
Tactics of Re�nement

Marcel Oliveira and Ana Cavalcanti

Centro de Inform�atica/UFPE

PO Box 7851 50740-540 Recife PE Brazil

fmvmo,alccg@cin.ufpe.br

Abstract

The re�nement calculus is a modern technique of formal program development. Its application,
however, may lead to long and repetitive developments. In this paper we present a language to

write re�nement tactics, and present examples of useful tactics. They encompass the applica-

tion of several re�nement laws, but can be used as a single transformation rule. Using tactics

is not a novel idea, but apparently, in the context of re�nement the only existing work uses
Prolog as a tactic language. Our language does not depend of any programming language or

tool. Also, we are not aware of any presentation of re�nement strategies written in the form
of tactics as we present here.

Keywords: Formal methods, program development, re�nement calculus, tactic language.

1 Introduction

Morgan's re�nement calculus [10] is a successful technique to develop and implement soft-
ware in a precise, complete, and consistent way. From a formal speci�cation we produce a

program which correctly implements the speci�cation by repeatedly applying transformation

rules, which are called re�nement laws. Using the re�nement calculus, however, can be a hard
task, as program developments may prove to be long and repetitive.

Frequently used strategies of development are reected in sequences of law applications that
are over and over applied in di�erent developments or even in di�erent points of a single
development. A lot is to be gained from identifying these tactics of development, documenting

them, and using them in program developments as a single transformation rule.

In this paper we present RTL (Re�nement Tactic Language), a language for the de�nition of
re�nement tactics based on Angel [9]. This is a general tactic language that is not tailored

to any particular proof tool. It makes no assumption about the form of proof goals and the

rules that are applied to them. Moreover, the semantics of Angel is well-de�ned and it has an

associated algebraic theory that allows the proof of properties of tactics.

The proof of theorems is usually based on inference rules that involve only terms of the logic.
Therefore, Angel assumes that rules transform proof goals into (a sequence of) proof goals. For

re�nement tactics we need a language that takes into account the fact that re�nement laws

transform programs into programs, but generate proof obligations. These are not a�ected by
later applications of re�nement laws, but the result of applying a sequence of laws (tactic) is

a program and the list of all proof obligations generated by the individual law applications.

The constructs of RTL are similar to those of Angel, but are adapted to deal with re�nement

laws and programs. Moreover, RTL provides structural combinators that are suitable to apply

re�nement laws to components of programs. Using RTL, we de�ne re�nement tactics that
embody commom development and programming strategies [10, 8, 2].

The use of tactics to guide proofs is not a novel idea [9]. Many proof tools provide tactic

languages to write programs that help in the construction of proofs [6, 11]. As far as we know,

however, re�nement tactics have only been considered in [7], where Prolog is used as a tactic

language.

In Section 2 we give an overview of the re�nement calculus. Section 3 introduces RTL. In

Section 4 we present some tactics and examples of their applications. Finally in Section 5 we
discuss related and future works.

2 Re�nement Calculus

The re�nement calculus is based on a uni�ed language of speci�cation, design and implementa-
tion. There is no di�erence between speci�cation and programs. Developing programs consists
of applying re�nement laws to a speci�cation repeatedly until an adequate program is obtained.

Some of these laws are listed in Appendix A.

A speci�cation has the form w : [pre; post] where w , the frame, lists the variables whose values
may change, pre is the precondition, and post is the postcondition. The language used to
de�ne the precondition and the postcondition is the predicate calculus. The execution of a

speci�cation statement in a state that satis�es the precondition changes the variables listed in
the frame so that the �nal state satis�es the postcondition. If the initial state does not satisfy
the precondition the result cannot be predicted. A precondition true can be omitted.

In the postcondition 0-subscripted variables can be used to represent the initial value of the

corresponding variable. As an example of its use we have x : [x = x0 + 1]. After the execution
of this program the variable x has its value in the initial state incremented by one.

Besides the speci�cation statement, the language of the re�nement calculus includes all the
constructors of Dijkstra's language [5]. There are also block constructs to declare local vari-
ables, logical constants, and procedures. Variable blocks have the form [[var x : T � p]], where
x is a variable name of type T whose scope is restricted to p. Similarly, logical constants c are

declared in blocks of the form [[con c � p]].

Procedure blocks are very simple: they begin with the keyword proc, the name of the procedure
and a program fragment, called the body of the procedure. This body can have arguments

declarations, if the procedure has arguments. Then, after a � the main program is declared.
The general form is [[proc name = body � prog]]. The arguments can be passed by value, using
the keyword val, by result, keyword res, or by value-result, using the keyword val res. An
example of a parameterized procedure is [[proc inc = (val resn : N � n := n + 1) � inc(n)]].
The body of the procedure in this case is a parameterized command [1].

Variant blocks are used to develop recursive procedures. Besides declaring the procedure and

the main program, a variant block declares a variant e named v used to develop a recursive im-
plementation for the procedure. The general form is [[proc name = body variant v is e � prog]].

3 RTL

The simplest form of a tactic is a simple law application: law Name(Arguments). When

applying a law to a program, there are two possible outcomes: if the law is applicable to
the program the law is actually applied and changes the program, possibly generating proof

obligations; if the law is not applicable to the program, the application of the law fails.

Sometimes it is very useful to apply a previously de�ned tactic in another tactic. In RTL we

can do this using the construct tactic tacticName(tacticArguments). The behavior of this

tactic is similar to that of a law tactic, except that it applies a whole tactic and not a single
law. The distinction is useful for documentation purposes.

Two special tactics are introduced to help us to de�ne some tactics; they are skip and fail.

The �rst one always succeeds, does not change the program, and also does not generate proof
obligations. The second one always fails.

3.1 Tacticals

In RTL tactics can be combined in sequence. The sequential composition of two tactics is
written t1 ; t2. This tactics �rst applies t1 to the program and then applies t2 to the outcome
of the application of t1. If either t1 or t2 fails this tactic fails. The proof obligations generated

by the application of this tactic are those resulting from the application of t1 and t2.

For example, if we apply the tactic law strPost(x = 10); law weakPre(true) to the program
x : [x < 10; x >= 10], �rst we have the application of strPost(x = 10). This is the strengthen

postcondition re�nement law, which takes a new postcondition as argument. The result is

x : [x < 10; x = 10] and the proof obligation is x = 10) x � 10. Then, weakPre(true), the
weaken precondition law with parameter true, is applied to x : [x < 10; x = 10], and we get
x : [x = 10] with proof obligations x = 10) x � 10 and x < 10) true.

Tactics can also be combined in alternation, which is written t1 j t2. This tactic applies t1 to
the program. If the application of t1 succeeds, then this tactic succeeds, else this tactic applies
t2 to the program. If the application of t2 succeeds then this tactic succeeds, else the whole

tactic fails. When a tactic presents such a choice of next steps, the one that leads to success,

if any, is chosen. This is implemented using backtracking.

Consider, by way of illustration, applying to the speci�cation statement x : [x < 10; x � 10] the

tactic (law assig(< x >;< 10 >) j law strPost(x = 10)); law weakPre(true). First, this

tactic applies assig(< x >;< 10 >), the assignment introduction law, to the given program.

This application succeeds and results in the assignment x := 10 with the proof obligation
x < 10) 10 = 10. Then, the tactic tries to apply weakPre(true) to x := 10. This appli-

cation fails because weakPre only applies to speci�cation statements. Backtracking occurs

to consider the second branch of the alternation: strPost(x = 10). This application succeeds
and we get x : [x < 10; x = 10] with the proof obligation x = 10) x � 10. Finally, the tactic

tries to apply law weakPre(true) to x : [x < 10; x = 10]. This application succeeds and we
get the program x : [x = 10] with proof obligations x = 10) x � 10 and x < 10) true. If

this last law application had failed then the whole tactic would have failed as well.

This kind of behavior may lead to problems of ine�cient searches. So, RTL includes the cut
operator (!). The tactic ! t behaves just like t : it returns the �rst successful tactic application;

if a subsequent tactic application fails, however, then the whole tactic fails. For example,
the application of !(law assig(< x >;< 10 >) j law strPost(x = 10)); law weakPre(true)

to the program x : [x < 10; x � 10] fails since the application of weakPre to x := 10 fails.

We also have the recursion operator �. As an example we have the tactic exhaust . When

applied to a tactic t , this tactic applies t as many times as possible, terminating with success

when the application of t fails. Its de�nition is exhaust t = (�Y � (t ; Y j skip)).

Sometimes the recursive application of a tactic generates a situation where it neither fails nor

succeeds, but keeps running inde�nitely. To reason about this kind of problem, it is necessary
to introduce a tactic which presents this behavior, this is abort.

When we want to de�ne the programs to which the tactic can be applied we use the tactic

applies to p do tactic, which introduces a meta-program p that characterizes the program

to which this tactic is applicable. The meta-variables used in p can be used in tactic. Meta-

programs are programs written in a general format. As an example we have the meta-program
w : [pre; post] which has as its meta-variables w ; pre; post . By way of illustration, we consider

applies to w : [pre1 ^ pre2; post] do law weakPre(pre1); law strPost(post ^ pre2), which
applies only to speci�cations of the form w : [pre1 ^ pre2; post].

3.2 Structural Combinators

In some cases the program has subprograms and we want to apply tactics to each of them.
This is made using structural combinators. For example the tactic t1 ; t2 applies to programs
of the form p1; p2. It returns the sequential composition of the programs obtained by applying
t1 to p1 and t2 to p2. The proof obligations generated by the application of this tactic are those

generated by the application of t1 to p1 and of t2 to p2.

In the case of an alternation, we use the combinator if t1; :::; tn � . When applied to

an alternation if g1 ! p1 ::: gn ! pn �, it applies each of the tactics to the correspond-
ing program. For example, if we apply to if x � 0! x : [x � 0] x < 0! x : [x < 0]� the
tactic if < law assig(< x >;< 1 >); law assig(< x >;< �1 >) > � , we get the program

if x � 0 ! x := 1 x < 0 ! x := �1�. The resulting proof obligations are true) 1 � 0 and
true) �1 < 0. For iterations do g1 ! p1 ::: pn ! pn od we have a similar structural

combinator do t1; :::; tn od .

In the case we have a variable block we use the structural combinator var t]] , which applies

the tactic t to the body of the block. For example, if we apply var law strPost(x > 0)]] to
[[var x : N � x : [x � 0]]] we get [[var x : N � x : [x > 0]]] and the proof obligation x > 0) x � 0.

Similarly, we have the structural combinator cons t]] , in the case we have a logical constant
block. This structural combinator also applies the tactic t to the body of the block.

The structural combinators pmain t]] and pmainvariant t]] are applied to procedure

blocks and variant blocks, respectively. They apply t to the main program of procedure and

variant blocks, respectively. For example, if we have the tactic pmain law strPost(x > 0)]]

and we apply this tactic to the procedure block [[proc nonNeg = x : [x > 0] � x : [x � 0]]] we
get [[proc p = x : [x > 0] � x : [x > 0]]] and the proof obligation x > 0) x � 0.

When we want to apply a tactic to a procedure body we use the structural combinators

pbody t]] and pbodyvariant t]] , which apply to procedure blocks and variant blocks,

respectively. For example, if we apply the tactic pbody law assig(< x >;< 10 >)]] to the

program [[proc nonNeg = x : [x > 0] � nonNeg]], we get [[proc nonNeg = x := 10 � nonNeg]]
and the proof obligation true) 10 � 0.

In the case we have arguments declaration, we use the structural combinators val t , res t , and

val res t depending on whether the arguments are passed by value, result, or value-result, re-

spectively. For example, if we apply the tactic pbody val res law strPost(x > 0)]] to the

procedure block [[proc nonNegArg = (val res x : N � x : [x � 0]) � x : [x > 0]]], we get the
program [[proc nonNegArg = (val res x : N � x : [x > 0]) � x : [x > 0]]] and the proof obliga-

tion x > 0) x � 0.

The declaration of a tactic has the form

Tactic name (args) tactic

[proof obligations fpredicateg�] [program generated program] end

where name is the name of the tactic being de�ned, and args are its arguments. For documen-
tation purposes, we include clauses proof obligations and program generated; the former

lists the proof obligations generated by the application of tactic, and the latter presents the

program generated. These two clauses are optional as this information can be infered from the
tactic itself. In the next section we give several examples of tactics declarations.

4 Tactics and Examples

In this section we present some tactics and examples of re�nements using these tactics. The
tactics are based on the development strategies presented in [10, 2, 8].

In the design of a program involving an iteration, the main concern is to determine the iteration
invariant. In [8] several strategies are presented, which we capture as tactics.

Tactic takeConjAsInv The �rst strategy consists of taking a conjunct of the postcondition
of the program speci�cation as the main part of the invariant. The tactic takeConjAsInv

de�ned below follows this strategy to transform a speci�cation w : [pre; invconj ^ notGuard]
into an initialized iteration.

Tactic takeConjAsInv (invBound ; (lstVar ; lstVal); variant)

applies to w : [pre; invConj ^ notGuard]
do law strPost(invConj ^ notGuard ^ invBound);

law seqCom(invConj ^ invBound);
(law assig(lstVar ; lstVal) ; law iter(h: notGuardi; invConj ^ invBound ; variant));

proof obligations

1:(invConj ^ notGuard ^ invBound)) (invConj ^ notGuard)

2:pre) (invConj ^ invBound)[lstVal=lstVar]

program generated

lstVar := lstVal ;

do : notGuard !
w : [invConj ^ invBound ^ : notGuard ;

invConj ^ invBound ^ 0 � variant < variant0]

od

end

This tactic has three arguments: a predicate invBound , a pair (lstVar ; lstVal), where lstVar

is a list of variables and lstVal is a list of values, and an integer expression variant . This
tactic applies to a speci�cation statement w : [pre; invConj ^ notGuard] to introduce an

initialized iteration whose invariant is invConj ^ invBound and whose variant is variant . The

initialization is lstVar := lstVal . Typically, the predicate invBound states the range limits of

indexing variables of the iteration. The conjunction invConj ^ invBound is used as invariant

of the iteration.

The tactic takeConjAsInv �rst strengthens the postcondition (law strPost) using the argu-

ment invBound , then it introduces a sequential composition (law seqCom). Afterwards, the

law assig is applied to the �rst program of the composition to derive the initialization, and the

law iter to the second program in order to introduce the iteration. The �rst proof obligation is
generated by the application of law strPost, and the second by the application of law assig.

As an example consider the program q; r : [a � 0 ^ b > 0; q = a div b ^ r = a mod b] which

makes q have the value of the division of a by b, and r have the reminder of this division.
Using the law strPost we can re�ne it to q; r : [a � 0 ^ b > 0; a = q � b + r ^ 0 � r ^ r < b]

because, this new postcondition implies the old one, based on the de�nition of div and mod.

Consider the algorithm that �rst initializes q and r with values 0 and a, respectively, and

uses q to count how many times r can be reduced by b. To develop such an algorithm it
is convenient to use a = q � b + r ^ 0 � r ^ r < b ^ b > 0 as an invariant. We use then the
tactic takeConjAsInv with arguments b > 0, the part of the loop invariant that is not in the
postcondition of the speci�cation, (hq; ri; h0; ai), the initialization of the variables, and r < b,

the termination condition of the loop, and obtain the program

q; r := 0; a;

do r � b !
q; r : [a = q � b + r ^ 0 � r ^ b > 0 ^ r � b;

a = q � b + r ^ 0 � r ^ b > 0 ^ 0 � r < r0]
od

The �rst proof obligation is (0 � x ^ x 2 � n ^ (x + 1)2 > n)) (x 2 � n ^ (x + 1)2 > n) which

is a tautology, since a ^ b) b. The second proof obligation requires us to prove that
(x 2 � n ^ 0 � x ^ (x + 1)2 � n ^ x = x0) implies that (x + 1)2 � n, which is in the anteceden-

t, that 0 � x + 1, which holds by 0 � x , that 0 � n � (x + 1)2, which follows from (x + 1)2 � n,

and �nally that n � (x + 1)2 < n � x0
2, which holds since (x + 1)2 > x 2 and x = x0.

The tactic is used as it were a single (very powerful) re�nement rule. All that is left after

its application is to re�ne the body of the iteration in the standard way to introduce the
assignment q; r ; = q + 1; r � b.

Tactic replConsByVar Another common way of choosing an iteration invariant is replacing
a constant in the speci�cation postcondition by a variable. This strategy is captured by the

tactic replConsByVar.

This tactic has �ve arguments: the variable declaration newV : T , the constant c, and the
arguments taken by the tactic takeConjAsInv. It applies to any speci�cation w : [pre; post]

to introduce an initialized iteration whose invariant is post [newV =cons] ^ invBound and whose
variant is variant . The initialization is lstVar := lstVal . In this tactic the predicate invBound

states the range limits of the new variable newV which is used as a indexing variable of the

iteration.

Tactic replConsByVar (newV : T ; cons; invBound ; (lstVar ; lstVal); variant)

applies to w : [pre; post]

do law varInt(newV : T);

var law strPost(post [newV =cons] ^ newV = cons);

tactic takeConjAsInv(invBound ; (lstVar ; lstVal); variant);]]

proof obligations

1:(post [newV =cons] ^ newV = cons)) post

2:(post [newV =cons] ^ newV = cons ^ invbound))
(post [newV =cons] ^ newV = cons)

3:pre) (post [newV =cons] ^ invBound)[lstVal=lstVar]

program generated

[[var newV : T �
lstVar := lstVal ;

do : newV = cons !
newV ;w : [post [newV =cons] ^ invBound ^ : newV = cons;

post [newV =cons] ^ invBound ^ variant]
od

]]
end

This tactic �rst introduces the new variable(law varInt), then it strengthens the postcondi-

tion to substitute the constant by the new variable. Afterwards this tactic calls the tactic
takeConjAsInv to introduce the iteration.The proof obligation 1 is generated by the law
strPost, and the others are generated by the tactic takeConjAsInv.

As an application example we use the program r : [a � 0 ^ b � 0; r = ab] which makes the
variable r receive the value of ab. The idea of the algorithm we want to derive is to use a

variable x like a counter from 0 to b. This variable is initialized with 0 and r is initialize
with 1. In each step of the iteration r receives the value r � a and x is incremented by one.
This loops ends when x = b. We apply the tactic replConsByVar with arguments x : Z,
the variable which is used to substitute the constant b in the second argument, 0 � x � b, the

bound limits of x , (hx ; ri; h0; 1i), the initialization of x and r , and b � x , the variant of the

iteration. The result of applying replConsByVar with these arguments is as follows

[[var x :Z�
x ; r := 0; 1;

do x 6= b !
r ; x : [r = ax ^ 0 � x � b ^ x 6= b;

r = ax ^ 0 � x � b ^ 0 � b � x � b � x0] od]]

with proof obligations (r = ax ^ x = b)) (r = ab) and (r = ax ^ x = b ^ 0 � x � b) implies

that (r = ax ^ x = b), which are tautologies. A third proof obligation is (a � 0 ^ b � 0)

implies that 1 = a0, which holds by a property of the power operator, and that 0 � 0 � b,

which is the antecedent.

Again, the re�nement of the body of the iteration is standard. We only have to apply the law

assig2 to get the attribution r ; x := r � a; x + 1.

The tactic takeConjAsInv embodies what is probably the most commonly used strategy for
the developments of iterations. It is used in the more elaborated tactic above, which is in turn

used in the following tactic. From these examples, it is clear that tactics not only shorten

developments but also document techniques.

Tactic strengInv Sometimes we cannot simply replace a constant by a variable in the post-

condition of the speci�cation to determine the invariant. First, we have to change (strenghten)

the postcondition.

The tactic strengInv has seven arguments: a variable declaration newV 1 : T1, a predicate
streng and the rest of the arguments are the same as those taken by the tactic replConsByVar.

This tactic applies to a speci�cation statement w : [pre; post] to introduce an initialized it-

eration whose invariant is (post ^ streng)[newV 2=cons] ^ invBound and variant is variant .

The initialization is lstVar := lstVal . In this tactic the predicate invBound states the range

limits (typically 0 and cons) of the new variable newV 2 which is used as an indexing variable
of the interation. The new variable newV 1 is used as an auxiliary variable and the predicate

streng is used to make a link between the new variable introduced and the data used in the

speci�cation.

Tactic strengInv

(newV 1 : T1; streng;newV 2 : T2; cons; invBound ; (lstVar ; lstVal); variant)
applies to w : [pre; post]

do law varInt(newV 1 : T1);

var law strPost(post ^ streng);

tactic replConsByVar(newV 2 : T2; cons; invBound ; (lstVar ; lstVal); variant);
]]

proof obligations

1:(post ^ streng)) post

2:((pos ^ streng)[newV 2=cons] ^ newV 2 = cons)) (pos ^ streng)
3:((pos ^ streng)[newV 2=cons] ^ newV 2 = cons ^ invBound))

((pos ^ streng)[newV 2=cons] ^ newV 2 = cons)

4:pre) ((pos ^ streng)[newV 2=cons] ^ invBound)[lstVal=lstVar]
program generated

[[var newV 1 : T1 �
[[var newV 2 : T2 �

lstVar := lstVal ;

do : newV 2 = cons !
newV 1;newV 2;w : [(post ^ streng)[newV 2=cons] ^

invBound ^ : newV 2 = cons;

(post ^ streng)[newV 2=cons] ^
invBound ^ variant]

od]]]]

end

The �rst step of this tactic is to introduce a new variable which3 is used to change (strenght-

en) the postcondition. Then, this tactic strengthens the postcondition and calls the tactic

replConsByVar.

For example, consider r : [n � 0; r = #fi ; j : N j 0 � i < j < n ^ f [i] � 0 ^ f [j] � 0g] which
counts how many pairs (i ; j) there are in the sequence, such that f [i] � 0 ^ f [j] � 0 ^ i < j .

We want to derive an algorithm that makes a linear search in the sequence using a new variable,
say m, to index the sequence. The algorithm uses a new variable s, initialized with 0, to count

how many non-positive numbers have been found in the search. Once the search �nds a non-

negative number, the algorithm increments r by the number of non-positive numbers that have

been found, s.

To develop this algorithm from the speci�cation we use the tactic strengInv with arguments
s :Z, the integer which counts the number of non-positive numbers found in the linear search,

s = #fi : N j 0 � i < n ^ f [i] � 0g, the speci�cation of s which is used to strenghten the post-

condition, m : N, the integer which is used to index the sequence in the search, n, the constant

which will be replaced by m, 0 � m < n, the bound limits of m, (hm; r ; si; h0; 0; 0i), the ini-
tialization of the variables, and n �m, the variant of the iteration.

This application results in the program

[[vars :Z�
[[varm :Z�

m; s; r := 0; 0; 0;

do m 6= n !

r ; s;m :

2
6666664

r = #fi ; j : N j 0 � i < j < m ^ f [i] � 0 ^ f [j] � 0g
s = #fi : N j 0 � i < m ^ f [i] � 0g ^ 0 � m � n ^ m 6= n

!
;

r = #fi ; j : N j 0 � i < j < m ^ f [i] � 0 ^ f [j] � 0g
s = #fi : N j 0 � i < m ^ f [i] � 0g ^ 0 � n �m < n �m0

!

3
7777775

od

]]

]]

At this point, the tactic application of the tactic has already �nished, we only need to re�ne
the body of the iteration to the program

if f [m] < 0! skip; f [m] � 0 ! r := r + s; �

if f [m] > 0! skip; f [m] � 0 ! s := s + 1; �

m := m + 1;

This can be accomplished using the laws fassig, seqCom, alt, skipIntro, and assig2 .

Tactic tailInvariant This strategy is used when we want to develop an algorithm involving
an iteration whose invariant is based on a function de�ned using tail recursion.

This tactic applies to a speci�cation statement w : [pre; post] to introduce an initialized iter-

ation whose invariant is invConj ^ invBound and variant is variant , and a �nal assignment
lstVar2 := lstVal2, which typically is an assignment of an element of a sequence identi�ed
by an index found in the iteration body, to a variable. The initialization of the iteration is

lstVar1 := lstVal1. Inside the iteration body this tactic includes an alternation.

This tactic has ten arguments: the �rst two arguments are variable declarations, which are used
as indexing variables in the iteration. The next argument is a predicate invBound . It is used to

make a conjunction with the next argument, notGuard , which is also a predicate and represents

the negation of the guard of the iteration. The next argument is a pair (lstVar1; lstVal1), where

lstVar1 is a list of variables and lstVal1 is a list of values. They are used in the initialization of
the iteration. An integer expression variant is the next argument and represents the variant

of the iteration. The next two arguments guardsList and tacticsList are used to call the tactic

alternation, which generates an alternation with the guards given as argument and applies the

tactics ti of the list of tactics also given as argument to the corresponding guarded programs.

Its de�nition is very simple and is omitted for the sake of conciseness. Finally we have a pair
(lstVar2; lstVal2), where lstVar2 is a list of variables and lstVal2 is a list of values. They are

used in the �nal assignment after the iteration has �nished.

Tactic tailInvariant

(var1 : T1; var2 : T2; invConj ;notGuard ; invBound ; (lstVar1; lstVal1);

variant ; guardsList ; tacticsList ; (lstVar2; lstVal2))

applies to w : [pre; post]

do law varInt(var1 : T1; var2 : T2);

var law seqCom(invConj ^ notGuard);

(tactic takeConjAsInv(invBound ; (lstVar1; lstVal1); variant);
(skip ; do tactic alternation(guardsList ; tacticsList)od))

;
law assig(lstVar2; lstVal2);]]

proof obligations

1:(invConj ^ notGuard ^ invBound)) (invConj ^ notGuard)
2: pre) (invConj ^ invBound)[lstVal=lstVar]

3: (invConj ^ invBound ^ : notGuard))
W
guardsList

4: invConj ^ notGuard) post [lstVal=lstVar]

program generated

[[var var1 : T1; var var2 : T2 �
lstVar1 := lstVal1;
do : notGuard !

if(?i :guardsList
i
!

(tacticsListi w : [guardsListi ^ invConj ^ invBound ^ : notGuard ;

invConj ^ invBound ^ 0 � variant < variant0]))�
od

lstVar2 := lstVal2;

]]

end

The tactic tailInvariant �rst introduces two variables (arguments var1 : T1 and var2 : T2).

Afterwards it splits the body of the variable block into a sequential composition of two other
speci�cations. The �rst de�nes the initialized iteration and the second the �nal assignmen-

t. The tactic applies the tactic takeConjAsInv to the �rst program using the invBound ,
(lstVar1; lstVal1) and variant arguments. The tactic also applies the law assig to the second

program using the argument (lstVar2; lstVal2). Inside the iteration body, the tactic applies the

tactic alternation using the arguments guardsList and tacticsList . The proof obligations 1

and 2 are generated by the tactic takConjAsInv. The proof obligation 3 is generated by the

law alt, and �nally the proof obligation 4 is generated by the law assig.

As an example we use a program that returns the maximum element of an integer sequence.
We have the speci�cation statement r : [n � 0; r = F (0;n)], which assigns to r the value of

the maximum element of a sequence A. The function F (n;m) returns the maximum element
of A between its nth and mth elements. We apply the tactic tailInvariant with arguments

x : N and y : N, which are the auxiliar indexing variables,F (x ; y) = F (0;n) ^ 0 � x � y � n,

one of the conjuncts which forms the invariant of the iteration, x = y, the negation of the

iteration guard, true, because we do not need to bound the values of the indexing variables

in the iteration invariant, (hx ; yi; h0;ni), the initialization of the iteration, y � x , the variant
of the iteration, hA[x] � A[y];A[x] > A[y]i, the list of guards of the alternation, the list of

tactics hassig2(hx i; hx + 1i);assig2(hyi; hy � 1i)i, used in the tactic alternation call, and

�nally (hri; hA[x]i), the �nal assignment. The application of this tactic results in the program

[[varx : N; y : N �
x ; y := 0; 0;

do x 6= y !
if A[x] � A[y]! x := x + 1;

A[x] > A[y]! y := y � 1;
�

od

r := A[x];]]

with proof obligations which are long but simple.

The strategy presented in [10] for the development of programs involving procedures is not
entirely based on laws, especially as far as recursive procedures are concerned. Moreover an

inconsistency has been found in that work [3]. Therefore, we consider the approach of [2],
where a set of re�nement laws to deal with procedures is presented. These laws, however, are
very simple (see Appendix A) and the development of programs usually requires the use of

several of them. The following tactics capture commonly used strategies.

Tactic procNoArgs The tactic procNoArgs introduces a procedure block that declares
a procedure with no parameters. It has two arguments: the name of the procedure which is
introduced and its body. This tactic applies to a program p, introduces the procedure, and
makes one or more calls to it, depending on the program p.

Tactic procNoArgs (procName; procBody)

applies to p

do law procNoArgsIntro(procName; procBody);

law procNoArgsCall;

program generated [[proc procName = procBody � p[procBody n procName]]]

end

The program p[procBodynprocName] is that obtained by replacing all occurencies of procBody
in p with procName.

As an example we consider the program which orders three integers in an increasing or-

der. We can specify such a program as p; q; r : [p � q � r ^ bp; q; rc = bp0; q0; r0c], where
bp; q; rc (resp.bp0; q0; r0c) is the bag with elements p, q and r (resp. p0, q0 and r0). First,
we can re�ne this program to p; q := p u q; p t q; q; r := q u r ; q t r ; p; q := p u q; p t q . We

can then apply the tactic procNoArgs with arguments sort , the name of the procedure,

and p; q := p u q; p t q , the body of the procedure, and get as result the procedure block

[[proc sort = p; q := p u q; p t q � sort ; q; r := q u r ; q t r ; sort]].

Tactic procCalls Before describing a tactic which introduces procedures with arguments it
is useful to de�ne a tactic that introduces parameterized commands. The tactic procCalls

takes as arguments two lists. The �rst is a list of parameter declarations and the second

is a list of arguments. The declarations have the form k v : T where k de�nes how the

argument is passed, by value(val), by result(res) or by value-result(val res), v is the name of

the argument, and T its type.

This tactic tries to derive an application of a procedure call with the given parameters to the

given arguments. With this purpose, this tactic tries to apply each of the laws that introduces

parameterized commands. If one of them succeeds, the tactic goes on with the tail of the list,

else, the tactic behaves like skip and �nishes.

Tactic procCalls (pars; args)
applies to w : [pre; post]

do (law callByValue1(head
0

args; head
0

pars);

val tactic procCalls(tail pars; tail args)) j
(law callByValue2(head

0

args; head
0

pars);

(val law hideFrame(head 0

pars));

tactic procCalls(tail pars; tail args)) j
(law callByResult(head 0

args; head
0

pars);

res tactic procCalls(tail pars; tail args) j
(law callByValueResult(head

0

args; head
0

pars);

val res tactic procCalls(tail pars; tail args)) j
skip

end

The function head 0 applies to a list, and gives another list that contains just the head of the
given list, or is empty if the given list is empty. This tactic is recursive and can generate
applications of parameterized commands whose bodies can include further applications. An
example of the use of this tactic is presented below.

Tactic procArgs Now we can de�ne the tactic procArgs which introduces a parameterized
procedure in the scope of the program and makes calls to this procedure. Here the argument

pars is a (possibly multiple) parameter declaration. We make use of the function seqToList to
convert args, a ;-separated sequence of arguments declarations, to a list of declarations.

Tactic procArgs (procName; pars; body; args)

applies to p

do law procArgsIntro(procName; pars; body);

pmain

tactic procCalls(seqToList pars; args); exhaust(law multiArgs)]] ;

law procArgsCall

end

This tactic �rst introduces a procedure with arguments using the law procArgsIntro. Then

the tactic uses procCalls to introduce applications of parameterized commands with parame-

ters pars to arguments args. Finally, the tactic uses the lawmultiArgs to nested applications
of parameterized commands.

As an example we use a program which substitutes the value of a variable by its square
value. The speci�cation of such a program can be x : [0 � x ; x 2 = x0]. We use the tac-

tic procArgs with arguments sqrt , the name of the procedure, val a : R; b : R, the pro-

cedure parameters, b : [0 � a; b2 = a], the body of the procedure, and < x ; x >, the argu-

ments used in the procedure call. The tactic �rst introduces the procedure using the law

procArgsIntro. Then, the tactic calls procCalls and the body of the procedure is re�ned to
(val a : R � (res b : R � b : [0 � a; b2 = a])(x))(x). The next step, the application of the tac-

tic exhaust(law multiArgs), results in (val a : R; res b : R � b : [0 � a; b2 = a])(x ; x). Fi-

nally, the tactic applies the law procArgsCall to the whole procedure block and we get the

program [[proc sqrts = (val a : R; res b : R � b : [0 � a; b2 = a]) � sqrts(x ; x)]].

Tactic recProcArgs This tactic is useful when we want to develop a recursive procedure

and have to introduce a variant block with a parameterized procedure. Its de�nition is

Tactic recProcArgs

(procName; args; variantName; variantExp; body; varsProcF ; guardsList ; tacticsList)
applies to p

do law variantIntro(procName; args; variantName; variantExp; body);

pmainvariant

tactic procCalls(seqToList args; varsProcF);
exhaust(law multiArgs);]] ;

law procArgsVariantBlockCall;

pbodyvariant

law absAssump; tactic alternation(guardsList ; tacticsList);]] ;

law recursiveCall

end

This tactic �rst introduces a variant block using the law variantIntro. Then, as in the
previous tactic, it uses the law procCalls and the tactic exhaust(law multiArgs) to in-
troduce an application of a parameterized command. Afterwards, the tactic uses the law

procArgsVariantBlockCall to introduce a procedure call in the main program of the vari-
ant block. The next step of this tactic is to re�ne the body of the procedure. First, the tactic
uses the law absAssump to move the assumption that de�nes the variant, to the precondition

of the speci�cation. Then, the tactic applies the tactic alternation. Finally the tactic uses

the law recursiveCall to introduce a recursive call to the program.

As an example, suppose we want to develop a program which calculates the factorial of an

integer n. Its speci�cation can be f : [f = n!]. The idea is to use a recursive procedure

fact . We only have to apply recProcArgs with arguments fact , the name of the proce-
dure, val m : N, the argument of fact , V , the variant name, m, the variant itself, f : [f = m!],

the body of fact , < n >, the argument of the call in the main program, < m = 0;m > 0 >, the
guards of the alternation, and a list of the tactics law assig(hf i; h1i) and the sequential com-

position of law strPost(f = m � (m � 1)!), law callByValue1(< m; k >;< m � 1;m � k >),

and val (law weakPre(0 � m < V); law absAssump). This application generates the pro-

gram

[[proc fact = (val m : N � if m = 0! f := 1 m > 0 ! f := m � fact(m � 1) �)

variant V is m � fact(n)]]

A few proof obligations are generated but they are simple.

5 Conclusions

We have presented RTL, a language suitable for the de�nition of re�nement tactics. Using

RTL we can specify commonly used strategies of program development and use them as trans-
formation rules. This not only shortens the developments, but also improves their readability.

Furthermore, we have de�ned a number of re�nement tactics that capture standard strate-

gies for the development of iterations and more recent formalizations of strategies for the

development of procedural abstractions. These strategies have already been put forward in

the literature mainly by means of examples, but as far as we know, they have never been
formalized and expressed as a transformation rule.

Our language is independent of any particular tool of programming language. On the other

hand, we are developing a tool to support the re�nement calculus [4] and we intend to extend
it to provide support for RTL. The re�nement tactics presented here are going to compose a

basic repository of tactics. The user is going to be able to apply these tactics as well as de�ne

new ones.

The formal semantics of RTL, along with algebraic laws that allows reasoning about RTL

tactics will appear elsewhere. This work is based on the Angel semantics. The di�erence is
that Angel is a very general language and its goals have no de�ned structure. For us, a goal is
called RMCell , which is a pair with a program as its �rst element and a list of proof obligations
as its second element. The application of a tactic to a RMCell returns a list of RMCells which
is the possible output programs with their equivalent list of proof obligations.

As already mentioned, to our knowledge, the only other work on re�nement tactics is that

presented in [7], where basically Prolog is used as a tactic language. It is not possible to de�ne

a tactic recursively and there are no structural combinators. Also, only a few examples of
simple tactics are provided there.

A Laws of Re�nement Calculus

Law strPost(post2) w : [pre; post1] v w : [pre; post2] provided post2) post1

Law weakPre(pre2) w : [pre1; post] v w : [pre2; post] provided pre1) pre2

Law assig(hwi; hE i) w : [pre; post] v w := E provided pre) post [w n E]

Law assig2(hwi; hE i) w ; x : [pre; post] v w := E provided (w = w0) ^ pre) post [w n E]

Law fassig(hx i; hE i)For any term E w ; x : [pre; post] v w ; x : [pre; post [x n E]]; x := E

Law seqCom(mid) For any mid w : [pre; post] v w : [pre;mid]; w : [mid ; post]

Law alt(hG0; :::;Gni) w : [pre; post] v if (? i :Gi ! w : [Gi ^ pre; post]) �

provided pre) G0 _ ::: _ Gn

Law iter(hG1; :::;Gni; inv ;V) For any formula inv , the invariant; and any integer expression

V , the variant w : [pre; post] v do (? i :Gi ! w : [inv ^ Gi ; inv ^ 0 � V � V [w n w0]]) od

Law varInt(n : T) w : [pre; post] v [[varx : T � w ; x : [pre; post]]]

provided x doen not occurs in w , pre, and post

Law skipIntro w ; x : [pre; post] v skip provided w = w0 ^ pre) post

Law procNoArgsIntro(pn; p1) p2 = [[procpn = p1 � p2]] provided pn is not free in p2

Law procNoArgsCall [[procpn = p1 � p2[p1]]] = [[procpn = p1 � p2[pn]]]

Law procArgsIntro(pn; par ; p1) p2 = [[procpn = (par � p1) � p2]]
provided pn is not free in p2

Law procArgsCall

[[procpn = (par � p1) � p2[(par � p1)(a)]]] = [[procpn = (par � p1) � p2[pn(a)]]]

Law callByValue1(f ; a) w : [pre[f n a]; post [f ; f0 n a; a0]] = (val f � w : [pre; post])(a) pro-
vided f is not in w and w is not free in a

Law callByValue2(f ; a) w : [pre[f n a]; post [f0n a0]] = (val f � w ; f : [pre; post])(a) provided
f is not in w and w is not free in post

Law callByResult(f ; a) w ; a : [pre; post] = (res f � w ; f : [pre; post [a n f]])(a)

provided f is not in w , and is not free in pre or post , and and f0 is not free in post

Law callByValueResult(f ; a)

w ; a : [pre[f n a]; post [f0 n a0]] = (val res f � w ; f : [pre; post [a n f]])(a)
provided f is not in w , and is not free post

Law hideFrame(x) w ; x : [pre; post]v w : [pre; post [x0 n x]]

Law variantIntro(pr ; pars;n; e; p1)
p2 = [[procpr = (par � fn = egp1)variant n is e � p2]] provided pr and n are not free in e

and p2

Law multiArgs (par1 f1 � (par2 f2)(a2))(a1) = (par1 f1; par2 f2)(a1; a2)

Law procVariantBlockCall [[proc pr = (par � p1)variantn is e � p2[(par � p3)(a)]]]
= [[proc pr = (par � p1)variantn is e � p2[(pr)(a)]]]
provided pr is not recursive, n is not free in e and p3, and fn = egp3 v p1

Law absAssump fpre 0gw : [pre; post] = w : [pre 0 ^ pre; post]

Law recursiveCall [[proc pr = (par � p1[(par � f0 � e < ngp3)(a)])variantn is e � p2]]
= [[proc pr = (par � p1[pr(a)])variantn is e � p2]] provided n is not free in p3 and p1[pr(a)],

and fn = egp3 v p1[(par � f0 � e < ngp3)(a)]

References

[1] R. J. R. Back. Procedural Abstraction in the Re�nement Calculus. Technical report,

Department of Computer Science, �Abo - Finland, 1987. Ser. A No. 55.

[2] A. L. C. Cavalcanti, A. Sampaio, and J. C. P. Woodcock. Procedures, Parameters, and

Substitution in the Re�nement Calculus. Technical Report TR-5-97, Oxford University
Computing Laboratory, Oxford - UK, February 1997.

[3] A. L. C. Cavalcanti, A. Sampaio, and J. C. P. Woodcock. An Inconsistency in Proce-

dures, Parameters, and Substitution in the Re�nement Calculus. Science of Computer
Programming. pages 33(1):87{96, 1999.

[4] S. L. Coutinho, T. P. C. Reis, and A. L. C. Cavalcanti. Uma Ferramenta Educacional
de Re�namentos. In XIII Simp�osio Brasileiro de Engenharia de Software, pages 61 { 64,

1999.

[5] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[6] J. Goguen, A. Stevenes, K. Hobley, and H. Hilberdink. 2OBJ, A Metalogical Framework

Based on Equational Logic. Philosophical Transactions of the Royal Society, Series A,

339:69 { 86, 1992.

[7] L. Groves, R. Nickson, and M. Utting. A Tactic Driven Re�nement Tool. In C. B. Jones,

R. C. Shaw, and T. Denvir, editors, 5th Re�nement Workshop, Workshops in Computing,
pages 272 { 297. Springer-Verlag, 1992.

[8] A. Kaldewaij. Programming: The Derivation of Algorithms. Prentice-Hall, 1990.

[9] A. P. Martin, P. H. B. Gardiner, and J. C. P. Woodcock. A Tactical Calculus. Formal

Aspects of Computing, 8(4):479{489, 1996.

[10] C. C. Morgan. Programming from Speci�cations. Prentice-Hall, 2nd edition, 1994.

[11] L. C. Paulson. ML for the Working Programmer. CUP, 1991.

