
Secure Directories
David W Chadwick

IS Institute, University of Salford, Salford, M5 4WT, England

Abstract. This paper describes the mechanisms that are needed in order to
provide a secure directory service based on the X.500 data model. A brief introduction
to the X.500 data model is given followed by an overview of the Lightweight Directory

Access Protocol. Security can be provided by three functions: an application level
firewall, an authentication mechanism, and an access control scheme. A description of
the X.500 and LDAP access control models is presented followed by the authentication

methods that have been standardised for LDAPv3. A companion paper describes a
directory application firewall.

1. Introduction

The X.500 data model [1,2] specifies a hierarchically structured information
tree (called the Directory Information Tree - DIT), where each node (or entry) in the
tree comprises a set of attributes. Each attribute comprises an attribute type and one or
more attribute values. Each entry in the tree is uniquely identified with a distinguished
name, which is composed hierarchically from the relative distinguished name of the
entry and of all its superior entries (see Figure 1).

The DIT is typically distributed between potentially many thousands of servers,
with each server holding a part of the DIT called a naming context. User requests can
be passed between the servers by a process of chaining or referrals [6].

Distinguished

{null)

Name of Entry

{C=GB}

{O=Big PLC,

C=GB}

{OU=Sales+
L=Swindon,
O=Big PLC,

C=GB}attribute attribute attribute

attribute
type

attribute
value(s)

...

Directory
Information

Tree

Entry Contents

Figure 1 The X.500 Information Model

Directory servers may be accessed by either the DAP [3] or LDAP [4,5]
protocols, the latter being far more popular than the former. LDAP is a subset of DAP
and comprises the following operations:

Bind - allows the user to log onto the directory server and authenticate to it
Search - allows the user to search and retrieve one or more entries that match
some user defined filtering criteria
Compare - allows the user to check if an entry contains a particular attribute
value
Abandon - allows the user to abort a Search or Compare operation
Add - allows the user to add a new leaf entry
Modify - allows the user to modify the attributes in an existing entry
Delete - allows the user to delete a leaf entry
ModifyDN - allows the user to change the distinguished name of an entry (and
its children) or move an entry to a new point in the DIT
DAP in addition defines Read and List operations that are subsets of the

Search operation.
In order to ensure that the information in the directory server is kept secure,

i.e. only modified or retrieved by authorised people, various security functions are
required. Firstly, we may need a firewall to restrict the protocols arriving at the server
from the Internet. A separate paper [8] describes the Guardian DSA, an application
proxy firewall that filters the directory protocols DAP, LDAPv2, LDAPv3, DSP (the
X.500 chaining protocol) and DISP (the X.500 replication protocol). Secondly the
information in the directory may need protecting with access control information to
ensure that only authorised people have rights to access the directory data. Section 2
describes the access control scheme defined by X.500 and section 3 describes the
access control model for LDAP currently being defined by the IETF. Finally we may
need to authenticate the users as they attempt to bind to the directory server, since
access controls without effective authentication are meaningless. Section 4 describes
the various authentication methods that have been defined for LDAP.

2. The X.500 Access Control Scheme

The X.500 access control scheme was standardised in 1993 [1], and all X.500
based directory server suppliers claim to support it. The general model used for the
access control scheme is that a user needs permission to:

a) access the entry
b) access an attribute type
c) access each attribute value.
Access Control Information (ACI) is held as operational attributes within the

DIT (operational attributes are not visible to normal directory users but only to
administrators). The ACI say which users have what permissions to access which
protected data items. The permissions may be to grant access or deny access. Each
ACI is given a precedence, with higher precedence ACI over-riding lower precedence
ones, and denies over-riding grants of equal precedence, e.g a grant of precedence 20
will override a deny of precedence 10.

Setting permissions can be time consuming and complex. Consequently the
X.500 model recognises that administrators will want to set access control policies to
control large parts of the directory tree. A Directory Access Control Domain (DACD)

Access
Control
Specific

Area

=

Access
Control
Inner
Area

=

Subentry

Subentry for DACD2

for DACD1

DACD1

DACD2

Subentry

SubtreeSpec

for DACD3

DACD3

PrescriptiveACI

SubtreeSpec PrescriptiveACI

SubtreeSpec PrescriptiveACI

X

Figure 2 Directory Access Control Domains

is a part of the directory tree that is controlled by an access control policy. Each
domain is specified in a special entry called a subentry. Subentries are not visible to
normal directory users, but only to administrators. A subentry holds a subtree
specification attribute that describes the entries that are in the domain. It also holds a
prescriptiveACI attribute that specifies the access control policy for the domain.

The model supports delegation so that we can have access control areas and
inner areas. An administrator in charge of an inner area can only create DACDs within
the inner area. The administrator in charge of the entire access control area can create
DACDs in both the inner and outer areas (see Figure 2).

In the Figure 2 there are three DACDs, specified in the subtree specifications
of three subentries. One of the domains, DACD2, is within an access control inner
area. Note that DACDs can overlap so that entries may be covered by multiple
policies, as is the case for entry X in Figure 2, which is covered by policies DACD1
and DACD2. Also note that whilst DACDs in a specific outer area can cover entries in
an inner area, the converse is not true.

Access Control Information can also be tailored to individual entries, and in
this case is stored in the EntryACI operational attribute. The syntax/contents of
prescriptiveACI and entryACI are the same.

2.1. ACI syntax/content

Access Control Information says which users have what permissions to access
which protected data items, providing they have been authenticated to a certain level.
The syntax for ACI is specified in ASN.1 [7]. As this is rather complex, this paper will

present the ACI content in textual form. Readers should consult [1] for a complete
specification.

The user component of ACI can take the following values:
- all users i.e. public access to the entry or entries in question,
- this entry is the user whose DN matches the DN of the entry to be

accessed,
- name is the DN of any object,
- user group is the DN of a entry containing a list of names (such as the

name of a project team). All names in the list are given the access rights,
- subtree specification describes a portion of the directory tree and all users

in this part of the tree are granted (or denied) access.
The protected data item can range from the finest granularity of a single

attribute value, to a whole domain of entries. The values that protected item can take
are:

- one or more attribute values,
- self value is used for values of distinguished name syntax, and protects the

item whose value matches the DN of the accessing user,
- all attribute values in a specified attribute
- one or more attribute types,
- all attribute types
- all attribute types and values
- entry gives permission to access an entry (but not necessarily its contents),

and is either a single entry in the case of entryACI, or a domain of entries in
the case of prescriptiveACI.

There is a wide range of permissions that can either be granted or denied. Most
permissions are intuitive from their name, and coincide with the operation of the same
name, but a few are not. Permissions can be applied to entries or attributes or both.
Permissions that apply to all data items are:

- add permission allows the protected item to be added
- remove permission allows the protected item to be deleted
- disclose on error permission allows the user to be given an informative

error message about the data item, if the operation fails e.g. “attribute
already exists” when trying to add it.

Permissions that only apply to attributes are:
- compare allows the attribute to be compared
- filter match allows the attribute to be used in a filter of a Search

operation. If filter match is not granted, the Search behaves as is this
attribute is missing.

Entry level permissions are:
- browse allows the entry to be accessed in a Search operation if the user did

not specify its DN,
- export and import are used to move an entry with the ModifyDN

operation. Permission must be granted to export from the current location
and import to the new location.

- modify allows the entry to be modified,
- rename allows the entry to be renamed with the ModifyDN operation,
- return DN protects the DN of an entry from disclosure. Without this

permission, a user will either be given an alias name for an entry, or will not
be able to retrieve the entry.

Each ACI has a precedence in the range 0 to 255, zero being the lowest.
Higher precedence ACI over-ride lower precedence ACI, and a deny over-ride a grant
of equal precedence. For example, an administrator could deny everyone from
organisation X access, and grant user Fred from organisation X access with a higher
precedence. Alternatively, he could grant all his group access, but deny access to one
person from the group. Note that nothing can over-rule a deny of 255 precedence.

For a permission to be granted, a user must be authenticated to at least the
level specified in the authentication level of the ACI. If the permission is a deny, then
all users who are authenticated below the authentication level will be denied access, as
well as those mentioned in the ACI who authenticated at or above the authentication
level. This is because a user has to prove, at a high enough level of authentication, that
he is not the user who is being denied access.

2.2. Permissions for each operation

The permissions needed for each operation are given in Table 1. One will
notice the large number of permissions that are needed for the Search operation. For
example to Search a directory tree with a thousand entries using a single filter,
approximately three thousand permissions are needed to perform the filtering (entry
browse and attribute type and value filter match). It becomes immediately obvious why
policy permissions placed on whole domains will substantially improve the
performance of Search operations, compared to entry level permissions placed on
every entry in the DIT, as in the former case the permissions only need to be evaluated
once for the whole domain rather than for every entry.

The observant reader will note an apparent inconsistency between the
permissions needed for the Add and Remove operations. The reason for this is that an
administrator may wish to delete an entry, but a user with limited update permissions
may have added an attribute to his entry giving himself sole permission to delete it. If
the remove permissions were similar to the add permissions, then the administrator
would not be able to delete the entry using the Remove Entry operation.

Table 1. The Permissions for each Operation
Operation Entry Level Permission Attribute Level Permission
Search Browse Filter Match on Attribute Types and

Values in Filter
Read for types returned
Read for values returned

Compare Read Compare for type
Compare for value

Add Entry Add Add for each type and value added
Remove Entry Remove none
Modify Entry Modify Add for each type and value added

Remove for each type and value
removed

Modify DN Rename for change of RDN
Export and Import for move

none

3. The LDAP Access Control Scheme

The access control requirements for LDAP accessible directories has been
published as an informational RFC [9]. These requirements are sufficiently general to
satisfy everyone’s needs and so are not particularly contentious. However, defining a
standard scheme is proving to be extremely difficult and time consuming. The work
started in the IETF LDAPEXT group in 1996. The main problem is that Microsoft,
Netscape, Novell, Lotus, X.500 vendors etc. have already implemented their own
access control schemes, and getting them to all agree to support another standard
LDAP scheme is very difficult (if not impossible). Microsoft for example was against
LDAP standardising an access control scheme at all.

The latest model document is “Access Control Model for LDAPv3” [10]. It
bears some resemblance to the X.500 access control scheme, and some vendors would
like it to be a subset of the X.500 scheme, although whether this will happen or not is
doubtful. The LDAP model document is still not fully stable and it is likely to change
somewhat before it becomes a proposed standard RFC. It currently specifies:

- how to represent the access control scheme(s) in force at a server
- the LDAP operations for retrieving and updating access control

information
- the LDAP attribute for exporting and replicating access control information

between servers
- the permissions needed for each LDAP operation
- how access control decisions are made
- how access control information is protected.
However, the document does not specify:
- how access control information is stored by a server as this is

implementation dependent.
The access control schemes supported by a server are published by storing the

object identifiers of the schemes in an operational attribute in the root entry. Further,
the access control scheme actually being applied to each naming context is held in a
subentry beneath the root of the naming context. This will allow LDAP clients and
servers to see if they are using compatible access control schemes or not.

The model specifies a ldapACI operational attribute that may be used to export
and replicate LDAP access controls between servers. However the model is clear to
indicate that servers need not store their ACI information in this format as it is a local
matter how they are stored.

3.1. ACI Syntax/Contents

In keeping with the LDAP philosophy, the syntax of the ldapACI operational
attribute value is a string rather than an ASN.1 set of octects (as is the case for
X.500). The string comprises 4 components separated by the hash (#) character. The
attribute can be multi-valued and values can be selected using the caseIgnoreString
equality matching rule. The components of an ACI value are:

- Scope. This says if this ACI applies only to the entry it is stored in, or to
the subtree beneath the entry.

- Rights consists of grant or deny followed by a set of permissions (see later)

- Attributes is the set of objects the rights apply to. This is either a list of
attribute object identifiers, or “all” (meaning all attributes), or “entry”
(meaning the entry).

- Subject is who is being controlled by these access control rights, and is an
optional authentication level followed by either:
- a simple LDAP DN prefixed by the string “dn:”
- a user name string prefixed by “un:”
- “role:” followed by the DN of a role
- “group:” followed by the DN of a group of names entry, (meaning

anyone who is in the list of members has the right)
- “subtree:” followed by the DN of a non-leaf node (meaning anyone

whose DN starts with this prefix has the right)
- “ipAddress:” followed by an IP address string (e.g. 1.2.3.4) or a

wildcard IP address (e.g. 1.2.3.*) to specify a subnetwork, or a
subnetmask (e.g. 1.2.3.*+255.255.255.115) or a wildcard domain name
(e.g. *.myorg.com)

- “this:”, meaning the client with the same DN as the entry
- “public:”, meaning anyone.

The optional authentication level says what level of authentication the user
needs to have in order to obtain the right. Authentication level is specified as

- any (meaning any type of authentication, or none)
- simple (meaning password)
- “sasl:” followed by “any” or a SASL name [11]

Permissions can be at the entry level or attribute level (as in X.500) but LDAP
does not support attribute value level permissions (unlike X.500 which does). LDAP
has chosen to give entry and attribute permissions different names (unlike X.500) so
that there can be no confusion between the rights being given. Entry level permissions
are:

- add an entry below this entry
- delete the entry (no other permissions needed)
- export an entry and all its subordinates from current location
- import, allows an entry and all its subordinates to be placed here
- renameDN, allows the RDN of an entry to be renamed
- browseDN, allows an entry to be accessed in a Search when its DN has not

been specified
- returnDN allows the DN of the entry to be disclosed in an operation result
- discloseOnError says if the authenticated user will get a sensible error

message or “entry does not exist”.
Attribute level permissions are:
- read allows attribute types and values to be returned in a Search operation
- write allows attributes and values to be added in a Modify operation
- obliterate allows attributes and values to be deleted in a Modify operation
- make allows attributes to be created in an AddEntry operation
- search allows attributes and values to be used in a Search filter.
- compare allows an attibute and its values to be used in a Compare

operation.

3.2. Permissions for each Operation

The permissions needed for each operation are given in Table 2. These are
quite similar to those for X.500 (apart from the fact that attribute value level
permissions do not exist), but a few noticeable differences occur. For example, the
Compare and Modify Entry operations do not require any entry level permissions.

Table 2. The Permissions for each Operation
Operation Entry Level Permission Attribute Level Permission
Search Browse for each entry in scope

ReturnDN for each entry returned
Search on attributes in the Filter
Read for attributes returned

Compare none Compare for the attribute
Add Entry Add on parent of entry Make for each attribute added
Remove Entry Delete none
Modify Entry none Write for each attribute added

Obliterate for each attribute removed
Modify DN RenameDN for change of RDN

Export and Import for move
none

In conclusion, the LDAP access control model is simpler than the X.500 access
control model, but is not a true subset of it. Therefore X.500 based LDAP servers
would need to make some changes to their products in order to comply with the
LDAP model as currently specified, although it must be noted that the model is still
not fully stable. One hopes that it might be published as an RFC in 2001.

4. The Authentication Methods for LDAP

LDAPv2 [4] documents the use of anonymous binds, clear password based
authentication and Kerberos authentication. However, as LDAPv2 has been
superseded by LDAPv3, these methods will not be progressed further. The
authentication methods for LDAPv3 [12] are currently at proposed Internet standard
status, and will be progressed to full standard status in due course. [12] documents
which authentication methods are mandatory and which are optional to be supported
by every LDAPv3 server. In keeping with the IESG policy, clear passwords are not
required to be supported, and are in fact discouraged from being used. The mandatory
methods of authentication that each LDAP server must support are: anonymous Binds
(for public access) and Digest-MD5 Binds [13] which use hashed passwords. The
optional authentication methods that should be used if confidential communications
are required are: simple password authentication over an encrypted TLS session [14],
or X.509 certificate based authentication with TLS.

LDAPDigest-MD5 authentication is compatible with HTTP/1.1 Digest
Authentication “md5-sess” [15]. It is a two phase process and works as follows. The
client sends a Bind Request with the SASL mechanism set to “DIGEST-MD5” and the
server sends a Bind Response containing a digest challenge and a result code of
saslBindInProgress. The client sends a second Bind Request containing the digest
response and the server sends a Bind Response with a success or error code. The
digest challenge contains various parameters including the name of the server’s realm,
a random nonce, a quality of protection parameter (authentication, authentication +
integrity or authentication + confidentiality), a maximum buffer size, a character set of

UTF-8, and a choice of algorithms for encryption (DES, triple-DES, or RC4). The
digest response contains a hash of the user’s name, the realm, the user’s password, the
original nonce and a client generated nonce. The reply may optionally be encrypted.

Transport Layer Security (TLS) is the Internet standard and enhanced version
of SSLv3 [16] (although the mandatory to implement algorithms are not compatible
between the two protocols). The use of TLS by LDAP can be found in [17]. An
LDAPv3 extended operation “Start TLS” is defined, which can be sent at any time
between the client and server, providing of course that there are no outstanding LDAP
responses, or a SASL Bind is not already in progress. If the server supports TLS
sessions it will reply OK and the TLS negotiation will then start. After the TLS
encrypted link has been established, if simple password authentication is being used,
the client sends a Bind Request containing its name and password. If however mutual
X.509 certificate based authentication was used by the TLS implementation, then the
client sends a Bind Request with the authentication method set to SASL EXTERNAL,
and the server has to obtain the clients authenticated identity from the TLS
implementation.

LDAPv3 currently does not document how alternative authentication
mechanisms might be used, such as Kerberos or S-Key.

5. Conclusion

Directory servers may hold vital organisation information, and if so it may be
essential that this information is only made available to authorised users. This paper
has described the X.500 and LDAP based access control models for allocating access
rights to the information to users, and has noted some similarities and differences
between the two models. However, without proper user authentication, any access
control scheme has little value if users can easily masquerade as others. Since the most
popular way of accessing X.500 based directories is with LDAP, the paper then
describes the authentication methods that are being standardised for LDAPv3. These
methods range from the popular though insecure anonymous access to the highly
secure use of X.509 certificates and digital signatures over an encrypted TLS link.

References

[1] ISO/ITU-T Recommendation X.501: "The Directory - Models". 1993.
[2] D.W.Chadwick. “Understanding X.500”, Chapman and Hall, 1994. Also available from
http://www.salford.ac.uk/its024/X500.htm
[3] ISO/ITU-T Recommendation X.511: "The Directory - Abstract Service Definition". 1993.
[4] Yeong, W., Howes, T., and Kille, S. “Lightweight Directory Access Protocol”, RFC 1777, March
1995.
 [5] M. Wahl, T. Howes, S. Kille, “Lightweight Directory Access Protocol (v3)”, Dec. 1997, RFC
2251
[6] ISO/ITU-T Rec. X.518(1993) The Directory: Procedures for Distributed Operation
[7] ITU-T Rec. X.680 ¦ ISO/IEC 8824-1. Abstract Syntax Notation One (ASN.1): Specification of
basic notation
[8] D.W.Chadwick, A.J. Young. “A Directory Application Firewall - the Directory Guardian”,
companion paper to this one
[9] E. Stokes, D. Byrne, B. Blakley, P. Behera. “Access Control Requirements for LDAP”. RFC
2820, May 2000.

[10] E. Stokes, D. Byrne, B. Blakley. “Access Control Model for LDAPv3” <draft-ietf-ldapext-acl-
model-06.txt>, 14 July 2000.
[11] J.Myers. “Simple Authentication and Security Layer (SASL)”. RFC 2222, October 1997
[12] Wahl, M., Alverstrand, H., Hodges, J., Morgan, R. “Authentication Methods for LDAP”, RFC
2829, May 2000
[13] Leach, P., Newman, C. “Using Digest Authentication as a SASL mechanism”, RFC 2831, May
2000.
[14] Dierks, T., Allen, C. "The TLS Protocol Version 1.0", RFC 2246, January 1999.
[15] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S., Leach, P., Luotonen, A., Stewart, L.
“HTTP Authentication: Basic and Digest Access Authentication”. RFC 2617, June 1999.
[16] Frier, A., Karlton, P., Kocher, P. ‘The SSL 3.0 Protocol’, Netscape Communications Corp., Nov
1996
[17] Hodges, J., Morgan, R., Wahl, M. “Lightweight Directory Access Protocol (v3): Extension for
Transport Layer Security”. RFC 2830, May 2000.

