
Deforestation of Functional Programs through
Type Inference

Olaf Chitil

Lehrstuhl für Informatik II, RWTH Aachen, Germany
chitil@informatik.rwth-aachen.de

Abstract. Deforestation optimises a functional program by transform-
ing it into another one that does not create certain intermediate data
structures. Short cut deforestation is a deforestation method which is
based on a single, local transformation rule. In return, short cut defor-
estation expects both producer and consumer of the intermediate struc-
ture in a certain form. Starting from the fact that short cut deforestation
is based on a parametricity theorem of the second-order typed λ-calculus,
we show how the required form of a list producer can be derived through
the use of type inference. Type inference can also indicates which function
definitions need to be inlined. Because only limited inlining across mod-
ule boundaries is practically feasible, we develop a scheme for splitting
a function definition into a worker definition and a wrapper definition.
For deforestation we only need to inline the small wrapper definition.

1 Introduction

In functional programming modularity is often achieved through intermediate
data structures. Two separately defined functions can be glued together by an
intermediate data structure that is produced by one function and consumed by
the other. For example, the function any, which tests whether any element of a
list xs satisfies a given predicate p, may be defined as follows in Haskell [10]:

any :: (a -> Bool) -> [a] -> Bool

any p xs = or (map p xs)

The function map applies p to all elements of xs yielding a list of boolean values.
The function or combines these boolean values with the logical or operation
(||). So we defined any by glueing together the producer map p xs and the
consumer or by an intermediate list.

In [8] John Hughes points out that lazy functional languages make modularity
through intermediate data structures practicable. Considering our definition of
any we note that with eager evaluation the whole intermediate boolean list is
produced before it is consumed by the function or. Hence modularity through
intermediate data structures is seldomly used in languages with eager evaluation.

In contrast, lazy evaluation ensures that the boolean list is produced one cell
at a time. Such a cell is immediately consumed by or and becomes garbage,

which can be reclaimed automatically. Hence the function any runs in constant
space. Furthermore, when or comes across the value True, the production of
the list is aborted. Thus the termination condition is separated from the ”loop
body”.

any (> 2) [1,2,3,4,5,6,7,8,9]

or (map (> 2) [1,2,3,4,5,6,7,8,9])

or (False : (map (> 2) [2,3,4,5,6,7,8,9]))

or (map (> 2) [2,3,4,5,6,7,8,9])

or (False : (map (> 2) [3,4,5,6,7,8,9]))

or (map (> 2) [3,4,5,6,7,8,9])

or (True : (map (> 2) [4,5,6,7,8,9]))

True

We can see from the discussion why the use of intermediate data structures
as glue has become popular in lazy functional programming.

Deforestation. Nonetheless this modular programming style does not come for
free. Each list cell has to be allocated, filled, taken apart and finally garbage
collected. The following monolithic definition of any is more efficient than the
modular one, because it does not construct an intermediate list.

any p [] = False
any p (x:xs) = p x || any p xs

It is the aim of deforestation algorithms [13] to transform automatically
a modular functional program which uses intermediate data structures as glue
into another one which does not produce these intermediate data structures. We
say that the producer and the consumer of a data structure are fused. Besides
removing the costs of an intermediate data structure, deforestation also brings
together subterms of producer and consumer which previously were separated by
the intermediate data structure. Thus new opportunities for further optimising
transformations arise.

Short Cut Deforestation. Despite the extensive literature on various deforesta-
tion methods, their implementation in real compilers proved to be difficult.
Hence, a simple deforestation method, called cheap or short cut deforesta-
tion, was developed [6, 7].

The fundamental idea of short cut deforestation is to restrict deforestation to
intermediate lists which are consumed by the function foldr. Lists are the most
common intermediate data structures in functional programs. The higher-order
function foldr uniformly replaces in a list all occurrences of the constructor (:)
by a given function ⊕ and the empty list constructor [] by a given constant n:1

1 Note that the term [x1, x2, x3, . . . , xk] is only syntactic sugar for
x1:(x2:(x3:(. . .(xk:[])). . .).

foldr (⊕) n [x1, x2, x3, . . . , xk] = x1⊕ (x2⊕ (x3⊕ (. . .(xk ⊕ n). . .)))

So if foldr replaces the list constructors in a list which is produced by a term
MPat runtime, then short cut deforestation simply replaces the list constructors
already at compile time. However, the näıve transformation rule

foldr M(:) M[] MP MP[M(:)/(:),M[]/[]]

which replaces all list constructors inMP is wrong. ConsiderMP = (map p [1,2]).
Here the constructors in [1,2] are not to be replaced but those in the definition
of map, which is not even part of MP.

Therefore, we need the producer MP in a form such that the constructors
which construct the intermediate list are explicit and can be replaced easily. The
convenient solution is to have the producer in the form (\v(:) v[] ->M ′) (:) []
where the abstracted variables v(:) and v[] mark the positions of the interme-
diate list constructors (:) and []. Then fusion is performed by the simple rule:

foldr M(:)M[] ((\v(:) v[] ->M ′) (:) [])
 (\v(:) v[] ->M ′) M(:)M[]

The rule removes the intermediate list constructors. Subsequent reduction
steps put the consumer components M(:) and M[] into the places which were
before held by the constructors. We call \v(:) v[] ->M ′ producer skeleton,
because it is equal to the producer MP except that the constructors of the result
list are abstracted.

We observe that in general the types of M(:) and M[] are different from
the types of (:) and []. Hence, for this transformation to be type correct, the
producer skeleton must be polymorphic. So we finally formulate short cut fusion
as follows: Let A be a type and c be a type variable. If the term P has the type
(A -> c -> c) -> c -> c , then we may apply the transformation

foldr M(:)M[] (P (:) []) P M(:)M[]

Usually, the producer skeleton P has the form \v(:) v[] ->M ′, but this is
not required for the semantic correctness of the transformation. Strikingly, the
polymorphic type of P already guarantees the correctness. Intuitively, P can only
construct its result of type c from its two arguments, because only these have
matching types. Formally, the transformation is an instance of a parametricity
or free theorem [12].

The original short cut deforestation method requires a list producer to be de-
fined explicitly in terms of a polymorphic producer skeleton. To easily recognise
the producer skeleton and to ensure that it has the required polymorphic type,
a special function build with a second-order type is introduced:

build :: (forall b. (a -> b -> b) -> b -> b) -> [a]
build g = g (:) []

The local quantification of the type variable b in the type of build en-
sures that the argument of build is of the desired polymorphic type. Standard
Haskell does not have second-order types. Hence, a compiler needs to be ex-
tended to support the function build. With build the short cut fusion rule can
be written as follows:

foldr M(:)M[] (build P) P M(:)M[]

This transformation rule can easily be implemented in a compiler, hence the
names cheap or short cut deforestation. The idea is that the compiler writer
defines all list-manipulating functions in the standard libraries, which are used
extensively by programmers, in terms of build and foldr.

Type Inference Identifies List Constructors. Originally, the second-order type
of build confined deforestation to producers which are defined in terms of list-
producing functions from the standard library. Today, the Glasgow Haskell com-
piler [5] has an extended type system which permits the programmer to use
functions such as build. However, asking the programmer to supply list produc-
ers in build form runs contrary to the aim of writing clear and concise programs.
The simplicity of a list producer would be lost as the following definition of the
function map demonstrates:

map :: (a -> b) -> [a] -> [b]
map f xs = build (\v(:) v[] -> foldr (v(:) . f) v[] xs)

Whereas foldr abstracts a common recursion scheme and hence its use for
defining list consumers is generally considered as good, modular programming
style, build is only a crutch to enable deforestation.

The starting-point for making build superfluous is the observation that the
correctness of the short cut fusion rule solely depends on the polymorphic type
of the producer skeleton. So we reduce the problem of transforming an arbitrary
list-producing term into the required form to a type inference problem.

We can obtain a polymorphic producer skeleton from a producer MP by the
following generate-and-test method: First, we replace in MP some occurrences
of the constructor (:) by a variable v(:) and some occurrences of the construc-
tor [] by a variable v[]. We obtain a term M ′. Next we type check the term
\v(:) v[] -> M ′. If it has the polymorphic type (A -> c -> c) -> c -> c for
some type A and type variable c, then we have abstracted exactly those con-
structors which construct the result list and thus we have found the producer
skeleton. Otherwise, we try a different replacement of (:)s and []s. If no re-
placement gives the desired type, then no short cut deforestation takes place.

Obviously, this method is prohibitively expensive. Fortunately, we can de-
termine the list constructors that need to be replaced in one pass, if we use an
algorithm which infers a most general, a principal typing. We call the trans-
formation which obtains the polymorphic producer skeleton from an arbitrary
producer list abstraction.

2 List Abstraction through Type Inference

In the following we use a small second-order typed functional language with
explicit type abstraction and type application (cf. [1]). The explicit handling of
types makes clearer, how terms are transformed. Additionally, this language is
only a slightly simplified version of the intermediate language used inside the
Glasgow Haskell compiler [5].

The following term produces a list of type [Int]:

let mapInt : (Int→Int)→[Int]→[Int]
= λf:Int→Int.λxs:[Int]. case xs of

[] 7→ []
y:ys 7→ (f y) : (mapInt f ys)

in mapInt inc [1,2]

For the moment we only consider monomorphic list constructors, that is, (:)
has type Int→[Int]→[Int] and [] has type [Int], and a monomorphic version
of map for type Int. Furthermore we assume that the definition of mapInt is
part of the producer. We will later lift these restrictions step by step. We start
list abstraction with the typing of the producer:

{inc : Int→Int}
` let mapInt : (Int→Int)→[Int]→[Int]

= λf:Int→Int.λxs:[Int]. case xs of
[] 7→ []
y:ys 7→ (:) (f y) (mapInt f ys)

in mapInt inc ((:) 1 ((:) 2 []))
: [Int]

The typing environment, given before `, assigns types to all free variables
of the producer. With respect to this typing environment the producer has the
type given after the colon.

We replace the list constructor (:), respectively [], at every occurrence by
a new variable v(:), respectively v[] (except for patterns in case constructs,
because these do not construct but destruct a list). Furthermore, the types in
the term and in the typing environment have to be modified. To use the existing
ones as far as possible, we only replace the list type [Int] at every occurrence
by a new type variable γ. Furthermore, we add v(:) : Int→ γ → γ, respectively
v[] : γ, to the typing environment, where γ is a new type variable for every
variable v(:), respectively v[].

{inc : Int→Int, v(:)1 : Int→ γ1 → γ1, v(:)2 : Int→ γ2 → γ2,
v(:)3 : Int→ γ3 → γ3, v[]1 : γ4, v[]2 : γ5}
` let mapInt : (Int→Int)→ γ6 → γ7

= λf:Int→Int.λxs:γ8. case xs of
[] 7→ v[]1
y:ys 7→ v(:)1 (f y) (mapInt f ys)

in mapInt inc (v(:)2 1 (v(:)3 2 v[]2))

This typing environment and term with type variables do not form a valid
typing for any type. They are the input to a type inference algorithm. The type
inference algorithm replaces some of the new type variables γ1, . . . , γ8 and deter-
mines a type to obtain again a valid typing. More precisely, the type inference
algorithm determines a principal typing, that is, the most general instance of
the input that gives a valid typing. Note that type inference cannot fail, because
the typing we start with is valid. In the worst case the type inference algorithm
yields the typing of the original producer. We just try to find a more general
typing. For our example the type inference algorithm yields the valid typing:

{inc : Int→Int, v(:)1 : Int→ γ → γ, v(:)2 : Int→[Int]→[Int],
v(:)3 : Int→[Int]→[Int], v[]1 : γ, v[]2 : [Int]}
` let mapInt : (Int→Int)→ [Int]→ γ

= λf:Int→Int.λxs:[Int]. case xs of
[] 7→ v[]1
y:ys 7→ v(:)1 (f y) (mapInt f ys)

in mapInt inc (v(:)2 1 (v(:)3 2 v[]2))
: γ

The type of the term is a type variable γ. Hence list abstraction is possible.
The typing environment tells us that v(:)1 and v[]1 construct values of type γ, so
they construct the result of the producer. In contrast v(:)2 , v(:)3 , and v[]2 have the
types of normal list constructors. Hence they construct lists that are internal to
the producer. So we reinstantiate v(:)2 , v(:)3 , and v[]2 to normal list constructors
and abstract the type variable γ and the variables v(:)1 and v[]1 to obtain the
producer skeleton of the required type:

{inc : Int→Int}
` λγ. λv(:)1 :Int→ γ → γ. λv[]1 :γ.

let mapInt : (Int→Int)→ [Int]→ γ
= λf:Int→Int.λxs:[Int]. case xs of

[] 7→ v[]1
y:ys 7→ v(:)1 (f y) (mapInt f ys)

in mapInt inc ((:) 1 ((:) 2 []))
: ∀γ.(Int→ γ → γ)→ γ → γ

The complete producer can be written as

(λγ. λv(:)1 :Int→ γ → γ. λv[]1 :γ. let . . . in . . .) [Int] (:) []

In this list abstracted form it is suitable for short cut fusion with a foldr con-
sumer.

Until now we assumed that we only have lists over Ints. In reality lists are
polymorphic, that is, (:) has type ∀α.α→[α]→[α] and [] has type ∀α.[α].
So the typing we start with looks as follows:

{inc : Int→Int}
` let mapInt : (Int→Int)→[Int]→[Int]

= λf:Int→Int.λxs:[Int]. case xs of
[] 7→ [] Int
y:ys 7→ (:) Int (f y) (mapInt f ys)

in mapInt inc ((:) Int 1 ((:) Int 2 ([] Int)))
: [Int]

We want to abstract the list of type [Int]. Therefore we replaces every
list constructor application (:) Int, respectively [] Int, by a different variable
v(:), respectively v[]. Then we continue just as described in the previous section.

After type inference we naturally have to replace again those variables v(:)

and v[] that are not abstracted by list constructor applications (:) Int, respec-
tively [] Int. We obtain a producer skeleton of the required type

{inc : Int→Int}
` λγ. λv(:)1 :Int→ γ → γ. λv[]1 :γ.

let mapInt : (Int→Int)→[Int]→ γ
= λf:Int→Int.λxs:[Int]. case xs of

[] 7→ v[]1
y:ys 7→ v(:)1 (f y) (mapInt f ys)

in mapInt inc ((:) Int 1 ((:) Int 2 ([] Int)))
: ∀γ.(Int→ γ → γ)→ γ → γ

and the complete producer looks as follows:

(λγ. λv(:)1 :Int→ γ → γ. λv[]1 :γ. let . . .) [Int] ((:) Int) ([] Int)

Note that in contrast to the list constructors (:) and [] the abstracted
variables v(:)1 and v[]1 must have a monomorphic type, because the terms M(:)

and M[] of a consumer foldr τ1 τ2 M(:) M[] are monomorphic.

3 Inlining of Definitions

In practise the definition of mapInt will not be part of the producer. The pro-
ducer will just be mapInt inc [1,2], from which it is impossible to abstract
the list constructors that construct the result list, because they are not part of
the term. Hence we may have to inline definitions of variables such as mapInt,
that is, make them part of the producer.

Generally, implementations of deforestation have problems with controlling
the necessary inlining to avoid code explosion [9]. Rather nicely, instead of having
to use some heuristics for inlining, we can use the typing environment of a
principal typing to determine exactly those variables whose definitions need to
be inlined. Note that it is important not just to inline the right hand side of a
recursive definition but the whole recursive definition.

We consider the producer mapInt inc [1,2]. So we start with its typing:

{inc : Int→Int, mapInt : (Int→Int)→[Int]→[Int]}
` mapInt inc ((:) Int 1 ((:) Int 2 ([] Int)))
: [Int]

Before type inference we replace the type [Int] at every occurrence by a
new type variable, not only in the term but also in the types of all inlineable
variables in the typing environment.

{inc : Int→Int, mapInt : (Int→Int)→ γ1 → γ2,
v(:)1 : Int→ γ3 → γ3, v(:)2 : Int→ γ4 → γ4, v[]1 : γ5}
` mapInt inc (v(:)1 1 (v(:)2 2 v[]1))

The type inference algorithm gives us the principal typing

{inc : Int→Int, mapInt : (Int→Int)→ γ1 → γ2,
v(:)1 : Int→ γ1 → γ1, v(:)2 : Int→ γ1 → γ1, v[]1 : γ1}
` mapInt inc (v(:)1 1 (v(:)2 2 v[]1))
: γ2

The type of the term is a type variable γ2. However, we cannot abstract γ2,
because it appears in the typing environment in the type of mapInt. So this
occurrence of γ2 signifies that the definition of mapInt needs to be inlined.

In practise a producer will be defined in terms of the the polymorphic function
map instead of mapInt. We have to instantiate uses of map as far as possible
before applying the list abstraction algorithm. In the definition of map we drop
the abstraction from the two type variables and thus create a new definition for
a function mapInt Int. In the producer we replace map Int Int by mapInt Int.
Then we can abstract the produced list as before.

4 The Worker/Wrapper Scheme

It is neat that the algorithm determines exactly the functions that need to be
inlined, but nonetheless inlining causes problems in practise. Extensive inlining
across module boundaries would defeat the idea of separate compilation. Fur-
thermore, in practise “inlining is a black art, full of delicate compromises that
work together to give good performance without unnecessary code bloat” [11].
It is best implemented as a separate optimisation pass. Consequently, we would
like to use our list abstraction algorithm without it having to perform inlining
itself.

To be able to abstract the result list from a producer without using inlining,
all list constructors that construct the result list already have to be present in the
producer. Therefore we use a so called worker/wrapper scheme as it has already
been proposed by Gill for short cut deforestation [7]. We split every definition
of a function that produces a list into a definition of a worker and a definition of
a wrapper. The definition of the worker is obtained from the original definition
by abstracting the result list type and its list constructors. The definition of the
wrapper, which calls the worker, contains all the list constructors that construct
the result list. For example, we split the definition of the function mapInt

mapInt : (Int→Int)→[Int]→[Int]
= λf:Int→Int. foldr Int [Int]

(λu:Int. λw:[Int]. (:) Int (f u) w) ([] Int)

into definitions of a worker mapIntW and a wrapper mapInt:

mapIntW : ∀γ. (Int→ γ → γ)→ γ → (Int→Int)→[Int]→ γ
= λγ. λv(:):Int→ γ → γ. λv[]:γ. λf:Int→Int.

foldr Int γ (λu:Int. λw:γ. v(:) (f u) w) v[]

mapInt : (Int→Int)→[Int]→[Int]
= mapW [Int] ((:) Int) ([] Int)

Just as easily we split the definition of the polymorphic function map

map : ∀α.∀β. (α→ β)→[α]→[β]
= λα. λβ. λf:α→ β.

foldr α [β] (λu:α. λw:[β]. (:) β (f u) w) ([] β)

into definitions of a worker mapW and a wrapper map:

mapW : ∀α.∀β.∀γ. (β → γ → γ)→ γ → (α→ β)→[α]→ γ
= λα. λβ. λγ. λv(:):β → γ → γ. λv[]:γ. λf:α→ β.

foldr α γ (λu:α. λw:γ. v(:) (f u) w) v[]

map : ∀α.∀β. (α→ β)→[α]→[β]
= λα. λβ. mapW α β [β] ((:) β) ([] β)

For deforestation we only need to inline the wrapper. Consider for example
deforestation of the body of the definition of any as defined in the introduction:

or (map τ Bool p xs)
 {inlining of or and map}

foldr Bool Bool (||) False
(mapW τ Bool [Bool] ((:) Bool) ([] Bool) p xs)

 {list abstraction of the producer}
foldr Bool Bool (||) False
((λγ. λv(:):β→γ→γ. λv[]:γ. mapW τ Bool γ v(:) v[] p xs)
[Bool] ((:) Bool) ([] Bool))

 {fusion and subsequent β-reduction}
mapW τ Bool Bool (||) False p xs

It is left to the standard inliner, if mapW is inlined. Across module boundaries
or if its definition is large, a worker may not be inlined. This does not influence
deforestation.

5 Conclusions

We described how a type inference algorithm enables automatic transforma-
tion of a nearly arbitrary producer term into the form required by short cut
deforestation. The new deforestation algorithm searches for terms of the form
foldr τ1 τ2 M(:) M[] MP, transforms the producer term MP into the form
P [τ1] ((:) τ1) ([] τ1) with P of type ∀γ.(τ1 → γ → γ) → γ → γ and sub-
sequently applies the short cut fusion rule. The method also indicates where
inlining is required and permits deforestation across module boundaries, requir-
ing only inlining of very small wrapper definitions.

Here we only outlined the idea of using type inference for deforestation.
Algorithms, formal descriptions and proofs are given in [2, 4]. Shortly a detailed
presentation of the whole approach will appear in [3].

References

1. Henk P. Barendregt. Lambda calculi with types. In S. Abramsky, M. Gabbay,
and T.S.E. Maibaum, editors, Handbook of Logic in Computer Science, volume 2,
pages 117–309. Oxford University Press, 1992.

2. Olaf Chitil. Type inference builds a short cut to deforestation. ACM SIGPLAN
Notices, 34(9):249–260, September 1999. Proceedings of the ACM SIGPLAN In-
ternational Conference on Functional Programming (ICFP ’99).

3. Olaf Chitil. Type-Inference Based Deforestation of Functional Programs. PhD
thesis, RWTH Aachen, 2000. to appear.

4. Olaf Chitil. Type-inference based short cut deforestation (nearly) without in-
lining. In Proceedings of the 11th International Workshop on Implementation of
Functional Languages 1999, LNCS. Springer, 2000. to appear.

5. The Glasgow Haskell compiler. http://www.haskell.org/ghc/.
6. Andrew Gill, John Launchbury, and Simon L. Peyton Jones. A Short Cut to

Deforestation. In FPCA’93, Conference on Functional Programming Languages
and Computer Architecture, pages 223–232. ACM Press, 1993.

7. Andrew J. Gill. Cheap Deforestation for Non-strict Functional Languages. PhD
thesis, Glasgow University, 1996.

8. John Hughes. Why Functional Programming Matters. Computer Journal,
32(2):98–107, 1989.

9. Simon Marlow. Deforestation for Higher-Order Functional Programs. PhD thesis,
Glasgow University, 1995.

10. Simon L. Peyton Jones, John Hughes, et al. Haskell 98: A non-strict, purely
functional language. http://www.haskell.org, February 1999.

11. Simon L. Peyton Jones and Simon Marlow. Secrets of the Glasgow Haskell compiler
inliner. IDL ’99, http://www.binnetcorp.com/wshops/IDL99.html, 1999.

12. Philip Wadler. Theorems for free! In 4th International Conference on Functional
Programming Languages and Computer Architectures, pages 347–359. ACM Press,
1989.

13. Philip Wadler. Deforestation: Transforming programs to eliminate trees. Theoret-
ical Computer Science, 73(2):231–248, June 1990.

