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The Uni�ed Modeling Language

Stuart Kent

University of Kent, UK

A subset of the UML is presented which has been found useful for notating

what may loosely be called speci�cation models. A model of aspects of the

ODP trader case study is developed (a) to provide a vehicle for introducing

the notation, and (b) to demonstrate how the notations can be used together

in harmony. In the course of the presentation, some issues concerning the

precise de�nition of UML, and its possible future status as a formal method

are discussed.

1.1 Introduction

Since the UML �rst emerged in 1997, its popularity has grown beyond all

recognition. It has become the de-facto language for informally modeling

object-oriented systems. Although its success can be attributed to a num-

ber of factors, one of the most important has been the input of the Object

Management Group (OMG) which has led a major exercise to provide the

UML with a standard de�nition. Currently, this is at version 1.3, with new

versions already in the pipeline. The standard de�nition also incorporates

a semantics document which aims to give a precise description of the lan-

guage. By providing users with a standard description of the language, the

OMG has encouraged the development of a language that can be shared and

understood uniformly throughout industry and academia. The bene�ts that

result cannot be overstated - practitioners, teachers, trainers, tool vendors,

and methodologists have now got a single language they can concentrate

their e�orts on, with the result that signi�cant advances are likely to made

in all its aspects. Whilst this is an encouraging start, there are still many

problems that need to be addressed before the UMLs true potential can be

realized. In our view the six most serious issues are:

1



2 S. Kent

(i) Size. UML is a collection of notations that have been found to be

of practical use to developers of software intensive systems. This

encompasses a wide range of notations. In addition, the stereotype

mechanism has encouraged modelers to add their own, often ad hoc,

extensions to the language. There are also plans to develop vari-

ous UML pro�les, which will collect together packages of stereotypes

which have found to be useful. In short, UML is large and growing.

(ii) Incoherence. UML has brought together a number of notations

from di�erent �elds, but has failed to integrate these notations based

on a common set of core concepts. For example, it is not clear how

state diagrams relate to class diagrams and sequence diagrams.

(iii) Di�erent interpretations. UML is interpreted di�erently by dif-

ferent people. For example, there has been long standing discussion

on the meaning of aggregation and composition, the notions of sub-

system/model/package are very unclearly speci�ed, there are at least

two very di�erent interpretations of state diagrams, and so on.

(iv) Frequent subsetting. Our experience is that organizations tend

to de�ne their own UML subset { guidelines on which parts to use,

which not to use, own de�nitions of semantics where the standard

is unclear, inconsistent or untenable for the organization concerned,

and so on. This mitigates against a goal of UML to increase shared

understanding amongst developers.

(v) Constant evolution and extension. As indicated in the �rst point

the stereotype mechanism is being used (some say abused [BGJ99])

to continuously extend the language. Combining this with subsetting

and multiple interpretations, the language is really still in a state of

evolution and change.

(vi) Limited tools. Most commercial tools focus on diagramming, per-

haps model exchange, and naive code-generation. Some consistency

checks are applied, but these are generally restricted to syntactic

checks and applied in an ad-hoc fashion. A small number of tools

(e.g. Rose Real Time, Project Technology's Bridgepoint tool) work

with executable models notated using UML constructs where possi-

ble, and their own constructs where UML does not provide what is

needed (e.g. an action language). Because of the executable nature of

these models, such tools permit some simulation and testing of mod-

els, and usually generate code to a variety of platforms. There are

a virtually no automated analysis tools, which allow non-executable

models to be simulated/animated, inspected, tested, checked etc.,

although some prototypes are starting to emerge [RG00, Bol00].
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Constructing automated analysis tools for a language requires the lan-

guage to be formally de�ned. Of course, the language may obtain a formal

de�nition by virtue of tools being constructed to support it. Those tools

which do support analysis of models, such as those cited in (vi), will have

to have formalized the fragments of UML they use. Unfortunately, that for-

malization is usually only implicit in the source code of the tool. Addressing

(ii) and (iii) requires a formalization which is explicit and agreed upon.

There are a number of options to consider in trying to address the problem

of formalizing the UML. One option is just to treat it as a lost cause, and

we reject this out of hand. Another is to provide translations to existing

formal languages. This translational approach deals with the semantics of

the language { it still requires the syntax to be formalized, which is non-

trivial given the diagrammatic nature of the notations. A third option is to

de�ne the semantics from the ground up, migrating and adapting ideas and

techniques from formal methods as appropriate.

One advantage of the translational approach is that one could make use

of tools developed to support the target formal language. However, this is

also its weakness. For the practioner, it is important to have analysis tools

that give feedback to the engineer in the same language as (s)he is using

to construct the model, in this case the UML. A problem with the transla-

tional approach to semantics, for example to an existing formal speci�cation

language, is that one is then required to work with that language during the

analysis phase. At the very least this requires the engineer to learn two

languages rather than one, and, presumably, (s)he is more familiar with and

prefers to use the UML.

Furthermore, to address (iii), the de�nition of any aspect of the UML

requires agreement; at the very least, the UML community needs to be able

to observe the di�erences between two de�nitions. This mitigates against

the translational approach: the de�nition needs to be written in a language

the is accessible to those who need to agree it, that is people who have the

experience to know whether the de�nition supports the modeling scenar-

ios found in practice. This is probably the reason that the meta-modeling

approach to the de�nition of the UML, where the UML is used to de�ne

itself, has proved so popular { anyone with a knowledge of class diagrams

can understand the essentials of the de�nition.

(i), (iii), (iv) and (v) pose another challenge to the formalization of the

UML: to develop a language de�nition architecture that not only allows

the language to be de�ned incrementally, but also permits variations and

specializations of the language to be constructed. In essence, �nd a way of

formally de�ning families of languages.
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It turns out that this is similar to the problem of de�ning software (or

model) product-lines. The extensions required to UML to support product-

lines (chiey more powerful model-management mechanisms) can be used

in the de�nition of UML itself as a product line. Combine these with a

precise subset of UML for expressing object structures and constraints on

those structures (essentially class diagrams and OCL), and the result is a

language which seems suitable for de�ning families of languages, both syn-

tax and semantics. This is a variation of the meta-modeling approach to

language de�nition, so has the advantage of being accessible to the OMG.

It also seems a very good language within which to de�ne diagrammatic

syntaxes. A possible weakness is that the semantics of constructs for ex-

pressing dynamic behaviour may be more verbose than if more traditional

mathematical syntax was used. A more detailed overview of this approach

can be found in [CEF+99, EK99].

An important aspect of this research is that we take UML as it is, only

making changes to the language when the formalization process uncovers

inconsistencies and errors, or where striking improvements to the language

are identi�ed. In particular, the visual avour which makes it so attractive

to engineers should not be lost.

In line with the incremental approach, a �rst step is to pare the language

down to its barest essentials. This chapter describes a subset of UML which,

we believe, can be given a precise semantics with little diÆculty. Fragments

of this semantics have already been developed, together with some tool sup-

port [RG98, RG00]. The subset forms the basis of the meta-modeling sub-

language itself, and has also proven to be useful in modeling abstract views

of network services and their realization onto concrete network con�gura-

tions such as an IP network. The subset has much in common with the

subset used in the Catalysis method [DW98] which has been applied on a

number of real projects by its architects. We introduce this subset through

a series of sections, with the trader case study used as the running example.

The focus of the presentation is on the engineering utility, rather than the

formality of the subset, as this, we believe, is the main contribution of the

UML.

1.2 Language versus method

UML is a language not a method. It provides a collection of notations that

may be used for di�erent sorts of modeling. Its de�nition gives little advice

on what notations are suitable for what kind of modeling, or on what models

to build and in what order to achieve a particular goal.
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We make use of a general purpose subset of UML which, we hope, captures

the core concepts of object modeling, can be applied in di�erent modeling

circumstances, and can be given a precise de�nition. The essence of the

method for building a single model is as follows:

(i) Explore the situation to be modeled by exploring scenarios, poten-

tial traces through the state of the model. Document these with

�lmstrips. Group the scenarios by use case.

(ii) Use use cases to separate out the model into overlapping packages (1

package per use case).

(iii) Use the scenarios as a basis for developing the model. Source class

diagrams and invariants from the object diagrams in the �lmstrips.

Source operations and their pre and post conditions from the tran-

sitions between object diagrams in the �lmstrip. Develop state di-

agrams showing important transitions and changes of state from an

object-centred viewpoint.

(iv) Recurse through steps (i) to (iii) until the model is �t for purpose.

We have built models of software speci�cations, telecomms networks and

services using this method. We are exploring its use in modeling business

processes. In the sequel, we build a model of the ODP trader speci�cation.

We have found that the same modeling techniques can be used to model

at di�erent levels of abstraction and to build models which specify how

an abstract model is realized onto a concrete model, for example how an

abstract model of network services, expressed in terms of end-to-end virtual

connections, and involving di�erent levels of service, is mapped onto a model

of an IP network.

The process of software development can be perceived in a similar way:

as mappings from abstract to more concrete models, where, here, a model

is more abstract than another if the granularity of the operations in the in-

terfaces speci�ed by the model (the public operations on classes) is coarser

than the granularity of the interface operations in the more concrete model,

and/or the object structures supported by the abstract model are less de-

tailed than the object structures supported by the concrete model.

Note that realization is di�erent to implementation, where, once one has

reached a concrete model which �xes the granularity of the interface for

the actual software that is to be constructed, that model can be further

extended with implementation information. If the implementation is in an

OO programming language, then sequence diagrams can be used to iden-

tify new, private operations required to implement the operations on the

interface, and these, in turn, may require their own supporting operations,



6 S. Kent

classes and so forth. The translation from such an implementation model

to, say, a program in Java would be relatively straightforward.

Within this context, the ODP trader speci�cation, modeled in the sequel,

is a relatively abstract view of the dialogue between service consumers, ser-

vice providers and service traders, the intermediaries between consumers

and providers. It provides the speci�cation of operations that consumers,

providers and traders might perform, which, in turn, requires these three

concepts to be treated as objects, in addition to concepts such as service,

service o�er and so on. A more concrete model, would begin to detail the

actual mechanisms in a particular technology (e.g. CORBA) by which these

objects would communicate. There would become a point where the transla-

tion of a concrete model to the language(s) of the implementation technology

would be relatively systematic, though probably less straightforward than

to a single Java program.

Our model is loosely based on [ISO96]. When modeling in an industry

setting, we would recommend that the model be constructed with the domain

experts. Any informal documentation should be regarded only as a starting

point, and be subject to change as the model is being developed. It should

not be regarded as sacrosanct and rigid, otherwise there is little point in

developing a more precise model. The end goal is for all descriptions of the

system to be consistent with one another.

Finally, we should highlight some de�ciencies of our set of modeling tech-

niques.

� UML is weak in its expression of concurrent and real-time behaviour.

Some concrete syntax has been inserted into the language, for example

asynchronous message passing on sequence diagrams, but the semantics is

poorly speci�ed, unclear and confusing. Therefore, the set of techniques

we use does not include any of these constructs. Some attempts are being

made to resolve this problem, in submissions being prepared in response

to the OMG's Request for Proposals on a UML Pro�le for Scheduling

[OMG99b]. We suspect that these submissions will at least bring into

focus the detailed problems involved.

� There is, at the time of writing, still no formal de�nition of the subset

used here. However, we are working on providing a formal de�nition of

the subset using the approach proposed in the introduction. Fragments

of this subset have been formalized elsewhere and are supported by tools

[RG98, RG00].

� To use these techniques successfully on an industrial scale, requires much

better tools than are currently available. For example, we would like
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tools that check the consistency of models, that assist with the generation

of �lmstrips from a model and a model from �lmstrips, that support

composition and separation of models, that support realization of models,

that support model templates (patterns), that support model refactoring

and so on. Building such tools requires a precise de�nition for the UML.

1.3 Use cases and packages

A model is recorded as a UML package. Thus all modeling is done within

the context of a package. Packages may be constructed by importing other

packages. There may be other relationships between packages (e.g. re-

�nement/realisation). Packages are declared and related through package

diagrams. Figure 1.1 is the package diagram for the trader case study. The

model is recorded as the Trader package which has been constructed by ex-

tending (importing) two smaller, overlapping packages, one concerned with

exporting services to a trader, the other focusing on importing services ad-

vertised on a trader. The packages correspond to our chosen primary use

cases: Export Service and Import Service.

Trader

Export
Service

Import
Service

Fig. 1.1. Package diagram for ODP trader case study

The semantics of import/extension between packages in UML is still under

discussion { recent submissions to the UML 2.0 RFI (see OMG website for

details) criticized the model management aspects of UML 1.3. Our working

semantics is taken from Catalysis [DW98], which treats imports a little like

class inheritance, where things with the same name in two parent packages

are merged, unless they are explicitly renamed on import. Of course, this

can give rise to an inconsistent child, and there are some remaining research

issues concerning how to merge some elements of a package, such as method

contracts, sequence diagrams and state diagrams.

Use cases are a useful discovery technique when modeling. A use case

focuses on a particular slice of the behaviour being modeled, related to a

particular process in the system being modeled. For the trader case study
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we have chosen two use cases, corresponding to the processes of exporting

and importing a service, respectively.

There are two styles for characterizing a use case, the goal-oriented style,

where the goals of the process that the use case captures are set-out, and the

scenario-oriented style, where the process is described is described in terms

of particular scenarios, sequences of steps, that the process goes through.

There is no prescribed syntax for use cases in UML, though a number

of di�erent ways of presenting use cases have been proposed e.g. [Lar97,

Coc00]. Common practice is to state both goals and scenarios informally,

with scenarios often written out as dialogues or scripts involving the various

actors (including computer systems) involved. UML only prescribes the use

case diagram syntax. A use case diagram introduces use cases by name,

identi�es participants (actors) in those use cases and expresses some (not

very clearly speci�ed) relationships between uses cases. Use case diagrams

can be useful for giving a 30000ft overview of some kinds of system, typically

those that have external, human actors. However, if packages are organized

by use case then package diagrams can serve a similar purpose.

In order to make use cases more precise, it is necessary to formalize the

goals and scripts that accompany it. Goals can be formalized to a certain

extent by building a model which treats the use case as a single action with

pre and post conditions written in OCL (the goal is the post condition),

supported by appropriate class diagrams, etc. However, this tends to lead

to a very abstract model and it is questionable whether the e�ort is worth-

while. Therefore, we will focus on formalizing use case scripts. This requires

identifying the actions involved in the script, the participants of those ac-

tions, and how those actions a�ect the state of the system whenever they

are performed. This is no more and no less than building a model. Thus our

attention returns to focus on the construction of a model as a UML package.

1.4 Scenarios, �lmstrips and scripts

Amodel of a use case must stipulate, in general, what are the admissable sce-

narios. One way to achieve this is to explore some example scenarios. These

can be documented using �lmstrips and scripts. A �lmstrip is a sequence of

object diagrams (snapshots), which accompanies a script identifying what

happens at each step. UML does not itself support �lmstrips, though object

diagrams are de�ned (they are collaboration diagrams without messages).

Scripts are commonly used to describe use cases, though, again, UML does

not directly support them. Scripts are most often expressed as informal text,



The Uni�ed Modeling Language 9

though they can be expressed more formally as a list of action invocations

which can be visualized via a UML sequence diagram.

1.4.1 Filmstrips

A �lmstrip for the Import Service use case is given in Figure 1.2. Scripts

will be discussed in more detail in Section 1.4.2. For the time-being we

provide just the informal script which should assist with understanding the

�lmstrip.

(i) The scene starts with an importer i1 and a trader t1. t1 has already

had some service o�ers registered with it. i1 already has some import

policies set up, but not one for use with this trader.

(ii) i1 creates an import policy to be used with t1; i1 creates a service

request

(iii) i1 creates an import request, which carries with it its own import

policy.

(iv) i1 sends the import request to the trader, and matching service o�ers

are identi�ed.

(v) The selection criteria on the import request are then applied to �nd

the best matching service o�er.

Each frame in the �lmstrip has been numbered to indicate its position.

Due to the formatting limitations, the strip is layed out left to right, top to

bottom. Each frame of the �lmstrip comprises an object diagram. Objects

are rectangles; the class of the object appears after the colon in the label. An

optional, arbitrary identity for the object appears before the colon. We have

chosen only to name two objects, i1 and t1 so that they can be referred to

in the script. Links between objects are shown as lines between rectangles

{ links are instances of associations. Directed links are instances of one-way

associations.

The main points of note concerning this �lmstrip are:

Frame 1 The service o�ers for a trader are divided into contexts, where

a context is a set of service o�ers. Contexts may intersect, so may

share service o�ers. The details of service o�ers are dealt with in the

section below which discusses the details of matching. How service

o�ers get created is part of the Export Services use case.

Frame 2 The new import policy set up by i1 for trader t1 is added to

the list of import policies that i1 might use when issuing import

requests. It is diÆcult to imagine an import policy in isolation from
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Fig. 1.2. Main �lmstrip for import service

a trader, because the policy needs to have some knowledge of the

contexts of that trader.
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Frame 3 An import request comprises a service request and may come

with its own import policy (it does so in this case), which will be

one of those identi�ed by the importer to be used with this trader.

A service request comes with some selection criteria and a matching

constraint. Further details about what a service request comprises

will be be dealt with later.

Frame 4 Matches, based on the matching constraint, are created for every

service o�er in a context belonging to the search scope of the import

policy. The import policy used is the one that comes with the import

request (this case), or the default policy associated with the trader

if no policy comes with the request.

Frame 5 Application of the selection criteria creates a new selection object

whose elements are true o�er matches that also match the selection

criteria. In this case there is only one o�er match that matches

the selection criteria. The spirit of the text [ISO96] that we are

using as the basis for this model, suggests that only a single set of

selections are applied, and, indeed, this is the situation illustrated

in this �lmstrip. However, we observe that one could create many

selections for an import request, each derived from di�erent selection

criteria. This will be reected in the class diagram introduced in the

next section.

[ISO96] mentions two further complications when matching o�ers to im-

port requests. We sketch how these could be modeled.

Time limits The idea that searches may have a time limit is mooted. This

could be modeled by associating an import request with a time limit,

and every OfferMatch object with a time stamp. Then when a match

is performed there will be exactly one OfferMatch object with a time

stamp that exceeds the time limit. It could also be required that

the amount the time limit is exceeded by is also limited. Any eÆ-

cient implementation of such a speci�cation would stop as soon as it

stamps an OfferMatch object with a time that exceeds the time limit.

An ineÆcient implementation might �nd all matches, then discard

all but one of those that exceeds the time limit. So this speci�cation

does presume, to some extent, that only sensible implementations

will be built.

Search order The idea that contexts could be searched in order (presum-

ably because there is a time limit) is also mooted. This could be

modeled by associating an ImportPolicy object with a queue of con-

texts, representing the order in which contexts must be considered.
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There is then a constraint on the result of matching that there must

be an OfferMatch object for every context up to a certain (unspec-

i�ed) point in the queue and none for contexts thereafter. The last

context considered may have some o�er matches missing, as it may

only have been partially dealt with before the time expired. The o�er

match with the time stamp exceeding the time limit must be in this

last context. Again, any eÆcient implementation will go through the

contexts in the order speci�ed.

The �lmstrip in Figure 1.2 indicates the overall structure of the model

corresponding to the Import Service use case. However, one aspect still

needs further clari�cation, speci�cally the conditions that make an o�er

match true or false. This is illustrated by Figure 1.3, which shows one

service o�er matching an importing request and one which does not.

serr1:
SerR

:SerO
:SerO

matches?=
true

:OM
:OMByT

matches?=
false

:OM
:OMByT:MC

:TMC

of

of

:SerType

:SerTemp

template

type

type

matches?=
true

:SerM

of

matches?=
false

:SerM

of

:Ser

:Ser

for

for

Key:
MC = MatchingConstraint
TMC = TemplateMatchingConstraint
OM = OfferMatch
OMByT = OfferMatchByTemplate
Ser = Service
SerM = ServiceMatch
SerO = ServiceOffer
SerR = ServiceRequest
SerTemp = ServiceTemplate
SerType = ServiceType

Fig. 1.3. Details of matching

The �rst condition for a match is that the service type of the service

o�er must be the same as the service type of the service request. It is

for both service o�ers, in this case. The second condition is dependent

on the exact nature of the matching constraint. You will notice that the

MatchingConstraint object plays a second, more speci�c role, indicated by

it being declared to be of two types. There are likely to be many kinds
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of matching constraint, expressed in many di�erent ways (the most general

probably being an expression in �rst order logic). This suggests objects that

both play the general role of being a MatchingConstraint (so can be attached

to a ServiceRequest, for example) and also plays the more speci�c role which

governs the speci�c kind of constraint to be used in the match. The ability

of an object to play more than one role is the essence of polymorphism.

In this case, we have identi�ed a MatchByTemplate role, where the match

is performed by comparing the service of the service o�er to the service tem-

plate associated with the MatchByTemplate object. The service template acts

as a �lter, accepting only those services which match the service template.

You will notice that the results of matches are recorded as objects. There

are many ways to model matching. We have chosen this approach as it

keeps information about the matches once they have been performed. That

then leaves the option of discarding the information, or examining it. For

example, if an importer did not get any matches to a request, it may be

willing to alter the request to get a match based on information gleaned

from the failed matches.

Another approach would have been to de�ne a matching function on the

matching constraint object which, when provided with a service o�er, would

return true or false depending on whether a match was made or not. This

approach could be modeled on a class diagram as a query operation on

the class or a quali�ed association. It has been suggested [DW98] that for

speci�cation modeling attributes with arguments should be allowed, but

these are not currently part of the UML. There is some discussion to be

had as to whether attributes with arguments, quali�ed associations and

query operations are di�erent syntaxes for essentially the same concept

(query/function/accessor).

It would be possible to continue to add further detail to how matches are

made, and to what goes into making up a service o�er. For example, the

description of ODP trader, from which we have been working, suggests the

following:

� A service o�er identi�es the exporter or provider of the service, its time

of registration and its shelf-life, and then the service being o�ered.

� A service type is comprised of two parts: an interface type and a service

property type. Services are comprised of instances of the latter pair of

types, i.e. an interface and a service property.

� Service properties (hence their corresponding types) can be composite, in

which case they have other properties (which may be composite or atomic)

as their parts.
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To complete the modeling of this use case we would also need to explore

a little more how selections are made.

Filmstrips and further supporting snapshots could be drawn up for the

Export Service use case in a similar way. This would focus on the interaction

between exporters and traders, and handle actions such as construct service

o�er, export service o�er to speci�ed trader, withdraw service o�er, and so

on.

As our purpose is not to cover every aspect of the ODP trader case study,

but rather to use this case study to illustrate how UML can be used to

specify open distributed systems, we will refrain from considering the Import

Service use case in any more detail, and will not pursue the Export Service

use case at all in this paper.

1.4.2 Scripts

The script accompanying the �lmstrip can be formalized as a sequence of

action invocations, which, in turn, can be visualized using a sequence dia-

gram. In practice the formalized script and �lmstrip evolve together (and

indeed did as the model for this case study was developed during the writing

of this paper). We are just presenting the �nished article.

The informal script for the ODP trader is repeated below, now interleaved

with formal action invocations. The script is visualized by the sequence

diagram in Figure 1.4.

(i) The scene starts with an importer i1 and a trader t1. t1 has already

had some service o�ers registered with it. i1 already has some import

policies set up, but not one for use with this trader.

start

(ii) i1 creates an import policy to be used with t1; i1 creates a service

request

createImportPolicy(i1,t1,c1)

(iii) i1 creates an import request, which carries with it its own import

policy.

createImportRequest(i1,serr1,ip1)

(iv) t1 handles the import request, sent from i1, and identi�es matching

service o�ers.

t1.handleRequest(ir1)

(v) The selection criteria on the import request are then applied to �nd

the best matching service o�er.

ir1.applySelectionCriteria()
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i1:Importer

ip1:Import
Policy

ir1:Import
Request

t1:Trader

createImportPolicy(i1,t1,{c1})

createImportRequest(i1,serr1,ip1)

handleImportRequest(ir1)

applySelectionCriteria()

Fig. 1.4. Sequence diagram for ImportService use case

The script is best read in conjunction with the accompanying �lmstrip

(see Figure 1.2), which provides more information about the objects re-

ferred to by name in the script. In the UML, actions are restricted so that

they always have a receiver, unless they are creation actions. That is, all

actions are assigned to a class, as creation operations { constructors { or

as normal operations. UML does not de�ne any textual notation (formal

or otherwise) for writing out scripts as we have done. All we have done is

write out \instantiations" of the operations, by instantiating the arguments

with objects involved in the particular scenario under consideration, using

the ubiquitous `dot' notation to pre�x an action with its particular receiver.

There is no generally accepted textual notation for indicating the sender

or invoker of an action. However, this is shown on the sequence diagram

whose notation is summarized as follows:
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� Arrows represent invocations of actions with sender at the source and

receiver at the target. These are sometimes called messages.

� As in object diagrams, objects are shown as rectangles. The lifeline of

an object, representing the life of an object over time, is represented by a

vertical line protruding downwards from the object.

� An active object is shown with a thick border. Active objects can initiate,

as well as receive, messages.

� Creation of objects is shown by targeting the creation message directly

on the object that is created (e.g. ip1) as opposed to the lifeline of the

object.

One may consider that identifying senders and receivers of actions is a

little premature in an analysis/speci�cation model (this probably does not

apply for this particular model). Catalysis [DW98] proposes a slight ex-

tension to UML, and to sequence diagrams in particular, which allows the

participants of actions to be identi�ed without, necessarily, indicating who

the sender and receivers are.

If we produced full models of both the Export Service and Import Service

uses cases, it is likely that we would end up with at least three kinds of active

object: importers, traders and exporters. It is also likely that these objects

would work concurrently and the communication between them would not be

wholly synchronous. Although UML does provide some syntax for e.g. dis-

tinguishing synchronous from asynchronous messages in sequence diagrams,

its semantics is far from clear. Its handling of concurrency is weak.

We have also used the sequence diagram to illustrate a speci�c scenario.

Sequence diagrams can also be used to specify behaviour in general. Our

experience is that they can provided the behaviour can be expressed purely

in terms of a prototypical instance. For sophisticated behaviours this is

usually not the case. For more discussion on this topic see [BGH+98].

An action language for UML is currently under development, in submis-

sions being prepared in response to the OMG's Request for Proposals on a

UML Pro�le for Scheduling [OMG99b]. This may also cure some of the is-

sues surrounding concurrency, at the very least bring into focus the detailed

problems involved.

1.5 Structure

There are two key concerns when building a model. Specifying the structure

of and constraints on the state of a system, and specifying the dynamic

behaviour of that system. This section deals with the structural aspects.
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As indicated in snapshots that make up a �lmstrip, the structure of the

state of the system is recorded as con�gurations of objects. In order to

specify, in general, what states are and are not admitted by a model, it is

necessary to specify what object con�gurations are and are not admissible.

This requires a combination of class diagrams and invariants.

1.5.1 Class diagrams

A class diagram sets limits on the kinds of objects and kinds of links that

can appear in an admissible object con�guration. The class diagram corre-

sponding to the snapshots appearing in the �lmstrip of Figure 1.2 is given

in Figure 1.5. A class diagram has two main kinds of element: classes (the

boxes) and associations (the lines).

Classes may also have attributes. For example, the class OfferMatch has

an attribute isMatch? of type Boolean.

Associations may impose restrictions on the cardinality of links between

objects. This is indicated by a numerical range on either or both ends of

the association, where * represents a range of zero to in�nity (there is no

constraint on the number of links). For example, the cardinalities of the

association ends of the association between Importer and ImportRequest,

indicate that an ImportRequest must be associated with exactly one Im-

porter, whereas an Importer may be associated with zero, one or more

ImportRequest objects.

A further class diagram can be constructed corresponding to the snapshot

in Figure 1.3. This is given in Figure 1.6, and illustrate two aspects of class

diagramming:

� Inheritance or generalization, shown by the arrow between, for example,

the classes OfferMatchByTemplate and OfferMatch. This means that the

child class, at the source of the arrow, has all the features e.g. attributes

(and possibly more) as the parent class, at the target of the arrow. Pro-

vided this previous statement is carefully de�ned (see e.g. [LW94]) the

upshot is that objects of the child class may behave as if they are objects

of the parent class (polymorphism).

� It is �ne for classes and associations to be appear in more than one class

diagram. If the class diagrams are in the context of di�erent packages,

then elements are di�erent. If they are in the context of the same package

(for example we have tacitly assumed that the class diagrams appearing

so far are all in the context of the Import Service package), then the
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Importer

ServiceOffer

ContextImportPolicy

ImportRequest

Trader

matches?:Boolean

OfferMatch

Selection

Selection
Criteria

ServiceRequest

Matching
Constraint

current

default

scope

of

elements

policies

1

0..1

*

0..1

of

0..1

*

*

1

requests *

1..*

1..*

*

*

1

1

1

0..1
*

*

*

1

1

1

1

*

1

Fig. 1.5. Main class diagram for import service

elements (classes etc.) in that package are obtained by merging all the

diagrams.

In general, a snapshot is admissible for a particular class diagram, accord-

ing to the following rules:

� The type of every object appearing in the snapshot is a class in the class

diagram.

� Every link in the snapshot corresponds to an association between classes

in the class diagram. A link corresponds to an association if its label or

labels at each end correspond to the labels at each end of the association

and the objects are from classes connected by the association.

� Links do not out cardinality constraints on associations. (A detailed and

precise speci�cation of this can be found in [KH99].)

� Any attribute mentioned in an object on the snapshot must be declared

in the class for that object. The value given to the attribute must be of

the type declared for that attribute in the class diagram.

These rules can be used to guide the construction of a class diagram from

a snapshot. The �rst rule means that one puts a class in the class diagram

for every type of object in the snapshot. The second rule means that one
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Fig. 1.6. Matching import requests to services: class diagram

puts an association in the class diagram for every di�erent kind of link in

the snapshot, where a link x is of the same kind as another y, if x connects

the same types of object as y and has the same labels at each end, where

ends are matched on the type of object. And so on for the other rules.

Of course, these rules do not specify completely what must appear in the

class diagram { speci�cally they do not stipulate exactly what the cardinality

of associations should be. Indeed, what tends to happen is that, as the

class diagram is drawn, new concepts emerge causing new versions of the

snapshots to be elaborated, which in turn might reveal other changes, and so

on. Also, an experienced modeler may well construct snapshots in his or her

head, without ever making them explicit. Nevertheless, they can always be

made explicit to anyone challenging the model, in supporting documentation

intended to explain the model, in communicating to domain experts, and to

help understand particularly tricky behaviour.

There is some debate as to the relationship between attributes and as-

sociations. A popular view is that an association can be reduced to a
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pair of attributes with an additional constraint. For example, the asso-

ciation between the classes ServiceRequest and SelectionCriteria could be

thought of as a pair of attributes selectionCriteria:SelectionCriteria and

serviceRequest:ServiceRequest of ServiceRequest and SelectionCriteria,

respectively, with the additional constraint that each attribute is the inverse

of the other (such a constraint could be written as an invariant { see next

section { if so desired). Attributes tend to be used instead of associations

when the type of the attribute refers to a basic value type, such as Boolean

or Integer rather than a class.

We have only shown the most basic form of association. There are other

kinds of association, in particular aggregates and quali�ed associations.

Quali�ed associations are akin to attributes (functions) with arguments,

such as described in [DW98]. We will not enter into a discussion of aggre-

gation here. SuÆce it so say that there is still some debate on this topic

[HSB99].

In other forms or modeling, such as design/implementation modeling, the

situation gets complicated by the introduction of operations on classes, in

particular query operations. In this form of modeling one is concerned with

distinctions such as: whether a result-returning query is stored or calcu-

lated; or whether an operation or attribute/association-end is visible or not

outside a class (public or private). Most modelers at this level tend to treat

attributes and associations as (private) storage, and de�ne query operations

to access the data stored within. One must be slightly careful if adopting

this approach. For example, if one is deriving a design from a speci�cation

model one has to be careful to remember that attributes and associations at

that level may well correspond to calculated queries (hence operations) in

the design model. This means that a developer must carry around two di�er-

ent interpretations of the same construct (associations and attributes). One

must also decide how quali�ed associations (naturally thought of as func-

tions) should be interpreted in the design model, given that associations are

assumed to correspond to stored data: As arrays? As dictionaries?

On balance, our preferred mental model is one where attributes and query

operations are treated as the same thing{a query, and an association as a

pair of queries. A quali�ed association can then be thought of as a query

with arguments. When design/implementation modeling, a distinction can

be made between whether a query is stored or calculated, or whether it

is public or private. If one chooses to have the default rule that, unless

stated otherwise, all attributes and associations will be treated as stored

and private then that is quite acceptable.

These issues may seem minor, but can be very confusing to modelers,
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and what tends to happen is that di�erent organizations, often di�erent

individuals, construct their own interpretations which only serves to block

shared understanding (a goal of the UML). They are the kinds of issues that

will only be fully sorted out when the UML has an agreed, precise de�nition.

On the other hand, if a team is prepared to agree on a common interpretation

which need only be documented informally, then they are issues which need

not get in the way of the modeling activity.

1.5.2 Invariants

The class diagram can not express all constraints that one would wish to

impose on the structure of admissible object con�gurations. Invariants are

constraints that all admitted con�gurations must satisfy. In UML, the Ob-

ject Constraint Language (OCL) [WK98] has been de�ned to allow these

constraints to be written in a precise syntax.

Some examples of invariants from the trader case study are given below:

(i) The trader associated with the default import policy of a trader is the

trader itself

context t:Trader inv:

t.default->isEmpty or t.default.trader=t

The preamble context t:Trader inv: indicates that the constraint

which follows applies to all objects t of class Trader. t.default

returns the set containing the object(s) found by navigating the

default link(s) from t. ->isEmpty indicates that this set is empty.

t.default.trader returns the set of object(s) obtained by navigating

�rst the default link(s) from t and then the trader link(s) from all

the objects found through the �rst step of the navigation. For the

clause t.default.trader=t to be true, that set must contain only a

single object which is t. or is the standard logical connective.

(ii) The service o�ers matched for the current request being handled by

an import policy are within the scope of that policy.

context ip:ImportPolicy inv:

ip.scope.serviceOffers->asSet->containsAll(

ip.current.serviceRequest.matches.serviceOffer->asSet)

This invariant illustrates navigation expressions that return collec-

tions with more than one element. Any navigation expression that
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spans more than one association returns a bag, by default. Thus

ip.scope.serviceOffers returns a bag. This expression is evaluated

as follows. Navigating scope from ip returns a set of Context objects.

Navigating serviceOffers from each member of this set, results in

a set of ServiceOffer objects. The bag is created by merging these

sets, being careful to keep repeated items. In this case, there are

likely to be repeated elements as contexts may share service o�ers.

Similarly, ip.current.serviceRequest.matches.serviceOffer returns

a bag. ->asSet coerces a bag into a set.

(iii) For an o�er match to be true, the service type of the service o�er

must be the same as the service type of the service request.

context om:OfferMatch inv:

om.matches?=true implies

om.of.serviceRequest.type=om.serviceOffer.service.type

(iv) For a OfferMatchByTemplate to be true, the service template must

match the service of the service o�er.

context omt:OfferMatchByTemplate inv:

omt.matches?=true implies

omt.serviceMatch.matches?=true

(v) The service template for a service match must be the service template

for the template matching constraint of the OfferMatchByTemplate

which the service match is for.

context sm:ServiceMatch inv:

sm.matches?=true implies

sm.template=sm.for.of.template

Combined with the constraint, imposed by the class diagram in Figure 1.6,

that the matches of a template matching constraint are always template

o�er matches, the last three invariants ensure that when the appropriate

matches are constructed (see section 1.6 on dynamic behaviour), they will

be designated true or false as appropriate. Of course we have not stipulated

the detailed circumstances under which a service type matches a service; as

indicated earlier that would require further investigation into the detailed

structure of services and service templates.

These last two invariants also illustrate how, with inheritance, we are able

to push speci�c behaviour onto the more speci�c classes. We are at liberty

to create a number of other subclasses, with di�erent invariants, capturing
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di�erent variants of matching constraints. This not only provides a way of

separating out the behaviour into appropriate chunks, but also allows other

behaviour to be speci�ed which is decoupled from the speci�c variations.

So, in section 1.6 on dynamic behaviour, we are able to specify the result

of performing the action handleRequest, which results in the creation of the

required matches for a request, only referring to the MatchingConstraint and

OfferMatch classes; no mention of their subclasses is made.

The last invariant could have been written in a number of di�erent ways,

depending on the class to which the invariant is tied, the class that appears in

the context part. Other candidate classes are TemplateMatchingConstraint

and TemplateOfferMatch. This illustrates a problem when writing invariants,

knowing which class is the best place to put the invariant. A factor which

inuences this decision is the coupling of classes: if an invariant means

unnecessary coupling between classes then this will mitigate against reuse

of the owning class in other models. In this case, the three classes come \as

a package" and are already quite tightly coupled, so it probably does not

matter where the invariant is placed. More practical application of writing

OO speci�cations with invariants and the like is required to identify a set of

guidelines, or patterns, to support the practicing modeler.

Recently there has been considerable work on formalizing and improving

OCL. For pointers to some of this work see [pUM00] and [Ric00].

A visual notation, called constraint diagrams has been de�ned for ex-

pressing constraints, though this is not (yet) part of the UML, though it is

compatible with the UML { it may be regarded as a visual alternative to a

(sub-language) of OCL. This language was �rst introduced in [Ken97], and

has been further applied to the expression of action contracts [KG98]. It is

currently undergoing revision as it is de�ned formally [GHK99, HMTK99],

and work is continuing on making it a practical technique to be used in har-

mony, not in conict, with other approaches to writing constraints [KH99].

1.6 Dynamics

In the modeling context we have chosen (abstract speci�cation), dynamic

behaviour is captured in terms of pre/post conditions on operations. These

can be (partially) visualized using state diagrams.

We illustrate the use of OCL to express pre/post conditions with an exam-

ple taken from the import service use case. Section 1.4.2 identi�ed a number

of action based on the script for the import service use case. One of these

actions was handleRequest, which, if we examine the �lmstrip in Figure 1.2,

has the e�ect of creating an o�er match between the import request and
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each service o�er of the trader handling the request, as governed by the im-

port policy used. In our simpli�ed version, the import policy just identi�es

a context from which the set of service o�ers are drawn. The speci�cation

of this operation is given below:

context Trader::handleRequest(ir:ImportRequest):

pre: The import request has an import policy, or the trader has a default

policy. If the import request has a policy, then the trader for the policy is

self. No attempt has been made to handle this request, or any previous

attempt has been cleared.

let policy=if ir.importPolicy->notEmpty then

ir.importPolicy else self.default in

policy->notEmpty and policy.trader=self

and ir.serviceRequest.matchingConstraint.oclInState(matchCleared)

post: The policy of the request has been set to be the trader's default policy

if the request has no policy. The import request has been matched against

service o�ers according to the request's policy.

ir.importPolicy@pre->isEmpty implies ir.importPolicy=self.default

and let offers=ir.importPolicy.scope.serviceOffers@pre->asSet in

let matches=ir.matchingConstraint.offerMatches@pre in

offers->size=matches->size and matches.serviceOffer=offers

and ir.serviceRequest.matchingConstraint.oclInState(matchCleared)

This time the context preamble identi�es the action concerned together

with any arguments. The pre and post conditions illustrate a number of

additional OCL constructs:

� let and if then else expressions, as found in formal speci�cation lan-

guages such as VDM.

� @pre in a post-condition which allows reference to the state when the

action is invoked. One could argue that, in this case, @pre is not necessary

as e.g. ir.policy should be the same in both states. However, OCL does

not have any notation for expressing frame rules, which is hard in OO

models due to the ability to navigate across object structures. One also

can make no assumptions about other actions which may occur at the

same time as this action, and which may a�ect objects referred to in

the action spec. Our use of @pre is therefore a safety measure. The

expression of frame rules in OCL is an open issue; we are not sure that

a satisfactory solution yet exists for OO speci�cation modeling. Some

sources of inspiration might be JML [LB99, LBR99].
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� ->size returns the size of the collection to which it is applied.

� oclInState( ) used to express whether an object is in a particular state

or not, where here we are referring to states in state diagrams.

The use of oclInState( ) in the speci�cation of handleRequest must be

supported by a state diagram. This is given in Figure 1.7.

MatchingConstraint

MatchPending

MatchMade

H

tr:Trader,tr.handleRequest(self)

Fig. 1.7. State diagram for MatchingConstraint class

A state diagram applies to a class. It speci�es (or visualizes) aspects of

the dynamic behaviour of any object of that class. States are shown by

rounded rectangles, transitions between states by arrows.

An interpretation for this diagram is as an abstraction of the state space

and of dynamic behaviour expressed using pre/post conditions. That is,

when a trader performs the action handleRequest, with the request asso-

ciated with the matching constraint under consideration as argument, and

the matching constraint has no matches with service o�ers, then the result

will be that the matching constraint has made a match to service o�ers.

This captures a fragment of the behaviour expressed more completely by

the pre/post conditions above.

The navigation expression to identify the action is non-standard UML, but

is appropriate if state diagrams are to be used for speci�cation purposes.

Under this interpretation state diagrams can be integrated with class di-

agrams and OCL constraints. One model is to view states as dynamic sub-

classes of the class they are assigned to in state diagrams: objects belonging

to a dynamic class may move to a di�erent (dynamic) class, and vice-versa.

In which case oclInState( ) is just syntactic sugar for oclIsKindOf( ), with

a dynamic class as argument, as opposed to a static class.
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It is useful to use invariants to tie states to the detailed state space of an

object. For example:

De�nition of a matching constraint having no matches.

context mc:MatchingConstraint inv:

mc.oclInState(matchPending)=mc.offerMatches->isEmpty

and mc.oclInState(matchMade)=mc.offerMatches->notEmpty

These invariants work, as the cardinality of associations on the class dia-

gram in Figure 1.5 ensures that a context will at least identify one service

o�er to attempt a match against. They make the last conjunct of the post

condition of handleRequest redundant. Some of the invariants given in Sec-

tion 1.5.2 could be made more transparent by rewriting parts to involve

these states.

The interpretation of state diagrams used here is not the one that is de-

tailed in the UML 1.3. standard which does not recognize the value of state

diagrams for modeling at the speci�cation level. The standard interpreta-

tion is one where state diagrams are viewed in an operational rather than

declarative way: as a speci�cation of the order in which actions must oc-

cur to the point where the state diagram can be executed, rather than a

speci�cation of the how actions behave in certain situations. (However, it

is recognized that the latter may, as a side e�ect, constrain the order in

which actions occur.) A number of responses to the recent UML 2.0. RFI

[OMG99a] have argued the case for an interpretation of state diagrams suit-

able for speci�cation modeling. This interpretation is similar to that used

in Catalysis [DW98].

1.7 Future

This paper has introduced a subset of UML which potentially can be used

to produce precise object-oriented speci�cations. The subset remains to be

formalized, although there are already tool-supported formalization of part

of it: for example [RG98, RG00] provides a tool supported formalization of

class diagrams and OCL constraints. There is now even a commercial tool

[Bol00] which does much the same.

The author is currently (July 2000) engaged in work as part of the pre-

cise UML (pUML) group [pUM00] to rearchitect the UML as a family of

languages. This work is inuencing the revision of UML within the OMG,

to the point that there is now a strong likelihood of a request for proposals

for UML 2.0 that will have the goal of our work at its heart. Our approach
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to formalization is a variation of the meta-modeling approach to language

de�nition, which has been adopted by the OMG. Essentially we de�ne a

family member of UML (a meta-modeling language { MML) that is then

used to de�ne itself and other family members. The MML is grounded by

an external de�nition, which in our case is the provision of a tool to support

the various features of the language. A key aspect of this approach is that

we are able to de�ne, in MML, concrete syntax (both graphical and textual),

abstract syntax andsemantics. An overview of this approach can be found

in [CEF+99, EK99].

By recognizing UML as a family of languages, the job of de�ning domain-

speci�c subsets of UML, and/or introducing new notations should become

more systematic and precise. Especially if, as intended, there is a tool-

supported framework for de�ning new family members, by extending and

specializing existing language fragments, including a process for signing o�,

standardizing and evolving language de�nitions.

This could bene�t those working in the distributed systems domain, by

providing a platform to support the de�nition of languages appropriate for

modeling in that domain. For example, the Common Information Model

(CIM) standard under development under the Distributed Management

Task Force of the IETF [DMT99], which is a standard approach to modeling

in support of intelligent network management, makes use of a language that

is essentially UML class diagrams with its own specializations. Similarly,

proposals for using UML as a language for notating Enterprise Viewpoint

models in ODP [AM99, Lin99], generally make use of a subset of UML spe-

cialized with stereotypes. Of course, as is the way with stereotype usage

in UML [BGJ99], the intended meaning of the specializations is, at best,

informally explained. We would fully expect these languages to be de�nable

as part of the UML family, and there are clear advantages in doing this. In

particular, e�ort put in for one domain can often be reused in other domains.

Thus if one takes the trouble to precisely de�ne a constraint language for use

with object models, say, in software speci�cation, that constraint language

can be reused in modeling networks, services, policies and the like. If it turns

out that the language needs to be extended, and/or the concrete syntax is

not appropriate for the domain in question, then the appropriate extensions

to the base language and/or a new concrete syntax can be provided. On

the other hand it should still be possible to use tools, training materials

and so on, that support the base language, with the extended/specialized

language. Thus if only a di�erent concrete syntax is required then any se-

mantic checking tools will be una�ected. The purpose of the framework we
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are developing is to manage such language development and evolution in a

systematic way.

To conclude, we return to one aspect of UML that we identi�ed as a

weakness in the subset we have chosen: concurrency and real-time. Part of

the problem is that the 1.3 documentation is so ambiguous and contradictory

[KER99], that it is hard to know where to start. This might be remedied

somewhat in the forthcoming submission to the Scheduling Pro�le RFP

[OMG99b]. The core of this submission is an attempt pin down an \action

semantics" which directly addresses issues of concurrency and real-time.

This will identify many of the problems and suggest solutions. However,

the submission will still be informal in nature, in the same style as the

UML 1.3 standard. One of the goals of the proposed rearchitecting of the

UML will be to rework this submission into a more rigorous and organized

de�nition. This will make it much easier to see where existing research

results in concurrency and real-time could be used to further improve the

UML in this area.
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