
Can Agent-Based Models Assist
Decisions on Large-Scale
Practical Problems? A
Philosophical Analysis
Use of Microstructurally Complex Models

INTRODUCTION

S ociety faces today new large-scale social and ecological practical problems of
human civilization. It has been argued that these problems involve system
uncertainties and a richness of causal connection to a degree that impairs

top-down modeling or in general, traditional “reductionist” science (analyzing prob-
lems by their parts). With reference to the philosopher Thomas Kuhn’s concept of
normal science [1], such problems have been called “postnormal,” defined as urgent
practical problems with high stakes and large and possibly irreducible uncertainties
and complexities involved [2,3]. There have been numerous efforts to improve on
this state of methodological inadequacy, ranging from statistical technique to new
forms of interdisciplinary research (notably what is sometimes called the environ-
mental sciences) [4–6].

There is currently some enthusiasm that the growing science of complexity can
help to manage postnormal problems. Thus, Casti [7] refers to risks involved in
nuclear power production, AIDS research, the global climate, the global economy,
and genetic engineering, and writes [7, p. 35]:
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The use of predictive agent-based models as decision assisting tools in
practical problems has been proposed. This article aims at a theoretical
clarification of the conditions for such use under what has been called
post-normal problems, characterized by high stakes, high and possibly
irreducible uncertainties, and high systemic complexity. Our argument
suggests that model validation is often impossible under post-normal
conditions; however, predictive models can still be useful as learning

devices (heuristic purposes, formal Gedanken experiments). In this case,
micro-structurally complex models are to be preferred to

micro-structurally simple ones; this is illustrated by means of
two examples.
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For the first time in history we are

in a position to do bona fide labo-

ratory experiments on these kind
of complex systems. [. . .] But
now, thanks to the availability of
affordable, high-quality comput-
ing abilities, we can actually con-
struct silicon surrogates for these
complex, real-world processes.
We can use these surrogates as
laboratories for carrying out the
experiments needed to be able to
construct viable theories of com-
plex physical, social, biological,
and behavorial processes.

Casti calls such models would-be
worlds. He especially refers to agent-
based modeling, that is, the set of tech-
niques that above all are known
through the work of the Santa Fe Insti-
tute. (Sometimes this modeling tech-
nique is also called “bottom-up model-
ing” or “individual-based modeling”
[8].) In agent-based models, relations
and descriptions of global variables of
traditional (top-down) models are re-
placed by an explicit representation of
the microscopic features of the system,
typically in the form of microscopic en-
tities (“agents”) that interact with each
other and their environment according
to (often very simple) rules in a discrete
space-time. Agent-based modeling is
becoming known to a broader public
both within and outside science, and its
explanatory successes have led to ex-
pectations that such models might be
applied in a more direct sense, notably
in industrial, economical, and political
decision processes [7,9,10].

It has been demonstrated that a
number of interesting qualitative fea-
tures of rather complex natural systems
can be reproduced and explained by
means of relatively simple agent-based
models. The complexity of these sys-
tems can thus be thought of as emerg-
ing from simple rules. One example is
Per Bak’s sand-pile model [11–13],
which, with its almost maximally simple
microstructure, exhibits phenomena
such as the 1/f-noise and punctuated

equilibrium [14], which are supposed to

be features of natural systems such as

biological evolution [15], earthquakes,
or wood fires.

T urning to the history of science,
we are reminded of Galilei: Once
the right level of abstraction is

found, models even of complex systems
can be both simple and complete at the
same time. And in fact it has been dem-
onstrated that many patterns and struc-
tures observed in natural systems can
be thought of as the result of rather
simple generating mechanisms. Ex-
amples include the so-called L-Systems,
allowing the generation of very realistic
pictures of plants by following some
simple algorithms [16], and the study of
artificial life, where it has been demon-
strated that very effective collective be-
havior of, for example, termites can be
generated by strikingly simple rules for
individual behavior [17].

In our opinion, the science of com-
plexity has a large potential for the fu-
ture advancement of knowledge. How-
ever, considering the urgency and im-
portance of problems of the postnormal
type, claims like Casti’s should be ana-
lyzed with care. If “would-be worlds”
can be built and successfully used, they
will be of immense practical signifi-
cance, and the construction of “silicon
surrogates” of the climate, the world
market and the like, should be given top
priority. On the other hand, if unvali-
dated models are used in decision-
making processes, the outcome may be
fatal, especially in decisions regarding
irreversible problems. Global climate
may be a paradigm case. Accordingly,
there is a need to analyze under which
conditions such models can be consid-
ered valid.

In this article we examine how com-
puter-based models in general and
agent-based models of a manageable
size in particular might function as tools
to assist decisions under postnormal
conditions. Our main question will be
whether these postnormal problems
can and should be attacked by means of

simple models. When are we really “in a
position to do bona fide laboratory ex-
periments on these kind of complex
systems?” Do, under postnormal cir-
cumstances, agent-based models pro-
vide the possibility to perform experi-
ments on the digital “surrogate” to test
the consequences of decisions before
actually implementing them?

We first review various usages of
models, before showing that the valida-
tion of an agent-based model with the
purpose of prediction poses certain
challenges that in many cases hardly
can be met. In particular, we discuss
models of slow, long-term processes in
global systems (such as the climate) and
human impact on such processes. We
conclude with unpromising prospects
of validating predictive models of such
systems before the relevant practical
decisions are to be made. Instead, one
will probably have to be content with
the clarifying, explanatory, and heuris-
tic qualities of such models. In this
regard the methodological norm of
simplicity is seen to be ambiguous. Al-
though it can be wise and even neces-
sary to limit the level of detail of a
model, we argue that simplistic features
as linearization, stratification of causal
relations, and overstated determinacy
prohibit learning of certain complex
systems. Accordingly, we encourage the
construction of models with a rich
microstructure.

METHOD AND TERMINOLOGY
The method of this article is that of
philosophical analysis, performed in
natural language. It does not review or
describe the range of existing models
and their actual state of validation, nor
does it make generalizations based on
examples of such models. Instead, it ad-
dresses normative questions such as
“what is required for a proper model
validation?” There is, of course, no one
general answer to that question to be
found in philosophy (or in science).
Rather, individual modeling practices
should be discussed scientifically in
their particular contexts. However, ad-
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equate concepts and figures of thought
are required for scientific discourse,
notwithstanding the responsible use of
scientific results in matters of policy.
The aim of this article is to provide ef-
fective concepts and lines of reasoning.
Accordingly, our contribution should
not be seen as an attempt of “proving” a
position but as a preliminary result of a
priori deliberations on the uses and
scope of agent-based modeling.

A few key terms need precise defini-
tion because their use is rather diverse
in the literature:

A natural system is a real system in
the world, not excluding social or cul-
tural phenomena.

A model is a formal, theoretical, and/
or physical system intended to bear
specified similarities with a given natu-
ral system.

Macro- signifies the phenomena of
primary interest in the natural system
and the model, the behavior of which is
to be predicted, explained, or otherwise
studied. Collectively these phenomena
constitute the macrolevel of the system,
depicted through macrovariables of the
model.

Qualitative behavior of system and
model is the flow of phenomena on the
macrolevel or the state of the macrovar-
iables through time, respectively. The
qualitative behavior of a system or
model may display regularities that can
be described in terms of qualitative fea-
tures such as statistical distributions,
fractal dimensions, periodicity, dynami-
cal regimes, and similar things.

Micro- signifies every part of the sys-
tem and every specification of the
model that is not macro. The micro-
structure of a model is the set of all such
specifications. Microvariables and the
parameters are a part of it, where the
latter specify the conditions for the be-
havior of, or the interactions between,
the microvariables of the model. If hu-
man intervention in the system can be
encoded into a change of a set of pa-
rameters, this set is called free param-
eters. The microstructure also includes
constraints in terms of the over-all de-
sign of the model, that is, what kind of
microevents and entities (agents) that
are programmed into the code and thus

can appear in the model. We call the set
of these constraints the microstructural
frame.

Variables is taken to be a primitive
concept. In the case of agent-based
models, they refer to descriptions of in-
dividual or collective states of agents
and the environment as a function of
time.

VARIOUS USES OF MODELS
When discussing the use of a model, it
may be convenient to distinguish be-
tween the various usages of models, for
instance by applying the following ty-
pology: (1) predictive models, aiming at
a (quantitative or qualitative) prediction
of future states of a specific, real system;
(2) explanatory models, aiming at the
elucidation of “essential” mechanisms,
typically of a class of systems at a more
general and/or idealized level; and (3)
heuristic models, aiming more generally
at the invention and discovery of un-
known properties of some real or formal
system through a learning process in-
volving the manipulation of (“playing
with”) the model. It is easily seen that
this typology neither is exhaustive nor
mutually exclusive. For instance, what
sometimes are called “prescriptive
models” [7] can, according to the mod-
elers’ ambitions, be seen as predictive
with free parameters, or as heuristic
models, displaying formal conse-
quences of choices of structure in a hy-
pothetical system (formal Gedanken
experiments).

An important insight from contem-
porary philosophy of science [18–21] is
that the relations between a model of a
given type and its practical use are di-
verse. Validation in the classical philo-
sophical sense of logical empiricism
would require verification of a one-to-
one correspondence between the ele-
ments of the model and the selected set
of observable entities of the natural sys-
tem [22,23], but today many scientists
and philosophers would argue that a
model also can be very useful when
such a strict procedure cannot be com-
pleted. First, the use of an explanatory
or heuristic model may help to clarify
assumptions and inferences in the de-
cision-making process. Second, under

some circumstances it may be rational

to take a chance and believe in a par-

ticular predictive model, even if it can-

not be properly validated. Indeed, Pop-

per’s philosophy of science [24] has

been seen to show that complete verifi-

cation is impossible and that we can ap-

proach the truth only negatively, by fal-

sification and elimination of error. Fi-

nally, one can make the model first and

then construct or change a natural sys-

tem so that it fits the model and allows

scientific or technological control.

S uch ways of relating model to de-

cision will happen, however, at

the expense of the ideal of science

as merely making neutral representa-

tions of a given system. Indeed, they are

also easily interpreted as interventions

in the natural and/or cultural world.

This is shown in an illustrative manner

in Casti [7], where he argues that perfect

fidelity of a model is neither sufficient

nor necessary for its successful use. The

author invokes as a metaphor Picasso’s

portrait of Gertrude Stein and writes [7,

p. 22] :

Picasso replied: “Everybody thinks

she is not at all like her portrait, but

never mind. In the end she will

manage to look just like it.” In fact,

in later years the portrait was in-

deed acclaimed as being an admi-

rable likeness of the writer. If we

were to think of Picasso’s portrait

as a model of Gertrude Stein, then

what was seen as the reality in

some sense was the model. [. . .]

[T]he theory [read: model] tells you

what you can observe.

Taking this metaphor seriously, the

story can be interpreted in three plau-

sible ways: (1) Picasso managed to pre-

dict Stein’s later appearance by grasp-

ing some essential principles of her per-

sonality. (2) Stein, living with the

knowledge of this famous portrait, was

the victim of self-fulfilling prophecy. (3)

The existence of the portrait condi-
tioned the audience’s perception of re-
ality. The first interpretation is a case of
making a neutral representation; the
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latter two are also seen as acts that in-
tervened in the life of others.

Accordingly, models may be suc-
cessfully used not only because they
can be seen to represent the natural
system correctly but also because of
luck; by changing the terrain according
to the map; because of self-fulfilling
prophecies (when modeling social phe-
nomena); and so forth. In some con-
texts, such strategies may be perfectly
rational because the model may be vali-
dated and improved along the way
through trial and error. In the postnor-
mal case, however, it may be that such
correction amounts to detection of irre-
versible damage, for instance, when a
species is extinct, the global tempera-
ture has risen or the accident has hap-
pened. This implies a need for ante hoc
validation. In the next sections, we will
analyze the possibilities of validation in
such cases, also taking into account the
possible characteristics of the natural
systems encountered in postnormal
problems.

VALIDATION OF AGENT-BASED MODELS
OF COMPLEX SYSTEMS

Methodological Problems of
Validation Procedures
Although there are many different ways
of using a model, even a predictive one
(see Various Uses of Models), the ap-
proaches to validation are fewer. In
general, a predictive model can be sci-
entifically validated by comparing its
predictions with future or past observa-
tions or by verifying structural similarity
between the model and the present em-
pirical and/or theoretical knowledge of
the system. As everybody would agree,
the optimal case is to be able to com-
bine these approaches. We now look
into the methodological aspects of each
of the three approaches in the context
of models in the management of post-
normal problems.

Validation through prediction:
When the scope and accuracy of the
predictions of a model have proven sat-
isfactory in repeated testing events, it is
rational (though not infallible) to expect
the model to stay trustworthy under
similar conditions in the future. Under
normal conditions, such procedures are

theoretically unproblematic. However,
many important systems and problems,
especially in postnormal situations, do
not allow repeated testing events. The
remainder of this article is devoted to
these kinds of systems/problems be-
cause they are abundant in the realms
of policy. Many natural and societal sys-
tems are too valuable to allow experi-
mental intervention on a realistic scale
for the sake of acquiring knowledge.
Moreover, systems such as forests or
climate indicators typically change too
slowly with human intervention to al-
low a normal validation procedure with
tests of predictions on a relevant time-
scale. On the other hand, decisions
based on false predictions of the model
can have severe consequences. Basi-
cally, the validity of the model has to be
clear before application, and validation
through prediction is then of less
relevance.

Validation through retrodiction:
The reasoning behind retrodiction, or
tests against historical data, goes like
this: Given the existence of a historical
record of sufficient quality and a model
that reproduces the record correctly
(i.e., it gives the correct retrodictions for
a part of the history), the model may be
trusted also for the future. The repro-
duction of the historical record thus
plays a role analogous to real-time
prediction.

Typically, there will be a huge num-
ber of possible models that yield, within
some error margin, a correct retrodic-
tion of the historical record. These
models can be very different from one
another in terms of microstructure,
from the very simple to the very com-
plicated and from “realistic” represen-
tations to highly idealized abstractions.
The modeling process can thus be
thought of as the selection among these
possible models. The selection will be
seen to depend on methodological cri-
teria, but also on the purpose of the
model, the particular experience of the
modelers, and other factors. Probably,
this process neither can nor should be
seen as a matter of following a set of
fixed rules [25], but rather as a creative,
open-ended process [26]. On the other
hand, modelers do have a need for

regulative rules-of-thumb along the way
to closure of the modeling process, and
a much-cited rule is the norm of sim-
plicity, often called Occam’s razor [27].

O ccam’s razor is probably indis-
pensable in the sense that simpli-
fication and idealization are nec-

essary parts of making workable models
in finite time. In light of the success of
Per Bak’s sandpiles or the simple mod-
els of social insects, it might at first sight
seem that Occam’s razor also helps
solve the problem of selection among
retrodictively correct models. One
might be encouraged to search for the
simplest model that makes correct ret-
rodictions and at the same time satisfies
standards of plausibility (being some-
what “realistic” and compatible with ex-
isting models and theories).

The rationality of this procedure de-
pends on strong assumptions about the
modeled system and the purpose of the
model, namely that the available infor-
mation in the historical record entails
the future behavior of the system (at
least inasmuch as the modeler is inter-
ested in it). This is a plausible assump-
tion when dealing with ant colonies or,
say, the typical systems in classical
physics (and here we may invoke Ros-
en’s [28] notion of mechanisms). The as-
sumption is not justified when dealing
with systems (1) of which our historical
record is limited and uncertain, (2) that
we suspect to involve internal feed-
backs and nonlinear interactions to a
degree where even small changes of pa-
rameters may be important, and (3) on
which there is evidence of recent large-
scale human intervention.

Postnormal problems often involve
the latter kind of systems. Indeed, the
issue at stake typically is to evaluate the
evidence for and against change of
qualitative behavior of natural systems
caused by recent human activities such
as large-scale greenhouse emissions, in-
dustrial fisheries, and so on. For ex-
ample, to ask if the Gulf Stream will dis-
appear from Northern Europe is to ask
if the system leaves the range of our his-
torical record and thus the valid range
of any model validated by retrodiction
alone. There may, of course, in any case
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exist retrodictively correct models that
happen to predict the future correctly.
The point is that there is no a priori rea-
son to believe that Occam’s razor (or
similar rules) is a rational strategy to-
ward the problem of selection among
the model candidates. Accordingly,
there are small prospects of a proper
validation through retrodiction of mod-
els in postnormal problems.

Structural similarity: Validation
through retrodiction and Occam’s razor
are rarely practiced alone. In most mod-
eling practices, there is some explicit or
implicit element of realism in the sense
of striving for structural similarity be-
tween the model and the system as we
know it, making it “plausible” or “cred-
ible.” (For an exception, see Kvalheim
[29] and Wold [30].) To validate a model
on the grounds of structural similarity
is, however, unrealistic in the case of
complex systems because such systems
typically include huge numbers and
massive heterogeneity of parts, locali-
ties, forces, and causal relations. Trying
to build a model with the purpose of
true and valid representation of the sys-
tem’s microstructure may in many
cases be likened to try to get to the
moon by climbing a higher tree. In sum,
there can probably be no proper valida-
tion of models in the management of
postnormal problems.

Pseudo-validation: In our discus-
sions with scientists, some have argued
that our concept of validation is too
rigid. First, it is argued, the lack of
proper validation of individual models
may be somewhat helped by collective
validation. If a great number of models
all yield the same (qualitative) predic-
tion, it seems that the prediction was
somewhat justified. The problem re-
mains, however, to decide if the same-
ness could be due to bias in input data
or to some unnoticed similarity of
model design. Second, stressing the im-
portance of skills and expertise in mod-
eling, one may trust modelers known
for successful models that allowed
proper validation. In our view, this will
not change the fact that postnormal
problems differ from the normal situa-
tion exactly in the prospects of model-
ing success. Finally, it is sometimes ar-

gued that policy decisions anyhow have
to be based on our present beliefs about
the future, and therefore it is rational to
replace unscientific beliefs with scien-
tific predictions, even if they are unvali-
dated. However, this argument is
flawed. It is rational to use all available
sources of knowledge, but there are
more ways to use a model than accept-
ing its predictions. In the remainder of
the article we discuss the rational use of
unvalidated models.

Unvalidated Models
Assuming that postnormal problems
frequently entail questions like “Will the
system change its qualitative behav-
ior?”, we have seen why models to this
purpose cannot be validated and why
predictions from unvalidated models
should not be trusted. Unvalidated mod-
els may be useful, though, to facilitate
learning processes. First, we may dis-
cover new scenarios. Second, the model
may have explanatory value in terms of
the exploration of the implication of
one’s theoretical beliefs (formal Gedan-
ken experiments). Other use is problem-
atic (see Various Uses of Models).

Several well-known, agent-based
models, although not postnormal, also
are either unvalidated or not even vali-
datable. One might think of Tierra [31],
an attempt to model biological evolu-
tion by means of self-reproducing, ma-
chine-code programs that compete for
CPU-time and memory. In a strong
sense Tierra cannot be validated, but
nevertheless it provides important in-
sights into the nature of evolution.
Similar ideas apply for many other of
the best-known agent-based models.

Because under postnormal condi-
tions most models are unvalidated any-
way, one might, in the spirit of Casti’s
quote in the Introduction, apply the
ideas of agent-based modeling and
build simple models of the respective
systems to assist our decision-making
process. Hence, a relatively primitive
microstructure (not necessarily agent-
based, but explicit in the formulation of
the microstructure) should suffice to
come to, if not good predictions, at least
some understanding of the system. If
the models are kept simple, it would

even be possible to build and compare a
relatively great number of them, which
in turn would lead to more knowledge
about the system and a better feeling for
its intricacies.

However, we do not think so. Post-
normal problems raise different ques-
tions and demand other answers than,
for example, theoretical problems in
evolutionary biology do. In practical de-
cisions of the postnormal type, the im-
pact of a rich microstructure cannot be
disregarded as theoretically uninterest-
ing deviations from general principles.
The space of possible decisions is of
very high dimension, there are nonsci-
entific considerations to be taken into
account, and not at least, the inherent
nonlinearities of the system make ide-
alizations suspicious. In-principle un-
derstanding of the system is of little in-
terest in these situations; what is
needed is rather an understanding of
the specificity of problem and of its spe-
cific dangers. Thus, simple agent-based
models in the style of Tierra, which
might lead to important theoretical in-
sights in some contexts, can be ex-
pected to be of little value under post-
normal conditions.

T he challenge is thus to design
models of high quality for learning
processes. It appears that micro-

structural complexity of models is one
quality criterion. However, in order to
reach this conclusion, we have to clear
an ambiguity in the notion of model
simplicity: We propose to distinguish
between “simple” models, “simplistic”
models, and “detailed” models.

Tierra, the sandpile model, or mod-
els of ant societies would then be typical
examples of simple models. Although
they all display considerable complexity
on the macroscopic level, their micro-
structure typically relies only on a few
rules. Thus, “simple” can entail “com-
plex macrostructure.” To make Tierra
microstructurally complex, one could
allow a wider range of dynamics by re-
laxing constraints imposed on it by its
microstructural frame, for instance, the
constant, nonadaptive size of the virtual
CPU and the mechanism for “birth” and
“death” of agents. In a microstructurally

30 C O M P L E X I T Y © 2000 John Wiley & Sons, Inc.



complex system, one cannot rule out
interlevel and time-variant interactions.
The intrinsic dynamic of the system
may change the “rules of the game” on
any level: from anaerobic to aerobic life,
from marine to terrestric life, and from
vegetative to sentient beings. In the
postnormal context, one typically wor-
ries about change of qualitative behav-
ior of the system. Accordingly, rule-
changing dynamics cannot be excluded
if the model is to match the possible
flexibility and plasticity of the system.

This notion of microstructural com-
plexity must not be confused with a
high level of detail of a model, which
we understand as comparable to toy
models; instead of being limited to a
few characteristics of the system, they
would rather be attempts of an exact
representation of every part of the sys-
tem, regardless of its relevance for the
problem at hand. A higher level of detail
typically leads to higher hardware and
computing-time demands. Importantly,
too detailed models with many param-
eters can be less robust from both a
practical and principle perspective; they
might become brittle, which makes it
extremely difficult to gauge the models
against the system. In principle, if every
“relevant” parameter is to be included,
the model will be less robust against low
quality in input information [27].

By “simplistic” we denote the lack of
sufficient microstructural complexity of
an unvalidated model in learning pro-
cesses, with regard to problems involv-
ing complex natural systems. It appears
that simple agent-based models may
have features that can render them sim-
plistic. We conjecture that under post-
normal conditions, this will usually be
the case. In a certain sense, computer
models will always fail to match per-
fectly the microstructural complexity of
the system because such models have
to be explicitly specified by some lan-
guage whereas the real world escapes
that requirement. That does not impair
the prospects of learning processes
through such models. Indeed, the use of
unvalidated models would be to learn
what given explicit specifications entail
in terms of behavior. However, practical
interest in or scientific information

about dynamical features of the system
may render whole sets of model design
as too constrained to serve our learning
process. For instance, we cannot learn
much from a model that assumes that
human beings always behave as ratio-
nal actors if we are interested in human
relations that are scientifically known to
have a strong emotional component.

One may argue that scientific knowl-
edge and thus the judgment of a model
being simplistic is fallible and that the
future will show that insufficient knowl-
edge of the system caused our belief in
its irreducible microstructural complex-
ity. A strong historical case in point
would be the replacement of the micro-
structurally complex Ptolemaic world
view by the much simpler Copernican
model. From a normative point of view,
though, it is clear that the transition of
belief (and use) from the Ptolemaic to
the Copernican model was not rational
until the latter was validated through
prediction (which took quite some
time).

T he positive conclusion is thus to
encourage models that take into
consideration contributions to

knowledge from a broad spectrum of
the sciences. One crucial aspect is that
of quality control of the input knowl-
edge translated into design of micro-
structure. Any uncertainty in the input
to the model will be likely to translate
into an uncertainty of the output. In
postnormal contexts, where uncertain-
ties may not be reducible in practice or
even in principle, it is therefore impor-
tant to mark this uncertainty rather
than hiding it in simplistic models. An-
other challenge is to learn more about
the sources of complexity. In the next
section we illustrate the discussion of
simplistic models by two examples of
natural systems: urban traffic and the
climate.

NATURAL SYSTEMS: TWO EXAMPLES
There is no consensus in the literature
on how to define or measure complex-
ity [32]. In the previous section we ar-
gued for the relevance of a concept of
microstructural complexity, understood
as a richness, diversity, and dynamic of
the parts of the system and their inter-

relations. We now illustrate our discus-
sion by looking at two specific natural
systems: the climate and a traffic
system.

The following discussion of the glob-
al climate closely follows Bengtsson
[33]. The problem of predicting the fu-
ture climate is easily seen to be postnor-
mal: If the suspicion of anthropogenic
global warming and its dramatic conse-
quences are justified, large-scale action
ought to be taken rapidly. It is unclear
how much perturbation the climate can
tolerate without undergoing qualitative
change. Furthermore, it is unclear what
these changes would imply for man-
kind. Moreover, the question about the
development of the global climate has a
considerable impact on our lifestyles
and habits and is thus closely con-
nected to political and sociological
questions, which have to be taken into
account in the decision-making process.

One of the biggest problems in cli-
mate research is the difficulty of valida-
tion of models. Following Bengtsson,
the three problems of validation from
the section Methodological Problems of
Validation Procedures are easily recog-
nized: First, the climate system is slow,
unique, and valuable. The decisions
cannot await model validation through
prediction; by then it would be too late.
Second, there is the contingent, but still
typical problem of incomplete historical
records, decreasing the value of valida-
tion through retrodiction. The esti-
mated temperature before 1450 has
large error bars, and the observational
evidence before the end of the 18th cen-
tury covers only about 3% of the earth’s
surface (Europe and central China).

Third, the issue at stake really is
whether a qualitative change of the cli-
mate system is encountered or not. In-
deed, the historical record indicates “a
general ongoing cooling until 1900” [33,
p. 4], although it is not clear what
caused this trend. Although changes of
longer periods seem to be due to solar
irradiation changes, “the causes of
shorter time scales are still rather mys-
terious” [33, p. 3]. From the turn of the
20th century there appears to be a glob-
al warming, and this development coin-
cides with human emission of green-
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house gases. Because these new causes
and factors imply that the system is en-
tering a new domain of its parameter
space, one is forced into speculation on
how the anthropogenic factors interact
with other relevant factors and what the
net result will be. Following Bengtsson,
it seems that a warming process may
result in different interplays between
the feedbacks, for example, as caused
by an increase in vapor and clouds. At
present, it is generally believed that in-
creased water vapor results in a positive
feedback, but there are deviating re-
sults. Even subtler and more uncertain
is the question about the cloud feedback.

The change in cloud forcing due
to enhanced greenhouse forcing
is strongly model dependent,
with some models giving a posi-
tive feedback, others a negative
[33, p. 12]. [. . .] [Accordingly] cli-
mate models have to be realistic
and rather detailed, since any
systematic model deficiency
could create an erroneous re-
sponse pattern. [. . .] Simple
models could in this context be
quite misleading. [33, p. 17]

The model thus has to predict the ef-
fects of more clouds in the atmosphere.
Now, these effects are likely to vary con-
siderably with the conditions in a way
that is not fully known at present.
Worse, the suspicion is, as mentioned,
that the climate might enter into a new
qualitative state where present feed-
backs play a different role and maybe
new ones have to be taken into account.

The constraints on the qualitative ef-
fects that can be observed in the model
depend crucially on the microstructural
frame. These constraints can be re-
lieved by implementing into the model
higher-order features of the system that
are thought to have an impact on the
macrobehavior. In the present example,
one might think of cloud feedback,
global currents in the oceans, or the
abundance of greenhouse gases in the
atmosphere. Furthermore, the micro-
structural frame constrains the possible
interactions between conjectured rel-
evant factors. For example, a model of
the effects of global warming may

implement the impact of the melting of
the polar caps on the currents (espe-
cially the Gulf Stream, see Bernes [34]).
In the model, such interactions can be
observed only if they are explicitly pro-
grammed, that is, their microstructure
is accordingly enriched. Thus, a less
constraining microstructural frame
means higher microstructural complex-
ity. This has to be contrasted with a
mere augmentation of the level of de-
tail, which might be achieved by a more
realistic representation of topological
features. Although it is unclear how
much one actually can learn about the
climate from models that are micro-
structurally complex in this sense, it
seems clear that decision-relevant
learning is not to be achieved when
models are kept simple.

O ur second example is Casti’s [7]
description of “Transims,” an
agent-based model of the road

traffic system of the town Albuquerque,
New Mexico. Transims represents the
traffic flow down to the level of the
single car and has a scaled-down inter-
nal representation of the road system,
allowing accurate study of traffic flow
patterns such as traffic jams. The model
has also been used with considerable
success to test the effects of “perturba-
tions” of the system, such as new traffic
light patterns or additional roads or
bridges.

The success may at first sight be sur-
prising because a road traffic system
might appear just as complex as the cli-
mate (even involving human acts and
thus intentionality), prohibiting mean-
ingful predictive models. However, this
is not so because the system is both fast
and easily and accurately observed and
allows testing on a nearly daily basis,
enabling validation through prediction.
The situation is, though, somewhat dif-
ferent when effects of new roads are to
be predicted. In this case there is a con-
siderable time delay between the pre-
diction and the testing, and as in the
case of the global climate, there is a
need for ante hoc validation. The suc-
cess of the model then depends on the
amount of required knowledge of the
microstructure: Will the behavior of the

agents still conform to the same rules?
Interestingly, the microstructural com-
plexity required for the model depends
on the nature of the questions to be an-
swered. In traffic planning, one would
normally be content with traffic prog-
noses made under the assumption of
normal human behavior. In that case,
the individual agents act under so many
constraints so as to rule out interesting
effects of unbounded intentionality. If
one wants to predict events more tightly
connected to spontaneous manifesta-
tions of free will, such as blind violence
or overthrow of government, one would
have to try to model the system a lot
more carefully with respect to micro-
structural complexity. For instance, ex-
pressive or desperate behavior may play
a crucial role, and the emergence of
such behavior may be the result of a
highly contingent or opaque historical
situation. One may think of the Los An-
geles riots.

A normal traffic-planning model
without the extreme ambitions of fore-
casting exceptional events such as riots
is thus seen to have a moderately com-
plex microstructure. There are the eas-
ily programmed traffic rules and the in-
dividual routes of the agents, derived
from empirical data and presumably
quite stable over long periods of time.
The description can thus be reduced to
a limited number of simple rules plus
some statistics. This is different from
the global climate, of which there is a lot
more to know and understand on the
level of microstructure.

CONCLUSIONS
There is a definite need for new scien-
tific approaches to the emerging large-
scale practical problems in complex en-
vironments, such as the climate. The
question we pursued in this article was
whether microstructurally simple, agent-
based models could be useful in this re-
spect. Because such models have been
very successful in the study of the emer-
gence of complexity out of simple rules,
it seemed reasonable to expect that this
modeling practice might also be applied
for the purpose of prediction related to
postnormal problems. However, we
have argued that in certain contexts
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typical of postnormal problems, proper

validation of predictive models cannot

be had.

We are then left with the possibility

of using unvalidated models for ex-

planatory and heuristic use. Even when

it is unknown whether they yield correct

prediction, these unvalidated models

can be useful if they are microstructur-

ally complex enough to allow a learning

process. Accordingly, we suggest that

simple agent-based models are only of

limited use in the realm of postnormal

problems.
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