, from the Permabase perspective, is
that any change to the source model requires the whole translation process to be re-
executed.

8 These patterns are described in Chapter 2.

Translator Implementation 69

This problem led to the development of the Observer based approach. The approach
is more complex to implement, but the translation process in each direction can be
combined into a single set of classes. These classes “actively” translate between the
models as incremental changes are made to either one. The implementation of the
mappings and constraints must take account of how one model changes and alter the
other model with respect to those changes.

The Java programming language has been chosen as the target language for
implementing the translators. Segments of Java code and UML diagrams are used to
illustrate the examples.

The rest of this chapter is organised as follows:

Section 5.2 describes the visitor based implementation approach. This approach is of
particular interest with respect to a comparison with the observer-based
implementation. The last subsection discusses issues and problems related to this
implementation technique.

Section 5.3 describes the observer based implementation approach. The approach is
based on a multi-way observer pattern that extends the basic observer pattern; support
for this extension is described. The last subsection discusses issues and problems
related to this implementation technique.

Both sections 5.2 and 5.3 illustrate the implementation using the Directed Graph to
Tree translator that has been specified in the last chapter.

Section 5.4 concludes the chapter, discussing the advantages of each implementation
approach. The section shows how the observer-based implementation meets the
second of the objectives set out in the thesis introduction (chapter 1, section 1.2).

5.2 Visitor/Builder Implementation
The first implementation approach presented is the one used within the Permabase
project. The technique implements a one step and one direction translator, using a
Visitor pattern to traverse the source model and progressively build-up an appropriate
target model.

5.2.1 Architecture
A visitor or target model generator class is developed that contains the translator
implementation. Each visit method (of the Visitor class) corresponding to a source
component constructs the appropriate target components. The built target components
form part of a target model that is a valid translation of the source components, in
accordance with the specified mapping constraints.

A ‘Builder’ interface is used to create the target model, allowing the same translator
to build different implementation versions of the target model. This de-couples the
building instructions from the actual target model being built.

Figure 49 shows the architecture of the translator. The Target Generator implements
the Source Visitor interface and traverses the source model. The visit methods of the
generator call build methods on a Target Builder to construct the translated target
model. The link between generator and builder is via an interface to Target Builders
enabling the substitution of alternative, specific, target model builders.

Translator Implementation 70

Source
Model

Target
Generator

«interface»
Source
Visitor

«interface»
Target
Builder

Specific
Builder

Target
Model

builder

Figure 49 – Visitor/Builder Translator Architecture
The Target Generator (translator) is invoked by causing the source model to accept it
as a Visitor. Specifically, the ‘accept’ method (part of the Visitable interface) is
invoked on the root of the source model, passing the Target Generator as the Visitor
parameter9.

The source model is subsequently traversed in accordance with the traversal pattern
as defined by the implementation of the visitor pattern. This causes each component
of the source model to be ‘visited’ and thus the appropriate components of the target
model are built.

5.2.2 Requirements of the Mo del Implementations
This architecture imposes three requirements on the models involved in the
translation. In fact, the translator is unidirectional and the requirements are imposed,
respectively, on the source and target models. If two translators are built, one for each
direction, then of course the requirements are imposed on both models.

These three requirements are as follows:
1. The Visitable interface must be implemented by each component of the model,

enabling the visitor to traverse the model. This involves implementing, for each
component, an “accept” method that defines any traversal steps originating
from the component and calls the visitor’s visit method for that component.

2. A model specific visitor interface must be defined, specifying the visit method
signature corresponding to each component of the model.

3. A target model builder interface must be defined, and a target model specific
builder implemented.

5.2.3 Issues
There are two important issues to consider with respect to the Visitor based
implementation technique. These are discussed in the subsections below:

9 The Visitor pattern and components (Visitable interface, accept method and Visitor interface) are discussed in Chapter 2.

Translator Implementation 71

5.2.3.1 Reporting Translation Errors
Subsection 5.2.4.2 (below) indicates a situation in which one model cannot be
translated, in accordance with the constraints, into the other; i.e. the DirectedGraph
cannot be translated into a Tree.

The translator specification does not specify how to handle such a situation.
Depending on the purpose of the translator, the condition may need to be handled in
differing ways. A simple approach would be to simply output an error message,
leaving it up to the user of the application in which the translation is involved to fix
the problem. Alternatively, an exception can be thrown and caught by some part of
the application that can either fix the problem, or give feed back to the user regarding
the nature of the translation problem.

In either of these cases, the translation could either: terminate as soon as the problem
is detected; or unwind the model traversal to a point where the translation can
continue.

5.2.3.2 The Traversal Order
This leads to the second important issue, the model traversal order. The translation is
performed as the Visitor traverses over the source model; thus, the definition of the
target model creation code must take into consideration the traversal order, and hence
the order in which it is called. Failure to do so can result in partially connected target
models that are not valid translations.

5.2.4 Example
This example describes the implementation of a Directed Graph to Tree translator and
the opposing Tree to Directed Graph translator based on the specification of these
translators defined in the previous chapter. To recap, the UML/OCL based
specification is shown in Figure 50.

DirectedGraph ↔ Tree

Vertex TNode«mapped_to»v tn

 v.edges_out «mapped_to» tn.subnodes->iterate(ts; acc:Set | acc->includes(Pair{tn, ts})

Directed
Graph

Tree

«mapped_to»

graph

tree

graph.vertices == vertices and
vertices «mapped_to» tree.all_nodes and
Let no_incoming = vertices->select(v | v.edges_in->size == 0)->asSequence in
 no_incoming->first «mapped to» tree.root and
 no_incoming->size == 1

Vertex vertices
*

Edge

TNode

e.start «mapped_to» tn1 and
e.finish «mapped_to» tn2 and
tn1.subnodes->includes(tn2)

e

tn1

«mapped_to»
TNode

tn2

Figure 50 – DirectedGraph ↔↔↔↔ Tree Translator Specification

Translator Implementation 72

A Tree can always be converted into a Directed Graph; there are no difficulties in
making such a translation, and hence this translator is presented before the Directed
Graph to Tree translator. However, Directed Graphs can be produced that do not map
to valid Trees; this translation introduces the need to handle such invalid cases within
the translation process.

Both the graph and the tree must be traversed by their visitors; the traversal order
must be defined as the translators depend on it. Trees can be traversed in a variety of
orders and graph traversal could occur in a number of different patterns.

For this implementation, the Tree is traversed using a post-order pattern, and the
graph visitor is defined to visit, in turn, each vertex followed by a visit to each edge.

«interface»
DirectedGraphVisitor

visit(DirectedGraph)
visit(Vertex)
visit (Edge)

«interface»
TreeVisitor

visit(Tree)
visit(TNode)

«interface»
DirectedGraphBuilder

graph() : DirectedGraph
buildDirectedGraph() : DirectedGraph
buildVertex() : Vertex
buildEdge(Vertex, Vertex) : Edge

«interface»
TreeBuilder

tree() : Tree
buildTree() : Tree
buildRoot() : TNode
buildTNode() : TNode

Figure 51 – Visitor and Builder Interfaces
The visitor and builder interfaces are shown in Figure 51. The visitors can be seen to
define a visit method for each component of their models and the builders have
methods enabling the models to be constructed and retrieved.

The traversal order for the DirectedGraph and Tree models is defined as shown in
Figure 52 and Figure 53 below.

: DirectedGraph e : Edge visitorv : Vertex

1.2[edges.forAll(e)]*: accept(visitor)

1: accept(visitor)

1.1[vertices.forAll(v)]*: accept(visitor)

1.3: visit(self)

1.1.1: visit(self)

1.2.1: visit(self)

Figure 52 – Traversal Order for DirectedGraph Visitor
The traversal sequence of a DirectedGraph, starting from the containing
DirectedGraph object, first visits every Vertex, then visits every Edge and finally
visits itself.
The traversal sequence for a Tree, starting with the containing Tree object, first visits
the root TNode, this visits each subnode before visiting itself, each subnode (also
TNodes) visits its subnodes followed by itself. Finally, the Tree object visits itself.
This is a post-order style of tree traversal – the subnodes of a TNode are visited
before the TNode itself. The order of visiting the subnodes is not defined.

Translator Implementation 73

: Tree root : TNode sn : TNode visitor

1: accept(visitor)

1.1: accept(visitor)

1.1.1 [subnodes->forAll(sn)]*: accept(visitor)

1.1.2: visit(self)

1.2: visit(self)

Figure 53 – Traversal Order for Tree Visitor

5.2.4.1 Tree ���� DirectedGraph
The Tree to DirectedGraph translator (or DirectedGraphGenerator) is implemented
from the specification as follows:

1. There are two components visited by the tree visitor – the Tree and the TNode.
According to the post-order visiting pattern, TNodes are visited first; hence, we
start by considering this component.

2. The specification constraints, associated with a TNode, define:
a) that a Vertex must exist for it to be mapped to, and
b) that this node and each subnode is mapped to two Vertices and an

Edge, where the second vertex is the vertex mapped to the subnode.
3. Specification constraints associated with a Tree define simply that the root

TNode must be mapped to a Vertex.
This information deduced from the specification enables the implementation of the
DirectedGraphGenerator to be as described in Table 6.

class DirectedGraphGenerator
implements TreeVisitor

{

public DirectedGraphGenerator(DirectedGraphBuilder b) {
builder = b;

}

private DirectedGraphBuilder builder;

private Map mappings = new HashMap();

void visit(Tree tree) {
// nothing

}

void visit(TNode tn) {
Vertex v1 = builder.buildVertex();
mappings.put(tn, v);
Iterator i = tn.subnodes.iterator();
while (i.hasNext()) {
TNode ts = (TNode)i.next();
Vertex v2 = mappings.get(ts);
builder.buildEdge(v1,v2);

}
}

}

Table 6 – Implementation of the Tree to DirectedGraph Translator
To create a DirectedGraphGenerator object, it must be passed a
DirectedGraphBuilder object that is used to construct the graph. Visiting a Tree
object doesn’t require any actions for modifying the mapped DirectedGraph; visiting
the TNode implements all of the translation process. A Vertex is created and recorded
as the translation of the visited TNode. Subsequently, the subnodes are iterated over;

Translator Implementation 74

the vertex translated from each subnode is retrieved (the post-order traversal should
ensure that one exists), and an edge is created from the vertex for the visited TNode
to the retrieved one.

5.2.4.2 DirectedGraph ���� Tree
The implementation of the DirectedGraph to Tree translator is slightly more complex
as it has to handle cases where the translation is invalid. Some parts of a graph cannot
be mapped to equivalent parts of the translated Tree structure. For example:

1. A vertex without any incoming edges is translated as the root of the tree, hence
multiple vertices with no incoming edges cause multiple roots. There can only
be one root in a tree (although a Forest model could have multiple roots).

2. An incoming edge of a Vertex is used to determine the translated TNode’s
parent TNode. Edges that cause a vertex to have more than one incoming edge
would cause a TNode to have multiple parents.

The traversal order for the directed graph visitor is Vertices, Edges, DirectedGraph;
hence, if we consider the constraints in this order, the following information can be
deduced:

1. Each vertex is mapped to a TNode.
2. An Edge defines the subnode/parent relationship between the two TNodes

mapped to the Vertices at the ends of the Edge. If this relationship is already
defined for the TNode mapped to the ‘finish’ vertex then the edge is invalid
with respect to this tree translation.

3. The TNode mapped to the first Vertex that has no incoming edges is defined to
be the root of the Tree. Other Vertices without incoming edges are invalid with
respect to this tree translation.

The implementation of a TreeGenerator, formed from this information is as shown in
Table 7.

class TreeGenerator
implements DirectedGraphVisitor

{
public TreeGenerator(TreeBuilder b) {

builder = b
}

private TreeBuilder builder;

private Map mappings = new HashMap();

void visit(DirectedGraph graph) {
//Find a list of root_vertices with no incoming edges.
Vertex rv = root_vertices.first();
builder.tree.root = (TNode)mappings.get(rv);
// Indicate that all other root_vertices are invalid.
...

}

void visit(Edge e) {
TNode tn = (TNode)mappings.get(e.start);
TNode ts = (TNode)mappings.get(e.finish);
if (ts.parent == null) {
ts.parent = tn;
tn.subnodes.add(ts);

} else {
// Indicate that edge is invalid.

}
}

void visit(Vertex v) {
mappings.put(v, new TNode());

}

Table 7 – Implementation of DirectedGraph to Tree Translator

Translator Implementation 75

To create a TreeGenerator object, it must be passed a TreeBuilder object for
constructing the Tree.

Visiting the DirectedGraph determines which Vertex represents the root of the Tree,
and indicates other vertices which cannot be mapped. Visiting a Vertex simply
enables the creation of a TNode.

Visiting an Edge is the most interesting part of the translation. It is assumed that the
visiting pattern has caused TNodes to be created for each vertex. The task, upon
visiting an edge, is to specify the subnode/parent relationship between the two
TNodes mapped to the start and end of the Edge. There is the possibility that the edge
should be marked invalid and there are two options for dealing with this:

1. To indicate that all edges coming into a Vertex are invalid if there is more than
one, or

2. To build the tree based on one of the edges (the first encountered) and indicate
that the others are invalid.

This implementation employs the second of these approaches.

5.3 Observer based Implementation
The second implementation approach for creating a translator is based on the
Observer pattern; or more specifically, it is based on a multi-way enhancement of the
observer pattern. This approach has been developed specifically to solve the problems
inherent in the Visitor based approach.

Specifically there are two aims of this implementation:
1. That the translation process should take minimal time to execute.
2. That the translator implementation should operate in both directions.

The following subsections describe the implementation approach and the components
that have been developed in support of it. Following this, there are subsections which
address implementation issues such as Event Storms and Concurrency.

5.3.1 Architecture
The architecture for the observer based translator implementation is effectively a
repeated application of the multi-way observer pattern (discussed below), connecting
components from one model to components from the other; this is illustrated in
Figure 54.

The translation process is divided up into “mini” translators that focus on translating
between the minimum possible number of components. In some cases, this is between
two components, one from each model. In situations that are more complex, the mini
translators control the relationship between a few components from one model and
one or more from the other.

The collection of all of these mini translators (or mapping components) forms the
translator as a whole. As components are added to one model, new mapping
components are created that relate these new model components to their counterparts
in the other model (creating them if necessary).

Translator Implementation 76

Mapping

Mapping

Mapping

Mapping

Mapping

Model 1 Model 2

Translator

Figure 54 – Architecture for an Observer Based Translator Implementation

5.3.2 Managing the Mappings
Many mappings are created and combined to form the model translator as a whole.
The management of these mappings is an essential part of the implementation.

A possible approach is to create a Mapping hierarchy, where each mapping notionally
contains other mapping, for which it is responsible. However, the problem with this
approach is determining the structure of the composition hierarchy. Copying the
composition structure of either of the two models is not appropriate as each model
may have a vastly different structure and the mappings may cross composition
relationships.

An alternative is to provide a general mapping manager for the translator as a whole.
This object contains and has responsibility for all of the mappings involved in the
translation system.

All mappings are ‘registered’ with the manager, which can be subsequently
interrogated to determine, for any model component or set of components, the
opposing components from the other model.

A generic interface for this mapping manager is shown in Figure 55.

«interface»
MappingManager

translate1(Object) : Object
translate2(Object) : Object
getMapping(Object, Object) : Mapping
createMapping(Object, Object)
removeMapping(Mapping)

Figure 55 – UML definition of a generic MappingManager
A manager has two ‘translate’ methods; these methods are passed an object from one
model and return the appropriate object from the other model, onto which the first
object is mapped. If the mapping relates multiple objects from one or other model,
they are grouped into a single tuple object.

A ‘getMapping’ method is used to access a specific mapping that exists between its
two object parameters. A ‘createMapping’ method is provided for generating the

Translator Implementation 77

required mapping objects; this method should be overloaded for specific translators,
defining parameters of the appropriate type for creating the respective mappings. The
‘createMapping’ methods are a variation of the Builder pattern and are used to create
the mapping objects that collectively form the translator.

For complex translator implementations, it may be necessary to extend the ‘translate’
methods to enable them to distinguish between objects that may be involved in
multiple mappings.

5.3.2.1 Relationships between Mappings
Within complex translator specifications, it may be possible to define relationships
between different mappings. For example, model components are often related by a
generalisation relationship; this could be reflected within the set of mapping
specifications.

Action SubNet

ConditionalAction SubNet

SubNetLoopAction

Const 1

Const 2

Const 3

Figure 56 – Example set of Mappings
Figure 56 shows an example set of specifications that could form part of a translator
specification between a UML style model of behaviour and a Petri-Net model, i.e. as
discussed at the beginning of Chapter 4.

The components ConditionalAction and LoopAction are both subtypes of Action.
Ideally, the translator specifications should be interpreted such that the constraints
(Const 1) from the Action mapping are applied to the mappings for
ConditionalAction and LoopAction along with the constraints specific to those
mappings.

Other relationships could be defined between mappings, possibly defining constraints
on the mappings themselves. For example, the application of a constraint to a
mapping for efficiency; a mapping class could be constrained rather than defining a
mapping between multiple objects. An example of this can be seen in the
DirectedGraph↔Tree translator, as explained below.

The mapping specification between the graph and tree requires the inclusion of every
Vertex of the graph so that one can be picked for mapping to the root of the tree. A
possible alternative would be to relate the DirectedGraph↔Tree mapping and to each
Vertex↔TNode mapping and constrain this relationship to define the relationship
between one of the Vertices and the root TNode of the Tree.
These relationships between mappings are feasible from an implementation
perspective, but the specification technique does not currently include a mechanism
for specifying them. For this reason they are not currently used as part of the
implementation technique, as the implementation is intended to be derivable directly

Translator Implementation 78

from the specification. Ideally, the specification technique should be extended to
enable these specifications.

5.3.3 Requirements of the Mo del implementations
A translator specification is declarative and the mappings state whether one model is
a valid mapping of the other. From an implementation perspective, it is not sufficient
to simply know whether two models are validly mapped, rather it is necessary for
changes to one model to be reflected in the other, so that they stay validly mapped.

To achieve this an event notification variation of the “Observer” programming pattern
([Gamma_etal_94], described in Chapter 2) is used. Each model component fires
events every time some aspect of it is altered – such as adding or removing
components to containers or by changing the value of attributes.

Each mapping is implemented as an observer of events from the groups of
components it relates. Appropriate alterations are made upon receipt of an event so
that the mapping constraints remain valid.

To support this implementation approach, three requirements must be met by the
models:

1. The model components must support the event notification version of the
Observer pattern.

2. Events must be fired that indicate changes to the models (including the type of
event).

3. It must be possible to determine the source of an event.

5.3.4 Building Observable Models
The implementation of the translator components will be simpler if the models they
translate implement the Observer pattern in a standard way. It is not necessary that
they do; the two models could implement the pattern in completely different ways!
However, for the purpose of this discussion a standard is desirable.

The majority of the standardisation is achievable by using a single library of
supporting components (i.e. those described in Chapter 2), the differences however
can occur in how changes are reported. Although the library defines the
ObservableEvent class, the event description is an arbitrary String and there is
nothing to enforce how or when the events are fired.

The following subsections discuss a standard set of event types that can be fired by an
observable model. It also describes a standard way to implement models that fire
these events and additionally describes some supporting components that aid the
construction of observable models adhering to that standard.

5.3.5 Events
Object-oriented models are built out of interconnected objects. The information
described by such a model is defined by the attribute values of the objects and the
particular connections between them.

Each model component must fire events that indicate the changes to the structure of
the model and changes to the attribute values of the model components. The possible

Translator Implementation 79

events are characterised into three types, based on the ways in which an object-
oriented model is constructed.

The components of an object-oriented model (i.e. objects) are connected in two
possible ways:

1. Attributes - the attributes of an object can be simple data values or links to other
object. The links can be implemented either by value (containment) or by
reference.

2. Collections – an object attribute can be defined as a collection, in which case
the values of the collection can be either other objects or references to other
objects.

Given these two mechanisms for structuring a model, three types of change can be
made to it and consequently three types of event can be fired. These are:

1. Addition of an object to a collection;
2. Removing an object from a collection;
3. Changing the value of an objects attribute.

Given that these three types of event collectively describe the possible changes that
can occur to a model, to aid the identification of an event, three additional event
classes are sub-classed from the basic ObservableEvent. The definition of these event
classes is shown in Figure 57.

ObservableEvent
name : String

ChangeEvent

new_value : Object
old_value : Object

RemoveEvent

old_value : Object

AddEvent

new_value : Object

«interface»
Observable

source

Figure 57 – Observable Events
The Add and Remove events carry a reference to the object added to or removed from
a collection that changed. The ChangeEvent indicates both the old and new values of
an attribute that has been changed. The name field of the ObservableEvent is used to
define which, of the possibly many, attributes has changed; and the source link
(attribute) defines the object (or collection) that initially fired the event.

5.3.5.1 Observable Components
When constructing an observable model component (i.e. its class specification), the
implementation of behaviour for changing an attribute value or altering the content of
a collection should be terminated with an action that fires an event indicating details
of the change. If the component has methods that perform compound (multiple)
changes to its attributes, then either multiple events must be fired indicating details of
the change or a compound event must be fired that can be interpreted to give all the
details of the changes.

It is customary to provide ‘accessor’ and ‘mutator’ methods for accessing attributes of
objects; to meet the requirement of being observable the mutator methods should fire
a ChangEvent after setting the attribute value.

Making collection attributes observable is slightly more complex. If accessor methods
make the collection available, the collection itself must fire events to indicate the

Translator Implementation 80

changes. Alternatively, if the collection can only be manipulated by methods on the
parent object (i.e. add and remove methods), these methods must indicate the
changes.

To aid the construction of observable models, a number of component classes have
been developed, which support the requirements of observable objects. These are
wrapper classes around the basic data and collection types provided by the Java
language and are illustrated in Figure 58.

ObservableInteger

value : int

ObservableDouble

value : double

ObservableBoolean

value : boolean

ObservableCollection

Collection List

ObservableList ObservableSet

Set

ObservableMap

Map

ObservableString

value : boolean

Figure 58 – Observable data and collection types
The wrappers support the generation of events that indicate changes to the
components. The Integer, Double and Boolean classes fire ‘Change’ events when
their values are changed. The Collection types fire ‘Add’ and ‘Remove’ events when
components are added or removed from the collections.

Other model specific components must manage the firing of events explicitly
according to the technique outlined at the beginning of this subsection.

5.3.6 Meeting the Requiremen ts imposed on the Models
The basic requirements of an observable model (as set out in subsection 5.3.2) are
supported as follows:

1. The Observable functionality is supported by all model components (if the
proposed standard is followed and the library used). Bespoke objects must fire
change events when their attribute values are set (or changed).

2. Changes to a model are indicated by the type of the event fired and the new/old
values carried by the event. Three possible events are defined:

a) AddEvents – when components are added to a collection
b) RemoveEvents – when components are removed from a collection
c) ChangeEvents – whenever the attributes of a component are changed.

3. Each of the above three event classes records the source object that fired the
event and a name indicating which of its attributes has changed.

5.3.7 Multi-way observer patt ern
Each mapping (or mini translator) is implemented as a separate object that listens for
events from the model components it is relating. Each event signifies a change to the
model component that fired it and the mapping must cause appropriate changes to the
other components in order to cause the specification constraints to remain valid.

To implement a mapping object a “multi-way” extension to the standard observer
pattern is used. Rather than the Observer simply listening to one Observable object, it
listens to two (or more) different and distinguishable objects. Events from one object

Translator Implementation 81

are interpreted by the Observer and cause changes to another. This is illustrated in
Figure 59.

Observable1

Mapping

a1: event created

a2: event observed

a3: action

Observable2

b1: event created

b2: event observed

b3: action

«interface»
Observer

observe(ObservableEvent)

Figure 59 – Behaviour and Structure of a Mapping Object
Each mapping is at its core, an observer of two sources of events. Depending on the
source and nature of the event, a different set of actions must be executed in order
that the constraint remains valid.

A Mapping object is implemented as an Observer, observing events from the various
model components involved in its mapping. Figure 60 illustrates the architecture of a
mapping object taken from the DirectedGraph↔Tree example.

Although a mapping object may observe more than two objects, it is thought of as
having two sides – one for the components from each model. The multiple
components from each side can be wrapped up in tuple-groups to keep the two-sided
notion.

Mapping

Edge↔(TNode,TNode)
observe_tn1(ObservableEvent)
observe_tn2(ObservableEvent)
observe_edge(ObservableEvent)
observe(ObservableEvent)Edge

TNode

TNode

edge

tn2

tn1

Model 1
Components

Model 2
Components

Figure 60 – Edge↔↔↔↔(TNode,TNode) Mapping Component

The Edge↔(TNode,TNode) mapping implements the Observer interface. It relates an
Edge component from a DirectedGraph to two TNode components from a Tree; the
DirectedGraph is denoted as Model 1 and the Tree as Model 2. This mapping
implements the “observe” method by splitting it up into three sub methods, one for
observing events from each of the pair of components of Model 2 and one for
observing the events from the edge component of Model 1.

Translator Implementation 82

5.3.8 Implementation of the Mappings
The mappings between model components are specified using OCL constraints. The
implementation however, attempts to keep these constraints valid by reacting to
events caused by changes to either of the mapped components.

The implementation of the mappings is hence, by definition, specific to the mapped
components. Even so, some general mechanisms can be defined and some generic
support be provided. This section illustrates some example mapping implementations
and describes generalised support for mapping class implementations, and
management of the mappings.

Each mapping specification relates one or more components from one model to one
or more components from the other. The constraints defined for the mapping specify
the conditions under which the mapping is considered valid. Consequently, the
implementation of the mapping must consider all events (changes to the model
components) that may invalidate the mapping.

A starting assumption is made that the mapping is valid when it is first created. Thus,
all subsequent, relevant, events may invalidate the mapping.

Events are generated for changes to each attribute of each of the model components
involved in the mapping, however, some of these may be irrelevant to the mapping.
The first step is to determine which events are of interest, by determining those that
may invalidate the constraints.

The relevant events are deducible by analysing the content of the constraints. Any
object attribute that forms part of the constraint, if changed, may invalidate the
constraint by virtue of its value being changed.

It is at this point that the advantages of a standard event generation scheme are
reaped. It is known that collection based attributes generate Add and Remove events,
that single object attributes generate Change events, and the event name field will
contain the name of the attribute altered.

So, the events to be monitored are those that are generated for each attribute involved
in the constraints for each object involved in the mapping. For example, Figure 61
shows a hypothetical mapping specification and the attributes of the classes involved
in it. (The grey elements in the figure are parts of each model that are relevant but not
directly part of the mapping.)

A
x : Integer

BC cs
*

W

Y Zzs

x X

a.x = 3 and
a «mapped_to» w.x and
b.cs «mapped_to» y.zs and

a

b

w

y

a

c

*

Figure 61 – Hypothetical mapping specification
Classes A,B,W and Y are involved in the mapping. A, W and Y have single object
attributes and B has a collection attribute. The constraint involves the following
attributes:

Translator Implementation 83

• a.x;
• w.x;
• b.cs; and
• y.zs

Thus the events that must be monitored are those which relate to these attributes.
Table 8 shows the events that are generated for each object, and indicates which are
relevant to the constraint.

Object Attribute Events generated Relevant to constraint

a x Change yes

a c Change no

b cs Add,
Remove

yes
yes

w x Change yes

y zs Change yes

c a Not Observed no

Table 8 – Events and their relevance to the constraint
Attributes ‘a.x’ and ‘w.x’ are involved in the constraint and create Change events,
therefore they must be monitored. Attributes ‘a.c’ is not involved in the constraint;
hence, it’s events can be ignored. Attributes ‘b.cs’ and ‘y.zs’ are collection attributes
and therefore generate Add and Remove events, both of which must be monitored.
Finally, attribute ‘c.a’ is not involved in the constraint, nor is it involved in the
mapping so its events are not observed by this mapping object and cannot be
monitored. If it were involved in the constraint, the mapping specification would be
‘ill-formed’ (see previous chapter) as its events cannot be monitored.

The implemented mapping object is set-up as an observer of each of the objects
involved in the mapping. The appropriate ‘observe’ methods of the mapping
determine the source of a particular event and can further deduce the attribute that
caused the event, as this information is passed as part of the Event description. Thus,
the monitoring of each of the possible events, from each relevant attribute, of each
object, can be implemented as a separate sub-‘observe’ method. Table 9 illustrates a
template for the implementation code based on this analysis.

class AB_WY
implements IObserver

{
...

public void observe_a_x(ChangeEvent ev) {...}

public void observe_b_cs(AddEvent ev) {...}

public void observe_b_cs(RemoveEvent ev) {...}

public void observe_w_x(ChangeEvent ev) {...}

public void observe_y_zs(AddEvent ev) {...}

public void observe_y_zs(RemoveEvent ev) {...}

//Observer Methods

public void observeA(ObservableEvent e) {
if (e.name().equals("x")) observe_a_x((ChangeEvent)e);

}

public void observeB(ObservableEvent e) {

Translator Implementation 84

if (e.name().equals("cs")) {
if (e instanceof AddEvent) observe_b_cs((AddEvent)e);
if (e instanceof RemoveEvent) observe_b_cs((RemoveEvent)e);

}
}

public void observeW(ObservableEvent e) {
if (e.name().equals("x")) observe_w_x((ChangeEvent)e);

}

public void observeY(ObservableEvent e) {
if (e.name().equals("zs")) {

if (e instanceof AddEvent) observe_y_zs((AddEvent)e);
if (e instanceof RemoveEvent) observe_y_zs((RemoveEvent)e);

}
}

}

Table 9 – Implementation template for Figure 61 mapping specification
The basic template for the implementation enables the effect on the constraint due to
changes to any one particular attribute to be considered in isolation. The
implementation of the behaviour for monitoring the attribute changes and keeping the
constraints valid is dependent on the nature of the constraint and cannot be
generalised.

5.3.9 Issues to Consider
As with the Visitor-based implementation approach, there are a number of issues and
problems that must be considered with respect to this Observer-based implementation
technique. The following subsections discuss these issues.

5.3.9.1 Invalid Mappings / Reporting Translation Errors
Reporting the errors within the observer-based technique is complex. The mapping
objects respond to changes in one or other of the mapped components, some of these
changes may invalidate the constraints and some may re-validate them again. Simply
reporting an error message at the time of inconsistency is not sufficient as the
message may become out of date over time (i.e. because of an attribute change that
re-validates the constraints).

A solution is suggested, whereby the mapped components are defined to support an
interface that enables them to be validated or invalidated. Whenever an attribute
change is detected that causes the constraints in a mapping to be invalid, the object to
which the attribute belongs is set to “invalid”; this indicates the particular object that
is causing the constraint to be invalidated. When, or if, the attribute changes again,
the object can be re-set to valid if the constraint is subsequently validated by the
change.

The particular mechanism used to report the validity or invalidity of the model
objects involved in the translation is left to the specifics of the application involving
the translator. For example, if a visual representation of the objects exist, valid and
invalid objects could be distinguished by a difference in colour.

This approach can be extended by passing details of the constraint that has been
invalidated along with the change of state of an object’s validity. This information
can then be used (e.g. by a user of the application) to determine a future change that
revalidates the object and constraint.

Translator Implementation 85

5.3.9.2 Transitional States
An issue to consider with respect to a translation system is how to handle transitional
states in a model. It is often the situation that during the construction process of a
particular model it will pass through a number of ‘transitional states’ that are never
intended to be complete or consistent models. Such models may possibly not have a
valid mapping into a translated target model.

When using the single step translation approach of the visitor-based implementation
this is not a significant issue. If an attempt is made to translate a model that is in a
transitional state, the translator will report errors – this is an expected situation, a
solution to which is simply to not attempt a translation on such a model.

With respect to the observer-based implementation approach, the issue is less
obvious. One cannot simply not translate a model – the main objective of the
implementation approach is that the translations happen continuously as a result of
each change to the model. Consequently, the attempt to translate a model (or model
component) will always occur even if the model should be considered to be in a
transitional state.

No additional implementation is necessary to handle these cases; the error reporting
mechanism will simply cause the relevant objects to be invalidated until the model
moves out of the transitional state, when the objects will be re-set to valid.

To avoid this movement of the objects through an invalid state during a sequence of
model changes that go though transitional state, it is necessary to ‘wrap up’ the
changes. The sequence of steps must be wrapped up in such a manner that the
changes can be reported (via the observer/observable mechanism) as a single change;
thus, the mapping objects will not observe the intermediate ‘transitional’ states.

This is similar to the idea of a ‘transaction’ found in many database implementations;
the transaction is formed from a number of small changes and then committed as a
whole. Such changes to the model must be indicated by firing multiple events or
special types of compound event.

5.3.9.3 Event Storms / Avoiding Live-Lock
This problem is a side effect of providing the facility that updates the translation
based on changes to either model, i.e. enabling the translation to be bi-directional.

:Component 1 :Mapping :Component 2

Change Made

Change Made

Change Made

Update

Update

Figure 62 – Mapping Update Live-Lock
A mapping between two model components observes changes to each of the
components and updates them according to the changes. A naïve implementation will
result in a live-lock loop that repeatedly changes one component, observes the

Translator Implementation 86

change, updates the other component, observes this change… etc. The problem is
illustrated in Figure 62.

One solution to this problem would be to provide two interfaces to the model
components: one that changes the component and fires an observable event; and
another that changes the component without firing the event. The latter of these could
be used by the Mapping object to perform its updates and thus, the loop will not
occur.

However, there are two drawbacks to this approach. Firstly, it requires that the model
components have two different interfaces for essentially performing the same
operations, this means a more complex implementation of the model components is
needed, which is not desirable.

The other problem with this approach is that model components cannot take part in a
chain of mappings. Many applications may have an architecture that causes a model
to be involved in more than one translation, changes to one of the models are required
to be fed through all of the translators, updating all of the models involved. If a
mapping object updates a model component in such a way that no event is fired to
indicate the change, then other mapping objects cannot observe the changes caused
by the original update.

The solution to both of these issues is to stop event loops from occurring by altering
the behaviour within the mapping objects. An update must be made to the target
component, this component must also fire an observable event to indicate the change
(in order that translators can be chained together). This event is necessarily picked up
by the mapping object that makes the update, otherwise the bi-directional
functionality of the translator is not implemented.

Thus, the event loop must be terminated in the mapping object. There is not any
means to detect whether (from the perspective of a mapping object) an incoming
event is as the result of an update made by this object or as the result of a change
made to the observed component from another source. However, in many situations a
test can be made to determine whether an update is necessary.

Take for example a mapping between two String attributes. A mapping object is
defined to ensure that each string attribute contains the same string value. A change to
the value of one of the string attributes required that the other be updated by setting it
to the same value. The event loop can be halted in this situation by only making the
update, if the target string attribute does not already contain a value equal to the
source string attribute. This example is illustrated by the code in Table 10.

observe_object1_name(ChangeEvent ce) {
String new_txt = (String)ce.new_value();
if (! object2.name().equals(new_txt)) {

object2.name().setTo(new_txt);
}

}

Table 10 – Event Loop Safe Implementation of a String Attribute’s Update Code
Another example is that of a mapping between two collections of objects. This type
of mapping frequently occurs in various different forms. A generalisation of the
mapping specification is that if an object exists in one of the collections, an
equivalent object must exist in the other collection and these two objects must be
mapped. Essentially this is an implementation of the version of the «mapped_to»
operator that takes two Collections as its parameters (see Chapter 4).

Translator Implementation 87

In this situation, the newly added object cannot be compared with an object from the
target collection; the mapped object of the newly added one may not exist yet!
However, we can use this fact to stop the event loop. If a mapped object of the newly
added one does exist, then this mapping is valid and no update is required.
Alternatively, if there is no mapped object, then a new one must be created, mapped
to the newly added object, and added to the target collection.

Note: It is important that the mapping between the newly created object and its
counterpart be created before the counterpart object is added to the target collection.
If not, the event loop cannot be stopped by testing for the existence of that mapping.

A different option is to disable the observation mechanism of a translator whilst it is
making the update. This could be achieved by stopping it from observing the changed
component completely, or by stopping the observation of certain events from the
observed components.

For instance, a Mapping between two object attributes can be implemented as shown
in Table 11.

boolean _observe_object1_att = true;
observe_object1_att(IObservableEvent e) {

if (_observe_object1_att) {
...
_observe_object2_att = false;
update_object2_att();
_observe_object2_att = true;

}
}

boolean _observe_object2_att = true;
observe_object2_att(IObservableEvent e) {

if (_observe_object2_att) {
...
_observe_object1_att = false;
update_object1_att();
_observe_object1_att = true;

}
}

Table 11 – Alternative Event Loop Safe Implementation of example Update
Code

The event loops are stopped by disabling the observe actions of this mapping object
for the attribute(s) that are about to be altered. A simple boolean flag is used as the
enable/disable mechanism.

This option is the more straightforward of the two, but introduces the need for extra
state variables. It is also necessary to remember to set and reset the flags in the
appropriate places.

More complex event loops involving multiple mapping objects can be conceptualised
that are not stopped by either of these mechanisms. For example, a looped chain of
mappings as shown in Figure 63.

There is currently no mechanism for stopping the event loop caused by this
combination of mappings; however, a well-written specification should not contain
such a definition. Tools supporting the evaluation of constraints can help detect these.

Translator Implementation 88

A
val : int

C
val : int

B
val : inta.val = b.val+1

b.val = c.val+1c.val = a.val+1

Figure 63 – A Looped Chain of Mappings

5.3.9.4 Concurrency
If multiple threads are used, care must be taken to ensure that the information in an
event is still valid when it is observed. In a multi-threaded environment, it would be
possible for multiple changes to occur to a model component before the actions in a
mapping object, caused by observing those changes, are executed.

The solution to this is to pass, as part of the event notification, all the information
required for performing the updates. In some cases, this may require a snapshot of a
large portion of the event source’s model.

5.3.9.5 Intra-Model Validity
Many models have constraints defined over them to ensure they are internally well
formed. For example, the definition of a class inheritance model would define that no
circular paths can exist in the inheritance hierarchy.

It should be noted that it is not the purpose of the mapping objects to enforce such
intra-model constraints. It is assumed that some other agent controls issues related to
those constraints. The mapping object could however respond to some attribute of a
model component that indicates its internal constraints have been invalidated.

5.3.10 DirectedGraph↔↔↔↔Tree Example
This subsection describes the (manually generated) implementation of the first of the
three mappings defined for the DirectedGraph↔Tree translator example specified in
the previous chapter. Each of the implementations follows the template style
discussed above.

Directed
Graph

Tree

«mapped_to»

graph

tree

graph.vertices == vertices and
vertices «mapped_to» tree.all_nodes and
Let no_incoming = vertices->select(v | v.edges_in->size == 0)->asSequence in
 no_incoming->first «mapped to» tree.root and
 no_incoming->size == 1

Vertex vertices
*

Figure 64 – DirectedGraph↔↔↔↔Tree mapping specification

Translator Implementation 89

The first mapping is the mapping between the DirectedGraph and Tree classes
themselves. Figure 64 shows the specification of this mapping.

The constraints on the mapping (Figure 64) between a DirectedGraph and a Tree
define that each Vertex in the graph must be mapped to a TNode in the tree. They
also determine the mapping between the root of the Tree and a Vertex in the graph.
Specifically, the constraint states that for the mapping to be valid:

• Every vertex in the graph must be mapped to every TNode;
• there must be a single Vertex in the graph that has no incoming edges; and
• this Vertex is mapped to the root of the Tree.

The constraint analysis is shown in Table 12. It shows that each component of the
mapping is relevant to the constraint and must therefore be observed.

Object Attribute Events generated Relevant to constraint

graph vertices Add, Remove yes

graph edges Add, Remove yes

tree root Change yes

vertices (set) edges_in Add, Remove yes

Table 12 – Analysis of Figure 64 constraints
This analysis gives the basic template for the mapping implementation (shown in
Table 13). An ‘observe’ method is provided for each event produced by each attribute
of each object that is relevant to the constraint.

class DirectedGraph_Tree
implements IObserver

{
...

public void observe_graph_vertices(AddEvent ev) { ... }

public void observe_graph_vertices(RemoveEvent ev) { ... }

public void observe_graph_edges(AddEvent ev) { ... }

public void observe_graph_edges(RemoveEvent ev) { ... }

public void observe_tree_root(ChangeEvent ev) { ... }

public void observeAll_vertices_edges_in(AddEvent ce) { ... }

public void observeAll_vertices_edges_in(RemoveEvent ce) { ... }

...

}

Table 13 – Implementation template for DirectedGraph↔↔↔↔Tree mapping class
The specific implementation of the observe methods for each attribute event is
separately considered in the following subsections. Each part of the sub-expression
must be examined to determine if the observed event has an effect on the validity of
the constraint as a whole.

5.3.10.1 Adding a vertex to the g raph
This event is caused whenever a new vertex is added to the directed graph as a whole.
The constraint contains a number of sub-expressions, joined conjuctively. The
implementation of each of these sub-expressions can be separately considered.

Translator Implementation 90

The first part (“graph.vertices == vertices”) states that the set of vertices monitored by
the mapping is the same set as the set of vertices contained in the graph. This can be
implemented by defining the method that returns the set of vertices involved in the
mapping to return the set of vertices contained in the graph. This is shown below:

public Set vertices() { return graph().vertices(); }

The next part (“vertices «mapped_to» tree.all_nodes”) states that every vertex is
mapped to a TNode . So, as the initial state must be that there are no vertices or they
are all correctly mapped, every time a new vertex is added, a TNode must be created
and mapped to it. The implementation of this is shown below:

IVertex v = (IVertex)event.new_value();
ITNode tn = new TNode();
tree().all_nodes().add(tn);
manager().createMapping(v,tn);

However, it is also essential to consider the possibility of a vertex being added to the
graph that is already mapped to a TNode, i.e. a different event, from the Tree model
may create the TNode and mapping. Consequently, a check must be added to protect
this code segment from causing multiple mappings; as shown below:

if (manager().translate1(v) == null)
IVertex v = (IVertex)event.new_value();
ITNode tn = new TNode();
tree().all_nodes().add(tn);
manager().createMapping(v,tn);

}

The ‘if’ statement checks for an existing mapping relating the new vertex, a new one
is only created if necessary.

The third sub-expression is a Let statement that defines the set of vertices that don’t
have incoming edges. The constraint uses a select function which (by the definition of
OCL) can also be written as an iterate statement, i.e.:

vertices->iterate(v; acc:Set = Set {} |
 if (v.edges_in->size == 0) then
 acc->including(v)
 else
 acc
 endif)

Using this interpretation, the Let can be implemented as the method shown below:
public List no_incoming() {

List acc = new Vector();
Iterator i = vertices().iterator();
while (i.hasNext()) {

IVertex v = (IVertex)v.next();
if (v.edges_in().size() == 0) {

acc.add(v);
}

}
return acc;

}

The next sub-expression (“no_incoming->first «mapped_to» tree.root”) determines
which vertex should be mapped to the tree root. The vertex to map must be one with
no incoming edges, hence if there is only one vertex in the whole graph that meets
this requirement (the one just added) this must be the root of the tree; implemented as
follows:

List no_incoming = no_incoming();
if (no_incoming.size() > 0) {

IVertex v = (IVertex) no_incoming.get(0);
ITNode tn = (ITNode)manager().translate1(v);

Translator Implementation 91

tree().setRoot(tn);
}

The final part of the constraint (“no_incoming->size == 1”) states that there must be
only one vertex with no incoming edges; if there is more than one, then the constraint
is invalid. There is nothing written in the mapping specification to indicate what
should occur if the constraint is invalid (see discussion subsection 5.3.9.1).

Given that the constraint has been invalidated due to inconsistencies that have arisen
between the two models, the best solution is to indicate which components of each
model are the causes of the inconsistency. This is implemented by indicating that the
component or components are invalid with respect to the mapping.

With respect to the DirectedGraph↔Tree mapping, there are two options to consider;
if there is more than one vertex that is a candidate for being mapped to the root,
either:

1. indicate that all of them are invalid; or
2. pick one of them and map this to the root, then indicate that all others are

invalid.
The second option is chosen for the example implementation. As each vertex is added
to the graph, it can be checked for incoming edges. If it has none and is not the vertex
mapped to the tree root, then it must be marked as invalid; this translates to the
following code segment:

if ((no_incoming.contains(v)) && v != no_incoming.get(0)) {
v.setInvalid();

}

Table 14 shows the combination of the code segments that implement the actions to
be carried out upon observation of a vertex being added to the graph.

public void observe_graph_vertices(AddEvent ev) {
IVertex v = (IVertex)ev.new_value();

// vertices <<mapped_to>> tree.all_nodes
if (manager().translate1(v) == null) {

ITNode tn = new TNode();
((Translator)manager()).createMapping(v,tn);

}

// no_incoming->first <<mapped_to>> tree.root
List no_incoming = no_incoming();
if (no_incoming.size() > 0) {

IVertex v1 = (IVertex) no_incoming.get(0);
((IValidateable)v1).setValid();
ITNode tn = (ITNode)manager().translate1(v1);
tree().setRoot(tn);

}

// no_incoming->size == 1
if ((no_incoming.contains(v)) && (v != no_incoming.get(0)))

((IValidateable)v).setInvalid();
}

}

Table 14 – Implementation of actions resulting from adding a vertex
Note that it is necessary to validate a vertex when it is mapped to the root node due to
vertices being invalidated when applicable. It is also necessary to consider the
validation and invalidation of vertices when the root is changed as a consequence of
events from the Tree model (see later discussion).

Translator Implementation 92

5.3.10.2 Removing a vertex from the graph
To implement the actions for responding to observation of a vertex being removed
from the graph, a similar process is adopted. Each of the sub-expressions of the
constraint is separately considered.

Firstly, to ensure that each vertex is mapped to a TNode. If a vertex is removed, then
the appropriate TNode must also be removed along with the mapping that relates
them.

It should be noted that the models themselves are assumed to take responsibility for
ensuring that they are internally consistent. I.e. removal of a vertex from a directed
graph may require removal of edges in order to avoid dangling ends; it is assumed
that this task would be carried out by some other agent. It is not the responsibility of
the translator to ensure the validity of the models within themselves.

The second sub-expression requires that the first vertex found without any incoming
edges be mapped to the tree root. The implication to this part of the constraint with
respect to removing a vertex is if the vertex mapped to the root is removed. If this
occurs, a new vertex must be chosen (from those with no incoming edges) to be the
root vertex.

Finally, the third part regarding only one vertex without any incoming edges requires
that any vertices without incoming edges, unless mapped to the root, must be marked
as invalid.

This results in the implementation code shown in Table 15 below.
public void observe_graph_vertices(RemoveEvent ev) {

IVertex v = (IVertex)ev.old_value();

// vertices <<mapped_to>> tree.all_nodes
ITNode tn = (ITNode)manager().translate1(v);
manager().removeMapping(v,tn);
if (tn.parent() != null) {
tn.parent().subnodes().remove(tn);

}
if (tn == tree().root()) {

// no_incoming->first <<mapped_to>> t.root
Iterator i = no_incoming().iterator();
if (i.hasNext()) {

IVertex vs = (IVertex)i.next();
ITNode ts = (ITNode)manger().translate1(vs);
tree().setRoot(ts);

}

// no_incoming->size == 1
while(i.hasNext()) {

IVertex vs = (IVertex)i.next();
((IValidateable)vs).setInvalid();

}
}

}

Table 15 – Implementation of actions resulting from removing a vertex

5.3.10.3 Adding an edge to the gr aph
This event occurs to indicate that a new edge has been added to the directed graph.
The first part of the constraint is unaffected and the Let expression is always handled
by the no_incoming method.

The part of the constraint that refers to the mapping between Vertices and TNodes is
unaffected by adding a new edge.

Translator Implementation 93

The part that determines which vertex should be mapped to the root of the tree is
dependent on the number of edges that finish at a Vertex. Adding an edge may cause
the Vertex currently mapped to the root to be no longer a valid candidate for that
position.

If the actions to implement this re-selection of the root are implemented here, they
will be carried out any time that a new edge is added to the graph. However, it may be
the case that an existing edge has its start and finish vertices redefined. In this case, a
new root may still need to be re-selected but as a new edge isn’t added, the actions
will not be executed under this observe method. Instead, the actions are defined under
observation of an incoming edge being added to one of the vertices in the graph (see
below). The actions in that observe method will still be executed when new edges are
added, as they will be connected to a vertex. The consequence of this is that no
actions are executed in relation to this part of the constraint.

Finally, the last part of the constraint relates to the number of candidates for the root
vertex, this is unaffected by the addition of an edge. The validity of the joined
vertices is handled by the Vertex↔TNode mapping and the validity of the ‘root’ of
the joined sub-tree/graph is altered by the actions detecting the addition of an
incoming edge to a vertex.

Thus, no actions need to be carried out, giving the implementation shown in Table 16.
public void observe_graph_edges(AddEvent ev) {

// vertices <<mapped_to>> tree.all_nodes
// nothing

// no_incoming->first <<mapped_to>> t.root
// nothing

// no_incoming->size == 1
// nothing

}

Table 16 – Implementation of actions resulting from adding an edge

5.3.10.4 Removing an edge from the graph
The removal of an edge from the graph requires nothing to be carried out by a
DirectedGraph↔Tree mapping object.

As with the analysis regarding adding an edge, the some parts of the constraint are
unaffected by the edges in the graph.

The part of the constraint related to mapping the tree root requires no action to be
taken if an edge is removed. The only vertex of interest is the one mapped to the root
of the tree. Removing an outgoing edge from this vertex doesn’t change its status as a
valid root; and if the vertex is mapped to the root, it shouldn’t have any incoming
edges anyway.

This implementation is shown in Table 17.
public void observe_graph_edges(RemoveEvent ev) {

// vertices <<mapped_to>> tree.all_nodes
// nothing

// no_incoming->first <<mapped_to>> t.root
// nothing

// no_incoming->size == 1
//nothing

}

Table 17 – Implementation of actions resulting from removing an edge

Translator Implementation 94

5.3.10.5 Adding an incoming Edge to a Vertex
The only parts of the constraint that are affected by adding edges to any of the
vertices in the graph (involved in the mapping) are the Let expression and the
selection of the Vertex mapped to the tree root.

The implementation of the Let expression is unaffected as it is calculated each time
that it is used, i.e. each time the method is called.

If an incoming edge is added to the vertex that is mapped to the root of the tree, then a
new tree root must be selected. The new vertex to be mapped to the root could be
selected from the set of vertices formed from ‘no_incoming’, or it could be defined as
the vertex that forms a valid root from the sub-tree/graph connected by the addition of
the new edge.

The second option is chosen to form the implementation shown here. A possible
problem to watch out for is the addition of a sub-graph with no valid root vertex.
However, this is not an issue in this case due to the constraints on edges and pairs of
TNodes that stop loops from forming. Any edge added that could cause a loop, would
re-define the parent/subnode relationships of the mapped TNodes rather than causing
a loop. Edges that attempt to define multiple conflicting parent/subnode relationships
in the tree will be marked as invalid.

The implementation is shown in Table 14 below:
public void observeAll_vertices_edges_in(AddEvent ae) {

IVertex vertex = (IVertex)ae.source();

// vertices <<mapped_to>> tree.all_nodes
// nothing

// no_incoming->first <<mapped_to>> t.root
ITNode tn = (ITNode)manager().translate1(vertex);
if (tn == tree().root()) {

IVertex v = vertex;
Set incoming = v.edges_in();
while(!incoming.isEmpty()) {

IEdge e2 = (IEdge)incoming.iterator().next();
v = e2.start();
incoming = v.edges_in();

}
ITNode new_root = (ITNode)manager().translate1(v);
tree().setRoot(new_root);
((IValidateable)v).setValid();

}

// no_incoming->size == 1
//nothing

}

Table 18 – Actions to execute when an Edge is Added to a Vertex

5.3.10.6 Removing an incoming Edge from a Vertex
If an incoming edge is removed from a vertex, the only part of the constraint affected
is that relating to the number vertices with no incoming edges. The vertex mapped to
the tree root will have no incoming edges, and hence can not have one removed, thus
any other vertex that has it’s last incoming edge removed must be defined as invalid –
there should be only one vertex with no incoming edges.

The implementation of this is shown in Table 15 below:
public void observeAll_vertices_edges_in(RemoveEvent re) {

IVertex vertex = (IVertex)re.source();

// vertices <<mapped_to>> tree.all_nodes

Translator Implementation 95

// nothing

// no_incoming->first <<mapped_to>> t.root
// nothing

// no_incoming->size == 1
if (vertex.edges_in().size() == 0) {

((IValidateable)vertex).setInvalid();
}

}

Table 19 – Actions to execute when an Edge is Removed from a Vertex

5.3.10.7 Changing the root of the tree
The tree root is the only tree model attribute that is relevant to this constraint.
Changing the TNode that represents the root of the tree affects the mapping constraint
as follows:

Part of the constraint, defines that all TNodes must be mapped to a vertex in the
graph. This implies an that the TNode mapped to the root must be mapped to a Vertex
in the graph, if one does not exist it must be created.

Part of the constraint defines that the root must be mapped to a vertex with no
incoming edges. Thus, an assumption would be that the resulting action must mark as
invalid any edges that are incoming to the vertex mapped to the root. However, if we
assume that an invalid tree cannot be defined, then a TNode that is mapped to a
vertex with incoming edges must be a child of another TNode and therefore cannot be
set to the root of the tree.

The final part of the constraint implies that the vertex that used to be mapped to the
root must be marked as invalid if it has no incoming edges.

This results in the implementation shown in Table 20.
public void observe_tree_root(ChangeEvent ev) {

ITNode tn = (ITNode)ev.new_value();
IVertex v = (IVertex)manager().translate2(tn);
ITNode tn_old = (ITNode)ev.old_value();
IVertex v_old = (IVertex)manager().translate2(tn_old);

// vertices <<mapped_to>> tree.all_nodes
if (v == null) {

v = new Vertex();
((Translator)manager()).createMapping(v,tn);
graph().vertices().add(v);

}

// no_incoming->first <<mapped_to>> t.root
//nothing

// no_incoming->size == 1
if (v_old != null) {

if (v_old.edges_in().size()==0) {
if (v_old != v) {
((IValidateable)v_old).setInvalid();

}
}

}
}

Table 20 – Implementation of actions resulting from changing the root

5.4 Summary
This chapter has discussed two architectures and programming techniques for
implementing model translators from the UML/OCL translator specifications
described in the previous chapter.

Translator Implementation 96

Firstly, a single step, Visitor based, implementation approach was discussed. This
approach traverses over the source model of the translation building an appropriately
translated target model throughout the traversal. The requirements on the models have
been shown minimal, being the implementation of a Visitable interface for each
model component.

The second approach discussed how to implement an active translator based on the
Observer pattern. It has illustrated the event notification requirements of models that
are to be translated using this approach, showing that this is the only requirement of
such models. This enables a clean and separate distinction to exist in the
implementation between each of the translated models and between the models and
the translator.

The next chapter describes an automated approach to generating translator
implementations. The approach is based on the framework of observable components
described in this chapter.

Chapter 6

Automation

A manual approach to generating translator implementations is all very well, but it is
very time consuming. This chapter presents a method for automatically generating an
implementation of an observer-based active translator and uses a selection of
examples to illustrate the approach.

The automated approach imposes more structure on the implementation framework
than the manual implementation, producing translators that are slightly less efficient
to execute, but enabling faster and easier generation of them.

The automated implementation uses the philosophy adopted in, [Emmerich_96] and
[Finkelstein_etal_94] of separating the consistency checks from the actions
performed as a result of inconsistency. This is appropriate as our specifications only
specify consistency constraints; UML doesn’t yet have a suitable action language, so
the actions are not generated. Although the mapped to (‘↔’) operator provides some
indication of suitable actions.

A UML/OCL translator specification can be considered platform-independent. The
automatic implementation generator is itself a translation process, from the
specification, to a platform-specific implementation of the specified translator. In
relation to this, this chapter answers two questions, as follows:

• What is a possible implementation platform for translators?
• What is the mapping of the specification to the implementation platform?

Section 6.1 describes the framework of the platform on to which the UML based
translator specifications are mapped. An important module of this platform is the
observable OCL library, described as part of that section.

Section 6.2 illustrates, by the use of examples, the mapping from a translator
specification to an implementation based on the presented platform.

6.1 Java and OCL Based Translator Platform
In line with the manual approach, Java is used here as a basis for the automatically
generated translator implementations. The principle of creating mapping objects
between two observable models is retained, although the process of implementing the
inconsistency detection is simplified by the introduction of a library supporting
observable OCL expressions.

The library enables the definition of OCL expressions over a network of Java objects.
The objects must conform to the observable pattern discussed in the previous chapter,
which enables the expression to detect changes to those components that may alter
the evaluation of the expression. Upon detection of such a change, the expression

Automation 98

itself fires an observable event indicating that the expressions value may have
changed.

The first subsection discusses the general architecture of the automatically generated
framework. This is followed by a description of the observable OCL library and a
description of how it is implemented. The final subsection shows how the mapping
objects make use of the OCL library to indicate inconsistencies and shows which
parts of the framework are left empty, to be completed with actions for responding to
inconsistencies.

6.1.1 Translator Framework
The general framework of the implementation (Figure 65) follows the architecture of
the specification. Two Java packages are assumed to exist, each containing an
observable implementation of the two models involved in the mapping. The
relationship between the two models is implemented in a third package, called
“mappings”.

Model 1 Model 2

translator

mappings

Figure 65 – The Automatic Translator Framework
The manual implementation did not separate the detection of an inconsistency from
the required resulting actions; the code for both was included in the implementation
of a single mapping object. For the automatic implementation, a distinction is made.

: MappingManager

: Component1 : Component2

: Component1_Component2

mappings

mapping_manager

comp1 comp2

: OclConstraint

constraint

Figure 66 – An Example Mapping
Mapping objects are created that contain code that detects inconsistencies between
the mapped objects in accordance with the specified OCL constraint. These are

Automation 99

controlled by a MappingManager, which enables creation of mappings and records
the mappings created for a particular pair of models.

Figure 66 shows an example instance of the implementation of a mapping between
two components. The mapping object contains a reference to each object (from the
models) that is involved in this mapping and contains a reference to the
MappingManager object that has recorded its existence. Additionally the mapping
object contains an (observable) OclConstraint object that defines the appropriate
consistency constraints.

The particular actions performed depend on the purpose to which the implementation
is to be put. They may be required to simply report that an inconsistency exists, or (in
the case of a translator) they may perform a sequence of changes that remove the
inconsistency.

To enable reuse of the mapping implementation, the translator code is implemented
as a separate package. The components of the translator package are as follows:

• A Translator : The translator controls overall management of the
translation. The translation of a particular component is handled by either
retrieving its existing translation from the consistency manager, or by
creating a new translation using the appropriate generator.

• A ConsistencyManager : The consistency manager is an extension of the
MappingManager defined in the mappings package. It controls creation of
the consistency management objects and uses the mapping manager
functionality to record their existence.

• A Model1Generator and a Model2Generator : These objects control
creation of components from one model, depending on information about
components from the other model; essentially performing the generative
part of the translation. As part of the generation, they define the mappings
between all components created; after generating the target translation of
a particular source component, the source and target are assumed to be
consistent according to the defined mapping constraints.

• Several ConsistencyMapping classes : Each mapping object defined in
the mappings package is extended with a corresponding consistency
mapping object defined as part of the translator package. The consistency
mapping objects are intended to respond to events generated by the
mapping constraint, and perform the appropriate actions. The particulars
of these actions depend on the specifics of the translation.

Translator ConsistencyManager

Model1GeneratorModel2Generator

MappingManager
(from mappings)

ConsistencyMapping

Mapping
(from mappings)

Figure 67 – General Architecture of a translator package

Automation 100

Figure 67 illustrates the general content of a translator package.

The next subsection describes the functionality and implementation of the observable
OCL library used by the Mapping objects; it is essential to the easy automatic
generation of these objects in a manner that they can provide events indicating
inconsistency.

An automatic generator has been implemented in Java that generates an
implementation of this framework. The generator takes as input, an XMI specification
of the mapping specifications and produces as output a set of Java classes that
implement the framework.

Future work is to specify this mapping using the UML/OCL specification technique
itself and to use the automatic generator (over that specification) to bootstrap itself.

6.1.2 Observable OCL library
The observable OCL components provide a Java implementation of each of the OCL
types defined by the standard. It provides an implementation of each basic type
(Integer, Real, String, Boolean), of each collection type (Set, Sequence, Bag), and
implements every operation defined on those types.

There are other libraries that provide this functionality (e.g. [Hussmann_etal_00]),
however what is particularly useful about this implementation is that OCL expression
formed using this library are observable. The standard types are extended to provide
mutable versions, which can be altered (in the case of a StringBuffer) or have objects
added to or removed from (in the case of a Collection). Changes to the mutable types
are made detectable by implementing them as observable in the manner described in
the previous chapter. Additionally, any Java class that is implemented in accordance
with the observable functionality may also be used as a valid type within the OCL
Expression.

An observable OclExpression class is defined, which represents a particular
expression. This component fires events if any object involved in the expression is
altered. This is achievable as each of the objects involved in the expression supports
the observable functionality and the OclExpression object is defined to observe each
object involved in the expression.

There are three primary features of the library:
1. A Java implementation of the OCL basic and collection types, supporting all

the functionality defined in the standard.
2. A mechanism for specifying OCL expressions about a collection of Java

objects.
3. The observable qualities of the OCL expressions.

The implementation of each of these features is discussed in the following
subsections.

6.1.2.1 The OCL Types
The implementation of the OCL types is straightforward. Each OCL type defined in
the standard is implemented as an interface defining each operation as a method (see

Automation 101

Figure 6810); infix operators, such as ‘+’ or ‘/’, are defined as methods using an
appropriate name, i.e. ‘add’ or ‘div’.

IInteger
add(IInteger i) : IInteger
mul(IInteger i) : IInteger
sub(IInteger i) : IInteger
div(IInteger i) : IInteger
max(IInteger i) : IInteger
min(IInteger i) : IInteger
mod(IInteger i) : IInteger
abs() : IInteger

IReal
add(IReal r) : IReal
mul(IReal r) : IReal
sub(IReal r) : IReal
div(IReal r) : IReal
greaterThan(IReal r) : IBoolean
lessThan(IReal r) : IBoolean
greaterThanOrEqualTo(IReal r) : IBoolean
lessThanOrEqualTo(IReal r) : IBoolean
max(IReal r) : IReal
min(IReal r) : IReal
abs() : IInteger
floor() : IInteger
round() : IInteger

IOclAny
equalTo(IOclAny object2) : IBoolean
notEqualTo(IOclAny object2) : IBoolean
oclIsKindOf(IOclType type) : IBoolean
oclIsTypeOf(IOclType type) : IBoolean
oclAsType(IOclType type) : IOclAny
oclInState(IOclState state) : IBoolean
oclIsNew() : IBoolean
oclType() : IOclType

IBoolean
or(IBoolean b2) : IBoolean
xor(IBoolean b2) : IBoolean
and(IBoolean b2) : IBoolean
not() : IBoolean
implies(IBoolean b2) : IBoolean
ifThenElse(IOclExpression expr1,
 IOclExpression expr2) : IOclAny

IString
size() : IInteger
concat(IString string2) : IString
toUpper() : IString
toLower() : IString
substring(IInteger lower,
 IInteger upper) : IString

Figure 68 – Java Interfaces for the Basic OCL Types
Different implementations of the OCL interfaces can be provided; for example an
observable or a non-observable implementation. Instantiation of the classes
implementing the OCL types is carried out via a Factory class, whose methods
construct the appropriate OCL object and return it as a type defined by the interfaces.
Thus, all manipulations of the OCL objects can be carried out in terms of the defined
interfaces, regardless of the particular implementation.

The OCL factory class must be implemented for each implementation of the OCL
interface types. This class forms the interaction point (interface) between standard
Java code and the OCL components. For example, the OCL Integer type is defined
using an IInteger interface. The interface is implemented as a class named OclInteger,
and the OCL factory class contains two relevant methods to aid the use of OCL
Integers in the Java environment:

• IInteger Integer(int i), which creates an OclInteger from a Java ‘int’
and returns the object as an IInteger.

• int impl(IInteger i), which returns the Java ‘int’ implementation value
of an OCL IInteger object.

Similar methods are provided for each of the OCL types; one to create instance of the
OCL types from the Java versions; and one to create the Java types from the OCL
versions.

10 The light grey methods are currently not implemented by the library.

Automation 102

The implementation of the Collection types is also based on the Java equivalents.
Similarly to the basic types, there are methods in the OCL factory class for creating
Java or OCL collection types from each other.

Some operations require an OCL expression as a parameter; these can be passed an
OclExpression object, as defined in the next subsection.

6.1.2.2 OCL Expressions
One aim of the library is to make the use of OCL expressions within the Java
language as easy and seamless as possible. Towards this end, we require that OCL
expressions can be entered as syntactically correct OCL text, whilst at the same time
making use, within those expressions, of the methods defined in Java classes.

This subsection starts by describing how to incorporate OCL expressions within Java
code and then described how the evaluation process of those expressions is
implemented.

As with the creation of other OCL types, an OclExpression object is created using the
OCL factory class. The actual text of an OCL expression is entered as a Java String;
however, more information is required than simply the expression text. Each OCL
expression is defined within a ‘context’; this context provides names for the objects
from which an OCL expression is constructed. It is necessary to provide each
OclExpression object with the names, objects, and types of those objects; this
provides its context.

The OCL factory method for creating OclExpression objects is defined as follows:
IOclExpression Expression(String expression,

Class[] types,
String[] names,
Object[] values)

Or there is a shorthand version for defining invariants:
IOclExpression Invariant(String expression, Object self)

This second method defines a single name “self” to be the name of the passed object,
with the type being the class of the passed object. Each object within the expression
must be navigated to starting with the name “self”. An example of the use of these
methods is shown in Table 21.
class X {

IInteger _a;
public IInteger a() {return _a;}

IInteger _b;
public IInteger b() {return _b;}

IOclExpression inv1;
IOclExpression inv2;

public X(int a, int b) {
_a = OCL.Integer(a);
_b = OCL.Integer(b);

inv1 = OCL.Invariant("self.a = self.b", this);

inv2 = OCL.Expression(a = b",
new Class[] {IInteger.class, IInteger.class},
new String[] {"a","b"},
new Object[] {this.a(), this.b()});

}
}

Table 21 – An example showing the use of OclExpressions in a Java class

Automation 103

In this example, the call to OCL.Invariant would be equivalent to the following call to
OCL.Expression:

OCL.Expression(“self.a = self.b”,
 new Class[] {this.getClass()},
 new String[] {“self”},
 new Object[] {this});

The implementation of an OclExpression makes use of the reflection capabilities of
Java in conjunction with a library for creating Java classes at runtime [Dahm_99].
The call to OCL.Expression creates a new subclass of the OclExpression class and
invokes an OCL parser over the expression. As the expression is parsed the body of a
method, “evaluate”, is constructed on this new class; when completed, the constructed
method contains a series of method calls that evaluate the parsed OCL expression.

The OclExpression subclass is constructed directly as Java byte-code as this avoids
the necessity of having to compile it after creating it. As an example, the code in
Table 22 shows some Java code that would compile into the same byte code
constructed for the OCL Expression created for “inv1” from Table 21.
class OclExpression$1

extends OclExpression
{

OclExpression() {}

public IOclAny evaluate() {
return get("self").a().equalTo(get("self").b());

}

}

Table 22 – Java code illustrating a generated expression class
The ‘evaluate’ function returns the result of evaluating the expression. The series of
method calls that form the evaluation are constructed by the parser as it analyses the
original OCL text. The initial object for each navigation expression is retrieved using
the ‘get’ method. The method is defined on the superclass ‘OclExrpression’ and it
accesses the ‘context’ information passed to the OCL.Expression method, returning
the object associated with the name given as the string parameter.

The type information passed as part of the context is used by the parser, in
conjunction with the Java reflection functionality, to determine the methods to call on
the initial objects. For instance, in our example:

• the parser would detect the need to call the method ‘a’ or ‘b’ on the object
‘self’;

• knowing that the type of the ‘self’ object is ‘X’, Java reflection is used to
determine if there are methods called ‘a’ or ‘b’ on that class;

• if there are, then calls to those methods are added to the ‘evaluate’ method
body.

If the OCL ‘feature calls’ require parameters, the same technique is used; the parser
will analyse the types of the parameters and use reflection to determine if an
appropriate method exists.

If the parameter type is ‘IOclExpression’ as is the case with many of the OCL
Collection type’s operations then another Expression class is constructed to evaluate
the expression passed as a parameter. The context of this new sub-expression is
constructed from the context of the outer expression, adding any new names as
required.

Automation 104

The next subsection describes how these expressions are extended to make them
observable.

6.1.2.3 Observable Expressions
The ability to construct OCL expressions in the context of a set of Java objects is
useful; however, in the context of this thesis, we are interested in when the evaluation
of such an expression changes. It is not practical to repeatedly pole each expression
and evaluate it; instead, the generated OclExpression classes are extended so that they
become observable.

This enables an observer to be set up to respond to events fired by OclExpression
objects. The expression objects are defined to fire an event anytime the expression
changes value. To avoid evaluating the expression except when required, the
observable expressions are defined to fire an event any time that any component of
the expression changes and thus the observer can evaluate the expression if required.
In order for the expressions to detect changes in their component objects, each object
used in an expression must also be observable.

This functionality is implemented using the Observer and Observable interfaces
described in Chapter 5. Each object used in an expression is assumed to implement
the ‘IObservable’ interface, the observable expression observes these components and
in turn fires an ‘IOclExpressionChanged’ event if a component change is detected.

To support the creation of Java models that are observable, the OCL library provides
some extended versions of the OCL types that are both observable and mutable. Each
of the collection types is extended by a mutable version and there is a mutable version
of a String – a StringBuffer. These are as shown in Figure 69.

ISet IStringIBag ISequence

IMutableSet
add(IOclAny)
remove(IOclAny)

IStringBuffer
setTo(IString s)

IMutableBag
add(IOclAny)
remove(IOclAny)

IMutableSequence
add(IOclAny o)
remove(IOclAny o)
add_at(IInteger i, IOclAny o)
remove_at(IInteger i, IOclAny o)

Figure 69 – Mutable OCL Types
Additional support is provided in terms of a set of Monitor classes. These classes are
defined to observe OclExpressions and respond to OCLExpressionChanged events in
different manners.

A base ‘Monitor’ class is defined to simply monitor an expression. Monitor objects
can be used to set up ‘watches’ that call a specified method on a particular object
upon receipt of a change event.

IOclExpression expr = OCL.Invariant(".......", this);

Monitor m = new Monitor();

m.watch(expr, "observe", this);

Table 23 – Example use of a Monitor object.
For example, the code in Table 23 defines a Monitor, that watches the expression
‘expr’ and when events are received indicating that the expression may have changed,
the method ‘observe(IOclExpressionChanged e)’ is called on the ‘this’ object.

Automation 105

Two subclasses of Monitor are provided – SystemOutMonitor and ExceptionMonitor.
The first of these outputs the expression text and its evaluation to System.out
whenever a change event is detected. The second causes an Exception to be raised if
the evaluation of the expression is not the (OCL) Boolean value “true”.

Through using observable OclExpression objects, created using this library, the
expression can be monitored for events that may change the evaluation of the
expression. In the context of a consistency mapping for translator implementation,
these events are monitored and actions can be defined that execute appropriate
translating behaviour. The framework for this is described in the next subsection.

6.1.3 Implementation of Cons istency Mapping Objects
A translator specification takes the form of consistency constraints and some
consistency management actions. The UML/OCL mapping specification technique
uses a non-standard OCL operator ‘↔’. The use of this operator gives added
information regarding what the consistency management actions should be.

For example, given the specification of a mapping constraint between two objects:
obj1 ↔ obj2

The constraint is invalid if a mapping object does not exist between the two objects.
One potential action, which would re-validate the constraint and achieve consistency,
is to create the required mapping.

However, the automated approach does not currently interpret the OCL constraints to
deduce the required actions. The automatic generator will create the classes required,
but some of the content must be manually entered. Based on interpreting the
semantics of the ‘↔’ operator, there is potential for much more automatic generation.

The purpose of the consistency mapping objects is to monitor the mapping constraint
and take appropriate action when it is invalidated. The Monitor classes provided by
the observable OCL library can help with this.

The general pattern for each consistency mapping class, is to create a monitor for the
constraint and associate a function with each type of event and each possible source
of event that can be generated by that constraint. These functions must subsequently
specify actions appropriate to the required consistency management objectives. For
example, reporting an inconsistency, or trying to alter the models to re-achieve
consistency.

Figure 70 indicates a possible sequence of actions (method calls) generated by the
framework upon detection of an event from a component in Model 1. Component1
causes an event indicating that attribute x has changed. This event is detected by the
OCL constraint on the specific consistency-mapping object for Component1; the
OCL expression simply detects that one of the components involved in the expression
has changed. The actions to be performed upon detection of the change start in the
consistency-mapping object. The first action must be to determine whether the change
indicated by the event has altered the validity of the constraint; i.e. it is evaluated. If
the constraint is invalid, appropriate actions must be invoked.

What those actions actually are, is dependent on the application of which the
translator is a part. It may be that the constraint can be revalidated, or it may be that
some feed back to the user is required to indicated that the change to Component1 has
cause an invalid situation. In this case, it is assumed that the action required is to form

Automation 106

a translation for the new value for attribute x, hence a call is made to the translator
requesting the translation.

: Component1

: Component1_Component2
(from mappings): Component1

constraint

: Component2

: Component1_Component2
(from translator)

1: event

2: observed

: Monitor
3: invoke actions

: Translator

4: translate1To2

: Model2Generator

5: createY

: X : Yx y

6: setY

constraint

Figure 70 – Model Update Action Sequence w.r.t a Mapping Object
The translator determines whether a mapping for the new value already exists or not.
If it doesn’t, then a call is made to the generator for model 2 components, which
requests that a new model2 component is created that is a valid mapping of the new
value from model1. The generator is assumed to create the appropriate component (or
components) and to request that a mapping be created between the components from
each model. It is also assumed that the newly created model2 component(s) are
consistent with the supplied model1 component, according to the defined constraints.

6.2 Examples
This section illustrates the use of the framework via the specification and generation
of various different translator examples. Each of the following sections describes the
problem to be tackled via the use of a translator, shows the UML/OCL specification
of parts of the translator and describes the generation of the implementations.

The DirectedGraph↔Tree example used in the previous chapters, although appearing
to be simple, does involve some complex issues. Consequently, we use two different
examples to illustrate the process of generating the translator implementations. The
issues with respect to the DirectedGraph↔Tree example are discussed in subsection
6.2.3.

The first example is used to illustrate the overall framework of classes created by the
automatic generator. It also demonstrates which aspects of a translator
implementation must be manually coded.

The second example illustrates how more complex one-to-many mappings are
implemented and demonstrates how two different translators can be composed into a
single application.

Automation 107

6.2.1 Java↔↔↔↔Tree
The first example illustrates a specification involving one-to-one mappings. The
objective is to produce a ‘Tree view’ of the directories and files involved in a Java
project. The project is assumed to consist of a number of directories, sub-directories
and files; the requirement is to provide a view of this structure using the
javax.swing.JTree component.

There are two aspects to providing this view, the definition and implementation of the
two models and the definition and implementation of the translator.

Specification
The JTree component supports the use of any Tree style model, provided certain
functionality is provided that enables the interface to the graphical part of the
component. For the purposes of this discussion, that part of the implementation is not
relevant. The specific Tree model used is the one used within the running example
over the last two chapters and is shown in Figure 71. Note that each TNode has an
additional ‘data’ attribute.

Tree

Tree

TNode
data : OclAny

root

parent

subnodes

1

*

all_nodes

tree

*

Figure 71 – The Tree Model.
A Model representing a Java project file and directory structure is shown in Figure
72.

Java

DirectoryEntry
name : String

CompilationUnit
parent

1

entries
*

Directory

Figure 72 – The Java Model
The translator is required to map each node (TNode) of the tree to either a Directory
or CompilationUnit. The tree nodes must indicate which component it is mapped to
and the name of that component. We use the ‘data’ attribute of the TNode to carry
this information by assigning a Pair of string values to it. The first string indicates the
type of node, and the second indicates the name. The specific implementation of the
Tree model that interfaces to the JTree component can interpret these strings to
provide the appropriate icon and text for visualising the node.

Automation 108

The mapping specification for this translator is shown in Figure 73.
Directory

DirectoryEntry

CompilationUnit

TNode

TNode

TNode

dir.entries ↔ tnode.subnodes
Pair {“Directory”, dir.name }↔ tnode.data

if entry.oclIsKindOf(CompilationUnit) then
 entry.oclAsType(CompilationUnit) ↔ tnode
else if entry.oclIsKindOf(Directory) then
 entry.oclAsType(Directory) ↔ tnode
 else false endif
endif

Pair {“CompilationUnit”, comp_unit.name }↔ tnode.data

dir

comp_unit

tnode

tnode

entry tnode

Figure 73 – Java ↔↔↔↔ Tree Mapping Specifications
This specification defines the required mappings. Each Directory and
CompilationUnit are mapped to a TNode.

The Directory↔TNode mapping specifies that each entry in a directory is mapped to
a subnode of the TNode to which it is mapped. It also specifies that the data of the
TNode is mapped to a Pair indicating the type of node and the name of the Directory.

The DirectoryEntry↔TNode mapping forwards the mapping to either a
Directory↔TNode or CompilationUnit↔TNode mapping.

The CompilationUnit↔TNode mapping specifies that the TNode data should be
mapped to a Pair indicating the type of node and the name of the CompilationUnit.

Input
To generate an active implementation of this translator, we first provide an XMI
document containing the specification (shown in Table 24).
<XMI version="1.1" xmlns:UML="org.omg/UML1.3">

<XMI.header>
<XMI.model xmi.name="Java_Tree" href="Java_Tree.xmi"/>
<XMI.import xmi.name="Java" href="Java.xmi"/>
<XMI.import xmi.name="Tree" href="Tree.xmi"/>

</XMI.header>
<XMI.content>
<UML:Model name="Java_Tree"/>

<UML:Association>
<UML:Association.connection>
<UML:AssociationEnd name="entry">
<UML:AssociationEnd.type>

<UML:Classifier name="DirectoryEntry" />
</UML:AssociationEnd.type>
</UML:AssociationEnd>
<UML:AssociationEnd name="tnode">
<UML:AssociationEnd.type>

<UML:Classifier name="TNode" />
</UML:AssociationEnd.type>
</UML:AssociationEnd>

</UML:Association.connection>
<UML:ModelElement.constraint>
<UML:Constraint>

Automation 109

<UML:Constraint.body xmi.value="true"/>
</UML:Constraint>

</UML:ModelElement.constraint>
</UML:Association>

<UML:Association>
<UML:Association.connection>
<UML:AssociationEnd name="dir">
<UML:AssociationEnd.type>

<UML:Classifier name="Directory" />
</UML:AssociationEnd.type>
</UML:AssociationEnd>
<UML:AssociationEnd name="tnode">
<UML:AssociationEnd.type>

<UML:Classifier name="TNode" />
</UML:AssociationEnd.type>
</UML:AssociationEnd>

</UML:Association.connection>
<UML:ModelElement.constraint>
<UML:Constraint>

<UML:Constraint.body
xmi.value=" self.dir.entries->size

= self.tnode.subnodes->size
and

self.dir.name
= self.tnode.data.oclAsType(Pair).snd " />

</UML:Constraint>
</UML:ModelElement.constraint>

</UML:Association>

<UML:Association>
<UML:Association.connection>
<UML:AssociationEnd name="comp_unit">
<UML:AssociationEnd.type>

<UML:Classifier name="CompilationUnit" />
</UML:AssociationEnd.type>
</UML:AssociationEnd>
<UML:AssociationEnd name="tnode">
<UML:AssociationEnd.type>

<UML:Classifier name="TNode" />
</UML:AssociationEnd.type>
</UML:AssociationEnd>

</UML:Association.connection>
<UML:ModelElement.constraint>
<UML:Constraint>

<UML:Constraint.body
xmi.value=" self.comp_unit.declarations->size

= self.tnode.subnodes->size
and

self.comp_unit.name
= self.tnode.data.oclAsType(Pair).snd"/>

</UML:Constraint>
</UML:ModelElement.constraint>

</UML:Association>

</UML:Model>
</XMI.content>

</XMI>

Table 24 – XMI for Java↔↔↔↔Tree Mapping Specification
The OCL constraints are slightly different to those defined in the specification. This is
primarily due to the use of the ‘↔’ operator. The operator is shorthand for a longer
OCL expression involving the use of the ‘allInstances’ operation and class templates
(see Chapter 4). Considering that evaluating expressions that involve ‘allInstances’ is
time consuming and that the Java language lacks a facility for defining class
templates, an alternative to explicitly using the ‘↔’ operator is required.

The use of the operator to map between Collections is altered to a comparison (‘=’) of
the sizes of those collections. This will enable the constraint to provide appropriate
events if objects are added to either collection and allow the evaluation of the

Automation 110

constraint to be ‘true’ if the collections are appropriately mapped. (Strictly, the
constraint could evaluate to true when the collections have the correct number of
objects but where those objects are not mapped to each other. However, the code for
the translator does not allow that situation to occur, and hence the variation on the
constraint is acceptable.)

The use of the operator to map between String values is altered to a straight
comparison of the strings. This will enable the constraint to generate the required
events and evaluate to true when the strings are correctly mapped.

The constraint on the DirectoryEntry↔TNode mapping is not included, as the
generated mapping class is never instantiated. However, the specification is required,
as other parts of the framework that are generated from it, are used.

Framework
The automatic framework generator produces a package ‘Java_Tree’ that contains
two sub-packages named mappings and translator. The mappings package contains a
MappingManager class and a class for each of the associations defined in the
specification.

Java_Tree

mappings

translator

MappingManager.java

Directory_TNode.java

DirectoryEntry_TNode.java

CompilationUnit_TNode.java

ConsistencyManager.java

TreeGenerator.java

Directory_TNode.java

DirectoryEntry_TNode.java

Translator.java

JavaGenerator.java

CompilationUnit_TNode.java

Figure 74 – Generated Files for Translator Implementation
The translator package contains a ConsistencyManager, a Translator, a Generator for
each model, and a class for each mapping association. Figure 74 shows a tree view of
these classes.

Manual Code
The parts of the implementation that must be subsequently hand coded are entered
into the xxxGenerator classes and the classes for the mappings associations in the
translator sub-package.

Automation 111

The constraints on the mapping association classes from the ‘mappings’ package
perform inconsistency detection. The correlating classes in the translator package are
for defining what actions should be performed as a result of detecting those
inconsistencies.

The code for the Directory↔TNode mapping is shown in Table 25. (The light grey
code is automatically generated, as is the case for subsequent tables of code presented
in this chapter.) This illustrates the required manual additions to a consistency
mapping class, for a simple mapping. Mapping constraint specifications of this
simplicity could easily be generated automatically; however, as further examples
show, it is not always as straightforward as this.
public class IDirectory_ITNode

extends JavaASM_Tree.mappings.IDirectory_ITNode
{

public IDirectory_ITNode(IDirectory dir, ITNode tnode, ITranslator trans) {
super(dir, tnode);
new EquiCollectionMonitor(constraint,

dir().entries(),
tnode().subnodes(),
trans);

new EquiStringBufferMonitor(constraint,
dir.name(),
(IStringBuffer)((Pair)tnode().data()).snd(),
trans);

}
}

Table 25 – Code for Directory↔↔↔↔TNode ConsistencyMapping
This is a particular implementation of a consistency mapping between a Directory and
a TNode. It extends the base mapping implementation (defined in the mappings
package) and defines that actions that must be taken when the evaluation of the
mapping constraint changes.

After calling the constructor for the base mapping class, an EquiCollectionMonitor is
created. It is based on the mapping constraint and the two collections ‘dir.entries’ and
‘tnode_subnodes’, which are the two sides of the “↔” operator in the original
specified constraint. The created object monitors a constraint for Add and Remove
events whose source is one of two collections. When these events are received, it adds
or removes the translation of the added or removed object to the other of the two
collections.

Similarly, an EquiStringBufferMonitor is created to monitor changes in either the
directory name or the second string in the tnodes data. The monitor detects event
changes to either string and updates the other accordingly.

The code for the CompilationUnit↔TNode consistency mapping class is similar to
the above, containing only the creation of an EquiStringBufferMonitor to map the
name of the CompilationUnit to the data in the TNode.

The DirectoryEntry↔TNode consistency mapping is not instantiated by the
framework, and hence no code is added to the class dropped by the framework.

In addition to the consistency mapping objects, the TreeGenerator and JavaGenerator
classes require code to be added that defines how to create components from one side
of the mapping, from the components on the other side. With each generator is the
concept of a source model and a target model, the generator contains code that
defines how to create components of the target model from components of the source
model.

Automation 112

Table 62 shows the code for the JavaGenerator.
public class JavaGenerator

extends AbstractGenerator
{

IJavaBuilder _builder;

private ConsistencyManager _mappings;
public ConsistencyManager consistency_manager() { return _mappings; }

public JavaGenerator(IJavaBuilder builder, IMappingManager mm) {
_builder = builder;
_mappings = (ConsistencyManager)mm;

}

public IDirectoryEntry createIDirectoryEntry(ITNode tn) {
Pair p = (Pair)tn.data();
String s = ((IString)p.fst()).toString();
if (s.equals("Directory")) return createIDirectory(tn);
if (s.equals("CompilationUnit")) return createICompilationUnit(tn);
throw new RuntimeException("Error:: Unknown TNode type - "+s);

}

public IDirectory createIDirectory(ITNode tn) {
IDirectory d = (IDirectory)consistency_manager().get2To1(tn.parent());
if (d != null) {

IDirectory subd = _builder.buildDirectory(d);
subd.name().setTo((IString)((Pair)tn.data()).fst();
consistency_manager().createMapping(subd,tn);
return subd;

}
throw new RuntimeException("Error:: No mapping for parent of "+tn);

}

public ICompilationUnit createICompilationUnit(ITNode tn) {
IDirectory d = (IDirectory)consistency_manager().get2To1(tn.parent());
if (d != null) {

ICompilationUnit cu = _builder.buildCompilationUnit(d);
cu.name().setTo((IString)((Pair)tn.data()).fst();
consistency_manager().createMapping(cu,tn);
return cu;

}
throw new RuntimeException("Error:: No mapping for parent of "+tn);

}

}

Table 26 – Java Generator Class
A Generator consists of:

• a reference to a builder object, used for constructing elements of the target
model;

• a reference to the translator consistency manager; and
• a number of createXXX methods, each of which should contain details on how

to create a component for the target model given the corresponding component
from the source model.

The body of the createXXX methods must currently be filled in manually. The code
must define how to build a component of the target model in such a way that the
mapping constraint between the two components is valid.

For this generator, the createIDirectoryEntry method defines how to create a
DirectoryEntry from a TNode. The details of the creation are to create either a
Directory or a CompilationUnit from the TNode, depending on the value of the first
component of the Pair stored in the TNode’s data attribute.

To create a Directory it is necessary to have a reference to another Directory that will
form the parent of the new directory. This can be derived from the mapping of the

Automation 113

parent of the TNode from which we are creating the new directory (if there is no
mapping for the TNode’s parent, we cannot create the new Directory). The new
Directory is built (using the builder and the retrieved parent directory), and then its
name is set to the string provided in the second element of the TNode’s data. Finally,
a mapping is created between the source TNode and the new Directory.

To create a CompilationUnit, the code follows an almost identical sequence of
actions: acquiring a parent directory for the new CompilationUnit; building the new
CompilationUnit; setting its name; and creating a mapping between the source TNode
and new CompilationUnit.

The TreeGenerator creates TNodes from DirectoryEntries, Directories and
CompilationUnits. There are three ‘create’ methods, one for each source-model
component type; the code can be found in Appendix E.

In conjunction with the rest of the automatically generated framework, these classes
form an active implementation of a translator between the Java and Tree models. It is
a straightforward mapping, but has been useful in illustrating the generated
framework and illustrates the aspects that are necessary to fill in manually.

The code that is automatically generated for the Translator and Consistency Manager
is included in Appendix E. The Consistency Manager contains a series of
createMapping methods, which create and record the mappings between the pairs (or
pairs of groups) of components from each model. It also contains flag used to indicate
whether the translator is “switched on”; i.e. whether or not actions should be taken
upon observation of events from the models. This is discussed further in the next
example.

The translator contains a series of methods, each of which performs the translation of
a component from one model into a component from the other. The translation is
achieved by first looking to see if the source component already has a mapped value
recorded in the consistency manager, if so then this value is returned. If no mapping
exists, then the appropriate generator is used to construct a new (target) component
from the source component.

The next subsection looks at another example that is more complex; it involves one-
to-many mappings and the composition of two translators in a chain.

6.2.2 Visual State Machine Ed itor
This example illustrates the use of the translator specification and implementation
technique for the provision of an editing environment for a visual language. The
example is drawn from the authors use of the techniques to provide a graphical user
interface for a stochastic automaton model checker. The model checker was built as
part of an EPSRC project (reference number GR/L28890) and is documented in
[Bryans_etal_00jan] and [Bryans_etal_00nov]; details regarding the resulting tool can
be found in [Akehurst_etal_00].

Specification
The user interface requires an editor for specifying automata. An automaton consists
of locations and transitions. Each state is named, and each transition may be labelled
with a guard. Part of the abstract syntax model (ASM) for the automata in this project
is shown in Figure 75.

Automation 114

To provide a user interface that enables automata to be designed it is necessary to
define a concrete syntax and to define a mapping (translation) between the concrete
components and the abstract ones.

The concrete syntax will use rectangles to represent locations and will contain a
textual label to represent the name of the location. Transitions will be represented by
lines with an associated label to represent the guard.

Automata

Automaton

Location
name:StringBuffer

Transition
guard:StringBuffer

locations

source

transitions

automaton automaton

destination

outgoing
*

**

Figure 75 – An Automata Model
In accordance with the ideas presented in [Rekers_94] and [Bardohl_etal_99], the
mapping between concrete syntax model and abstract syntax model for a visual
language involves an intermediate Spatial Relationship Model (SRM). This model
provides an abstraction from the specific shapes used in the notation, but retains the
relationship between the symbols used in an expression (or diagram). The spatial
relationship model for the automaton notation can be modelled using a labelled
directed graph. The model of a labelled directed graph is a directed graph where each
vertex and edge have an associated collection of labels. The UML representation of
this model is shown in Figure 76.

DirectedGraph

DirectedGraph

Vertex Edge

graph graph

edgesvertices start edges_out

finish edges_in

* *

*

*

StringBuffer
labelslabels

* * {ordered}{ordered}

Figure 76 – A Labelled Directed Graph Model
To model the concrete syntax components we could use a specific implementation
library such as the Java Swing library. However, a more platform independent option
is to use a general model of graphical components such as the Standard Vector

Automation 115

Graphics model defined in [W3C_00aug]. A model for the SVG components used by
this example is shown in Figure 76.

SVG

Shape
x : Integer
y : Integer
width : Integer
height : Integer

Boolean encloses(Point)

Group

SVG

owned

owner

*

Rect Text
value : StringBuffer

Line
start : Point
finish :Point

Element
{ordered}

Figure 77 – A Partial SVG Model
The mapping between the abstract syntax Automata model and the spatial
relationship graph model is shown in Figure 78. The mapping for this language is
straightforward, consisting of three one-to-one mappings. Other more complex
languages may require a more complex mapping between ASM and SRM.

DirectedGraph Automaton

Edge Transition

Vertex Location

graph.vertices ↔ automaton.locations and
graph.edges ↔ automaton.transitions

vertex.labels.at(0) ↔ location.name

edge.labels.at(0) ↔ transition.guard

edge transition

vertex

automaton

location

graph

Figure 78 – DirectedGraph↔↔↔↔Automata Translator Specification
The mapping relates edges to transitions and vertices to locations. There is assumed
to be only one label associated with each vertex or edge and this is mapped
respectively, to the name or guard of the abstract component. The implementation of
this translation is straightforward; hence, its discussion is not included, as it would
not add to the explanation of this automatic implementation approach.

The mapping between SRM and concrete syntax model is more complex. Many
different mappings could be specified; finding an efficient or ‘best’ one is the
responsibility of the designer.

Automation 116

In this example, I have chosen to assume that each notation symbol is represented in
SVG as a group (‘g’) element. There are two types of group, one consisting of a
Rectangle and a Text element and one consisting of a Line and a Text element.

The enclosing ‘svg’ element is mapped to the DirectedGraph as specified in Figure
79. Each element in the SVG is assumed to be one of the two types of group
(containing either line or rectangle). The set of elements is mapped to the union of the
set of vertices and set of edges in the DirectedGraph; i.e. each group in the SVG is
mapped to either a Vertex or an Edge from the DirectedGraph.

DirectedGraph

svg.owned ↔ graph.edges.union(graph.vertices)

graphSVG svg

Figure 79 – SVG↔↔↔↔DirectedGraph Mapping Specification
Each Vertex is mapped to a Group and the elements within that group (Figure 80).
The constraint on this mapping firstly ensures that the rectangle and text elements are
members of the group; and secondly specifies that the value of the text element is
mapped to the first label of the vertex.

Group

Vertex

group.owned->contains(text) and
group.owned->contains(rect) and
text .value ↔ vertex.labels->at(0)

vertex

group

Rect

Text

rect

text

Figure 80 – (Group,Rect,Text) ↔↔↔↔ Vertex Mapping Specification
The mapping for an Edge is similar. Shown in Figure 81, an Edge is mapped to a
Group and the Line and Text elements within that group. The value of the text
element is mapped to the first label of the Edge.

Edge

Group

group.owned->contains(text) and group.owned->contains(line) and
text .value ↔ edge.labels->at(0) and
group.owner.owned->select(g | g.encloses(line.start))->first ↔ edge.start and
group.owner.owned->select(g | g.encloses(line.finish))->first ↔ edge.finish

edge

group

Line

Text

line

text

Figure 81 – (Group,Line,Text) ↔↔↔↔ Vertex Mapping Specification
The constraint for this mapping has two additional conjuncts; these define the
connectivity of the expression. Lines that start at one Group and finish at another
Group are interpreted to mean that the Vertices mapped to those Groups are
connected by the Edge mapped to the Line. This is captured by the two parts of this
constraint that select a Group whose dimensions enclose the starting or finishing

Automation 117

point of the Line involved in this mapping. The selected Groups must map to the
Vertices at the start and finish of the Edge involved in this mapping.

In order that the above constraints can refer to a mapping between a Group and a
Vertex we add the additional mapping shown in Figure 82. The constraint forwards
the mapping to a mapping between the (Group, Rect, Text) tuple and a Vertex. A
similar ‘forwarding mapping’ is required between a Group and an Edge.

Group Vertex

if group.owned->contains(e | e.oclIsKindOf(Rect)) and
 group.owned->contains(e | e.oclIsKindOf(Text)) then
 Tuple { group,
 group.owned->select(e | e.oclIsKindOf(Rect)),
 group.owned->select(e | e.oclIsKindOf(Text)) }
 ↔
 vertex
else true endif

Figure 82 – Group↔↔↔↔Vertex Mapping Specification
The XMI files used as input to the translator generator can be found in Appendix F.
There is one non-standard XMI element used – the ‘Tie’ element. This is used to
encode the dashed lines that group AssociationEnds in an n-ary association (e.g. as
used in Figure 81).

Framework
The generated framework of classes is similar for all translators. The only difference
being the classes generated to encode the mapping associations and any additional
tuple classes generated as a result of one-to-many or many-to-many mapping
specifications (as discussed below).

The automatic generation of an active translator for this example involves a new
aspect – mappings between multiple components. Both the
(Group,Rect,Text)↔Vertex and (Group,Line,Text)↔Edge mappings are many-to-
one mappings. The implementation framework requires mappings to be of the form
one-to-one. To achieve this, the ‘many’ components are wrapped up in a tuple class to
create a single object that can partake in the implementation of the translator
framework.

As Java does not include facility for specifying typed Tuples via parameterised
classes (templates), the automatic generator creates a specific class for each required
tuple type. For this example, it generates two classes named tGroup$Rect$Text and
tGroup$Line$Text as shown in Table 27.
public class tGroup$Rect$Text
{

public tGroup$Rect$Text(IGroup group, IRect rect, IText text) {
_group=group;
_rect=rect;
_text=text;

}

private IGroup _group;
public IGroup group() {return _group;}

private IRect _rect;
public IRect rect() {return _rect;}

private IText _text;
public IText text() {return _text;}

Automation 118

public int hashCode() { return _group.hashCode()
^ _rect.hashCode()
^ _text.hashCode(); }

}
public class tGroup$Line$Text
{

public tGroup$Line$Text(IGroup group, ILine line, IText text) {
_group=group;
_line=line;
_text=text;

}

private IGroup _group;
public IGroup group() {return _group;}

private ILine _line;
public ILine line() {return _line;}

private IText _text;
public IText text() {return _text;}

public int hashCode() { return _group.hashCode()
^ _line.hashCode()
^ _text.hashCode(); }

}

Table 27 – Two Tuple Classes
The generated tuple classes do nothing more than provide a wrapper for the contained
objects. It is essential that any two tuple instances are considered equal if the objects
contained in them are equal. This ensures that a tuple object created from its
components can be correctly compared with other tuple objects created at a different
time, from the same components. The default Java Object ‘equals’ performs a field by
field comparison, which will ensure correct comparison; however, the ‘hashCode’
method must be overloaded to ensure duplicate tuple-objects are correctly retrieved
from the collection classes used in the implementation.

Manual Code
Implementing the SVG↔DirectedGraph mapping requires a more complex approach
than seen in the previous examples. The specification does not include a simple
mapping between two collections. The mapping is between a collection and the union
of two collections. Currently, the observable OCL library does not facilitate the
observation of collections constructed as part of an expression11, hence the
components that make up the union must be separately observed. The code in Table
28 shows the implementation, which is discussed below.
public class ISVG_IDirectedGraph

extends SVG_Graph.mappings.ISVG_IDirectedGraph
{

ITranslator _trans=null;

public ISVG_IDirectedGraph(ISVG svg, IDirectedGraph graph,
ITranslator trans) {

super(svg, graph);
_trans = trans;
Monitor m = new Monitor();
m.watch(super.constraint,this,"observe");

}

public void observe(OclExpressionChangedEvent e) {
IOclExpression expr = (IOclExpression)e.source();
IObservableEvent oe = (IObservableEvent)e.original_event();
if (OCL.impl((IBoolean)expr.evaluate())) return;
if (! _trans.consistency_manager().is_observing()) return;

11 Although it is believed that it may be possible to implement such functionality, but the task is left as future work.

Automation 119

IMutableCollection col = (IMutableCollection)oe.source();
if (col == graph().vertices() || col == graph().edges()) {

if (oe instanceof AddEvent) {
observe_graph_Add(((AddEvent)oe).new_value());

} else if (oe instanceof RemoveEvent) {
observe_graph_Remove(((RemoveEvent)oe).old_value());

} else {
System.out.println("Received Event: "+e);
throw new RuntimeException(

"Error:: ISVG_IDirectedGraph received unknown event.");
}

} else if (col == svg().owned()) {
if (oe instanceof AddEvent) {

observe_svg_owned_Add(((AddEvent)oe).new_value());
} else if (oe instanceof RemoveEvent) {

observe_svg_owned_Remove(((RemoveEvent)oe).old_value());
} else {

System.out.println("Received Event: "+e);
throw new RuntimeException(

"Error:: ISVG_IDirectedGraph received unknown event.");
}

}
}

void observe_graph_Add(Object added_obj) {
Object new_obj = _trans.translate2To1(added_obj);
if (new_obj instanceof tGroup$Rect$Text)

svg().owned().add(((tGroup$Rect$Text)new_obj).group());
else if (new_obj instanceof tGroup$Line$Text)

svg().owned().add(((tGroup$Line$Text)new_obj).group());
else if (new_obj instanceof IGroup)

svg().owned().add((IGroup)new_obj);
else throw new RuntimeException(

"Error:: unknown translation of "+added_obj+" as "+new_obj);
}

void observe_graph_Remove(Object removed_obj) {
Object obj = _trans.translate2To1(removed_obj);
IGroup g = null;
if (obj instanceof IGroup) g=(IGroup)obj;
if (obj instanceof tGroup$Rect$Text)g = ((tGroup$Rect$Text)obj).group();
if (obj instanceof tGroup$Line$Text)g = ((tGroup$Line$Text)obj).group();
svg().owned().remove(g);

}

void observe_svg_owned_Add(Object added_obj) {
IOclAny new_obj = (IOclAny)_trans.translate1To2(added_obj);
if (new_obj instanceof IVertex)

graph().vertices().add(new_obj);
else if (new_obj instanceof IEdge)

graph().edges().add(new_obj);
else

throw new RuntimeException(
"Error:: ISVG_IDirectedGraph, unknown translation"
+" of "+added_obj+" to "+new_obj);

}

void observe_svg_owned_Remove(Object removed_obj) {
IOclAny obj = (IOclAny)_trans.translate1To2(removed_obj);
if (obj instanceof IVertex)

graph().vertices().remove(obj);
else if (obj instanceof IEdge)

graph().edges().remove(obj);
else

throw new RuntimeException(
"Error:: ISVG_IDirectedGraph, unknown translation"
+" of "+removed_obj+" to "+obj);

}
}

Table 28 – SVG↔↔↔↔DirectedGraph Consistency Mapping Class
The constructor of the mapping class creates a Monitor object that watches for events
fired by the constraint expression and calls the method “observe” on ‘this’ object
when events are received.

Automation 120

The “observe” method contains the actions to be performed as a result of the mapping
constraint being inconsistent. The first two statements extract the original event that
caused the expression to notice a possible change. Following these the expression is
evaluated, if it evaluates to true then there is no need to perform any actions.

The next statement checks with the consistency manager to see if events should be
acted on, if not, then no actions should be executed. This step stops event storms from
being generated by mappings observing changes made by themselves as a result of
actions performed in order to correct the inconsistencies. For example, in this case
adding an object to the graph.vertices collection results in an action to add an element
to the svg.owned collection, which is itself observed by this mapping. Without the
check on the ‘is_observing’ flag, the mapping object would try to perform the actions
for execution when elements are added to the svg.owned collection; which should
only be executed if an external source adds to that collection.

Any actions to change mapped components models should be protected by this flag.
The automatically generated framework sets the flag to false whenever a Generator
‘createXXX’ method is called (resetting it after the call). As the result of executing
one of these create methods is assumed to produce correctly mapped components it is
unnecessary for the mappings to act whilst additional model components are being
generated. It is still necessary however, for the models to remain observable, as there
may be other components (i.e. another translator) observing the generation of new
components (see below, regarding the composition of the
Automata↔DirectedGraph↔SVG chain of translators).

After determining that the consistency mapping object’s actions should be executed,
the code determines the source of the observed event, which in this case is one of the
three collections involved in the constraint – graph.vertices, graph.edges or
svg.owned. Accordingly, a sub-method is called to perform the appropriate actions.

There are two possible event types generated by a collection – AddEvent and
RemoveEvent – both of these events carry a reference to the object added or removed
from the source collection. If the source of the events is either of the graph based
collections then the translation of the added or removed object is added or removed
to/from the svg.owned collection. Correspondingly, the translation of an object added
or removed to/from the svg.owned collection is added or removed from either the
graph.vertices or graph.edges collection.

The implementation of the tGroup$Rect$Text↔Vertex and
tGroup$Line$Text↔Edge mappings simply require the value in the text element to
be mapped to the first label in the list of labels for the Vertex or Edge. This is
achieved using an EquiStringBufferMonitor as in the previous example.

The implementation of the SVG Generator classes is shown in Table 29.
public class svgGenerator

extends AbstractGenerator
{

IsvgBuilder _builder;

private ConsistencyManager _mappings;
public ConsistencyManager consistency_manager() { return _mappings; }
public void setConsistencyManager(IConsistencyManager cm)

{_mappings=(ConsistencyManager)cm;}

public svgGenerator(IsvgBuilder builder, IConsistencyManager mm) {
_builder = builder;
_mappings = (ConsistencyManager)mm;

}

Automation 121

public ISVG createISVG(IDirectedGraph from) {
ISVG to = _builder.buildSVG();
consistency_manager().createMapping(to,from);
return to;

}

public IGroup createIGroup(IVertex from) {
tGroup$Rect$Text to = createtGroup$Rect$Text(from);
return to.group();

}

ILayoutManager _layout=null;
public ILayoutManager layout_manager() {return _layout;}
public void setLayoutManager(ILayoutManager lm) {_layout = lm;}

public tGroup$Rect$Text createtGroup$Rect$Text(IVertex from) {
ISVG parent = (ISVG)consistency_manager().translator()

.translate2To1(from.graph());
IGroup group = _builder.buildGroup();
group.setOwner(parent);
layout_manager().layout(group,parent);
IRect rect = _builder.buildRect();
IText text = _builder.buildText();
layout_manager().layout(rect,group);
layout_manager().layout(text,group);
group.owned().add(rect);
group.owned().add(text);
text.value().setTo((IString)from.labels().at(OCL.Integer(0)));
consistency_manager().createMapping(group,rect,text,from);
return new tGroup$Rect$Text(group,rect,text);

}

public tGroup$Line$Text createtGroup$Line$Text(IEdge from) {
IGroup group = _builder.buildGroup();
ILine line = _builder.buildLine();

line.setStart(_builder.buildPoint());
line.setFinish(_builder.buildPoint());

IText text = _builder.buildText();
group.owned().add(line);
group.owned().add(text);

IGroup start = (IGroup)consistency_manager().translator()
.translate2To1(from.start());

IGroup finish = (IGroup)consistency_manager().translator()
.translate2To1(from.finish());

line.start().setX((IInteger)start.x().add(
start.width().div(OCL.Integer(2))));

line.start().setY((IInteger)start.y().add(
start.height().div(OCL.Integer(2))));

line.finish().setX((IInteger)finish.x().add(
finish.width().div(OCL.Integer(2))));

line.finish().setY((IInteger)finish.y().add(
finish.height().div(OCL.Integer(2))));

text.value().setTo((IString)from.labels().at(OCL.Integer(0)));
consistency_manager().createMapping(group, line, text,from);
return new tGroup$Line$Text(group, line, text);

}
}

Table 29 – SVG Generator Class
To create an SVG from a DirectedGraph, it is simply necessary to build the SVG and
create the mapping. To create a Group from a Vertex, we must create the
Group$Rect$Text tuple from the vertex, and return the group member of that tuple.

Creating a Group$Rect$Text tuple involves building each member of the tuple and
putting the Rect and Text elements into the group. The text value must be set to that
contained in the vertex label list and a mapping between the tuple and the vertex is
then created.

Automation 122

The interesting aspect regarding this part of the translation is the need for additional
information. There is no data stored within the DirectedGraph that indicates how to
layout the graphical components, hence a LayoutManager is required. When a new
graphical element is created, the layout manager is consulted to set the layout of that
component within its parent. (The details of the layout algorithm are not relevant to
this discussion.)

Similarly, to create a Group$Line$Text element from an Edge, the components are
built and combined, the text value is set and the mapping object created. However,
the layout of the line component is handled differently. The start and finish Points of
the line are deduced from the positions of the elements mapped to each end of the
Edge.

The DirectedGraph Generator performs the reverse generation, creating Vertices from
Group$Rect$Text elements and Edges from Group$Line$Text elements. The code is
very similar to that seen already and hence is not included here. The main interesting
aspect is the generation of Edges. To create an Edge from the tuple including a Line,
components must be detected at the start and finish Points of the Line. The Vertices to
which they are mapped are used to set the start and finish of the Edge. Problems can
occur if there is no component at the end of a Line or if there are multiple
components at the end of the line. However, solving these issues is not relevant to the
purpose of this example. One solution would be to indicate to the user that the
addition of this line has caused an invalid situation (perhaps by altering the colour of
the line!).

Translator Composition
The composition of the two translators in this system is made possible due to the
observable qualities of the involved models. Each translator can be considered a
separate system that responds to changes made to either of the translator’s models.

The two translators are joined by a common model. Actions that alter the common
model, executed by one translator, are detected as changes to the common model by
the other translator, which in turn may cause other actions to be executed.

Without care, it can be seen that the two translators could set up an infinite loop, each
reacting to the changes of the other. This problem can be avoided by making use of
the ‘is_observing’ flag, contained in each Consistency Manager. The flag is set to
false before a translator invokes any of the actions contained in a Generator and
should be checked by any code that attempts to alter either model. Thus, when a
translator is involved in performing updates, it effectively switches off its observation
capabilities and consequently the live lock situation caused by the infinite loop
described above cannot occur. The use of this flag also solves the problems of event
storms as discussed in Chapter 5.

6.2.3 DirectedGraph↔↔↔↔Tree Translator

Much of the DirectedGraph↔Tree translator can be generated following the same
process as for the previously described examples.

There is however, one complex issue not covered in the previous examples. This is in
relation to the top-level mapping between DirectedGraph and Tree. This mapping
involves the set of Vertices contained in the DirectedGraph, in order that the root of
the tree can be mapped to an appropriate vertex in the graph.

Automation 123

The relationship between tree-root and vertex is set by selecting a particular vertex
that has no incoming edges. Necessarily, this requires every vertex to be monitored,
so that any change in the number of incoming edges of a vertex can be detected and
the mapping of vertex to root be corrected.

The manually coded translator uses a particular implementation of a Collection that
enables observation of every member of the collection, supporting addition and
removal of members. This enables all members of the ‘graph.vertices’ collection to be
observed. In addition, the directed graph model was extended so that each vertex fired
events indicating that edges had been added or removed. Thus, changes to the number
of incoming edges, of all vertices in the graph, could be monitored.

Currently, the Collection classes defined in the OCL library do not support
observation of all their members; hence, this aspect of the example cannot be
implemented. It is possible to extend the OCL Collection classes so that the required
functionality is supported, but at this time, it is planned as future work.

6.3 Summary
This chapter has demonstrated a semi-automatic approach to implementing a
translator directly from a UML/OCL translator specification. The implementation
approach is illustrated using the Java programming language, although if the
appropriate library support were to be ported, any object-oriented language would be
useable.

The implementation is based on a framework involving an observable OCL library
that is used to detect inconsistency in the mapping constraints. The actions to be
performed, as a result of detecting an inconsistency, must currently be manually
coded. For particular applications of translator, it may be possible to increase the
amount of auto-generated code by analysing the constraints in more detail.

The translator generation scheme presented in this chapter is aimed at generating
‘active’ translators; it creates classes for each mapping relationship and a framework
of classes that manage the mapping relationships. The constraint detection aspects of
the mapping relationships are automatically generated using the observable OCL
library and placeholders are created for entering the actions for responding to
inconsistency.

Examples of the use of the auto-generation have been presented. These illustrate the
mapping from translator specification to translator implementation. A potential item
of future work would be to specify this mapping using the translator specification
technique itself.

The first example (Java↔Tree) illustrates basic use of the automatic translator
generator and shows the framework of Java classes that it generates. The second
example (SVG↔Graph↔Automata) demonstrates use of the translator generator on a
more complex example, which involves one to many mappings and the composition
of two translators. This example also illustrates the use of the UML/OCL technique
for specifying a Visual Language and shows how an editor for that language can be
generated from the specification.

With reference to the examples illustrated, the XXXGenerator Classes are coded with
the assumption that the models are built whilst the translator is operative. They could
be enhanced by extending the generator code to construct the target model from an

Automation 124

already populated source model. This would require the XXXGenerator classes to be
written in a top down manner and would require code that is more complex; however
it would be a useful enhancement to the examples.

Each of the examples discussed in this chapter is included within an Appendix along
with an example illustrating the use of the technique on a problem taken from the
Permabase project (Appendix G).

The next chapter describes an evaluation of the translator implementation approaches
along with an evaluation of the UML/OCL specification technique.

Chapter 7

Evaluation

The purpose of this chapter is to evaluate the proposed translator specification and
implementation techniques with respect to the objectives they are suppose to meet. As
set out in Chapter 1 the objectives of the thesis (paraphrased) are as follows:

1) To investigate whether UML can be used to specify model
translations.

2) To investigate whether such specifications can be used to
automatically generate active translator implementations.

The criteria by which the techniques are evaluated are chosen to test how successfully
they meet these objectives. The specification technique is evaluated on its usability in
the context of specifying translators between object-oriented models. The
implementation technique is evaluated in the context of implementing a given
specification and with respect to implementation related considerations.

The specification and implementation techniques are independently evaluated using a
variety of different criteria that are set out in section 7.2. The section describes each
of the criteria and discusses how they test techniques with respect to the objectives.

One general question to ask, specifically with respect to the specification technique, is
“How easy is it to use?” This of course is a very subjective question and cannot be
quantified. To overcome this difficulty, an evaluation framework of ‘Cognitive
Dimensions’ is used to enable a discussion of the usability of the technique with
reference to a set of standard terms. This framework is introduced in section 7.1 and
is subsequently used as part of the evaluation.

Section 7.3 contains a brief overview and summary of the tasks to which the
techniques have been applied. This outlines the experience of the author, regarding
actual application of the techniques, upon which the evaluation results are based.

Section 7.4 contains the results of or the appropriate discussion surrounding the
application of the evaluation criteria to the proposed specification and implementation
techniques.

7.1 Cognitive Dimensions
Cognitive dimensions are a small set of ‘non-specialist’ terms that capture
psychological aspects of languages and their use. These terms can subsequently be
used as a framework in which to discuss the “usability” of a particular language,
notation, or supporting tool.

The work started in 1989 by Thomas Green with his publication of an approach called
“cognitive dimensions of notations” ([Green_89]). This has evolved into the cognitive

Evaluation 126

dimensions framework, a good description of which can be found in
[Green_Petre_96].

The framework is ‘task-specific’, concentrating on the processes and activities a user
of a language must perform, rather than on the finished product. Any cognitive
language can be described using the dimensions (terms) giving a very high level
description that indicates some major aspects of user activity.

This framework has been used for evaluation by companies such as Microsoft, Bently
Systems and Synquiry Technologies and within a number of academic projects, such
as those documented in [Burnett_etal_00], [Pane_Myers_96], [Britton_Jones_99],
and [Shum_Hammond_94].

There are thirteen terms currently defined, each of which represents a concept that is
orthogonal to each of the other terms. These thirteen terms are described in Table 30.
The descriptions are taken or paraphrased from [Green_Petre_96].

Term Description

Abstraction Gradient What are the minimum and maximum levels of
abstraction? Can fragments be encapsulated?

Closeness of mapping What ‘programming games’ need to be learned?

Consistency When some of the language has been learnt, how much of
the rest can be inferred?

Diffuseness How many symbols or graphic entities are required to
express a meaning?

Error-proneness Does the design of the notation induce ‘careless
mistakes’?

Hard mental operations Are there places where the user needs to resort to fingers
or pencilled annotation to keep track of what is
happening?

Hidden dependencies Is every dependency overtly indicated in both directions?
Is the indication perceptual or only symbolic?

Premature commitment Does the user have to make decisions before they have
the information they need?

Progressive evaluation Can a partially-complete specification be examined to
obtain feed back on “How am I doing”?

Role-expressiveness Can the reader see how each component of a specification
relates to the whole?

Secondary notation Can the user make use of layout, colour, or other cues to
convey extra meaning, beyond the ‘official’ semantics of
the language?

Viscosity How much effort is required to perform a single change?

Visibility Is every part of the specification simultaneously visible
(assuming a large enough display), or is it at least
possible to juxtapose any two parts side-by-side at will? If

Evaluation 127

the specification is dispersed, is it at least possible to
know in what order to read it?

Table 30 – The Thirteen Cognitive Dimensions
The actual value of any one of these dimensions is related to the values of the other
dimensions. For example, changing the Viscosity may require addition or removal of
extra symbols, hence altering the Diffuseness.

It is not essential or necessarily possible to define a precise value for each of these
dimensions, however they give a number of defined points related to usability that
can be discussed in relation to any particular language.

7.2 Evaluation Criteria
The specification and implementation techniques must be evaluated against different
criteria. This section describes the criteria that will be used for the evaluation of each
technique.

7.2.1 For the Specification Technique
The objective relating to the translator specification technique is met by the definition
of the specification technique described in Chapter 4 – A UML-based technique for
specifying translators has been provided. The issues with respect to evaluation are
therefore concerning the usability of this technique and of its technical
expressiveness.

The ability to specify translations between object-oriented models is demonstrated by
the use of the technique with examples. However, its effectiveness (i.e. how
successful/usable it is for providing such specifications) is discussed within the
framework of cognitive dimensions.

To evaluate the usability of the specification technique, it will be examined under
each of the cognitive dimensions presented in section 7.1 above. This should give
some indication as to how easy it is to specify a translator using the technique and
how easy it would be for a user to learn the technique.

It is not possible to get an exact answer to the question of usability; it is a subjective
problem. However, the discussion surrounding the cognitive dimensions will provide
some indication of its usability.

To evaluate the technical expressiveness of the technique (i.e. can one use this
technique to express a translator in any situation or are their limitations to its use?), a
number of techniques could be adopted. Ideally, a formal analysis would be carried
out to determine what could or couldn’t be expressed using this technique, but that
would be beyond the scope of this thesis. Alternatively, this specification technique
could be compared, formally or informally, with other transformation specification
techniques.

Such a comparison could be achieved by specifying a translation mapping between
this technique and another; the alternative techniques discussed within this thesis for
specifying translators are either Graph Grammars (GGs) or Triple Graph Grammars
(TGGs). In order to specify a mapping from the UML/OCL technique into one of
these, their meta-model and semantics must be used.

Evaluation 128

However, no meta-model has been formally defined for the Graph Transformation
based techniques. Therefore, the approach used by this evaluation is an informal
discussion comparing aspects of the UML/OCL technique with aspects of the GG and
TGG techniques.

7.2.2 Implementations
Evaluation of the implementation technique can be slightly more objective. There are
still subjective issues, such as “how easy is it to generate an implementation from the
specification?” However, there are also attributes that can be precisely evaluated and
compared, such as the size of the implementation or how memory hungry it is.

The objective relating to a translator implementation approach can be divided into
five requirements, as follows:

1. The requirement for a translator implementation approach,
2. The requirement that the implementation is possible from a specification given

using the defined translator specification technique,
3. The requirement that the implementation of the translator “actively” performs

the translation – i.e. that the target model is updated whenever the source model
is changed,

4. The requirement that the active translation occurs in both directions; i.e. that
changes to either model cause the other to be updated.

5. The requirement that such implementations can be at least partially automated.
Requirements 1 and 2 are met by the content of Chapter 5. The chapter discusses two
approaches to implementing a translator and each approach is discussed in the context
of a UML/OCL specification of the translator.

The requirement for an ‘active’ translator implementation (3) is met by the Observer-
based technique proposed in Chapter 5 and the dual way architecture of the mapping
classes/objects provides the functionality of translating in both directions
(requirement 4).

Chapter 6 demonstrates a semi-automatic approach to providing the observer-based
implementation, thus meeting requirement 5.

The examples show the use of the implementation techniques. What is not as obvious
is how successful or efficient the implementations are. That is the purpose of the
evaluation criteria set out below.

7.2.3 Evaluation Criteria
The first of the criteria is the subjective issue of the Ease of implementation. This is
the most subjective of the criteria; under this topic the evaluation will discuss how
easy or how obvious it is to provide an implementation given a specification of the
proposed form.

Objective criteria give quantifiable measures relating to the efficiency of the
translator implementation technique. A number of characteristics of the translator and
model specifications affect the objective measures of the translator performance.
These are as follows:

• The size of the (source) model instance; i.e. the number of objects that form
part of the particular model being translated.

Evaluation 129

• The size of the (source and destination) model specification; i.e. the number of
classes that form part of the model specifications.

• The number of mapping specifications between the two models.
• The amount of inter-connectivity between the models occurring as a result of

the mappings. This is related to the number of attributes involved in the
constraints on each mapping; each attribute involved requires actions to be
taken as a result of changes and this increases the inter-connectivity between
models.

The evaluation will discuss the measures in relation to the translator implementation
techniques and look at how the values would change with respect to these
characteristics.

The objective measures that will be used are:
1. Memory usage. How much additional memory is used by invoking the

translator and how is the amount of memory affected by the size of the model(s)
being translated.

2. Size of implementation. How big is the implementation of the translator and
how is the size affected by the size of the models? Measured by the number of
lines of code required to implement it, this gives a measure of complexity,
implying that the bigger the implementation, the more complex the
implementation. This is not always a good indication of complexity,
implementations can be simple and long, but it gives a quantifiable measure
that can be used as part of a comparison.

3. Speed of translation. How long does it take for a model to be translated and
how is the speed affected by the size of the model(s).

7.3 Use of the technique
The specification and implementation techniques have been used by the author to
specify and implement a number of example translators. These are summarised in the
following subsections. The observer-based implementation technique has also been
used by D. Lewin as part of his MSc project ([Lewin_00]).

7.3.1 DirectedGraph ↔↔↔↔ Tree
A translator for converting between directed graph and tree structures has been
specified and implemented as an example to illustrate the techniques throughout
Chapters 4 and 5 of this thesis.

7.3.2 UML Actions ↔↔↔↔ RiscSim
One of the performance engines for the Permabase project is the RiscSim, Petri-Net
based, engine. A translator from the Permabase central repository database (CMDS)
into a RiscSim model was built as part of the project.

The CMDS included the specification of the behaviour of the modelled system. At
the time of the project, the UML meta-model did not include suitable components for
specifying the behaviour of the system. In order to store the required information a
bespoke extension to the meta-model was developed specifically for use within the
Permabase project.

Evaluation 130

During the time since the project terminated, the OMG has received various
submissions in response to its RFP on UML Action Semantics ([OMG_98nov]). The
eventual adoption by the OMG of one of these into the UML would be a preferable
substitution for the extension used by Permabase.

A translator has been specified and implemented between part of one of the Action
Semantics Submissions ([OMG_00aug]) and the RiscSim Performance engine
([Linington_99apr]). This illustrates the suitability of the techniques proposed by this
thesis as a solution to the Permabase project requirements (see Appendix G).

7.3.3 UML Diagram Editors
Two different UML diagram editors have been implemented, making use of the
proposed translator techniques. The diagrams are the UML Class and Sequence
diagrams.

A diagram editor can be viewed as a two-stage translator, translating between
concrete syntax and spatial relationship model and secondly between spatial
relationship model and abstract syntax model (see Figure 83).

Screen
(Concrete Syntax)

Spatial Relationship
Model (SRM)Abstract Syntax Model

render

scan
parse /
unparse

Figure 83 – Translator Architecture for a Visual Language
This two-stage translator architecture can be used to implement editors for many
visual languages. The UML diagrams use parts of the UML meta-model as their
abstract syntax models; the concrete syntax is formed from basic drawing
components such as lines, arrows, boxes, or as defined by the components of
standards like Precision Graphics Markup Language (PGML, [Adobe_98apr]) or
Scalable Vector Graphics (SVG, [W3C_00aug]).

The SRM for simple class diagrams is a basic directed graph, as is the SRM for many
other visual languages (such as State Machines, see below). However, to support the
more complex parts of the class diagram notation (e.g. association classes) a more
complex SRM is required that supports links between classes (vertices) and
associations (edges).

The SRM for Sequence Diagrams is not a directed graph; however, a version of
directed graphs with a small extension can be used. The vertical (life) lines of the
objects forming the diagram behave in part like vertices and the message arrows as
edges in a directed graph. However, the order in which the message-edges are
connected to the object-vertices is of primary significance; it is the point of the
diagram to show this order. Thus an extended from of graph model is required, which
places an ordering on the collection of edges connected to the vertex.

7.3.4 Finite State Automata B ased Model Checker
The translator based visual language architecture has been used to create a finite state
automaton (variation of a state machine) editor as part of a project documented in

Evaluation 131

[Bryans_etal_00jan] and [Bryans_etal_99nov], investigating model-checking
algorithms for such structures.

The editor forms part of a working tool that demonstrates the use of the model-
checking algorithm. This translator has been used as an example to demonstrate the
automatic implementation approach, in Chapter 6 (and see Appendix F).

7.3.5 Java Syntax Aware Editor
In addition to applying the approach to visual language editors, some investigation
has been carried out into the use of the same style of architecture for textual
languages. The concrete syntax and spatial relationship models for textual languages
are respectively textual characters and an ordered sequence of tokens (groups of
characters). The variation occurs in translating the token list into the abstract syntax
model.

A small example has been implemented that maps a text document onto part of a Java
abstract syntax model. The main issue involved with this example, is the specification
of the mapping between a sequential list of tokens and a tree like abstract syntax
model. This problem is general to text editors (implemented in this fashion) for many
different languages.

7.3.6 Permabase Translators
As documented in Chapter 3, many translators were implemented as part of the
Permabase project. These all used variations on the Visitor based translator
implementation approach.

As stated, a specification technique was not used. However, the implementation of
these translators provided the author with much of the background experience that
provoked the requirements for an alternative approach.

Appendix G contains a specification of a segment of a translator that could form part
of the Permabase tool. The specification defines part of the translation from a UML
model of the system behaviour into a RiscSim (Petri-Net) based performance model
(as discussed in secion 7.3.2).

7.4 Results
This subsection reports the results of evaluating the translator specification and
implementation techniques according to the criteria outlined in section 7.2.

7.4.1 Evaluation of the Specifi cation Technique
The following subsections discuss the proposed translator specification technique
with respect to each of the cognitive dimensions and compare the technique with the
GG and TGG alternatives.

Much of the usability of the translator specification technique is dependent on the
usability of UML itself and hence the evaluation cannot avoid discussing the UML.
However, an attempt is made to keep a distinction between the evaluation of the
proposed specification technique and the associated discussion of the UML and OCL
languages.

Evaluation 132

Some of the dimensions are more suited to the evaluation of a programming language
or editor tool supporting a particular language. Where this is the case, it is indicated
as such, and a limited discussion is included with respect to this evaluation.

7.4.1.1 Abstraction Gradient
An abstraction is a means of grouping one or more elements so that they can be
treated as a single element. [Green_Petre_96] defines three classifications of
abstraction gradient that can be applied to a language – abstraction-hating,
abstraction-tolerant, or abstraction-hungry. These are based on the quantity of initial
abstractions in the language and its readiness to desire or accept others.

The UML language falls into the classification of abstraction-tolerant. There are a
number of initial abstraction mechanisms such as Package and Generalisation;
however, these do not have to be used and a modeller using UML need not know
about them in order to use the language. There are also higher order abstraction
mechanisms in UML (e.g. stereotypes and profiles) that can be used to extend the
modelling language itself possibly for creating other abstraction mechanisms.

The UML/OCL specification technique is also classified as abstraction-tolerant; it has
one additional abstraction mechanism, the «mapped_to» operator added to OCL.
This operator is used to refer to other mappings within the specification as a whole.
Additionally there is a version of the operator used to relate two collections of model
elements rather than forcing the specification of the relationship between every
element in the collections (described in Chapter 4, subsection 4.3.8). Additional
abstractions could also be added using the standard UML mechanisms.

The graph transformation techniques do not have abstraction mechanisms; there is no
means to compose a transformation from simpler ones. A standard textual grammar
can include in the RHS of a grammar rule a reference to another rule that represents
an abstraction of a set of components. This issue is addressed in [Hoffmann_99] and
the authors introduce a notion of transformation procedures that enable the
composition of transformation rules.

7.4.1.2 Closeness of Mapping
This dimension is centred around the assertion that “the closer the language world is
to the problem worlds, the easier the problem solving ought to be.” Ideally, things in
the problem domain are mapped onto constructs in the language domain; it is
generally accepted that textual languages are a long way from this, where as
visual/graphical languages are surprisingly effective.

The proposed translator specification technique has both textual and visual elements
in its use of the visual syntax of UML and the textual syntax of OCL.

The object-oriented approach of UML is presented as a modelling technique for
representing ‘objects’ in the problem space and hence can be considered as having a
high ‘closeness to mapping’. This is increased by the stereotyping feature of UML
that enables the use of alternative icons that provide an even closer mapping to the
problem domain.

OCL suffers from the same kinds of problems as any other mathematically based and
textual language; its textual syntax does not provide any closeness to a problem
domain. The designers of OCL, however, have tried to improve this by the use of

Evaluation 133

meaningful words instead of unusual textual symbols to represent the functions and
operators; this does give it a higher rating than languages such as Z.

With respect to the translator specification technique, the problem domain is the
requirement for a mapping between components from each model. The style of
specification can be considered as close to the concept it is supposed to express. It
makes use of an association (syntactically a connecting line) that links the related
components, thus providing a clear visual indication that the two mapped components
are related.

The use of OCL to elaborate on the details of the mapping is not a ‘close mapping’; it
is not easy to see from the textual syntax what the constraints on the mapping are
intended to be. Possibly the use of a more graphical constraint language (such as
Constraint Diagrams [Gil_etal_99]) would improve this.

From the perspective of defining a mapping between models, the standard Graph
Transformation approach cannot be considered as having a close mapping. There is
no distinction made between the models, and no clear indication that such a
specification contains a mapping between components from each model.

The TGG approach is an improvement, keeping the models separate, and the third
correspondence grammar does convey an impression of relating two components. The
use of a pair of numbers to specify the related components is a close mapping to the
mathematical notation for a member of a relation, but it does not graphically show the
connections between related components. Hence, TGGs still do not score very highly
on the closeness to mapping scale, but are higher than standard Graph
Transformations.

7.4.1.3 Consistency
This is concerned with the relationship between the different language concepts and
constructs; i.e. if a person knows some of the language, how much of the rest can be
guessed?

This evaluation will not delve into the issues of consistency within the UML and
OCL languages or the inter-consistency between the two. Rather, it will look at how
consistent the additional constructs, for specifying translators, are with respect to the
existing constructs and their original use.

There are two aspects to the consistency of the translator specification technique, its
consistency with UML and its consistency with OCL. From the UML perspective, the
use of the stereotyped association is quite logical; although its additional semantics
imply more than the standard association, it is still specifying a type of associative
relationship between the mapped model components.

The additions to OCL are not, however, quite so consistent with the standard OCL
syntax. The use of the «mapped_to» operator is inconsistent with the majority of the
functions defined in OCL, which use a method call style of syntax :

<expression>.<function>(<expression>)
However, there are other binary operators (such as and, or, implies) that use the
similar infix syntax of:

<expression> <operator> <expression>

The actual syntax of the «mapped_to» operator is also not entirely consistent with
OCL syntax. The use of the guillemets (‘«’ and ‘»’) is inconsistent with other parts of

Evaluation 134

OCL and perhaps using the words without them (i.e. ‘mapped_to’ or ‘mappedto’)
would be more consistent. However, the use of the guillemets is consistent with the
declaration of a mapping in UML. The mapping is defined using a stereotyped
association that is marked with the same (guillemeted) word/phrase and its use in an
OCL statement enables it to be easily associated with the UML stereotype.

The alternative syntax (‘↔’) suggested for the operator is definitely not consistent
with the OCL. The use of such a symbol is against one of the principles of OCL,
which ensures that all OCL statements are expressible using standard ASCII
characters.

The Graph Transformation approach to specifying a model translation is completely
consistent; no additional notation or concepts are required. The TGG approach, on the
other hand, is less consistent. The third (correspondence) grammar is interpreted
differently to traditional grammars.

7.4.1.4 Diffuseness
The Diffuseness or Terseness of a language defines the number of symbols required
to express a sentence. Different languages will be more or less terse depending on
other factors of the languages, closeness of mapping for example. Visual languages
inherently have a lower diffuseness as they make use of the positions of the symbols
to carry extra information, hence requiring less symbols overall.

Very diffuse languages can be hard to understand due to being overwhelmed by
symbols, on the other hand, a language which is too terse causes difficulties for a
reader to distinguish between different sentences without very close examination.

This dimension is intended to measure the diffuseness of a language independently of
these other factors. The number of symbols needed to express a problem solution is
roughly quantifiable for any particular example. To fairly compare this value between
different techniques, a standard defining what constitutes a symbol must be
determined.

For this evaluation the graphical components, box and line are treated as basic
symbols of the specifications and each word or other text symbol are considered as
distinct symbols. The exact definition of what is counted as a symbol for the purpose
of this evaluation is included in Appendix A.

Using this measure to evaluate the DirectedGraph ↔ Tree example, the values for
each of the UML/OCL, Graph Transformation and TGG techniques are as shown in
Table 31.

Technique Total
Symbols

Graphical
Symbols

Textual
Words/Symbols

UML/OCL (translator only) 127 25 102

UML/OCL (translator + models) 164 37 127

TGG (correspondence graph) 46 7 39

TGG (All three graphs) 147 35 112

Graph Transformation
(transformation graphs)

176 71 105

Evaluation 135

Graph Transformation
(transformation graphs + model
graphs)

261 99 162

Table 31 – Diffuseness of DirectedGraph ↔↔↔↔ Tree Example
The Graph Transformation technique does not require the additional separate
specification of the models; the models and translation are specified as a single
grammar. However, statistics for the Graph Transformation technique are provided
both inclusive of separate grammars for the models and exclusive of them.

By looking simply at the specification of the translator, the TGG approach clearly
gives the most concise specification, with the UML/OCL and GT approaches being
comparable.

However, if we include the specification of the models as well, each technique
requires a similar number of symbols. The GT approach performs worst, as it
duplicates the definition of the models; the extra model specifications are not strictly
required in order to interpret the translator specification as they are with the other two
techniques.

An interesting observation can be made by comparing the combination of model and
translator specifications for the UML/OCL and TGG technique along with the
translator only values for the GT technique (rows two, four and five of Table 31).

The values are very close, implying that the diffuseness of each technique is very
similar.

The GT technique does use twice the number of graphical symbols, but the
specification is split into two parts, one for each direction, hence requiring duplication
(within the translator specifications as well as duplicating the specification of the
models).

The OCL constraints vastly increase the number of symbols required for the
UML/OCL technique. The textual nature of the language does not provide a concise
specification and is the main contributor to the diffuseness of the UML/OCL
technique.

7.4.1.5 Error-proneness
There is a difference between errors that are caused by making a ‘silly mistake’ or a
slip and errors that are an incorrect specification, i.e. specifying something you didn’t
mean to. This dimension is concerned with the ease of which ‘silly mistakes’ are
made.

In general textual languages are very prone to this type of silly mistake; for example,
correct pairing of braces, spelling mistakes, etc. Whereas visual languages tend to
avoid these problems by, for example, using a single icon to represent a structure and
not requiring the user to separately enter the end position (i.e. the closing brace).
Mistakes in a visual language, such as drawing a line to the wrong box, are more
easily detected than mistakes such as the pairing of braces.

Neither the UML, Graph Transformation, or TGG techniques are particularly prone to
these mistakes. The OCL however, due to its textual nature does suffer from the
problem; particularly with respect to pairing braces correctly in long constraints.

Evaluation 136

The UML/OCL translator specification technique often requires long constraints to
specify the mappings and hence suffers from a high error-proneness rating.

7.4.1.6 Hard mental operations
It is very easy to write an ambiguous sentence that is grammatically and semantically
correct, but is, nevertheless, very difficult to understand. The authors of
[Green_Petre_96] use the following example that nicely indicates the problem:

“Unless it is not the case that the lawn-mower is not in the shed, or if it
is the case that the oil is not in the tool-box and the key is not on its
hook, you will not need to cut the grass.…”

To understand what exactly is meant by this statement is a ‘hard mental operation’;
this is fine for word games, but is not desired in a useable design or programming
language.

Two issue that contribute towards hard mental operations in a language:
• bad notations, i.e. is the notation a good way of expressing the concept; and
• combining two or three (badly notated) concepts, which vastly increases the

difficulty of understanding.
A good test is to look at the combination of two or three constructs and ask how
comprehensible such a sentence is; and secondly to determine if there is an alternative
way of expressing that sentence (it may just be a hard idea to grasp).

This evaluation will not address the issues of whether or not the UML and OCL have
adopted good or bad notations; that would be a controversial issue that is not the
purpose of the evaluation. Rather it is interested in whether or not the translator
specification technique, that uses these notations, involves hard mental operations.

The UML part of the notation is straightforward; the association clearly defines which
components are involved in the mapping relationship. The OCL part however, is less
obvious. An experienced OCL user would find the specifications easier to read, but
may still experience some ‘hard mental operations’ with respect to the combination of
multiple mapping relationships.

The mappings can be (effectively) nested by using the «mapped_to» operator, which
states that a mapping relationship must exist between the components on each side. In
such specifications it can be complex to remember what constraints have been
specified on the referred to mapping and what must be additionally specified in this
mapping. This gets worse with multiple levels of reference or when more than one
mapping is referred to.

Another factor that affects whether or not a language involves hard mental operations
is the past experience of the user and whether or not the user can adopt the correct
‘mind set’ for using the language. A designer who has been used to programming in
object-oriented languages will probably find UML modelling fairly natural, whereas,
a functional programmer is likely to find it harder.

This is not mentioned in [Green_Petre_96] as a factor to consider, but from the
perspective of this thesis, it is particularly important. The objectives of the translator
specification technique require it to be applicable to object-oriented models and are
thus aimed at a community that is used to object-oriented design. Consequently, the
UML/OCL solution that uses object-oriented concepts is likely to be easier for the
user community to understand than the Graph Grammar based techniques.

Evaluation 137

7.4.1.7 Hidden dependencies
A hidden dependency is a relationship between two components that is not fully
visible.

Within the UML/OCL translator specification technique there are hidden
dependencies between the mapping specifications when one mapping refers to
another as part of the constraint; the referred to mapping does not indicate (‘know’)
that it is referred to.

Also, the mapping relationships are hidden from the model specifications. This is
actually part of the requirement, that the model components do not have to be altered
in order to form part of the mapping specification. However, it does mean that if they
are changed, the mapping specification may no longer be valid and there is nothing to
indicate to the user that the mapping must be updated when the model components
are changed.

The same is true for the TGG approach, where the correspondence grammar may
need updating as a result of changing the model grammars. The graph transformation
approach does not have these dependencies hidden, in fact they are explicitly used as
part of the mechanism for forming the translator specification. However, they are
considered a drawback of the technique that clutters up the specification.

7.4.1.8 Premature commitment
This dimension is concerned with the amount of ‘look-ahead’ necessary whilst using
the language. Typically, visual languages based on boxes and lines have less
commitment to the creation order than text based languages, though some look-ahead
problems can occur. [Green_Petre_96] identifies four forms of commitment as
follows:

1. Commitment to layout – Does the user need to imagine (sketch on paper) the
whole sentence before starting in order to achieve a reasonable layout?

2. Commitment to connections – A particular aspect of visual language layout is
minimising cross over of connection lines.

3. Commitment to order of creation – Does the order in which constructs are
created (‘placed on the page’) imply a particular semantics which is
subsequently fixed in relation to the original creation order?

4. Commitment to choice of construct – Can a user change a construct into a
different one after it has been created; i.e. changing a while loop into a repeat-
until?

Both UML and the GG based techniques suffer from these to a certain degree,
however good tool support for the language can minimise these problems.

Specifically with respect to translator specifications, the UML/OCL technique
involves the ‘mental operations’ of looking ahead to determine which constraints to
place on a certain mapping and which to place on sub-mappings that are referred to
using the «mapped_to» operator.

7.4.1.9 Progressive evaluation
With respect to a programming language, progressive evaluation is the ability to
execute a partially written program; this is often achieved by using procedure or
function ‘stubs’. Green and Petre assert that it is essential for novices to be able to

Evaluation 138

progressively evaluate their “sentences” and although experts can live without it, they
find it useful.

This dimension is not applicable to the specification techniques in themselves; it must
be applied to a tool that supports writing specifications in this notation. This
dimension can subsequently refer to the ability to see the specification, as it is written
(rather than the very old fashioned command-driven approach to producing graphical
diagrams). This dimension can also be applied to a tool that supports evaluation of a
specification, in which case one can ask whether or not a partial specification can be
evaluated.

Partial evaluation of a UML/OCL translator specification depends on whether or not
basic UML and OCL expressions can be evaluated. If evaluation of UML and OCL is
possible, then it is quite possible, given two object models, to state whether the
constraints forming part of a translator specification are invalidated or not.

7.4.1.10 Role-expressiveness
This dimension is intended to describe how easy it is to answer a question about a
language expression such as “what is this bit for?” It addresses the issue of
readability, how easy is it for someone, who did not write the expression, to
understand what is meant by it. Within textual programming languages, it is generally
accepted that this can be enhanced by the use of meaningful identifier names, well-
structured modularity, and secondary notations.

Similar enhancements are equally application to visual languages and can be applied
to UML specifications. The translator specification technique is as expressive as the
UML and OCL languages that it uses.

7.4.1.11 Secondary notation
A secondary notation is one that can be used by the author of a language expression
to add information that does not form part of the actual language semantics. The most
common forms are the use of comments and indentation (layout for 2D languages)
styles in programming languages.

UML and OCL both provide means for writing comments. They are particularly
valuable with respect to the translator specification technique to aid the explanation of
the constraints on the mappings.

The layout of the mapping specifications is useful for grouping the components of
each model to aid the visual indication of two sides of the mapping.

The lack of standard notation for Graph Grammar based techniques makes them
easily extendable with any additional notation that helps explain the meaning of the
specifications.

7.4.1.12 Viscosity
Viscosity is the resistance to local change of the language, i.e. how easy is it to
change something in an expression. This can of course be vastly aided by good tool
support, for example treating the connection lines of a box and line language like
rubber bands rather than having to explicitly move their ends. This can however
increase the amount of premature commitment required, such tools normally require
the two end of the rubber band to exist before the link is created.

Evaluation 139

Moving away from the characteristics of tool support, the viscosity is heavily
dependent upon the type of change being made. If one of the components at the end
of a mapping relationship is changed for an entirely different one, many knock-on
changes to the constraints will likely be required including possibly a complete
rewrite. However, in comparison, changing the name of an attribute may only require
a simple textual change in the constraint.

Green and Petre illustrate an evaluation and comparison under this dimension by
timing how long it takes to make a change to a particular example. This approach
cannot be taken here, as a supporting tool does not exist.

Considering these issues, no conclusive evaluation regarding the viscosity of the
UML/OCL translator specification technique can be easily carried out, independently
of a tool that supports it. It may be possible to count the number of changes required
when implemented by hand, for a particular example, and then calculate which could
be ignored due to automation (e.g. global search and replace). However, some
changes are heavily dependent on the complexity of tool support provided. For
instance, the number of changes can be affected by the level of support for automatic
layout, ranging across:

• none (the specification is drawn in a basic drawing editor);
• basic support for retaining connecting lines when nodes are moved;
• full scale layout of the whole specification.

7.4.1.13 Visibility
This last dimension addresses the issue of being able to ‘see’ a specification without
significant amounts of cognitive work. In particular, can two or more parts of the
specification be viewed at the same time, for comparison?

This dimension is also heavily affected by tool support; ideally, given a large enough
page a specification in any of the discussed approaches could be viewed in its
entirety.

Within limits that are more realistic, the ability to view multiple parts of a
specification simultaneously can be aided by the ability to break up the specification
in to small self contained parts. This would need to be supported by a tool for finding
individual parts in a large specification.

The UML/OCL technique can be split into individual mapping relationships and both
Grammar based approaches can be split into individual rules. Hence, the visibility
rating of the techniques do not show significant differences.

7.4.1.14 Other Issues
It is important within the specification of a mapping constraint to define what is not a
valid mapping as well as what is a valid mapping. This becomes more important
when using the specification to provide an implementation, as it aids the
determination of what components to generate in order to create a valid target
component or set of components.

7.4.2 Evaluation of the Implementation Technique
The evaluation of the implementation technique starts with the discussions based on
the subjective ease of implementation and is followed by a discussion on each of the
objective measures.

Evaluation 140

7.4.2.1 Ease of Implementation
As with any other task, creating your first translator implementation is naturally
harder than your second, or third, etc. However, it is possible to look at the
implementation process and determine how much is a trivial filling out of
automatically generated templates or of following a straight forward process; against
how much, translator specific, thought processing is required on behalf of the
implementor.

The implementation template for the visitor-based approach is essentially a visitor to
the source model; the process requires the visit methods to be filled out with the
target model generation code. The details of each visit method must be deduced from
the nature of the particular constraints relating to the model component being visited.

The manual approach to generating the implementation of the observer-based
approach is described in Chapter 5. It involves some analysis of the constraints for
each mapping relationship that determines which attributes (if altered) will affect the
mappings constraint. This information is used to create a template of ‘observe’
methods that must be filled in with actions to correct the mapping or indicate its
invalidity.

The implementation process can be vastly eased by using the automatic generation
tool and observable OCL library as described in Chapter 6. Using these tools and
technique, the manual contribution to providing an active translator implementation is
reduced to filling in placeholders for the consistency mapping actions and the code
for creating mapped objects from each other in the XXXGenerator classes.

The process of converting constraints into either generation code for the visitor-based
translator or actions for the observer-based implementation has not yet been analysed
sufficiently to form a standard (or automatic) implementation algorithm (see sections
on future work).

The implementation process for either technique is non-trivial. Although the
templates aid the implementation process, without a standard algorithm or set of
heuristics that define the process explicitly, the complexity of the process is
approximately proportional to the complexity of the constraints involved in the
mapping specification.

7.4.2.2 Translation Speed
A direct comparison of this measure between the two implementation techniques is
not possible due to the inherent differences between the techniques. I.e. it is an
objective of the Observer-based technique that the speed be reduced to as close to
instantaneous as possible.

The visitor-based approach requires a whole model as input and will take an amount
of time to translate it that is proportional to the size of the model.

The observer-based approach builds the target model whilst a source model is being
constructed, the time to create a translation is therefore ‘zero’ time, as soon as the
source model is built, so too is the target model. To be exact, the time to completion
of the target model, is the time taken to execute the actions resulting from observing
the last change to the source model.

The quantity of these actions will depend on the complexity of the constraint they are
attempting to validate as a result of the change. It is therefore essential to keep the

Evaluation 141

complexity of the constraints to a minimum. This is primarily achieved by specifying
mappings between as few components as possible – ideally between only one from
each model.

Within a single threaded environment, the translation time will also be increased by
creating ‘chains’ of translators that propagate an event across a number of models.
This will require actions to be carried out that update each model affected. Use of
multiple threads can reduce the ‘apparent’ time with respect to updating a single
model, but introduces the problems of concurrency (discussed in Chapter 5).

7.4.2.3 Implementation Size
This can be measured in terms of lines of code and a comparison can be made. Table
32 shows the number of lines of code for each of the techniques, for a couple of
different examples. More examples would be ideal, but at this point in time only these
two translators have been implemented using all approaches.

Auto-Generated ObserverTranslator Visitor Observer

Total Manual Contribution

DirectedGraph↔Tree ~100 ~300 ~400 ~100

UMLAction↔RiscSim ~100 ~200 ~350 ~100

Table 32 – Number of Lines of Code to Implement the Translator
The figures in this table show the approximate number of lines of code required to
implement two different translator examples using each of the implementation
techniques. The values are calculated for the visitor-based approach by adding
together the values for the translator in each direction. The observer-based values are
calculated from the sum of the values for each mapping class. The values for the
Auto-generated code are split into two parts, the total number of lines of code making
up the example and the number of lines that were added manually12.

If this small sample is representative of the approaches in general we can see that the
Observer based technique requires an implementation that is 2 to 4 times the size of
the visitor based technique. The automatic approach creates even more lines of code;
however, the potion of that code that has to be manually written is much smaller,
comparable with the visitor based implementation.

The automatic support enables the manual effort to be focused on to the difficult parts
of the problem. The parts of the implementation that are simply repetition of a
template, using different names, are automatically generated; and the constraint
evaluation code is carried out by the supporting library.

7.4.2.4 Memory usage
Obviously, this is proportional to the size of the models being translated, but for any
one particular model, the difference in memory usage between the two translator
implementation approaches is of interest.

One significant difference is the duration for which memory is used. The Visitor-
based approach needs only to use extra memory, above that used to store the models,

12 The figures, for the auto-generated code, are based on generating an implementation with the assumption that the OCL library
supports the required functionality, see Chapter 6.

Evaluation 142

when the translation process is executing. Secondly, the memory used by the
translator itself is fixed in size; it does not vary with the size of model translated.

The observer-based implementation, requires additional memory, used by the
translator objects, continuously, i.e. the memory for storing the mapping objects. The
amount of this memory is proportional to the size of the models; mapping objects are
required for each group of model objects involved in each of the mappings.

7.4.2.5 Amount of Support
One of the requirements of the implementation approaches was to necessitate
minimal changes to the implementation of the source and target models in order to
support the translator implementation.

In addition to the size of the translator implementation, it is important to consider the
amount of additional code that it is required to add to the model implementations in
order to support each of the implementation approaches.

The visitor-based approach requires each model component to be visitable. This
requires five lines of code to be added to each model component class (as shown in
Table 33). Plus the implementation of a model specific visitor interface, the size of
which is proportional to the number of component classes in the model.

import library.IVisitable;
...
class X
...
implements IVisitable

{
...
public void accept(IVisitor visitor) {

((IModelVisitor)visitor).visit(this);
}

...
}

Table 33 – Additional Model Code for the Visitor-Based Implementation
Each model class must implement the IVisitable interface by casting the passed
visitor object into the appropriate model visitor object and calling the visit method on
it for this particular class.

The observer-based approach requires the addition of one fixed line, plus an
additional two lines for every observable attribute of the model object or a change to
the implementation class of collection attributes. An example is shown in Table 34.

import library.observable.*;
...
class X
extends ObservableSupport
...

{
...
private Object _attribute1;
public Object attribute1() {return _attribute1;}
public void setAttribute(Object o) {

Object old = _attribute1;
_attribute1 = o;
fire(new ChangeEvent(this, “attribute1”, old, o));

}
...
private Collection _collection1 = Adapter.collection(new Vector());
public Collection collection() { return _collection; };

...
}

Evaluation 143

Table 34 – Additional Model Code for the Observer-Based Implementation
Each class must extend the ObservableSupport class that is provided by the
supporting library (or implement the IObservable interface in a similar fashion).
Subsequently any modifier (mutator) methods must fire an event indicating the
change made to the attribute. Collection based attributes can be implemented using
the adapter provided by the library, which forms an appropriate observable collection.
The automated approach to generating the observer-based translators requires slightly
different classes to be used, but essentially perform the same tasks and must be used
in the same manner.

In addition to these changes to the model classes, the use of the additional library
components should be considered, although they don’t directly cause a significant
number of changes to the model components.

It is quite feasible to automate the process of adding the additional code required by
either of the implementation techniques, provided a standard implementation pattern
is used for defining the basic model components. Such a generator has been
implemented, which provides an appropriately observable implementation of a model
from a definition in UML encoded as an XMI file.

7.5 Summary
This chapter has provided a discursive evaluation of the translator specification and
implementation techniques proposed by the thesis.

7.5.1 Specification Technique
The specification technique has been evaluated with respect to a number of cognitive
dimensions, each of which addresses a particular aspect of the usability of a language.
The evaluation has used these dimensions to provide a framework for the evaluation
discussing the proposed use of and extensions to UML and OCL in the context of the
translator specifications. Where appropriate, a comparison has been made with the
Graph Transformation and Triple Graph Grammar approaches.

The results of the discussion within this framework are summarised in Table 35.

Cognitive Dimension Evaluation Summary

Abstraction Gradient The UML/OCL technique is abstraction-tolerant; the
mechanisms of UML and the «mapped_to» operator
provide some abstraction mechanisms.

The Graph Grammar based approaches do not make use
of abstractions.

Closeness of mapping The use of the «mapped_to» association stereotype
within the UML/OCL technique provides a ‘close
mapping’ to the concept it represents. The textual OCL
constraints do not give a close mapping, although the two
sided «mapped_to» operator does imply its two sided
meaning.

The GG approaches do not give a close mapping, though
the TGG approach is an improvement over basic Graph

Evaluation 144

Transformation rules.

Consistency The «mapped_to» stereotype is consistent with UML.
The use of the binary «mapped_to» operator is less
consistent with OCL, although it does have a few similar
operators.

The GT and TGG approaches are consistent with other
GG usage.

Diffuseness The TGG approach gives the most concise specification,
although the quantity of graphical symbols is comparable
with the UML/OCL technique.

The OCL constraints do not provide a concise
specification and are the main cause of the diffuseness of
the UML/OCL technique.

The Graph Transformation approach is the least concise.

Error-proneness The use of the textual OCL language causes the
UML/OCL technique to be highly error-prone; it is easy
to make ‘silly mistakes’ when writing (necessarily) long
OCL constraints.

Hard mental operations The UML part of the proposed approach is
straightforward, however the OCL constraints and the
abstractions using the «mapped_to» operator can cause
some ‘hard mental operations’.

Even so, the UML/OCL approach would be easier to use
within an object-oriented domain than one of the GG
based techniques.

Hidden dependencies Both the TGG and UML/OCL approaches involve hidden
dependencies, where as the GT approach does not.

These hidden dependencies are intentionally included to
de-couple the model definitions from the translator
definitions and to reduce the ‘clutter’ within a
specification.

Premature commitment This primarily depends on the type of tool support for a
language and is less relevant to this evaluation. However,
a certain amount of ‘look-ahead’ is required with the use
of the «mapped_to» operator.

Progressive evaluation This is dependent on tool support for the languages.

Role-expressiveness The expressiveness of the UML/OCL technique is
dependent on the expressiveness of the languages
themselves. Sensible use of class, role and attributes
names can enhance it.

Secondary notation Both UML and OCL provide means to ‘comment’ the
expressions; this is particularly useful in aiding the
understanding of some mappings. Layout is also helpful.

Evaluation 145

The lack of standard notation for the GG based
techniques means that effectively any ‘secondary’
notation can be added.

Viscosity This is dependent on tool support.

Visibility This is heavily affected by tool support, however
theoretically the UML/OCL, TGG and GT techniques all
have good visibility – multiple parts of the specifications
can easily be juxtaposed for comparison.

Table 35 – Cognitive Dimension Evaluation Summary

7.5.2 Implementation Techniques
The implementation techniques each have different advantages. As with all
implementations memory usage must be played off against speed of execution.

The visitor-based approach has a long execution time vs. low memory usage and the
observer-based approach has vice versa, a high memory usage vs. minimal execution
time.

Both of the implementation approaches involve a complex conversion of the
constraint specifications into appropriate generation code. Reporting errors as part of
the conversion process is slightly more complex using the observer-based approach,
although a straightforward solution is presented.

The observer-based approach has a number of complex issues that must be considered
as part of the implementation process. In particular the avoidance of live-lock and
other knock on effects of changing one or other model as part of the actions
performed by a mapping object.

In practice, both implementation methods are complementary. The Active version
gives continuous valid translations of the models given a starting position of two
models being valid translations of each other. However, it is often the case that a
translation is started from one partially populated model and the other needs to be
generated before the active translation can be invoked. Traversing the original model
using the visitor base translator is an efficient means of doing this.

7.5.3 Future Work
It would be interesting to develop some complexity measures for translator
specifications, possibly based on the quantity and degree of connectivity between
mapped components, and relate these to the implementation techniques.

This could form a means to predict the potential resource usage (memory or
execution time) of the approaches and aid a designer in specifying more efficient
translator specifications.

Chapter 8

Conclusion

This chapter concludes the thesis by summarising the work presented, in section 8.1.
This is followed by highlighting the achievements in terms of the objectives defined
in the introduction (in section 8.2) and finally (in section 8.3) by discussing possible
future research that continues from that presented in this thesis.

8.1 Thesis Summary
Chapter 1 discusses a variety of applications of model translation within software
engineering. Additionally it introduces the Object Management Group’s (OMG’s)
Model Driven Architecture (MDA) initiative; this is a high profile framework in
which the translation of models forms an important component.

The most mature technique for specifying translations (at this time) is that of Graph
Transformations; unfortunately these are not based on the object-oriented modelling
formalism, and hence are not compatible with the OMG’s Unified Modelling
Language (UML).

This thesis has investigated and presented an object-oriented, UML-based technique
for the specification and implementation of model translators. The technique does not
claim to be any more expressive than the Graph Transformation approach, however, it
does provide an approach that is inline with current common practice in the software
engineering community and the MDA initiative.

This thesis also proposes future work that will enable translation of specifications
between the Graph Transformation approach and the proposed UML/OCL technique.
If successful, this will enable the background and experience of the Graph
Transformation community to be brought into common usage within software
engineering as a whole.

The specification technique makes use of the UML and OCL to give a declarative
specification of the relationship between components of the two models involved in
the translation. Binary and N-ary associations are used to specify the relationships,
the details of which are enhanced by the addition of OCL constraints.

The use of UML as the specification language means that this technique is also
compatible with the upcoming introduction of XSLT used for translating between
models defined using the popular and standardised XML.

The UML/OCL specification technique has been evaluated within a framework of
cognitive dimensions (proposed in [Green_Petre_96]), and is seen to be as equally
useable for specifying translators as the Graph Transformation approach. The main
disadvantages of the UML/OCL approach are introduced by the use of OCL for

Conclusion 147

specifying details within the translator mappings, although this could be improved by
using an alternative notation such as Constraint Diagrams ([Gil_etal_99]).

The most significant advantage of the technique proposed in this thesis, is its use of
the standardised and commonly used UML and OCL. This makes the technique
readily adoptable by those already familiar with the largely accepted standard
notation for object-oriented modelling.

Two implementation approaches are discussed as ways of realising a translation from
UML/OCL translator specifications.

The first approach is based on the Visitor and Builder patterns and is the approach
that was used to implement the translators forming part of the Permabase project
prototype. Although this approach is straightforward to use, it has two significant
problems with respect to its use in the interactive Permabase environment. The main
advantages and disadvantages are listed below:

Advantages
1. Minimal additions to the source and target model components are needed.
2. The size of the model instances processed by the translator are not limited by

the amount of memory of the hosting processor.
Disadvantages

1. Translators implemented in this way are single step monolithic processes. They
require re-executing every time the source model changes in order that the
target model is kept up to date.

2. The time taken to execute the translation increases proportionally to the size of
the model instance being processed.

To address these two disadvantages, a second implementation approach has been
developed and presented. This second approach makes use of the observer pattern to
‘actively’ and continuously monitor the source model for changes, upon the
occurrence of which, the target model is altered to accurately reflect the translation.

This Observer based approach breaks up the translation behaviour into a number of
mini and localised translators that map a small number of components from the
source model onto their equivalent target model components. These mini translators
are activated by the occurrence of changes to the source model components that they
monitor.

The problems with the Visitor based approach are solved as follows:
1. The mini translators actively monitor (observe) changes to the source model

and execute a localised translation upon every change. Hence the target model
is continuously updated and a monolithic translation is not required.

2. The sizes of the source and target models don’t affect the translation time. Each
mini translator is affected only by the components it is responsible for
translating. Larger models simply mean a larger number of mini translators, not
an increase in translation time.

Of course, nothing is free and the cost of removing the relationship between model
size and translator execution time is the cost of storing the mini translators, which
does increase as the model size increases.

A feature of the second translator implementation approach is that is can be
implemented as a two-way translator. This enables changes in the source model to be

Conclusion 148

reflected in the target model and vice-versa, changes to the target model can be
reflected in the source model.

This feature is achieved by extending the Observer pattern to that of a “Multi-
Observer”. Each of the mini translators observes changes to the components of each
model and appropriately changes the respective components of the other model.

This enhancement expands the applicable scope of this style of translator
implementation. In particular multi-view environments can be built using the
technique, enabling each of the views to be continuously consistent with one another.

The manual implementation process from a translator specification to active
implementation was recognised as complex and time consuming. To aid the
implementation a semi-automated approach has been developed.

The automatic generation consists of two main parts:
• The use of an observable OCL library; to encode OCL constraints over Java

objects such that any change to the value of the constraint can be ‘observed’.
• The automatic generation of a framework of classes from an XMI encoding of a

UML/OCL translator specification; this provides the basis for a translator
implementation.

The classes within the generated framework perform the detection of inconsistencies
between the related models, in accordance with the source UML/OCL translator
specification. These classes are extended to convert the inconsistency detection into
translation by manually adding actions that perform appropriate transformations on
the models whenever an inconsistency is detected.

8.2 Achievements
The objectives laid out in Chapter 1 have been met by the content of this thesis as
described below.

Objective 1 is met by the UML/OCL technique for specifying model translators
described in Chapter 4. UML and OCL are both object-oriented specification methods
and the specification technique enables the translation relationship to be defined
between two models that have been specified using UML.

Objective 2 is met by the Observer based implementation approach described in
Chapter 5 and 6. The discussion contained in these chapters demonstrates how to
create a translator implementation from a UML/OCL specification. The
implementation consists of multiple “mini translators” that are capable of monitoring
both models for changes. The occurrence of changes to either model cause
appropriate updates to the opposing model. This ensures that the models are
continuously valid translations of each other.

8.3 Future work
There are a number of possible areas for continuing the research and work
documented in this thesis. Some of these are discussed in the following subsections.

Conclusion 149

8.3.1 Specifying and re-implementing the Permabase prototype.
The main problem with the Permabase project was (ironically) the performance of the
prototype toolkit. The time taken to execute the one-step implementation of the
translation processes became a serious limitation when applied to large system
designs.

The active translation approach documented in this thesis is a solution to this
problem. If the prototype were to be re-implemented using the proposed approach it
would significantly improve the performance and usability of the toolkit.

This would enable more extensive use of the Permabase tool, over a larger number of
case studies; thus giving more confidence in its use as part of the system design
lifecycle. In particular it would enable further validation of the tool throughout the
design lifecycle of a case study, including validation of predicted results against
actual measurement taken from a deployed system.

8.3.2 Visual languages
Visual languages can be seen as a translation from a concrete syntax model to an
abstract syntax model; the UML/OCL specification technique can hence be used to
specify visual languages. Additionally, the multi-observer based implementation
approach is suitable for implementing visual language editors.

Some initial work has been carried out in this area and published in [Akehurst_00].
This work could be extended to include investigation into the specification and
implementation of visual languages (and editors) that are not based on the directed
graph style of spatial relationship model associated with box and line based diagrams.

A suitable case study for this investigation would be the Constraint Diagrams defined
in [Gil_etal_99]. These diagrams are based on the concepts of contours and regions as
shown in Figure 84.

contour region

Figure 84 – Contours and Regions
Such diagrams cannot be mapped to a spatial relationship model based on directed
graphs. Other work has been carried out by the authors of [Gil_etal_99] that identifies
the basic concepts of the notation. The relationship of these concepts to the concrete
visualisation and the abstract syntax components could be defined using the translator
specification technique proposed in this thesis.

This approach to visual language specification could also be used to firm up the
specification of the notations used to express diagrams in the UML. Currently the
UML standard defines the notations using informal natural language. A formal
definition could be defined by specifying a set of concrete symbols and their mapping
to appropriate spatial relationship models and subsequently to the abstract syntax of
the UML meta-model definition.

Conclusion 150

8.3.3 The formal relationship to Graph Grammars
Within Chapter 4, this thesis asserts that class diagrams, with the addition of OCL,
are as expressive as a Graph Grammar. There is no formal backing for this assertion
and work to produce evidence in support of it would be both interesting and provide a
useful bridge between the Graph Grammar and object-oriented communities.

Continuing along this thread would be formal investigation into the respective
expressive capabilities of Graph Transformation techniques and the UML/OCL
technique for specifying model translations. Additionally, the specification of a
translator between Graph Transformation specifications and UML/OCL translator
specifications would aid this work and enable bodies of work in each area to be
applied to the other.

In order to specify the translation it would be necessary to identify an abstract syntax
model of graph grammar and graph transformation concepts. Such a model should
ideally be one that is standardised by the graph grammar community.

Using this model a mapping could be specified between it and the UML meta-model,
thus enabling conversion of graph grammar and transformation specifications into
UML specifications.

Based on this mapping, tools could be built that provide both graph grammar based
and class diagram based views on the same specifications. This would enable the two
research communities to benefit from each others work. In particular it would bring
the experience and techniques of the graph grammar community into the wide
commercial community using the UML.

Appendix A
Scanning Rules

This appendix defines the symbol that are counted as distinct symbols when
calculating the diffuseness of a model or translator specification as part of the
evaluation recorded in Chapter 7. Symbols used for each of the UML/OCL, Graph
Transformation or Triple Graph Grammar techniques, are included.

A.1 Textual Symbols
Each symbol shown in Table 36 is counted as a separate textual symbol.

Single Character
Symbols

Composite Character
Symbols

Character Sequence
Symbols

. « Any number formed from a
sequence of digits, [0-9]+

, » Any name (identifier) formed from
a sequence of letters or underscore
characters, [a-z,A-Z,_]+

: ==

; ->

(::=

)

{

}

|

����

*

Table 36 – Distinct Textual Symbols

Scanning Rules 152

A.2 Graphical Symbols
Each symbol illustrated in Figure 85 is counted as a separate graphical symbol.

Figure 85 – Distinct Graphical Symbols
The symbols are any rectangular box drawn with a solid or dotted line; and any line
or sequence of connected line segments drawn with dotted or solid lines.

Appendix B
UML Diagrams

The UML is essentially a collection of connected notations that are collectively used
to describe the design of a software system. There are several different languages
defined within the UML standard, which are referred to as ‘Diagrams’ or ‘Diagram
Types’. These diagram types are defined as follows:

• Use Case Diagram – illustrates the relationship between actors on the system
and the use cases identified for that system. The diagram also shows extension
and use relationships between the use cases.

• Static Structure (Class) Diagram – illustrates the static architecture (structure)
of the system software. System components are generalised into ‘classes’ and
the relationships between those classes are shown in a Static Structure Diagram.
The classes can also be grouped into Packages; these diagrams can also be used
to show the relationship between packages.

• Object Diagram – shows a particular network of objects, illustrating a group of
objects, their attribute values and the links between the objects. This diagram
can be considered a ‘snapshot’ in time of the state of a particular group of
objects in the system.

• Interaction (Sequence and Collaboration) Diagram – shows the flow of
messages (method calls) between a group of objects. The flow is shown either
on top of an Object Diagram, which is subsequently referred to as a
Collaboration Diagram, or using the alternative notation of a Sequence diagram.
Both forms of Interaction Diagram illustrate the same semantic information, but
use a different notation to do so.

• State Diagram (Statechart) – defines the states in which a class of object can be
and shows the transition conditions that cause a change of state. The semantics
of these state diagrams are based on Harel’s Statecharts [Harel_87].

• Activity Diagram – is a special case of state diagram that exhibits primarily
sequential flow. States are generally active states and transitions are generally
triggered by completion of an activity in its source state.

• Component Diagram – used to show the software implementation components
and inter-dependencies.

• Deployment Diagram – illustrates the run-time processing nodes, the node
inter-connections and the objects and components that live (at run-time) on the
nodes.

The two UML diagram types primarily used within this thesis are Class Diagrams and
Object Diagrams. These are explained in more detail below.

UML Diagrams 154

B.1 Static Structure (Class) Diagrams
Static Structure Diagrams can show classes, packages, interfaces, objects and various
relationships between them. If a static structure diagram shows only packages and
their inter-relationships, it is sometimes referred to as a Package Diagram. Similarly,
if only classes and their inter-relationships are shown the diagram is referred to as a
Class Diagram. A static structure diagram that illustrates only objects gives an Object
Diagram, although this is generally considered a separate diagram type and mixing
objects and classes is rarely done.

B.2 Packages
A Package is a structuring component that is used to group other related components
into a single unit. Packages can be nested inside one another and can be related by a
dependency relationship. The dependency relationship indicates that one Package
uses or depends on in some way one or more components from the other package.

The exact semantics of these UML components is not precisely specified in the
standard, there are many ambiguities. Various bodies of research, such as
[Schürr_Winter_98oct], attempt to rectify the situation giving a formal specification
of the packages and the dependency relationship. However, such specifications have
not yet been included in the standard UML definition.

The concrete syntax of a Package and Package Dependency is shown in Figure 86.
The Package is represented by a rectangle with a ‘tab’ (smaller rectangle) on the top
left corner. The name of the package is generally shown at the top centre of the main
rectangle, although if the contents of the package are shown in the main rectangle, the
name can be placed inside the tab.

package2

package1

package3

Figure 86 – Concrete Syntax of Packages and their Inter-Relationships
Package dependencies are shown as a dashed arrow with an open arrowhead pointing
from the dependent Package to the Package upon which it depends. Any variation on
the semantics of the dependency is shown as a stereotype label attached to the arrow
(generally in the centre). A common variation is a generalisation relationship,
indicating that the end Package is a generalisation of the one at the arrow start.
Commonly this variation is shown using the solid line and empty triangle arrowhead
also used to show generalisation between classes.

The contents of a package are usually shown enclosed in the main rectangle of the
package or as a separate diagram. However, they can be shown in a tree like structure
using branching lines with an encircled ‘+’ at the container end of the lines. Figure 87
shows the two single diagram methods for visualising a package and its contents.

UML Diagrams 155

package1

package2 package3

package1

package2

package3

Figure 87 – Concrete Syntax for Illustrating Package Contents

B.3 Classes
A class is a representation of a concept within the system being modelled; it defines a
pattern to which a set of objects conform, concerning the attributes, operations,
behaviour and relationships of those objects. A class defines the attributes and
operations for a particular set of objects, the behaviour is generally defined by a
different view (or diagram) and the relationships between classes are show by a class
diagram.

The concrete syntax for a class is shown in Figure 88. It consists of a rectangle
divided into 3 compartments. The top compartment shows the name of the class and
optionally any of the following: the stereotype of the class (if there is one); the
package in which the class is defined; or tagged values. The other two compartments
show the attributes and operations of the class.

Class Name

attribute1
attribute2
…
operation1
operation2
…

Figure 88 – Concrete Syntax for a Class
If the information regarding the attribute or operation specifications is unnecessary
for a particular diagram, then the respective compartments need not be shown (as
illustrated in Figure 89).
Two types of relationship can be defined between classes:

• Generalisations, which define a super-sub type (inheritance) relationship
between two classes.

• Associations, which define an arbitrary relationship between any number of
classes. The exact semantics of the association depend upon the adornments
that can be added to the association in order to tighten the specification of the
relationship.

UML Diagrams 156

A

E

D

F

G

C

B

Binary Association

Generalisation

Generalisation

N-Ary Association

Figure 89 – Concrete Syntax’s for Generalisation and Association Relationships
The concrete syntax for the generalisation and association relationships is shown in
Figure 89. The Generalisation Relationship is illustrated using a solid line with an
empty triangular arrowhead at the super class end of the line (as between classes G
and B). If a tree like generalisation hierarchy is to be illustrated, branching lines can
be used (as between classes A, C and D).

An Association between two classes (a Binary Association) is illustrated using a
simple straight line between the two related classes. If the relationship is to associate
more than two classes (an N-ary Association), an empty diamond is used as a central
junction for lines linking each associated class (as between classes C, D, E, F and G).

B.3.1 Associations
The base form of an association doesn’t say much about the relationship, other than
that a connection between objects of the related classes can exist. Various adornments
to the association add semantic meaning as follows:

• Rolename – any or all ends of the association can be given a name that provides
a means to reference the object at that end of an instance of the association by
other objects within the association.

• Cardinality – indicates the number of objects that must or may form part of an
instance of the association. Further constraints can be added to an association
end; those defined by the standard include the constraints ‘ordered’ and
‘unique’.

• Navigability – puts a direction on the association that enables or disables
visibility of components with respect to the others in the association.

• Aggregation – indicates that one object is an aggregate, the others in the
association being the parts. The exact semantics of aggregation are widely
disputed in the community, papers such as [Saksena_etal_98], [H-
Sellers_Barbier_99] and [Civello_93] discuss the issues and define various
interpretations.

UML Diagrams 157

A

C

E F

D

Ba b

G H

0..* 1

I J
1..*

contents

{ordered}

(a)

(b

(c)

(d)

(e)

Figure 90 – Concrete Syntax for Various Adorned Associations
The concrete syntax for these adornments is illustrated in Figure 90. The first
association (Figure 90a) shows rolenames (‘a’ and ‘b’) defined for each end of the
association.

The next (Figure 90b) defines the cardinality (or multiplicity) of the classes at each
end of the association. The cardinality of the C class states that zero or more C
objects may be involved in the association. The cardinality of the D class states that
exactly one D object must take part in the association.

The association in Figure 90c indicates that for any E and F objects linked as an
instance of this association, the F object is visible to the E object, but not vice-versa.
The E object is not navigable from the F object.

Figure 90d shows an aggregation association, it specifies that the G object is an
aggregate including (an unspecified number of) H objects in its parts.

Finally, Figure 90e illustrates an association that combines all of these adornments.
This association defines that the I object is an aggregate of one or more J objects; the
collection of J objects is referred to within the I object by the name ‘contents’. This
also illustrates the use of an additional constraint specifying that the collection is
ordered.

When specifying an aggregation relationship, a black (solid) diamond can be used
instead of a hollow one. This is generally considered to define a compositional
aggregation, however the exact semantics of this form of aggregation is also widely
disputed. In general (and within this thesis), the hollow diamond is used to indicate a
reference relationship, where as the solid diamond indicates a compositional
relationship carrying the concept of “by value” and ownership.

The compositional aggregation builds a tree like structure, each object can only be
‘owned’ by (be the ‘part’ end of) a single composite aggregation. Reference
aggregations do not have such a restriction and can form any pattern of object inter-
connections.

UML Diagrams 158

B.3.2 Interfaces
An interface is a specification of a set of operations that may be implemented by a
variety of different classes. It provides a way of providing common access to a
number of different implementations of the same behaviour.

«interface»
IA

operation1
…

A

Figure 91 – Concrete Syntax for an Interface and Implementation Relationship
An interface is illustrated using similar syntax to a class, but with two compartments
instead of one (Figure 91). The interface is a stereotype of a class and hence includes
an indication as such in the top compartment along with the interface name.

A dashed arrow with a hollow triangular arrowhead is used to specify that a class
implements a particular interface. Figure 91 shows that class A implements the
interface IA.

B.3.3 Parameterised Classes
A parameterised Class (or Template) contains one or more unbound formal
parameters; it defines a set of potential classes, each one specified by ‘binding’ the
parameters to actual values. Figure 92a shows an example Parameterised Class and a
corresponding Bound Class. Figure 92b shows the alternative shorthand that can be
used to define a bound class, if a specific name for the class is not required.

Set
T : OclType

Family

Person
«bind»(Person)

Set<Person>

(a) (b)

Figure 92 – Concrete Syntax for Parameterised and Bound Classes
A dashed Rectangle in the top right corner of a class is used to define the parameters
of a Parameterised Class. The Bound Class can then be shown using an empty
triangular arrowhead, dashed arrow with a «bind» stereotype indicating the values for
the parameters; the arrow should point from the Bound Class to the Parameterised
Class.

Alternatively, if a separately named class is unnecessary, a Bound Class can be
defined by using the name of the Parameterised Class and the actual parameter values
(enclose in ‘<>’ characters) as the name of the Bound Class.

UML Diagrams 159

B.4 Object Diagrams
An Object Diagram shows a snapshot in time of the state of a group of objects and
their interconnections. Two things form part of an Object Diagram, Objects and
Links. Figure 93 illustrates an example Object Diagram.

a : A b : B

d1 : D

c : C

e : E
the_e

ccc

ds

d2 : D
ds

Figure 93 – An Example Object Diagram
The concrete syntax for an object is a rectangle with two compartments. The top
compartment contains a name for the object and the name of the Class of the object;
these are separated by a colon (‘:’) and are underlined. Either name may be omitted if
unnecessary for a particular diagram. The bottom compartment contains values for
the attributes of the object; this compartment may also be omitted (hidden) if its
information is not required.

A link is an instance of an association; its syntax is a simple straight line, connecting
the objects that form the associations instance. An n-ary link is shown using a
diamond as the central point with lines to each participating object (in the same
fashion as the n-ary association). Other than the cardinality adornment, any of the
association adornments may be added to the line to increase the descriptiveness of the
link being illustrated.

Appendix C
Graph Theory

C.1 Terms
The definitions of a graph from two different authors are as follows:

“A graph G is an ordered pair of disjoint sets (V,E) such that E is a
subset of the unordered pairs of V” [Bollobás_79], chapter 1.
“a graph is a representation of a set of points and of the way they are
joined up” [Wilson_72], chapter 1.

A graph is composed of two sets, the set of Vertices (or Nodes or Points) and the set
of Edges (or Arcs or Lines) joining pairs of Vertices. An edge is said to join or
connect two vertices. Vertices are incident with the edge connecting them. An edge
that joins a vertex to itself is called a loop.

Two vertices are considered adjacent if there is an edge joining them. Two edges are
adjacent if they share a common vertex.

The degree (or valence) of a vertex is a count of the number of ends of an edge that
are connected to it. The order of a graph is the number of vertices, and the size of a
graph is the number of edges. An isolated vertex has degree 0, and a terminal vertex
(or endpoint) has degree 1.

A walk is an alternating sequence of vertices and edges, such that edgei joins vertexi-1
and vertexi. A trail is a walk in which each edge is distinct. A path is a trail in which
each vertex is distinct. A walk has two endvertices, and a path can be considered a
way of getting from one endvertix to the other. A circuit is a trail whose endvertices
coincide. A cycle is a circuit with distinct vertices (different from path as there is an
edge joining the endvertices).

A set of edges is independent if no two elements are adjacent, and a set of paths is
independent if a vertex belonging to any two paths is an endvertex of both.

Two graphs are isomorphic if there is a one to one correspondence between their
vertex sets, and such that for any pair of vertices from one graph, the vertices are
joined by an edge if and only if they are joined by an edge in the other.

Two graphs are homomorphic if one can be mapped to the other by mapping
multiple vertices from one graph onto a single vertex in the other.

C.2 Graph types
Based on constraints involving these terms, there are different variations of graph
definition, each of which has different constraints and forms a different graph type.

Graph Theory 161

A simple graph may only have one edge defined for each pair of vertices, and must
not contain any loops.

A connected graph is a graph in which there is a path between every pair of vertices.

A complete graph is a simple graph in which every distinct pair of vertices is joined
by an edge.

A multigraph can contain multiple edges connecting the same vertices, and can
contain multiple loops.

A directed graph (or digraph) is one in which the edges are ordered pairs – they
define a connection between vertices in a single direction.

A bipartite graph is one where the vertices can be divided into two disjoint groups
and every edge joins a vertex from one group to a vertex of the other. The graph is a
complete bipartite graph if every vertex from one group is joined to every vertex
from the other.

An acyclic graph or forest is a graph with no cycles – a graph in which there is only
one path between every pair of distinct vertices. A tree is a connected forest.

A hypergraph is a graph in which edges can join more than two vertices – the set of
edges is a subset of the power set of vertices.

Appendix D
DirectedGraph-to-Tree Translator

This Appendix illustrates the complete manual active implementation of the
DirectedGraph↔Tree translator.

D.1 DirectedGraph Model

DirectedGraph

DirectedGraph

Vertex Edge

graph graph

edgesvertices start edges_out

finish edges_in

* *

*

*

Figure 94 – DirectedGraph Package

D.2 Tree Model

Tree

Tree

TNode

root

parent

subnodes

1

*

all_nodes

tree

*

Figure 95 – Tree Package

DirectedGraph-to-Tree Translator 163

D.3 DirectedGraph-to-Tree Translator Specification

DirectedGraph ↔ Tree

Vertex TNode«mapped_to»v tn

 v.edges_out «mapped_to» tn.subnodes->iterate(ts; acc:Set | acc->includes(Pair{tn, ts})

Directed
Graph

Tree

«mapped_to»

graph

tree

graph.vertices == vertices and
vertices «mapped_to» tree.all_nodes and
Let no_incoming = vertices->select(v | v.edges_in->size == 0)->asSequence in
 no_incoming->first «mapped to» tree.root and
 no_incoming->size == 1

Vertex vertices
*

Edge

TNode

e.start «mapped_to» tn1 and
e.finish «mapped_to» tn2 and
tn1.subnodes->includes(tn2)

e

tn1

«mapped_to»
TNode

tn2

Figure 96 – DirectedGraph↔↔↔↔Tree Package

DirectedGraph-to-Tree Translator 164

D.4 DirectedGraph-to-Tree Translator Implementation

Directed
Graph

Tree

«mapped_to»

graph

tree

graph.vertices == vertices and
vertices «mapped_to» tree.all_nodes and
Let no_incoming = vertices->select(v | v.edges_in->size == 0)->asSequence in
 no_incoming->first «mapped to» tree.root and
 no_incoming->size == 1

Vertex vertices
*

Figure 97 - DirectedGraph↔↔↔↔Tree mapping specification

D.4.1 Implementation Framew ork
public class DirectedGraph_Tree
extends AbstractMapping

{

private IDirectedGraph _graph;
public IDirectedGraph graph() {return _graph;}
private ITree _tree;
public ITree tree() {return _tree;}

//graph.vertices == vertices

public Set vertices() {return graph().vertices();}

public DirectedGraph_Tree(IDirectedGraph dg, ITree t) {
_graph = dg;
_tree = t;
startObserving();

}

// Let no_incoming = vertices->select(v | v.edges_in->size == 0)
private List no_incoming() { ... }

public void observe_graph_vertices(AddEvent ev) { ... }

public void observe_graph_vertices(RemoveEvent ev) { ... }

public void observe_graph_edges(AddEvent ev) { ... }

public void observe_graph_edges(RemoveEvent ev) { ... }

public void observe_tree_root(ChangeEvent ev) { ... }

public void observeAll_graph_vertices_edges_in(AddEvent ce) { ... }

public void observeAll_graph_vertices_edges_in(RemoveEvent ce) { ... }

public void observe_graph(IObservableEvent e) {
if (e.name().equals("vertices")) {
if (e instanceof AddEvent) observe_graph_vertices((AddEvent)e);
if (e instanceof RemoveEvent) observe_graph_vertices((RemoveEvent)e);

}
if (e.name().equals("edges")) {
if (e instanceof AddEvent) observe_graph_edges((AddEvent)e);
if (e instanceof RemoveEvent) observe_graph_edges((RemoveEvent)e);

}
}

public void observe_tree(IObservableEvent e) {
if (e.name().equals("root")) observe_tree_root((ChangeEvent)e);

}

public void observeAll_graph_vertices(IObservableEvent oe) {
if (oe.name().equals("edges_in")) {
if (oe instanceof AddEvent)

observeAll_graph_vertices_edges_in((AddEvent)oe);
if (oe instanceof RemoveEvent)

observeAll_graph_vertices_edges_in((RemoveEvent)oe);
}

//--- AbstractMapping ---
public Object object1() {return _graph;}
public Object object2() {return _tree;}

//---Observer---
public void startObserving() {
((IObservable)graph()).addObserver(this);
((IObservable)tree()).addObserver(this);

DirectedGraph-to-Tree Translator 165

((IobservableCollection)graph().edges()).addContentsObserver(this);
}

public void stopObserving() {
((IObservable)graph()).removeObserver(this);
((IObservable)tree()).removeObserver(this);
((IobservableCollection)graph().edges()).removeContentsObserver(this);

}

public void observe(IObservableEvent e) {
if (e.source() == graph()) observe_graph(e);
if (e.source() == tree()) observe_tree(e);
if (graph().edges().contains(e.source())) observeAll_graph_edges(e);

}

}

Table 37 – Implementation Framework for DirectedGraph↔↔↔↔Tree Mapping
Class

D.4.2 Implementation of no_incoming
// Let no_incoming = vertices->select(v | v.edges_in->size == 0)
private List no_incoming() {
List acc = new Vector();
Iterator i = vertices().iterator();
while (i.hasNext()) {

IVertex v = (IVertex)i.next();
if (v.edges_in().size() == 0) {

acc.add(v);
}

}
return acc;

}

Table 38 – Actions to execute when an Edge is Added to a Vertex

D.4.3 Adding a Vertex
public void observe_graph_vertices(AddEvent ev) {

IVertex v = (IVertex)ev.new_value();

// vertices <<mapped_to>> tree.all_nodes
if (manager().translate1(v) == null) {
ITNode tn = new TNode();

((Translator)manager()).createMapping(v,tn);
}

// no_incomin->first <<mapped_to>> tree.root
List no_incoming = no_incoming();
if (no_incoming.size() > 0) {
IVertex v1 = (IVertex) no_incomming.get(0);
((IValidateable)v1).setValid();
ITNode tn = (ITNode)manager().translate1(v1);
tree().setRoot(tn);

}

// no_incoming->size == 1
if ((no_incoming.contains(v)) && (v != no_incoming.get(0)))
((IValidateable)v).setInvalid();

}
}

Table 39 – Actions to execute when a Vertex is Added to a DirectedGraph

D.4.4 Removing a Vertex
public void observe_graph_vertices(RemoveEvent ev) {

IVertex v = (IVertex)ev.old_value();

// vertices <<mapped_to>> tree.all_nodes
ITNode tn = (ITNode)manager().translate1(v);
manager().removeMapping(v,tn);
if (tn.parent() != null) {
tn.parent().subnodes().remove(tn);

}

DirectedGraph-to-Tree Translator 166

if (tn == tree().root()) {

// no_incoming->first <<mapped_to>> t.root
Iterator i = no_incoming().iterator();
if (i.hasNext()) {

IVertex vs = (IVertex)i.next();
ITNode ts = (ITNode)manger().translate1(vs);
tree().setRoot(ts);

}

// no_incoming->size == 1
while(i.hasNext()) {

IVertex vs = (IVertex)i.next();
((IValidateable)vs).setInvalid();

}
}

}

Table 40 – Actions to execute when a Vertex is Removed from a DirectedGraph

D.4.5 Adding an Edge
Public void observe_graph_edges(AddEvent ev) {
IEdge e = (IEdge)ev.new_value();

// vertices <<mapped_to>> tree.all_nodes
// nothing

// no_incoming->first <<mapped_to>> t.root
// nothing

// no_incoming->size == 1
// nothing

}

Table 41 – Actions to execute when an Edge is Added to a DirectedGraph

D.4.6 Removing an Edge
public void observe_graph_edges(RemoveEvent ev) {

// vertices <<mapped_to>> tree.all_nodes
// nothing

// no_incoming->first <<mapped_to>> t.root
// nothing

// no_incoming->size == 1
//nothing

}

Table 42 – Actions to execute when an Edge is Removed from a DirectedGraph

D.4.7 Adding an incoming Edge to a Vertex
public void observeAll_graph_vertices_edges_in(AddEvent ae) {

IVertex vertex = (IVertex)ae.source();

// vertices <<mapped_to>> tree.all_nodes
// nothing

// no_incoming->first <<mapped_to>> t.root
ITNode tn = (ITNode)manager().translate1(vertex);
if (tn == tree().root()) {

IVertex v = vertex;
Set incomming = v.edges_in();
while(!incomming.isEmpty()) {

IEdge e2 = (IEdge)incomming.iterator().next();
v = e2.start();
incomming = v.edges_in();

}
ITNode new_root = (ITNode)manager().translate1(v);
tree().setRoot(new_root);
((IValidateable)v).setValid();

}

// no_incoming->size == 1
//nothing

}

DirectedGraph-to-Tree Translator 167

Table 43 – Actions to execute when an Edge is Added to a Vertex

D.4.8 Removing an incoming Edge from a Vertex
public void observeAll_graph_vertices_edges_in(RemoveEvent re) {

IVertex vertex = (IVertex)re.source();

// vertices <<mapped_to>> tree.all_nodes
// nothing

// no_incoming->first <<mapped_to>> t.root
// nothing

// no_incoming->size == 1
if (vertex.edges_in().size() == 0) {
((IValidateable)vertex).setInvalid();

}
}

Table 44 – Actions to execute when an Edge is Removed from a Vertex

D.4.9 Changing the root TNode of a Tree
public void observe_tree_root(ChangeEvent ev) {

ITNode tn = (ITNode)ev.new_value();
IVertex v = (IVertex)manager().translate2(tn);
ITNode tn_old = (ITNode)ev.old_value();
IVertex v_old = (IVertex)manager().translate2(tn_old);

// vertices <<mapped_to>> tree.all_nodes
//nothing

// no_incoming->first <<mapped_to>> t.root
if (v == null) {
v = new Vertex();
((Translator)manager()).createMapping(v,tn);
graph().vertices().add(v);

}

// no_incoming->size == 1
if (v_old != null) {
if (v_old.edges_in().size()==0) {

if (v_old != v) {
((Ivalidateable)v_old).setInvalid();

}
}

}
}

Table 45 – Actions to execute when the root attribute of a Tree is Changed

D.5 Vertex↔↔↔↔TNode Implementation
Vertex TNode«mapped_to»v tn

 v.edges_out «mapped_to» tn.subnodes->iterate(ts; acc:Set | acc->includes(Pair{tn, ts})

Figure 98 – Vertex↔↔↔↔TNode mapping specification

D.5.1 Implementation Framew ork
public class Vertex_TNode

extends AbstractMapping
{

private IVertex _vertex;
public IVertex vertex() {return _vertex;}
private ITNode _tnode;
public ITNode tnode() {return _tnode;}

public Vertex_TNode(IVertex v, ITNode tn) {
_vertex = v;
_tnode = tn;
startObserving();

DirectedGraph-to-Tree Translator 168

}

public void observe_vertex_edges_out(AddEvent ev) { ... }

public void observe_vertex_edges_out(RemoveEvent ev) { ... }

public void observe_vertex_edges_in(AddEvent ev) { ... }

public void observe_vertex_edges_in(RemoveEvent ev) { ... }

public void observe_tnode_subnodes(AddEvent ev) { ... }

public void observe_tnode_subnodes(RemoveEvent ev) { ... }

public void observe_vertex(IObservableEvent e) {
if (e.name().equals("edges_out")) {

if (e instanceof AddEvent) observe_vertex_edges_out((AddEvent)e);
if (e instanceof RemoveEvent) observe_vertex_edges_out((RemoveEvent)e);

}
}

public void observe_tnode(IObservableEvent e) {
if (e.name().equals("subnodes")) {

if (e instanceof AddEvent) observe_tnode_subnodes((AddEvent)e);
if (e instanceof RemoveEvent) observe_tnode_subnodes((RemoveEvent)e);

}
}

//--- AbstractMapping ---
public Object object1() { return vertex(); }

public Object object2() { return tnode(); }

//---Observer---
public void startObserving() {
((IObservable)vertex()).addObserver(this);
((IObservable)tnode()).addObserver(this);

}
public void stopObserving() {
((IObservable)vertex()).removeObserver(this);
((IObservable)tnode()).removeObserver(this);

}
public void observe(IObservableEvent e) {
if (e.source() == vertex()) observe_vertex(e);
if (e.source() == tnode()) observe_tnode(e);

}

}

Table 46 – Implementation Framework for Vertex↔↔↔↔TNode Mapping Class

D.5.2 Adding an Outgoing Edge
public void observe_vertex_edges_out(AddEvent ev) {

IEdge new_edge = (IEdge)ev.new_value();
 //v.out_edges «mapped_to» tn.subnodes->iterate(ts,acc:Set|acc->includes(Pair{tn,ts}))

Pair p = (Pair)manager().translate1(new_edge);
if (p == null) {
ITNode tn = (ITNode)manager().translate1(new_edge.start());
ITNode ts = (ITNode)manager().translate1(new_edge.finish());
tn.subnodes().add(ts);
((Translator)manager()).createMapping(new_edge,new Pair(tn,ts));

}
}

Table 47 – Actions to execute when an outgoing Edge is Added

D.5.3 Removing an Outgoing Edge
public void observe_vertex_edges_out(RemoveEvent ev) {
IEdge old_edge = (IEdge)ev.old_value();

 //v.out_edges «mapped_to» tn.subnodes->iterate(ts,acc:Set|acc->includes(Pair{tn,ts}))
Pair p = (Pair)manager().translate1(old_edge);
manager().removeMapping(p,old_edge);
ITNode tn = (ITNode)p.fst();
ITNode ts = (ITNode)p.snd();
tn.subnodes().remove(ts);

}

DirectedGraph-to-Tree Translator 169

Table 48 – Actions to execute when an outgoing Edge is Removed

D.5.4 Adding a Subnode
public void observe_tnode_subnodes(AddEvent ev) {
ITNode ts = (ITNode)ev.new_value();

 //v.out_edges «mapped_to» tn.subnodes->iterate(ts,acc:Set|acc->includes(Pair{tn,ts}))
if (manager().translate2(ts) == null) {

IDirectedGraph graph = vertex().graph();
IVertex v = new Vertex();
IEdge edge = new Edge(vertex(),v);
((Translator)manager()).createMapping(v,ts);
((Translator)manager()).createMapping(edge,new Pair(tnode(),ts));
graph.vertices().add(v);
graph.edges().add(edge);

}
}

Table 49 – Actions to execute when a Subnode is Added

D.5.5 Removing a Subnode
public void observe_tnode_subnodes(RemoveEvent ev) {
ITNode ts = (ITNode)ev.old_value();

 //v.out_edges «mapped_to» tn.subnodes->iterate(ts,acc:Set|acc->includes(Pair{tn,ts}))
IVertex v = (IVertex)manager().translate2(ts);
if (v != null) {

IDirectedGraph graph = v.graph();
manager().removeMapping(v,ts);
graph.vertices().remove(v);

}
}

Table 50 – Actions to execute when a Subnode is Removed

D.6 Edge<->(TNode,TNode)

Edge

TNode

e.start «mapped_to» tn1 and
e.finish «mapped_to» tn2 and
tn1.subnodes->includes(tn2)

e

tn1

«mapped_to»
TNode

tn2

Vertex

finishstart
subnodes*

Figure 99 – Edge<->(TNode,TNode) mapping specification

D.6.1 Implementation Framew ork
public class Edge_PairTNode

extends AbstractMapping
{

private IEdge _edge;
public IEdge edge() {return _edge;}

private ITNode _tn1;
public ITNode tn1() {return _tn1;}

private ITNode _tn2;
public ITNode tn2() {return _tn2;}

public Edge_PairTNode(Iedge edge, IPair p) {
_edge = edge;
_tn1 = (ITNode)p.fst();
_tn2 = (ITNode)p.snd();
startObserving();

DirectedGraph-to-Tree Translator 170

}

public void observe_edge_start(ChangeEvent ev) { ... }

public void observe_edge_finish(ChangeEvent ev) { ... }

public void observe_tn1(ChangeEvent ev) { ... }

public void observe_tn2_parent(ChangeEvent ev) { ... }

public void observe_edge(IObservableEvent e) {
if (e.name().equals("start")) observe_edge_start((ChangeEvent)e);
if (e.name().equals("finish")) observe_edge_finish((ChangeEvent)e);

}

public void observe_tn1_subnodes(IObservableEvent e) {
if (e instanceof AddEvent) observe_tn1_subnodes((AddEvent)e);
if (e instanceof RemoveEvent) observe_tn1_subnodes((RemoveEvent)e);

}

public void observe_tn2(IObservableEvent e) {
if (e.name().equals("parent")) observe_tn2_parent((ChangeEvent)e);

}

//--- AbstractMapping ---
public Object object1() {return _edge;}

public Object object2() {return new Pair(_tn1,_tn2); }

//--- Observer ---
public void startObserving() {

((IObservable)_edge).addObserver(this);
((IObservable)_tn1.subnodes()).addObserver(this);
((IObservable)_tn2).addObserver(this);

}

public void stopObserving() {
((IObservable)_edge).removeObserver(this);
((IObservable)_tn1.subnodes()).removeObserver(this);
((IObservable)_tn2).removeObserver(this);

}

public void observe(IobservableEvent e) {
if (e.source()==edge()) observe_edge(e);
if (e.source()==tn1().subnodes()) observe_tn1_subnodes(e);
if (e.source()==tn2()) observe_tn2(e);

}

}

Table 51 – Implementation Framework for Edge↔↔↔↔(TNode,TNode) Mapping
Class

D.6.2 Changing the start Attri bute
public void observe_edge_start(ChangeEvent ev) {

IVertex old_v = (IVertex)ev.old_value();
IVertex new_v = (IVertex)ev.new_value();
ITNode new_tn1 = (ITNode)manager().translate1(new_v);
if (new_tn1 != tn1()) {

//e.start <-> tn1 and
manager().removeMapping(edge(),new Pair(tn1(),tn2()));
((Translator)manager()).createMapping(edge(),new Pair(new_tn1,tn2()));

//e.finish <-> tn2 and
// nothing

// tn1.subnodes->includes(tn2);
tn1().subnodes().remove(tn2());
new_tn1.subnodes().add(tn2());
_tn1 = new_tn1;

}
}

Table 52 – Actions to execute when the start Attribute is Changed

D.6.3 Changing the finish Attr ibute
public void observe_edge_finish(ChangeEvent ev) {

IVertex old_v = (IVertex)ev.old_value();

DirectedGraph-to-Tree Translator 171

IVertex new_v = (IVertex)ev.new_value();
ITNode new_tn2 = (ITNode)manager().translate1(new_v);
if (new_tn2 != tn2()) {

//e.start <-> tn1 and
// nothing

//e.finish <-> tn2 and
manager().removeMapping(edge(),new Pair(tn1(),tn2()));
((Translator)manager()).createMapping(edge(),new Pair(tn1(),new_tn2));

// tn1.subnodes->includes(tn2);
tn1().subnodes().remove(tn2());
tn1().subnodes().add(new_tn2);
_tn2 = new_tn2;

}
}

Table 53 – Actions to execute when the finish Attribute is Changed

D.6.4 Adding a Subnode to tn1

Actions for adding subnodes are handled by the Vertex↔TNode mapping.
public void observe_tn1(AddEvent ev) {

//e.start <-> tn1 and
// nothing

//e.finish <-> tn2 and
// nothing

// tn1.subnodes->includes(tn2);
// nothing

}

Table 54 – Actions to execute when a Subnode is Added

D.6.5 Removing a Subnode fro m tn1

Actions for removing subnodes are handled by the Vertex↔TNode mapping.
public void observe_tn1(RemoveEvent ev) {

//e.start <-> tn1 and
// nothing

//e.finish <-> tn2 and
// nothing

// tn1.subnodes->includes(tn2);
// nothing

}

Table 55 – Actions to execute when a Subnode is Removed

D.6.6 Changing the parent of Subnode tn2
public void observe_tn2_parent(ChangeEvent ce) {
ITNode new_parent = (ITNode)ce.new_value();

//e.start <-> tn1 and
if (new_parent != tn1()) {

IVertex v = (IVertex)manager().translate2(new_parent);
edge().setStart(v);
_tn1 = new_parent;

}

//e.finish <-> tn2 and
// nothing

// tn1.subnodes->includes(tn2);
// nothing

}

Table 56 – Actions to execute when a Subnode is Removed

Appendix E
Java-to-Tree Translator

This appendix illustrates the Java↔Tree translator, including all of the automatically
generated code (with manual additions) for an active translator implementation.

E.1 Specification
Directory

DirectoryEntry

CompilationUnit

TNode

TNode

TNode

dir.entries ↔ tnode.subnodes
Pair {“Directory”, dir.name }↔ tnode.data

if entry.oclIsKindOf(CompilationUnit) then
 entry.oclAsType(CompilationUnit) ↔ tnode
else if entry.oclIsKindOf(Directory) then
 entry.oclAsType(Directory) ↔ tnode
 else false endif
endif

Pair {“CompilationUnit”, comp_unit.name }↔ tnode.data

dir

comp_unit

tnode

tnode

entry tnode

Figure 100 – Java ↔↔↔↔ Tree Mapping Specifications

E.2 ‘mappings’ Package
public class IDirectory_ITNode

extends OclAny
{

private IDirectory _dir;
public IDirectory dir() {return _dir;}

private ITNode _tnode;
public ITNode tnode() {return _tnode;}

public IOclConstraint constraint =
OCL.Invarient(this,

"self.dir.entries->size = self.tnode.subnodes->size "+
"and self.dir.name = self.tnode.data.oclAsType('ukc.dha.utils.Pair').snd");

public IDirectory_ITNode(IDirectory dir, ITNode tnode) {
_dir=dir;
_tnode=tnode;

}
}

Table 57 – Directory↔↔↔↔TNode Mapping Class

Java-to-Tree Translator 173

public class IDirectoryEntry_ITNode
extends OclAny

{
private IDirectoryEntry _entry;
public IDirectoryEntry entry() {return _entry;}

private ITNode _tnode;
public ITNode tnode() {return _tnode;}

public IOclConstraint constraint = OCL.Invarient(this,"true");

public IDirectoryEntry_ITNode(IDirectoryEntry entry, ITNode tnode) {
_entry=entry;
_tnode=tnode;

}
}

Table 58 – DirectoryEntry↔↔↔↔TNode Mapping Class (Unused)
public class ICompilationUnit_ITNode

extends OclAny
{

private ICompilationUnit _comp_unit;
public ICompilationUnit comp_unit() {return _comp_unit;}

private ITNode _tnode;
public ITNode tnode() {return _tnode;}

public IOclConstraint constraint =
OCL.Invarient(this,
"self.comp_unit.declarations->size = self.tnode.subnodes->size and"+
"self.comp_unit.name = self.tnode.data.oclAsType('ukc.dha.utils.Pair').snd");

public ICompilationUnit_ITNode(ICompilationUnit comp_unit, ITNode tnode) {
_comp_unit=comp_unit;
_tnode=tnode;

}
}

Table 59 – CompilationUnit↔↔↔↔TNode Mapping Class

E.3 ‘translator’ Package
public class ConsistencyManager

extends MappingManager
implements IConsistencyManager

{
ITranslator _trans;
public void setTranslator(ITranslator t) {_trans=t;}

public void createMapping(IDirectoryEntry entry, ITNode tnode) {
new IDirectoryEntry_ITNode(entry, tnode,_trans);
mappings().put(entry, tnode);

}

public void createMapping(IDirectory dir, ITNode tnode) {
new IDirectory_ITNode(dir, tnode,_trans);
mappings().put(dir, tnode);

}

public void createMapping(ICompilationUnit comp_unit, ITNode tnode) {
new ICompilationUnit_ITNode(comp_unit, tnode,_trans);
mappings().put(comp_unit, tnode);

}

//--- IConsistencyManager ---
boolean _observing = false;
public boolean is_observing() { return _observing; }
public void is_observing(boolean b) { _observing=b; }

}

Table 60 – ConsistencyManager Class
public class Translator

extends AbstractTranslator

Java-to-Tree Translator 174

{
public Translator(IConsistencyManager cm,

IGenerator gen1To2,
IGenerator gen2To1) {

super(cm, gen1To2, gen2To1);
}

public Object translate1To2(Object obj) {
if (obj instanceof IDirectoryEntry)

return translateIDirectoryEntryToITNode((IDirectoryEntry)obj);
if (obj instanceof IDirectory)

return translateIDirectoryToITNode((IDirectory)obj);
if (obj instanceof ICompilationUnit)

return translateICompilationUnitToITNode((ICompilationUnit)obj);
if (obj instanceof IClassDeclaration)

return translateIClassDeclarationToITNode((IClassDeclaration)obj);
throw new RuntimeException(

"Error:: Type "+obj.getClass()+" not handled in "
+this.getClass().getName()+".translate1To2");

}

public Object translate2To1(Object obj) {
if (obj instanceof ITNode)

return translateITNodeToIDirectoryEntry((ITNode)obj);
if (obj instanceof ITNode)

return translateITNodeToIDirectory((ITNode)obj);
if (obj instanceof ITNode)

return translateITNodeToICompilationUnit((ITNode)obj);
if (obj instanceof ITNode)

return translateITNodeToIClassDeclaration((ITNode)obj);
throw new RuntimeException(

"Error:: Type "+obj.getClass()+" not handled in "
+this.getClass().getName()+".translate2To1");

}

public ITNode translateIDirectoryEntryToITNode(IDirectoryEntry component1) {
ITNode component2 =

(ITNode)mapping_manager().mappings().get1To2(component1);
if (component2 == null) {

return (ITNode)create1To2(ITNode.class,IDirectoryEntry.class,component1);
}
return component2;

}

public ITNode translateIDirectoryToITNode(IDirectory component1) {
ITNode component2 =

(ITNode)mapping_manager().mappings().get1To2(component1);
if (component2 == null) {

return (ITNode)create1To2(ITNode.class,IDirectory.class,component1);
}
return component2;

}

public ITNode translateICompilationUnitToITNode(ICompilationUnit component1) {
ITNode component2 =

(ITNode)mapping_manager().mappings().get1To2(component1);
if (component2 == null) {

return (ITNode)create1To2(ITNode.class,ICompilationUnit.class,component1);
}
return component2;

}

public IDirectoryEntry translateITNodeToIDirectoryEntry(ITNode component2) {
IDirectoryEntry component1 =

(IDirectoryEntry)mapping_manager().mappings().get2To1(component2);
if (component1 == null) {

return (IDirectoryEntry)
create2To1(IDirectoryEntry.class,ITNode.class,component2);

}
return component1;

}

public IDirectory translateITNodeToIDirectory(ITNode component2) {
IDirectory component1 =

(IDirectory)mapping_manager().mappings().get2To1(component2);
if (component1 == null) {

return (IDirectory)create2To1(IDirectory.class,ITNode.class,component2);

Java-to-Tree Translator 175

}
return component1;

}

public ICompilationUnit translateITNodeToICompilationUnit(ITNode component2) {
ICompilationUnit component1 =

(ICompilationUnit)mapping_manager().mappings().get2To1(component2);
if (component1 == null) {

return (ICompilationUnit)
create2To1(ICompilationUnit.class,ITNode.class,component2);

}
return component1;

}
}

Table 61 – Translator Class
public class JavaGenerator

extends AbstractGenerator
{

IJavaBuilder _builder;

private ConsistencyManager _mappings;
public ConsistencyManager consistency_manager() { return _mappings; }

public JavaGenerator(IJavaBuilder builder, IMappingManager mm) {
_builder = builder;
_mappings = (ConsistencyManager)mm;

}

public IDirectoryEntry createIDirectoryEntry(ITNode tn) {
Pair p = (Pair)tn.data();
String s = ((IString)p.fst()).toString();
if (s.equals("Directory")) return createIDirectory(tn);
if (s.equals("CompilationUnit")) return createICompilationUnit(tn);
throw new RuntimeException("Error:: Unknown TNode type - "+s);

}

public IDirectory createIDirectory(ITNode tn) {
IDirectory d = (IDirectory)consistency_manager().get2To1(tn.parent());
if (d != null) {

IDirectory subd = _builder.buildDirectory(d);
subd.name().setTo((IString)((Pair)tn.data()).fst();
consistency_manager().createMapping(subd,tn);
return subd;

}
throw new RuntimeException("Error:: No mapping for parent of "+tn);

}

public ICompilationUnit createICompilationUnit(ITNode tn) {
IDirectory d = (IDirectory)consistency_manager().get2To1(tn.parent());
if (d != null) {

ICompilationUnit cu = _builder.buildCompilationUnit(d);
cu.name().setTo((IString)((Pair)tn.data()).fst();
consistency_manager().createMapping(cu,tn);
return cu;

}
throw new RuntimeException("Error:: No mapping for parent of "+tn);

}

}

Table 62 – Java Generator Class
public class TreeGenerator

extends AbstractGenerator
{

ITreeBuilder _builder;

private ConsistencyManager _mappings;
public ConsistencyManager consistency_manager() { return _mappings; }

public TreeGenerator(ITreeBuilder builder, IConsistencyManager mm) {
_builder = builder;
_mappings = (ConsistencyManager)mm;

}

public ITNode createITNode(IDirectoryEntry de) {

Java-to-Tree Translator 176

if (de instanceof IDirectory) return createITNode((IDirectory)de);
if (de instanceof ICompilationUnit)

return createITNode((ICompilationUnit)de);
throw new RuntimeException("Error:: Unknown subtype of IDirectoryEntry");

}

public ITNode createITNode(IDirectory d) {
ITNode pn = (ITNode)consistency_manager().get1To2(d.parent());
if (pn != null) {

ITNode tn = _builder.buildTNode(pn);
tn.setData(new Pair(OCL.String("Directory"),d.name()));
consistency_manager().createMapping(d,tn);
return tn;

}
throw new RuntimeException("Error:: Can't create TNode

for a root directory.");
}

public ITNode createITNode(ICompilationUnit cu) {
ITNode pn = (ITNode)consistency_manager().get1To2(cu.parent());
if (pn != null) {

ITNode tn = _builder.buildTNode(pn);
tn.setData(new Pair(OCL.String("CompilationUnit"),cu.name()));
consistency_manager().createMapping(cu,tn);
return tn;

}
throw new RuntimeException("Error:: No mapping for parent of "+cu);

}
}

Table 63 – Tree Generator Class

Appendix F
SVG-to-Graph-to-Automaton Translator

This Appendix contains the specification of the SVG↔Graph↔Automaton
Translator for the Stochastic Automaton Editor. It also includes the XMI encoding of
the translator specifications, used as input to the automatic implementation generator.

F.1 Specifications

F.1.1 SVG↔↔↔↔DirectedGraph
DirectedGraph

svg.owned ↔ graph.edges.union(graph.vertices)

graphSVG svg

Figure 101 – SVG↔↔↔↔DirectedGraph Mapping Specification
Group

Vertex

group.owned->contains(text) and
group.owned->contains(rect) and
text .value ↔ vertex.labels->at(0)

vertex

group

Rect

Text

rect

text

Figure 102 – (Group,Rect,Text) ↔↔↔↔ Vertex Mapping Specification

Edge

Group

group.owned->contains(text) and group.owned->contains(line) and
text .value ↔ edge.labels->at(0) and
group.owner.owned->select(g | g.encloses(line.start))->first ↔ edge.start and
group.owner.owned->select(g | g.encloses(line.finish))->first ↔ edge.finish

edge

group

Line

Text

line

text

Figure 103 – (Group,Line,Text) ↔↔↔↔ Vertex Mapping Specification

SVG-to-Graph-to-Automaton Translator 178

F.1.2 DirectedGraph↔↔↔↔Automaton
DirectedGraph Automaton

Edge Transition

Vertex Location

graph.vertices ↔ automaton.locations and
graph.edges ↔ automaton.transitions

vertex.labels.at(0) ↔ location.name

edge.labels.at(0) ↔ transition.guard

edge transition

vertex

automaton

location

graph

Figure 104 – DirectedGraph↔↔↔↔Automata Translator Specification

F.2 XMI
<XMI version="1.1" xmlns:UML="org.omg/UML1.3">

<XMI.header>
<XMI.model xmi.name="SVG_Graph" href="SVG_Graph.xmi"/>
<XMI.import xmi.name="svg" href="SVG.xmi"/>
<XMI.import xmi.name="directedGraph" href="DirectedGraph.xmi"/>

</XMI.header>
<XMI.content>

<UML:Association>
<UML:Association.connection>
<UML:AssociationEnd name="svg" xmi.id="svg" >
<UML:AssociationEnd.type><UML:Classifier name="SVG" />

</UML:AssociationEnd.type>
</UML:AssociationEnd>
<UML:AssociationEnd name="graph" xmi.id="graph" >
<UML:AssociationEnd.type><UML:Classifier name="DirectedGraph" />

</UML:AssociationEnd.type>
</UML:AssociationEnd>

</UML:Association.connection>
<UML:ModelElement.constraint>
<UML:Constraint>

<UML:Constraint.body xmi.value=
"self.graph.vertices->union(self.graph.edges)->size

=
self.svg.owned->size" />

</UML:Constraint>
</UML:ModelElement.constraint>

</UML:Association>

<UML:Association>
<UML:Association.connection>
<UML:AssociationEnd name="group" xmi.id="group_gv" >

<UML:AssociationEnd.type><UML:Classifier name="Group" />
</UML:AssociationEnd.type>

</UML:AssociationEnd>
<UML:AssociationEnd name="vertex" xmi.id="vertex_gv" >
<UML:AssociationEnd.type><UML:Classifier name="Vertex" />

</UML:AssociationEnd.type>
</UML:AssociationEnd>

</UML:Association.connection>
<UML:ModelElement.constraint>
<UML:Constraint>

<UML:Constraint.body xmi.value="true" />
</UML:Constraint>

</UML:ModelElement.constraint>
</UML:Association>

<UML:Association>
<UML:Association.connection>

SVG-to-Graph-to-Automaton Translator 179

<UML:AssociationEnd name="group" xmi.id="group_grtv" >
<UML:AssociationEnd.type><UML:Classifier name="Group" />

</UML:AssociationEnd.type>
</UML:AssociationEnd>
<UML:AssociationEnd name="rect" xmi.id="rect_grtv" >
<UML:AssociationEnd.type><UML:Classifier name="Rect" />

</UML:AssociationEnd.type>
</UML:AssociationEnd>
<UML:AssociationEnd name="text" xmi.id="text_grtv" >
<UML:AssociationEnd.type><UML:Classifier name="Text" />

</UML:AssociationEnd.type>
</UML:AssociationEnd>
<UML:AssociationEnd name="vertex" xmi.id="vertex_grtv" >
<UML:AssociationEnd.type><UML:Classifier name="Vertex" />

</UML:AssociationEnd.type>
</UML:AssociationEnd>

</UML:Association.connection>
<UML:ModelElement.constraint>
<UML:Constraint>

<UML:Constraint.body xmi.value=
"self.group.owned->contains(text) and
self.group.owned->contains(rect) and
self.text.value=self.vertex.labels->at(0)" />

</UML:Constraint>
</UML:ModelElement.constraint>
<UML:ModelElement.ties><UML:Tie xmi.idref="tie_a1" />

</UML:ModelElement.ties>
<UML:ModelElement.ties><UML:Tie xmi.idref="tie_a2" />

</UML:ModelElement.ties>
</UML:Association>

<UML:Tie xmi.id="tie_a1" >
<UML:Tie.tied_elements>
<UML:AssociationEnd xmi.idref="group_grtv" />
<UML:AssociationEnd xmi.idref="rect_grtv" />
<UML:AssociationEnd xmi.idref="text_grtv" />

</UML:Tie.tied_elements>
</UML:Tie>

<UML:Tie xmi.id="tie_a2" >
<UML:Tie.tied_elements>
<UML:AssociationEnd xmi.idref="vertex_grtv" />

</UML:Tie.tied_elements>
</UML:Tie>

<UML:Association>
<UML:Association.connection>
<UML:AssociationEnd name="group" xmi.id="group_glte" >
<UML:AssociationEnd.type><UML:Classifier name="Group" />

</UML:AssociationEnd.type>
</UML:AssociationEnd>
<UML:AssociationEnd name="line" xmi.id="line_glte" >
<UML:AssociationEnd.type><UML:Classifier name="Line" />

</UML:AssociationEnd.type>
</UML:AssociationEnd>
<UML:AssociationEnd name="text" xmi.id="text_glte" >
<UML:AssociationEnd.type><UML:Classifier name="Text" />

</UML:AssociationEnd.type>
</UML:AssociationEnd>
<UML:AssociationEnd name="edge" xmi.id="edge_glte" >
<UML:AssociationEnd.type><UML:Classifier name="Edge" />

</UML:AssociationEnd.type>
</UML:AssociationEnd>

</UML:Association.connection>
<UML:ModelElement.constraint>
<UML:Constraint>

<UML:Constraint.body xmi.value=
"self.group.owned->contains(text) and
self.group.owned->contains(line) and
self.text.value=self.edge.labels->at(0) " />

</UML:Constraint>
</UML:ModelElement.constraint>

<UML:ModelElement.ties><UML:Tie xmi.idref="tie_b1" />
</UML:ModelElement.ties>

<UML:ModelElement.ties><UML:Tie xmi.idref="tie_b2" />
</UML:ModelElement.ties>

SVG-to-Graph-to-Automaton Translator 180

</UML:Association>

<UML:Tie xmi.id="tie_b1" >
<UML:Tie.tied_elements>
<UML:AssociationEnd xmi.idref="group_glte" />
<UML:AssociationEnd xmi.idref="line_glte" />
<UML:AssociationEnd xmi.idref="text_glte" />

</UML:Tie.tied_elements>
</UML:Tie>

<UML:Tie xmi.id="tie_b2" >
<UML:Tie.tied_elements>
<UML:AssociationEnd xmi.idref="edge_glte" />

</UML:Tie.tied_elements>
</UML:Tie>

</XMI.content>
</XMI>

Table 64 – XMI for SVG↔↔↔↔DirecteGraph

<XMI version="1.1" xmlns:UML="org.omg/UML1.3">
<XMI.header>

<XMI.model xmi.name="Graph_Automata" href="Graph_Automata.xml"/>
<XMI.metamodel xmi.name="UML" href="UML.xml"/>
<XMI.metamodel xmi.name="OCL" href="OCL.xml"/>

</XMI.header>
<XMI.content>

<UML:Association>
<UML:Association.connection>
<UML:AssociationEnd name="graph" xmi.id="graph" >

<UML:AssociationEnd.type><UML:Classifier name="DirectedGraph"/>
</UML:AssociationEnd.type>

</UML:AssociationEnd>
<UML:AssociationEnd name="automaton" xmi.id="automaton" >
<UML:AssociationEnd.type><UML:Classifier name="Automaton"/>

</UML:AssociationEnd.type>
</UML:AssociationEnd>

</UML:Association.connection>
<UML:ModelElement.constraint>
<UML:Constraint>

<UML:Constraint.body xmi.value=
"self.graph.vertices->size = self.automaton.locations->size and
self.graph.edges->size = self.automaton.transitions->size"/>

</UML:Constraint>
</UML:ModelElement.constraint>

</UML:Association>

<UML:Association>
<UML:Association.connection>
<UML:AssociationEnd name="vertex" xmi.id="vertex" >

<UML:AssociationEnd.type><UML:Classifier name="Vertex"/>
</UML:AssociationEnd.type>

</UML:AssociationEnd>
<UML:AssociationEnd name="location" xmi.id="location" >
<UML:AssociationEnd.type><UML:Classifier name="Location"/>

</UML:AssociationEnd.type>
</UML:AssociationEnd>

</UML:Association.connection>
<UML:ModelElement.constraint>
<UML:Constraint>

<UML:Constraint.body xmi.value=
"self.vertex.labels.at(0) = self.location.name"/>

</UML:Constraint>
</UML:ModelElement.constraint>

</UML:Association>

<UML:Association>
<UML:Association.connection>
<UML:AssociationEnd name="edge" xmi.id="edge" >

<UML:AssociationEnd.type><UML:Classifier name="Edge"/>
</UML:AssociationEnd.type>

</UML:AssociationEnd>
<UML:AssociationEnd name="transition" xmi.id="transition" >

<UML:AssociationEnd.type><UML:Classifier name="Transition"/>

SVG-to-Graph-to-Automaton Translator 181

</UML:AssociationEnd.type>
</UML:AssociationEnd>

</UML:Association.connection>
<UML:ModelElement.constraint>
<UML:Constraint>

<UML:Constraint.body xmi.value=
"self.edge.labels.at(0) = self.transition.guard"/>

</UML:Constraint>
</UML:ModelElement.constraint>

</UML:Association>

</XMI.content>
</XMI>

Table 65 – XMI for DirectedGraph↔↔↔↔Automaton

Appendix G
UML Actions-to-RiscSim

The example translator contained within this appendix illustrates a portion of a
translator that could be used to map a UML model onto a RiscSim Petri-Net. Such a
translator could be used as part of the Permabase toolkit for performance modelling,
as described in Chapter 3.

G.1 UML Actions

Action

ConditionalAction ProbabilityAction
probability : String

Clause

body

test

clauses*

Figure 105 – A Partial UML Actions model
This segment of a UML Actions model is taken from [OMG_00aug]. The additional
ProbabilityAction class is added to enable non-deterministic tests to be defined for
condition clauses.

UML Actions-to-RiscSim 183

G.2 RiscSim

PetriNet

NetNode

Transition Place

Arc

ChoiceArc
probability : String

ChoicePlace

net

net

out

transitions

*

in
out_arcs

in_arcs
*

*

start

finish

places*

*subnets

Figure 106 – Partial RiscSim Model
This model illustrates the components of a RiscSim model that are required for the
example translation. The RiscSim tool is described in [Linington_99apr].

G.3 Translator Mappings
To form the mapping from Action to PetriNet, we map each Action to a sub-PetriNet
that has a starting (in) Arc and a finishing (out) transition. The behaviour of a
particular action is fully contained within the specified sub-PetriNet.

To generate a UMLAction model from a PetriNet model, a function would be
required that searches for sub-PetriNets within a parent PetriNet detecting fully
contained sub-nets. However, as the translator (for the purpose of Permabase) is to
create a PetriNet model from a UMLAction model, the OCL select operation is
sufficient; the set of ‘subnets’ will be created during the creation of the PetriNet
model.

When implementing the generation code that creates PetriNets from Action objects,
the correct pattern of net must be created. The constraints in the following
specification do explicitly define the required pattern, but to aid the readers
understanding of the patterns of net required, Figure 107 indicates the mapping
between segments of PetriNet and pseudo code representation of the Actions.

In Figure 107, P marks ordinary Places, CP marks a ChoicePlace and CA marks a
ChoiceArc.

UML Actions-to-RiscSim 184

PAny Action

SELECT
...
...
END SELECT

CP P

CASE test:
 body actions CA

Figure 107 – Mapping Between Pseudo Code Actions and PetriNet Segments
All Actions are mapped to a pattern of PetriNet with a starting (in) Arc, and an ending
(out) Transition. A Conditional Action (represented by the SELECT statement) maps
to a sub-PetriNet with an initial ChoicePlace that branches out to the various sub-
clauses in the condition. A ChoicePlace is a RiscSim specific style of PetriNet place
that non-deterministically chooses one of the outgoing ChoiceArcs, based on the
probabilities associated with them. The Clause of a conditional action (CASE
statement) maps to a subnet starting with a ChoiceArc, which represents the ‘test’ and
containing the body of the clause as a further subnet.

The functionality provided by the RiscSim engine limits the translation such that any
test on a clause must be a ProbabilityAction. Other (deterministic) tests cannot be
mapped to a RicSim model.

The mappings for the translator specification, shown in Figure 108, contain enough
information to implement a one way translation from UMLActions to RiscSim
model.

Action
(from UMLActions)

+subnet+action <<mapped_to>>

+subnet+condition <<mapped_to>>

PetriNet
(from RiscSim)

PetriNet
(from RiscSim)

ConditionalAction
(from UMLActions)

clause.test.oclAsTypeOf(ProbabilityAction).probability
 ↔ subnet.in.oclAsTypeOf(ChoiceArc).probability and
clause.body ↔ subnet.subnets->select(sn |
 sn.in.start = subnet.in.finish and
 sn.out = subnet.out)

+subnet+clause <<mapped_to>> PetriNet
(from RiscSim)

Clause
(from UMLActions)

condition.clauses ↔ subnet.subnets->select(sn |
 sn.in.start = subnet.in.finish and
 subnet.out.in_arcs->first.start.in_arcs->exists(a |
 a.start = sn.out))

Figure 108 – Partial UMLActions↔↔↔↔RiscSim Translator Specification

Bibliography
[Abiteboul_etal_94] S. Abiteboul, M. Adiba, J. Arlow, P. Armenise, S. Bandinelli, L.

Baresi, P. Breche, F. Buddrus, C. Collet, P. Corte, Th. Coupaye, C.
Delobel, W. Emmerich, G. Ferran, F. Ferrandina, A. Fuggetta, C.
Ghezzi, S.E. Lautemann, L. Lavazza, J. Madec, M. Phoenix, S.
Sachweh, W. Schäfer, C. Souza dos Santos, G. Tigg and R. Zicari;
The GOODSTEP Project: General Object-Oriented Database for
Software Engineering Processes; Proc. of the 1st Asian Pacific
Software Engineering Conf. Tokyo, Japan, IEEE Computer
Society Press; 1994; 10-19.

[Adobe_98apr] Nabeel Al-Shamma, Robert Ayers, Richard Cohn, Jon Ferraiolo,
Martin Newell, Roger K. de Bry, Kevin McCluskey, Jerry Evans;
Precision Graphics Markup Language (PGML); Adobe Systems
Incorporated; April 1998.

[Aho_etal_86] A. V. Aho, R. Sethi, J. D. Ullman; Compilers: Principles,
Techniques and Tools; Addison-Wesley, ISBN 0201101947; 1986.

[Akehurst_00] David Akehurst; An OO visual language definition approach
supporting multiple views; Proc. VL2000, IEEE Symposium on
Visual Languages; September 2000.

[Akehurst_Bordbar_01] D.H.Akehurst, B.Bordbar; On Querying UML data models with
OCL; Proceedings of <<UML>> 2001 "Modeling Languages,
Concepts and Tools", Toronto, Ontario, Canada; to appear October
2001.

[Akehurst_etal_00] David Akehurst, Howard Bowman, Jeremy Bryans, John Derrick;
A Manual for a ModelChecker for Stochastic Automata;
University of Kent, Computing Laboratory, Technical Report 9-00;
December 2000.

[Akehurst_Waters] D.H.Akehurst, A.G.Waters; UML Deficiencies from the
perspective of automatic Performance Model Generation;
OOPSLA '99 Workshop on Rigorous Modelling and Analysis with
the UML: Challenges and Limitations; November 1999.

[Alexander_etal_77] Christopher Alexander, Sara Ishikawa, Murray Silverstein, Max
Jacobson, Ingrid Fiksdahl-King, Shlomo Angel; A Pattern
Language; Oxford University Press, New York; 1977.

[Bahlke_Snelting_86] Rolf Bahlke, Gregor Snelting; The PSG system: from formal
language definitions to interactive programming environments;
ACM Transactions on Programming Languages and Systems,
Volume 8, Issue 4; 1986; 547-576.

[Bancilhon_etal_92] Francois Bancilhon, Claude Delobel, Paris Kanellakis; Building an
Object-Oriented Database System: The Story of O2; Morgan
Kaufmann Publishers; ISBN: 1558601694; May 1992.

[Bardohl_etal_99] R. Bardohl, G. Taentzer, M. Minas, A. Schürr; Application of
Graph Transformation to Visual Languages; Handbook on Graph
Grammars and Computing by Graph Transformation, Volume 2:
Applications, Languages and Tools, World Scientific; 1999.

[Bézivin_etal_95] J. Bézivin, J. Lanneluc, R. Lemesle; sNets: The Core Formalism
for an Object-Oriented CASE Tool; Object-Oriented Technology
for Database and Software Systems, V.S. Algar & R. Missaoui ed.,
World Scientific Publishers; 1995; 224-239.

[Blaha_Premerlani_96] Michael Blaha and William Premerlani; A Catalog of Object
Model Transformations; Presented at 3rd Working Conference on
Reverse Engineering, Monterey, California; November 1996.

Bibliography 186

[Boiten_etal_95] Eerke Boiten, Howard Bowman, John Derrick, and Maarten Steen;
Cross viewpoint consistency in open distributed processing (intra
language consistency); Technical Report 8-95, University of Kent,
Computing Laboratory, University of Kent, Canterbury, UK; June
1995.

[Bollobás_79] Béla Bollobás; Graph Theory An Introductory Course; Springer-
Verlag; 1979.

[Booch_etal] Grady Booch, James Rumbaugh, Ivar Jacobson; The Unified
Modeling Language User Guide; Addison Wesley Longman Inc.;
1999.

[Bordbar_etal_01] B. Bordbar, J. Derrick, G. Waters; Using UML to specify QoS
constraints in ODP; IEEE Computer Networks; under review.

[Borras_etal_88] P. Borras, D. Clement, Th. Despeyroux, J. Incerpi, G. Kahn, B.
Lang and V. Pascual; Centaur: the system; Proceedings of the
ACM SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical software development environments, Boston, MA USA;
November 1988; 14-24.

[Bowman_etal_96jan] Howard Bowman, John Derrick, Peter Linington, Maarten Steen;
Cross-viewpoint consistency in Open Distributed Processing;
Software Engineering Journal, Vol. 11, No. 1; January 1996; 44-
57.

[Breu_etal97] Ruth Breu, Ursula Hinkel, Christoph Hofmann, Cornel Klein,
Barbara Paech, Bernhard Rumpe, Veronika Thurner; Towards a
Formalization of the Unified Modeling Language; Proceedings of
ECOOP'97; 1997.

[Britton_Jones_99] Carol Britton and Sara Jones; The Untrained Eye: How Languages
for Software Specification Support Understanding in Untrained
Users; HCI Volume 14 (1); 1999; 191-244.

[Bryans_etal_00jan] J.W. Bryans, H. Bowman and J. Derrick; A model checking
algorithm for stochastic systems; Technical Report 4-00,
University of Kent at Canterbury, Canterbury, Kent; January 2000.

[Bryans_etal_00nov] Jeremy Bryans, Lynne Blair, Howard Bowman; Specification and
analysis of automata-based designs; Integrated Formal Methods
(IFM 2000), volume 1945 of Lecture Notes in Computer Science;
November 2000; 176-193.

[Bryans_etal_99nov] J.W. Bryans, H. Bowman and J. Derrick; Stochastic Model-
Checking for Multimedia; PONMS'99 (Modal and Temporal Logic
Based Planning for Open Networked Multimedia Systems), Cape
Cod, Massachusetts; November 1999.

[Burnett_etal_00] M. Burnett, N. Cao, J. Atwood; Time in grid-oriented VPLs: just
another dimension?; IEEE International Symposium on Visual
Languages (VL2000), Los Alamitos, CA: IEEE Computer Society;
2000; 137-144.

[Celentano_78] A. Celentano; Incremental Parsers; Acta Informatica, Volume 10;
1978; 307.

[Civello_93] Franco Civello; Roles for Composite Objects in Object-Oriented
Analysis and Design; OOPSLA'93 Conference Proceedings, ACM
SIGPLAN Notices, Vol. 28, N.10; October 1993.

[Claus_etal_78] edited by V. Claus, H. Ehrig, G. Rozenberg; Proc. Int. Workshop
on Graph Grammars and Their Applications to Computer Science
And Biology, LNCS 73; Berlin: Springer Verlag; 1978.

Bibliography 187

[Cook_etal_99] Steve Cook, Anneke Kleppe, Richard Mitchell, Jos Warmer, Alan
Wills, Joaquin Miller, Rebecca Wirfs-Brock; Defining the Context
of OCL Expressions; Proc. «UML» '99 The Unified Modelling
Language: Beyond the Standard, Springer; October 1999; 372-383.

[Cook_Newson_96] Vivian Cook, Mark Newson; Chompsky's Universal Grammar
(2nd ed.); Blackwell Publishers; ISBN: 0631195564; 1996.

[Dahm_99] Markus Dahm; Byte Code Engineering; Proceedings JIT'99; 1999;
267-277.

[DeRemer_74:1] F. L. DeRemer; Review of Formalisms and Notation; Compiler
Construction: An Advanced Course, LNCS 21, ISBN 3540069585;
1974; 37-56.

[DeRemer_74:3] F. L. DeRemer; Transformational Grammars; Compiler
Construction: An Advanced Course, LNCS 21, ISBN 3540069585;
1974; 121-145.

[Donnelly_Stallman_00] Charles Donnelly, Richard M. Stallman; Bison: The YACC-
Compatible Parser Generator; iUniverse.Com, Inc.; ISBN:
0595100325; August 2000.

[Donzeau-Gouge_etal_84] V. Donzeau-Gouge, G. Kahn, B. Lang, B. Mélèse; Document
structure and Modularity in Mentor; Proceedings of the ACM
SIGSOFT/SIGPLAN - Software Engineering Symposium on
Practical Software Development Environments, Pittsburgh,
Software Engineering Notes, Volume 9, No 3; 1984; 141-148.

[Dsouza_01mar] Desmond Dsouza; Model-Driven Architecture and Integration:
Opportunities and Challenges, Version 1.1; Kinetium; March
2001.

[Dustzadeh_Najm_97] Joubine Dustzadeh, Elie Najm; Consistent Semantics for ODP
Information and Computational Models; Proceedings of
FORTE/PSTV'97; 1997.

[Emmerich_95] W. Emmerich; Tool Construction for Process-Centred Software
Development Environments based on Object Databases; PhD
Thesis, Dept. of Mathematics and Computer Science, University of
Paderborn, Germany; 1995.

[Emmerich_96] Wolfgang Emmerich; Tool Specification with GTSL; Proc. of the
8th Int. Workshop on Software Specification and Design, Schloss
Velen, Germany, IEEE Computer Society Press; 1996; 26-35.

[Emmerich_etal_93dexa] W. Emmerich, P. Kroha and W. Schäfer; Object-oriented
Database Management Systems for Construction of CASE
Environments; Database and Expert Systems Applications - Proc.
of the 4th Int. Conf. DEXA '93, Prague, Czech Republic, LNCS
720; 1993; 631-642.

[Emmerich_etal_93esec] W. Emmerich, W. Schäfer and J. Welsh; Databases for Software
Engineering Environments - The Goal has not yet been attained;
Software Engineering ESEC '93 - Proc. of the 4th European
Software Engineering Conference, Garmisch-Partenkirchen,
Germany, LNCS 717; 1993; 145-162.

[Emmerich_etal_97] Wolfgang Emmerich, J. Arlow, J. Madec and M. Phoenix; Tool
Construction for the British Airways SEE with the O2 ODBMS;
Theory and Practice of Object Systems, Volume 3, Issue 3; 1997;
213-231.

[Engels_etal_86] G Engels, M Nagl and W Schafer; On the structure of structure-
oriented editors for different applications; Proceedings of the
ACM SIGSOFT/SIGPLAN Software Engineering Symposium on

Bibliography 188

Practical software development environments; December 1986;
190-198.

[Engels_etal_92] G. Engels, C. Lewerentz, M. Nagl, W. Schäfer and A. Schürr;
Building integrated software development environments. Part I
tool specification; ACM Transactions on Software Engineering
and Methodology, Volume 1, Issue 2; 1992; 135-167.

[Evans_etal98jun] A. Evans, R. France, K. Lano, B. Rumpe; Developing the UML as
a Formal Modelling Notation; «UML» '98 Beyond the Notation;
June 1998; 297-308.

[Feather_96] M. Feather; Modularised Exception Handling; Viewpoints 96: An
International Workshop on Multiple Perspectives in Software
Development, Joint Proc. of the SIGSOFT'96 Workshops, ACM
Press, San Francisco; October 1996; 167-171.

[Finkelstein_etal_92] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, M.
Goedicke; Viewpoints: A Framework for Integrating Multiple
Perspectives in System Development; International Journal of
Software Engineering and Knowledge Engineering 2(1); March
1992; 31-58.

[Finkelstein_etal_94] Finkelstein, A., Gabbay, D., Hunter, A., Kramer, J., & Nuseibeh,
B.; Inconsistency Handling In Multi-Perspective Specifications;
IEEE Transactions on Software Engineering, Volume 20, Issue 8;
August 1994; 569-578.

[Fischer_etal_99] T.Fischer, J.Niere, L.Torunski, A.Zündorf; Story Diagrams: A new
Graph Grammar Language based in the Unified Modeling
Language; Proc. of TAGT '98 - 6th International Workshop on
Theory and Application of Graph Transformation. Technical
Report tr-ri-98-201, University of Paderborn; 1999.

[Fowler_Scott] Martin Fowler with Kendall Scott; UML Distilled: Applying the
Standard Object Modeling Language; Addison Wesley Longman,
Inc.; 1997.

[Gamma_etal_94] Erich Gamma, Richard Helm, Ralph Johnson, John Vissides;
Design Patterns; Addison Wesley; ISBN: 0201633612; December
1994.

[Garlan_Miller_84] D.B. Garlan and P.L. Miller; GNOME: An Introductory
Programming Environment Based on a Family of Structure
Editors; Proceedings of the ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical Software Development
Environments; April 1984.

[Ghezzi_Mandrioli_79] Carlo Ghezzi, Dino Mandrioli; Incremental Parsing; ACM
Transactions on Programming Languages and Systems, Vol. 1;
1979; 58 - 70.

[Ghezzi_Mandrioli_80] Carlo Ghezzi, Dino Mandrioli; Augmenting Parsers to Support
Incrementality; Journal of the ACM, Volume 27 Issue 3; July
1980; 564-579.

[Gil_etal_99] J Gil, J Howse, S Kent; Constraint Diagrams: A Step Beyond
UML; Proceedings of TOOLS USA'99. IEEE Computer Society
Press; December 1999.

[Gogolla_Presicce] Martin Gogolla, Francesco Parisi Presicce; State Diagrams in
UML: A Formal Semantics using Graph Transformations;
Proceedings PSMT'98 Workshop on Precise Semantics for
Modeling Techniques; 1998.

[Gray_etal_92] Robert W. Gray, Steven P. Levi, Vincent P. Heuring, Anthony M.
Sloane and William M. Waite; Eli: a complete, flexible compiler

Bibliography 189

construction system; Communications of the ACM, Volume 35,
Issue 2; 1992; 121-130.

[Green_89] T.R.G. Green; Cognitive dimensions of notations; People and
Computers V, Cambridge University Press; 1989.

[Green_Petre_96] T. R. G. Green and M. Petre; Usability Analysis of Visual
Programming Environments: a ‘cognitive dimensions’ framework;
Journal of Visual Languages and Computing, Vol. 7; 1996; 131-
174.

[GSmith_99oct] Graeme Smith; The Object-Z Specification Language; Kluwer
Academic Publishers; ISBN: 0792386841; October 1999.

[Habermann_Notkin_96] A. N. Habermann, David Notkin; Gandalf Software Development
Environments; IEEE Transactions on Software Engineering
Volume 12, Issue 12; December 1986; 1117-1127.

[Harel_87] David Harel; Statecharts: A Visual Formalism for Complex
Systems; Science of Computer Programming, Vol. 8; 1987; 231-
274.

[Harold_99jul] Elliotte Rusty Harold; XML Bible; IDG Books Worldwide, ISBN:
0764532367; July 1999.

[Harwood] Robin Harwood; Object Oriented Development Method; British
Telecom; 1998.

[Hoffmann_99] Berthold Hoffmann; From Graph Transformation Rules to Rule-
based Visual Object-oriented Programs; Proceedings of
International Workshop and Symposium, AGTIVE - Applications
of Graph Transformation with Industrial Relevance; September
1999.

[H-Sellers_Barbier_99] Brian Henderson-Sellers, Franck Barbier; Black and White
Diamonds; Proc. «UML» '99 The Unified Modelling Language:
Beyond the Standard, Springer; October 1999; 550-565.

[Hussmann_etal_00] Heinrich Hussmann; Birgit Demuth, Frank Finger; Modular
Architecture for a Toolset Supporting OCL; <<UML>> 2000;
October 2000.

[ISO/IEC_95:1] ISO/IEC; Open Distributed Processing - Reference Model - Part
1: Overview; International Standard 10746-1, ITU
Recommendation X.901; July 1995.

[ISO/IEC_96] ISO/IEC 14977:1996; Information technology -- Syntactic
metalanguage -- Extended BNF; ISO/IEC Copyright Office,
Geneva.; 1996.

[Jahnke_etal_96] J.-H. Jahnke, W. Schäfer, and A. Zündorf; A Design Environment
for Migrating Relational to Object Oriented Database Systems;
Proc. of the International Conference on Software Maintenance
(ICSM '96), IEEE Computer Society; 1996.

[Jahnke_Zündorf_98] J. H. Jahnke, A. Zündorf; Using Graph Grammars for Building the
Varlet Database Reverse Engineering Environment; Proc. of
TAGT ’98 - 6th International Workshop on Theory and
Application of Graph Transformations. Technical Report, tr-ri-98-
201, Paderborn; November 1998.

[Jahnke_Zündorf_99] J.-H. Jahnke and A. Zündorf; Applying Graph Transformations To
Database Re-Engineering; Handbook of Graph Grammars and
Computing by Graph Transformation, Volume 2 - Applications,
languages and tools; 1999.

Bibliography 190

[Jalili_Gallier_82] F. Jalili and J. H. Gallier; Building friendly parsers; Conference
Record of the 9th Annual ACM Symposium on Principles of
Programming Languages; January 1982; 196-206.

[Johnson_Fischer_82] G.F Johnson, C.N. Fischer; Non-syntactic attribute flow in
language based editors; Conference Record of the 9th Annual
ACM Symposium on Principles of Programming Languages;
January 1982; 185-195.

[Kastens_80] U. Kastens; Ordered Attributed Grammars; Acta Informatica,
Volume 13, Issue 3; 1980; 229-256.

[Kastens_Waite_94] U. Kastens, W. M. Waite; Modularity and reusability in attribute
grammars; Acta Informatica, Volume 31; 1994; 601-627.

[Keller_etal_84] S. E. Keller, J. A. Perkins, T. F. Payton, S. P. Mardinly; Tree
Transformation Techniques and Experiences; SIGPLAN Notices,
vol. 19, no. 6; June 1984; 190-201.

[Kent_etal] S. Kent, S. Gaito, and N. Ross; A meta-model semantics for
structural constraints in UML; Behavioral specifications for
businesses and systems, chapter 9, Kluwer Academic Publishers;
September 1999; 123-141.

[Kleppe_etal_98] Anneke Kleppe, Jos Warmer, Steve Cook; Informal formality? The
Object Constraint Language and its application in the UML
metamodel; «UML» '98 Beyond the Notation; June 1998; 127-136.

[Knuth_68] D. E. Knuth; Semantics of context-free languages; Mathematical
Systems Theory, Volume 2; 1968; 127-146.

[Krafft_81] D. Krafft; A System for the Interactive Development of Verifiably
Correct Programs; Ph.D. dissertation, Dept. Computer Science,
Cornell University, Ithaca, N.Y.; August 1981.

[Lano_Bicarregui] K. Lano, J. Bicarregui; Semantics and Transformations for UML
Models; «UML» '98 Beyond the Notation; June 1998; 97-106.

[Larchevêque_95] J.-M. Larchevêque; Optimal Incremental Parsing; ACM
Transactions on Programming Languages and Systems, Vol. 17;
1995; 1-15.

[Lemesle_98] R. Lemesle; Transformation Rules Based on Meta-modeling;
EDOC'98, San Diego; November 1998.

[Levine_etal_92] John Levine, Tony Mason, Doug Brown; lex & yacc, Second
Edition; O'Reilly UK; ISBN: 1565920007; December 1992.

[Lewin_00] D. Lewin; Film Strip Editor; MSc Thesis, University of Kent at
Canterbury.; September 2000.

[Linington_99apr] P.F. Linington; RISCSIM - A Simulator for Object-based Systems;
Proc. UKSIM'99 Conference of the UK Simulation Society; April
1999; 141-147.

[Linington_99sep] Peter F. Linington; Options for Expressing ODP Enterprise
Communities and Their Policies by Using UML; 3rd International
Enterprise Distributed Object Computing Conference (EDOC '99);
September 1999.

[Mandel_Cengarle_99] Luis Mandel, María Victoria Cengarle; On the Expressive Power
of OCL; FM'99 - Formal Methods, World Congress on Formal
Methods in the Development of Computing Systems, Toulouse,
France, Springer LNCS 1708; September 1999; 854-874.

[Marlin_96] Chris Marlin; Multiple views based on unparsing canonical
representations--the MultiView architecture; Joint proceedings of
the second international software architecture workshop (ISAW-2)

Bibliography 191

and international workshop on multiple perspectives in software
development (Viewpoints '96) on SIGSOFT '96 workshops, San
Francisco, CA USA; October 1996; 222-226.

[Martin_Utton] G. Martin, P. Utton; PERMABASE Conceptual Framework;
British Telecommunications plc, 9334:PERMABASE:BT:016;
February 1999.

[Medina-Mora_82] R. Medina-Mora; Syntax-Directed Editing: Towards Integrated
Programming Environments; Ph.D. dissertation, Dept. Computer
Science, Carnegie-Mellon University, Pittsburgh, Pa.; March 1982.

[Meyers_93] Scott Douglas Meyers; Representing Software Systems in Multiple-
View Development Environments; Thesis, Department of
Computer Science, Brown University, Providence, Rhode Island;
May 1993.

[Nuseibeh_etal_94] Bashar Nuseibeh, Jeff Kramer, Anthony Finkelstein; A Framework
for Expressing the Relationships Between Multiple Views in
Requirements Specification; IEEE Transactions on Software
Engineering, Volume 20, Issue 10, IEEE Computer Society Press;
October 1994; 760-773.

[OMG_00aug] Joint Submission - Alcatel, I-Logix, Kennedy-Carter, Kabira
Technologies Inc, Rational Software Corporation, Telelogic AB;
Response to - Action Semantics for UML RFP; OMG; August
2000.

[OMG_00feb] Jointly by, Data Access Corporation, DSTC, Genesis Development
Corporation, Telelogic AB, UBS; Revised Submission against the
UML Profile for CORBA RFP; OMG Document ad/00-02-02;
February 2000.

[OMG_00jan] OMG, Joint submission; Common Warehouse Metamodel (CWM)
Specification; OMG, Document ad/00-01-01; January 2000.

[OMG_00mar] OMG; Meta Object Facility (MOF) Specification (version 1.3);
OMG, Document formal/00-04-03; March 2000.

[OMG_00oct] Object Management Group; The Common Object Request Broker:
Architecture and Specification, Revision 2.4; OMG Document
formal/00-10-33; October 2000.

[OMG_01feb] OMG, Architecture Board MDA Drafting Team; Model Driven
Architecture: A Technical Perspective; OMG, Document ab/2001-
02-04; February 2001.

[OMG_98nov] OMG; Action Semantics for UML RFP; OMG Document ad/98-
11-01; Nov 1998.

[OMG_98oct] Joint Submission:; XML Metadata Interchange (XMI), Proposal to
the OMG OA&DTF RFP 3: Stream-based Model Interchange
Format (SMIF); OMG Document ad/98-10-05; October 1998.

[OMG_99aug] OMG; UML 2.0 Request For Information; OMG - ad/99-08-08;
August 1999.

[OMG_99dec] Tony Clark, Andy Evens, Robert France, Stuart Kent, Bernard
Rumpe; Response to UML 2.0 Request for Information, Submitted
by the precise UML group; OMG - ad/99-12-16; December 1999.

[OMG_99jun] OMG; OMG Unified Modeling Language Version 1.3; OMG,
Document ad/99-06-08; June 1999.

[OMG_99jun2] OMG; C++ Language Mapping Specification; OMG, Document
formal/99-07-41; June 1999.

Bibliography 192

[OMG_99jun3] OMG; OMG IDL To Java Language Mapping; OMG, Document
formal/99-07-53; June 1999.

[Övergaard] Gunnar Övergaard; A Formal Approach to Relationships in The
Unified Modeling Language; Proceedings PSMT'98 Workshop on
Precise Semantics for Modeling Techniques; 1998.

[Pane_Myers_96] Pane, J. F. and B. A. Myers; Usability Issues in the Design of
Novice Programming Systems; Technical Report CMU-CS-96-
132, Pittsburgh, PA, Carnegie Mellon University; 1996.

[Peltier_etal_00] Mikaël Peltier, François Ziserman, Jean Bézivin; On levels of
model transformation; XML Europe 2000, Paris, France; June
2000.

[Pratt_71] T.W. Pratt; Pair Grammars, Graph Languages and String-to-
Graph Translations; Journal of Computer and System Sciences,
Volume 5, San Diego: Academic Press; 1971; 560-595.

[pUML] The precise UML group; http://www.cs.york.ac.uk/puml/.

[Rational] Rational Rose; Rational Software Corporation,
http://www.rational.com.

[Reiss_85mar] Steven P. Reiss; PECAN: Program Development Systems that
Support Multiple Views; IEEE Transactions on Software
Engineering, Volume 11, Issue 3; March 1985; 276-285.

[Reiss_90jun] Steven P. Reiss; Interacting with the Field environment; Software-
Practice and Experience, Volume 20(S1); June 1990; S1/89 -
S1/115.

[Rekers_94] J. Rekers; On the use of Graph Grammars for defining the Syntax
of Graphical Languages; Proceedings of the colloquium on Graph
Transformation, Palma de Mallorca (Technical Report, 94-11,
Leiden University, The Netherlands); 1994.

[Rekers_Schürr_96] J. Rekers, A. Schürr; A Graph Based Framework for the
Implementation of Visual Environments; Proc. VL'96 12th Int.
IEEE Symp. on Visual Languages, Los Alamitos: IEEE Computer
Society Press; September 1996; 148-155.

[Rekers_Schürr_97] J. Rekers, A. Schürr; Defining and Parsing Visual Languages with
Layered Graph Grammars; Journal of Visual Languages and
Computing, Vol. 8, No. 1, London: Academic Press; 1997; 27-55.

[Reps_etal_83] T. Reps, T. Teitelbaum, A. Demers; Incremental Context-
Dependent Analysis for Language-Based Editors; ACM
Transactions on Programming Languages and Systems, Volume 5,
No. 3; July 1983; 449 - 477.

[Reps_Teitelbaum_84] T. Reps, T. Teitelbaum; The Synthesizer Generator; Proceedings
of the ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development Environments,
ACM; 1984; 42-48.

[Reps_Teitelbaum_88] T. Reps, T. Teitelbaum; The Synthesizer Generator: A System for
Constructing Language-Based Editors; Springer-Verlag, NY;
1988..

[Rozenberg_97] edited by Grzegorz Rozenberg; Handbook of Graph Grammars
and Computing by Graph Transformation, Volume 1, Foundations;
Singapore, London, World Scientific, ISBN: 9810228848; 1997.

[Rumbaugh_etal_99] James Rumbaugh, Ivar Jacobson, Grady Booch; The Unified
Modeling Language Reference Manual; Addison Wesley
Longman Inc.; 1999.

Bibliography 193

[Saksena_etal_98] Monika Saksena, Maria M. Larrondo-Petrie, Robert B. France,
Mathew P. Evett; Extending Aggregation Constructs in UML;
«UML» '98 Beyond the Notation; June 1998; 273-280.

[Schürr_94jun] A. Schürr; Specification of Graph Translators with Triple Graph
Grammars; Proc. WG'94 20th Int. Workshop on Graph-Theoretic
Concepts in Computer Science, LNCS 903, Berlin: Springer
Verlag; June 1994; 151-163.

[Schürr_94nov] A. Schürr; PROGRES, A Visual Language and Environment for
PROgramming with Graph REwrite Systems; Technical Report
AIB 94-11, RWTH Aachen, Germany; 1994.

[Schürr_97] A. Schürr; Developing Graphical (Software Engineering) Tools
with PROGRES, Formal Demonstration; Proc. 19th Int. Conf. on
Software Engineering ICSE'97: IEEE Computer Society Press;
May 1997; 618-619.

[Schürr_etal_95] A. Schürr, A. Winter, A. Zündorf; Graph Grammar Engineering
with PROGRES; Proc. of the 5th European Software Engineering
Conference (ESEC'95): LNCS 989, Springer-Verlag; September
1995; 219-234.

[Schürr_Winter_98oct] A. Schürr, A. Winter; Formal Definition of UML's Package
Concept; The Unified Modeling Language - Technical Aspects
and Applications, 1st GROOM UML Workshop Proc.; Oct. 1998;
144-159.

[Shum_Hammond_94] S. Buckingham Shum and N. Hammond; Argumentation-based
design rationale: what use at what cost?; International Journal of
Human-Computer Studies 40 (4); 1994; 603-652.

[Steen_Derrick_00] Maarten Steen, John Derrick; ODP Enterprise Viewpoint
Specification; Computer Standards and Interfaces; September
2000; 165-189.

[Teitelbaum_Reps_81] Tim Teitelbaum, Thomas Reps; The Cornell program synthesizer:
a syntax-directed programming environment; Communications of
the ACM, Volume 24 , Issue 9, ISSN: 0001-0782; 1981; 563-573.

[Tirri_Lindén_94] Henry Tirri and Greger Lindén; ALCHEMIST - an object-oriented
tool to build transformations between Heterogeneous Data
Representations; Proceedings of the Twenty-Seventh Annual
Hawaii International Conference on System Sciences (HICSS '94),
Maui, Hawaii, volume II, IEEE Computer Society Press; January
1994; 226-235.

[Together] TogetherSoft; Together Programming Environment (TogetherJ);
http://www.togethersoft.com.

[Utton_Hill] Peter Utton, Brian Hill; Performance Prediction: an Industry
Perspective (Extended Abstract); Computer Performance
Evaluation, Proceedings of the 9th International Conference on
Modelling Techniques and Tools (Lecture Notes in Computer
Science 1245); June 1997; 1-5.

[Utton_Martin] Peter Utton, Gino Martin; Further Experiences with Software
Performance Modelling; Proceedings of the First International
Workshop on Software and Performance, WOSP 98; October
1998; 14-15.

[W3C_00aug] W3C, Editor Jon Ferraiolo; Scalable Vector Graphics (SFG) 1.0
Specification, W3C Candidate Recommendation; W3C; August
2000.

Bibliography 194

[W3C_98feb] Editors: Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve
Maler; Extensible Markup Language (XML) Version 1.0; W3C
Recommendation, REC-xml-19980210; February 1998.

[W3C_99nov] Editor: James Clark; XSL Transformations (XSLT) Version 1.0;
W3C Recommendation, REC-xslt-19991116; November 1999.

[Wagner_Graham_98] Tim A. Wagner and Susan L. Graham; Efficient and flexible
incremental parsing; ACM Transactions on Programming
Languages and Systems, Volume 20 , Issue 5; 1998; 980-1013.

[Warmer_Kleppe] Jos B. Warmer, Anneke G. Kleppe; The Object Constraint
Language : Precise Modeling With Uml; Addison Wesley
Publishing Company; October 1998.

[Waters_etal] Gill Waters, Peter Linington, David Akehurst; Permabase:
Predicting the performance of distributed systems at the design
stage; IEE Proceedings - Software; to appear.

[Wegman_80] M.N. Wegman; Parsing for structural editors; Proceedings of the
21st Annual IEEE Symposium on Foundations of Computer
Science, IEEE Press, New York; 1980; 320 327.

[Wilson_72] Robin J. Wilson; Introduction to Graph Theory; Longman Group
Limited; 1972.

[Yeh_Kastens_88] D. Yeh, U. Kastens; Automatic construction of incremental LR(1)
parsers; ACM SIGPLAN Not. 23, 3; March 1988; 33-42.

