
Concurrency, objects and visualisation

Chris Exton Michael K�lling

School of Network Computing School of Network Computing
Monash University Monash University

exton@monash.edu.au mik@monash.edu.au

Abstract

Object-oriented programming and concurrency are
increasingly popular in computing education. Both are
difficult topics in themselves, and the combination of
both introduces subtle interactions that are not easily
understood. We propose the development of a visualisa-
tion tool to illustrate both object-orientation as well as
concurrency issues.

Designing such a tool is a challenging task. It has
been shown that visualisation tools are not always as
effective as their authors had hoped, and the issues to be
illustrated by our potential tools are not yet well
defined.

In this paper, we investigate both the visualisation
aspect and the functionality that such a tool may have
and we develop some guidelines for the design of a
concurrent object visualisation tool.

1 Introduction

Concurrent programming has become an important
area in the development of software for application
systems. For many computer science degrees concurrent
programming is becoming an essential part of the
undergraduate curriculum [1]. This movement was
supported by the Association for Computing Machinery
(ACM) as part of its Curriculum 91 recommendations in
which it advocated introducing distributed and parallel
programming constructs into the undergraduate study
curriculum.

Learning and teaching concurrent programming is
difficult. Not only is the subject matter complex, but it
often is difficult for students to assess when they have
actually correctly solved a problem. Errors in concurrent
programs are often hard to detect Ð getting the correct
output in a test execution does not prove anything. Choi
and Lewis [2] have found in a detailed study that 56 out
of 180 student submissions contained errors, although
virtually all of them produced correct output.

The comprehension and analysis steps of cognitive
learning, as described by Bloom [3], are difficult for
students in this area, since many of the mechanisms
students have established for non-concurrent program-
ming techniques do not migrate well to the concurrent
equivalent.

The integration of concurrency and object-orientation
would seem inevitable given the current popularity of
object-orientation and the increasing necessity for
concurrent computation. To many, this combination
seems quite natural. However, the construction of such a
system is not the simple matter that one would initially
believe. The claimed benefits of object-orientation are
many and include reuse, quality, emphasis on modelling
the real world. These advantages are provided by the use
of inheritance, encapsulation, abstraction and poly-
morphism. By incorporating concurrency with object-
orientation, one would hope to maintain the benefits of
object-orientation while gaining the performance and
increased ability that is associated with concurrent and
parallel software.

However, there exist subtle and yet important
semantic conflicts between concurrency and object-
orientation. While it is not difficult to produce a language
such as Java that supports the constructs associated with
concurrency, and the functionality associated with object-
orientation, the designer of a concurrent object-oriented
program must also consider the ramifications of their
design. It is possible that a poorly designed concurrent
object-oriented program would cancel the very benefits
that the designer had hoped to attain.

Dijkstra, in 1968 in his famous letter to the ACM,
stated that "our intellectual powers are rather geared to
master static relations and that our powers to visualize
processes evolving in time are relatively poorly
developed" [4]. One possible conclusion to draw from
this is that software tools that aid understanding of
concurrent processes may be beneficial to teaching and
learning about concurrency. It is, however, not at all clear
what such a software tool should look like.

This is especially true for object-oriented concurrent
systems. Concurrency visualisation systems have, in the
past, focused on non-object-oriented systems. Con-
currency together with objects introduces new behavioural
aspects that should be included into a visualisation tool.

In this paper, we will investigate requirements and
propose solutions for the design of an educational
software tool that integrates concurrency and object-
oriented programming.

This paper is organised as follows: In section 2, we
investigate some issues specific to concurrency in Java.
Section 3 comments on existing software tools currently

available. In section 4, we investigate problem issues
distinct to concurrent programming. Following that, we
discuss a possible tool design to support understanding
of these issues.

2 Concurrency and Java

Java has, over the past few years, been adopted by
many universities as a teaching language. The acceptance
of Java in universities and industry has been so rapid that
within a very short time it has become one of the most
used languages for teaching of programming practices.
This creates some challenges and opportunities.

Java is concurrent. This is true in two respects.
Firstly, Java supports threads and synchronisation
constructs as part of the standard language. Secondly, the
Java platform (the virtual machine) executes as a
collection of concurrent threads.

The second point almost forces the teaching of
concurrency into a curriculum taught with Java. Every
Java application is concurrent. The garbage collector, for
example, and screen painting for GUI applications are
executed as threads running independently from the user's
main thread. Lack of understanding of the details of this
can lead to problems even in introductory courses. The
garbage collector, for example, can influence experiments
with runtime performance of algorithms and data
structures. Not understanding the screen painter thread
can lead to surprising bugs in the display of animated
graphics or user interfaces.

The inclusion of concurrency constructs in the
language, however, creates new opportunities. Currently,
concurrency courses are taught in a wide variety of
different languages and systems. Most programming
languages used in universities do not include concurrency
constructs in the language itself. As a result, a wide
variety of concurrency libraries is used, some standard
(such as pthreads), some home-made. This large variety
of systems being used fragments the user base and makes
it hard to provide good tools.

Having concurrency mechanisms in a widely accepted
teaching language may lead to a much larger number of
courses using the same tools, and thus may make it more
attractive for tool developers to invest time in effort in
developing good tools.

3 Software tools for education

Numerous software tools are available for use in
education. A common characteristic of most of them,
especially those dealing with concurrency, is the use of
visualisation techniques.

Visualisation can come in many forms. Very different
technologies can be presented under the heading of
"visualisation". There is a basic idea, though, that is
common to all of them: the assumption that making the
inner workings of an abstract problem visible in some
form can provide additional insight that aids
understanding.

Visualisation tools can be separated into three distinct
categories: algorithm visualisation, visualisation with
interaction and execution environments with visualisa-

tion. These three have quite different characteristics, and
we will briefly discuss each of them.

3.1 Algorithm visualisation

Algorithm visualisation tools, such as Balsa [5],
XTANGO [6] or ANIMAL [7], typically provide a visual
representation of the execution of a given algorithm. They
are often hard coded (the visualised algorithm cannot be
easily changed by the end user) and provide no or little
user interaction.

Numerous studies exist trying to show the effects of
using algorithm animation on student performance. The
hope generally was that using algorithm animation
systems would increase students' understanding of the
subject matter. The results, however, are mixed, with the
majority concluding that algorithm visualisation without
interaction is not very effective. Stasko et al, for instance,
demonstrate that a student group using an algorithm
visualiser an addition to text based instruction did not
perform much better than a control group studying with
the text alone [8]. They found no statistically significant
difference between the two groups. Jarc et al even report a
negative effect. Students using an animation system spent
more time on studying the material but performed worse
in post-tests than a control group [9].

For our work, we can conclude from this that a
passive visualisation system alone is not desirable as an
aid to support understanding of concurrency.

3.2 Visualisation with interaction

Algorithm visualisation with interaction is an
extension of the idea described above. In these systems,
users are asked to make predictions or solve questions as
part of using the visualisation. Stasko et al, in the same
study referred to above [8], also conclude that animation
systems should have a rewind/replay facility, since such a
facility has the potential to increase the learning effect
achieved through animations.

Some more recent algorithm animation systems, such
as JHAV� [10], include functionality to engage students
more actively in the visualisation. These interactions
include users constructing their own input data, stopping
the animation at various points and letting the user make
predictions and quizzes and tests.

Some studies seem to show that this can increase the
level of comprehension achieved by using the
visualisation system [10, 11], while others indicate no
beneficial effect of algorithm visualisation even with
interaction facilities [9].

3.3 Execution with visualisation

Execution systems with visualisation follow a
different approach to algorithm visualisers. They do not
have an algorithm (or a set of algorithms) built in, but
instead let users write algorithms in a normal fashion.
They typically extended program execution environments
with visualisation tools.

Systems of this kind are much more flexible than the
tools described above. They allow users to visualise any
code that can be written in a given system. An example
of such a system for Java is Jeliot 2000 [12], a Java

interpreter that provides continuous visualisation of
statement execution.

Execution visualisers again fall into different
categories: those that require source code to be annotated
to aid visualisation, and those that work on standard,
unaltered program code.

Systems that can visualise original code are clearly
the more flexible: they can be used to visualise programs
taken from various sources, without the need for
modification for the purpose of visualisation. Visualisers
with annotations, on the other hand, can be easier to
implement and may provide functionality that is difficult
to achieve on some systems without annotation.

Another distinction is time of analysis: live systems
display results while the application is executing, while
post-mortem systems display execution information after
the program has ended, typically from a log file written
during execution.

3.4 A visualisation tool for teaching
concurrency with objects

Algorithm animations are appropriate for algorithm
and data structures courses, but too constrained for what
we want to achieve in visualising concurrent objects. We
want to allow students to investigate their own programs
developed for arbitrary assignments. Thus, we will only
consider execution visualisers from here on.

An execution visualiser for concurrent objects must
provide information about both interesting object events
and interesting concurrency events. These may include
object creation, object destruction, method entry and
object relationships on the object side and thread
creation, thread status, synchronisation events and What
exactly these "interesting events" are will have to be
discussed in much more detail, and we will do this in the
next section on concurrency issues.

It is, however, already apparent that the amount of
data to be collected and visualised is potentially huge,
and that some details may be "interesting" in some
situations but not in others.

The issues involved are abstraction, emphasis,
representation and navigation.

Abstraction can give us the ability to avoid the
limitations of implementation languages and facilitate
discussion on the pros and cons of various design
tradeoffs. However the use of abstraction, as a tool of
comprehension, is a dual edged sword. There is a
spectrum here with no discrete divisions. For example,
excluding too much detail may deprive the students of
the ability to correlate what they are observing with
actual events, while including too much detail may blind
the students to the patterns of behaviour we wish them to
observe.

Adjustable filters do provide a means to remove
unnecessary detail. However, the student must first have
gained the required level of knowledge and ability to
distinguish between what information should be included
and what can be excluded.

We may also want to present the same information
with the same level of abstraction but with a different
emphasis. For example we may wish to observe the
effects of the inheritance anomaly [13], deadlock or

dormancy. Each of these necessitates a different emphasis
on the same data. Thus it should be possible to highlight
the particular run-time phenomenon that we wish to
consider by changing the emphasis.

The means by which we represent information is thus
partially determined by the level of abstraction and
emphasis. However, to allow for this, considerable
thought must be given to representation. The use of
traditional methods such as graphs and charts may be of
some use whilst more artistic or attractive means of
representation, such as animation or even virtual reality,
may be used to increase understanding, enthusiasm and
serve as a motivational factor.

Human-computer interaction issues play a pivotal
role. The ability to navigate in a potentially very large
and complicated visual environment is often one of the
hardest problems to solve.

Navigation should allow the user to explore and
interact with the visual environment and provide a means
of reducing or increasing visual complexity by varying
abstraction, representation and emphasis.

Before we go on to describe the design for a
visualisation tool in more detail, we will discuss a set of
common problem areas in working with concurrent
objects. These problem areas give us the goals for our
tool: we would hope that a well designed visualiser will
allow to illustrate and discuss any of these issues.

4 Issues with object-oriented concurrency

Migrating themes, procedures and understandings
from the sequential world to the parallel and distributed
worlds of software construction has often been
problematic. Concurrent programming introduces new
types of errors and complications when compared to
traditional sequential program development. Ben-Ari [14]
states that "when teaching concurrent and distributed
programming, it is extremely important that you
demonstrate to students the strange behaviour that such
programs can show". We have placed the interesting
concurrency errors and behaviours that we feel a student
must become cognisant of into three broad categories.
These are liveness, safety, and a third which is directly
related to the object-oriented paradigm.

4.1 Safety

The issue of safety is often difficult for many students
to appreciate. In many cases a program may produce
correct output every time it is tested as the order of
interleaving produced by a thread scheduler on a given
machine and environment is sufficiently similar to
produce a correct result for each test. This fact alone,
however, does not assure that the program is safe.
Students often have the unpleasant experience of watching
their tested program fail on its first execution on their
tutors machine. This is solely because the operating
system and environment used have resulted in a different
interleaving of threads and uncovered a previously
unknown safety error. Thread interleaving is a difficult
concept for many students to grasp as it depends on
factors outside their control. In a controlled execution
environment it is possible to impede to execution of

selected threads and to highlight safety errors in the
students code.

4.2 Liveness

Liveness failures are often much harder to identify
than safety failure and lead to some mystifying
observations for students. For example two components
that are each live when used in other contexts may fail to
be live when used together. Thus unit testing often fails
to reveal such failures. Lee [15] lists four interrelated
senses in which one or more threads can fail contention,
dormancy, deadlock and premature termination.
Contention or starvation occurs when runnable threads are
not executed because other running threads are
monopolising the processor. Dormancy is perhaps the
most common and arises when a non-runnable thread fails
to become runnable. In Java this most commonly occurs
when a wait() was not balanced by a notify() thus the
thread in effect remains blocked until the program
terminates. This common error is often addressed by the
unsuspecting student by instantiating a new thread object
every time the same operation is required. This incorrect
solution is often unobservable in terms of expected output
as the program often produces the correct results but in an
extremely inefficient and precarious manner. Deadlock is
the result of two or more threads trying to acquire a
resource that is already held by the opposing thread.
Deadlock failures are notoriously difficult to locate as they
are often moving targets. Thus a student may place a
series of display statements to narrow down the problem
area but the deadlock may occur at another location on
the next execution of the program. Premature termination
in a multi threaded program again often goes undetected
as the other threads will often continue executing which
serves to mask the error.

4.3 Concurrency and Object Orientation

On first glance, the combination of concurrency and
inheritance seems quite natural and unproblematic. There
exist, however, subtle and yet important semantic
conflicts between the two. The inheritance of concurrency
constructs can result in the need for non-trivial class
redefinition [13]. This means that the programmer will
quite often need to investigate the implementation details
of various superclasses in order to incorporate the
necessary redefinitions into a subclass.

Further problems can be caused by interactions of
concurrency with exception handling. In a sequential
program, the semantics of exception propagation and
handling are clearly defined and simple: an exception will
propagate by winding back the stack until a handler is
found to catch the exception; if no handler is found, then
the process is terminated. Although the implementation
of exceptions may be well understood in a non-concurrent
language environment, the understanding of exception
handling behaviour is often not considered when dealing
with a multi-threaded scenario.

In many parallel environments, when an exception is
raised during the execution of a thread and the thread fails
to handle the exception, the thread is abandoned without
further effect. The process continues execution and any
notification of the lost exception is left up to the

programmer to implement explicitly, as is the case with
C++, Ada 95 and Java.

The problems associated with the combination of
concurrency and object orientation such as the inheritance
anomaly and exception handling are profound and need to
be explicitly addressed in addition to the more typical
concerns of Safety and Liveness that are apparent in a
non-object-oriented environment.

5 Tool design

In this part of the paper we want to discuss some
design decisions for a software tool to aid teaching and
learning of concurrent programming.

When designing a software system, two aspects are
important to keep in mind at all times: the purpose of the
system and the targeted user group. Many bad design
decisions result from not having a clear picture of these
two aspects.

Our purpose is educational, our target group are
students. These two decisions will fundamentally
influence all decisions to be made. The tools needed for
experts and students differ profoundly: while experts need
flexibility and detail, even if it means spending a long
time learning how to use a particular tool, students rely
more heavily on simplicity, allowing them to use a tool
effectively within a comparatively short period of time.

In restricting the user group fairly narrowly (by not
attempting to serve both students and experts with a
single tool) we believe that we can serve that one group
better (at the expense, possibly, of not providing adequate
tools for other users). Our aim is to design a good tool
for a specific group rather than a mediocre tool for
everyone.

Visualisation in itself does not necessarily serve the
purpose of clarifying abstract information. The assump-
tion that information becomes clearer just by being
presented graphically would be misguided. The key lies
in the interpretation of the visible information. Only if
the information encoded in the graph is easily and
correctly interpreted does it serve a purpose. The
commonly quoted saying of the picture saying a thousand
words is too often taken as meaning "graphics are good"
without much further qualification. But we have to ask
ourselves: which thousand words is our picture really
saying? And does it say the same thousand words to
everyone?

Reading of graphical information must be learned just
as well as reading text. The success of our system will
depend in part on the question of how easily students can
learn to read the visual output.

5.1 Functionality

From the issues discussed in previous sections of this
paper we can now give an overview of desirable
functionality of an educational concurrency visualisation
system. Some of the functions are useful for analysing
concurrent applications in general, others are related
specifically to concurrency in object-oriented systems.

The system should:
• provide information about existing threads and their

current status;

• provide a history of each thread;
• provide information about existing synchronisation

objects (such as locks, semaphores or monitors) and
their status;

• provide information about object events, such as
object creation, destruction and method entry. The
object events must be linked to the thread responsible
for causing this event;

• have the ability to link events to source code;
• have the ability to rewind and replay an execution;
• provide filters to provide different levels of abstraction

or emphasis;
• be able to illustrate the same data set using different

filters;
• allow the application of filters at the time of

inspection (retrospectively), rather than before an
execution.

In addition to these, it will be crucial to illustrate and
clarify the duality of threads and objects. Since threads are
often represented as objects on an object-oriented library
(but a fundamental difference between threads and objects
remains) there is great potential for confusion.

Automatic problem detection tools, such as automatic
deadlock or race detection may be a useful addition.

5.2 Platform

One of the problems with existing multi-threading
visualisation or teaching systems is the lack of a widely
accepted platform. Ideally, we want a widely used
standard language with a standard multi-threading library.
The drawbacks of using specific languages, systems or
libraries have been mentioned above.

Java gives us a platform that provides a commonly
accepted language together with standard multi-threading
constructs. For that reason, we will choose Java as the
user platform for our tool.

5.3 Architecture

One of the most fundamental design decisions for the
tool architecture is the time of analysis: should it work
on a live execution, or should the analysis be done post
mortem?

From the desired functionality discussed above, it is
obvious that we would need post-mortem analysis. This
is needed to apply filters retrospectively, change levels of
abstraction and emphasis and to provide rewind/replay
capabilities.

Bedy et al [16], describing their own system, argue
for live analysis. Their arguments against post-mortem
analysis are that the data set collected during execution
may be incomplete or corrupted if an execution does not
end normally, and that a program must be explicitly
instrumented for post-mortem analysis. Explicit
instrumentation adds an extra level of complexity and a
potential source of additional errors.

The first argument can be countered if we are
successful in designing a system that accepts incomplete
data sets. That does not seem to pose a real problem.
The second argument does not hold true for Java. The
fact that Java is executed on a virtual machine enables us
to provide post-mortem analysis without instrumentation

of the code. Instead of adapting the user code for the
purpose of gathering data, we can adapt the virtual
machine.

One commonly used technique to gather data for
either live or post-mortem analysis is the use of custom-
made synchronisation libraries. These libraries, in
addition to providing the synchronisation functionality,
perform the data collection or communication. Custom-
made libraries are used either by writing source code
specific to these libraries, or by automatic binary
instrumentation. Both have their drawbacks. Requiring
non-standard calls in the source prevents applications to
be analysed that were not originally developed for this
analysis tool. Binary instrumentation is usually platform
dependent.

The solution to gather the information from the Java
virtual machine overcomes these problems. We will be
able to gather object and synchronisation data with
standard user code using standard constructs and libraries.
A user should be able to analyse any application taken
from anywhere without the need to modify the application
in any way.

5.4 Implementation

Above, we have argued to gather information for
visualisation purposes from the Java virtual machine.
Customising the machine for our tool would pose some
problems: since the virtual machine implementation itself
is dependent on the hardware platform, we would lose
portability. Luckily, as of version 1.3, the Java Software
Development Kit (SDK) includes debugging libraries
(named JPDA [17]) that are powerful enough for our
purposes. Using those libraries we should be able to
gather all data required without using non-standard tools.

5.5 Interface

Designing the interface for the tool will be one of the
major challenges of the project. The design of both the
input (for navigation through a large data space) and
output (visualising complex dependencies and behaviour)
poses many open questions that we cannot answer at this
stage.

One thing is clear, though: Since our target group are
students, we cannot expect users to spend several months
learning to drive and interpret the visualisation tool. For
professional software engineers, it can be acceptable to
spend a long getting accustomed to a tool, if that
investment pays off over many years to come. For
students, the challenge will be to provide an interface
straight forward enough that it can be mastered within a
relatively short period of time.

6 Conclusion

The object-oriented paradigm is well suited to
concurrency, with its dual focus on modularity and
encapsulation. The combination of concurrency and
object-orientation has many potential benefits. The
challenge for students, however, has been increased. To
get students to truly realise these benefits is not a trivial
task as aside from understanding the non-concurrent
aspects of object-oriented programming the complex

nature of inter-object relationships during concurrent
execution must also be understood.

Various software tools exist for concurrent program
visualisation, each with a slightly different approach.
However, very few of these tools have been designed with
the intention of addressing the new issues associated with
the integration of concurrency and object-orientation that
aid student comprehension of how parallel execution
relates to classes, objects, methods, and the semantics of
normal non-parallel execution.

It is hoped that, with dutiful consideration of the
issues presented in this paper, that we will be able to
design a software visualisation tool that specifically
addresses these issues. Work is already underway with an
implementation of a visualisation tool called Elucidate.
The major goal of the Elucidate project is to provide an
expressive and flexible tool for teaching the structures and
patterns of concurrent object-oriented behaviour.
Although the first version is complete there is still much
work to be done to dynamically represent all aspects of an
executing multi-threaded program.

References

[1] M. B. Feldman and B. D. Bachus, Concurrent
Programming CAN be introduced into the Lower-Level
Undergraduate Curriculum, SIGCSE Bulletin, Vol. 29
No. 3, September 1997.

[2] S.-E. Choi and E. C. Lewis, A Study of Common
Pitfalls in Simple Multi-Threaded Programs, in SIGCSE
2000 Proceedings, ACM, Austin, Texas, 325-329,
March 2000.

[3] B. S. E. Bloom, Taxonomy of educational
objectives : The classification of educational goals,
Handbook 1: Cognitive domain, David McKay
Company, New York, 1959.

[4] E. W. Dijkstra, GO TO statement considered
harmful, Communications of the ACM, Vol. 11 No. 3,
147-148, March 1968.

[5] M. H. Brown, Exploring algorithms using Balsa
II, Computer, Vol. 21 No. 5, 14-36, May 1988.

[6] J. T. Stasko, Animating algorithms with
XTANGO, SIGACT News, Vol. 23 No. 2, 67-71, Spring
1992.

[7] G. R�§ling and B. Freisleben, Experiences in
Using Animations in Introductory Computer Science
Lectures, in SIGCSE 2000 Proceedings, ACM, Austin,
Texas, 134-138, March 2000.

[8] J. Stasko, A. Badre and C. Lewis, Do Algorithm
Animations Assist Learning? An Empirical Study and
Analysis, in Proceedings of the INTERCHI '93
Conference on Human Factors in Computer Systems,
Amsterdam, 61-66, April 1993.

[9] D. J. Jarc, M. B. Feldman and R. S. Heller,
Assessing the Benefits of Interactive Prediction Using
Web-based Algorithm Animation Courseware, in
SIGCSE 2000 Proceedings, ACM, Austin, Texas, 377-
381, March 2000.

[10] T. L. Naps, J. R. Eagan and L. L. Norton,
JHAV� -- An Environment to Actively Engage Students in

Web-based Algorithm Visualizations, in SIGCSE 2000
Proceedings, ACM, Austin, Texas, 109-113, March
2000.

[11] M. D. Byrne, R. Catrambone and J. T. Stasko,
Do Algorithm Animations Aid Learning?, Georgia
Institute of Technology, Technical Report GIT-GVU-96-
18, August 1996.

[12] J. Haajanen, et al., Animation of user
algorithms on the Web, in IEEE Symposium on Visual
Languages, IEEE, 360-367, 1997.

[13] S. Matsuoka and A. Yonezawa, Analysis of
Inheritance Anomaly, in Object-Oriented Concurrent
Programming Languages in Research Directions in
Object-Based Concurrency, MIT Press, 1993.

[14] M. Ben-Ari, Distributed algorithms in Java, in
2nd SIGCSE/SIGCUE Conference on Integrating
Technology into Computer Science Education, Uppsala,
Sweden, 62-64, 1997.

[15] D. Lee, Concurrent Programming in Java:
Design principles and patterns, 2nd Edition, Addison-
Wesley, 1999.

[16] M. Bedy, S. Carr, X. Huang and C.-K. Shene,
A Visualization System for Multithreaded Programming,
in SIGCSE 2000 Proceedings, ACM, Austin, Texas, 1-
5, March 2000.

[17] Sun Microsystems, Inc, Javaª Platform
Debugger Architecture,
http://java.sun.com/products/jpda.

