
Representing Exceptional Behaviour
at the earlier Phases of Software Development

Rogério de Lemos

Computing Laboratory
University of Kent at Canterbury, CT2 7NF, UK

r.delemos@ukc.ac.uk

Exception handling is a structuring technique that facilitates the design of systems
by encapsulating the process of error recovery. Exception handling has been
traditionally associated with the design phase of the software lifecycle, during which
all the effort is made to protect the application software from faults that may be
introduced during requirements, design, and implementation, or can occur at the
support level. The consequence of such approach is that the appropriate context in
which errors should be detected and recovered is lost also it is lost the potential
correlation that might exist between the error states of the different contexts and how
these should be recovered in an optimised way.

Dealing with concurrent manifestations of several faults at different phases of
system development has been recognised as a serious problem that has not received
enough attention /Avizienes 97/. Ideally, for each identified phase of the software
lifecycle, a class of exceptions should be defined depending on the abstraction level
(or context) of the software system being modelled and analysed, as represented in
figure 1. As the software development progresses, new exceptions are identified and
their respective handlers specified. However, the exceptions identified at the different
phases can be causally and timely related, which might constraint the specification of
their respective handlers. Moreover, it might be the case that the rationalisation of
exceptions might enable the usage of a single handler for different classes of
exceptions. At every phase of the software development failure assumptions have to
be revised once the system structure is decomposed and behaviour refined. This
process of revising failure assumptions, as we progress through the software lifecycle,
might also lead to the refinement of the exceptions and handlers previously specified.

Instead of assuming that exception handling should be restricted to the later phases
of software development, recent work has attempted to provide systematic and
effective approaches on how to deal with exception handling at all phases of the
software lifecycle. These approaches provide a stepwise method for defining
exceptions and their respective handlers, thus eliminating the ad hoc way in which
exception handling is sometimes considered during the later phases of the software
lifecycle.

In one of these works, the description of exceptional behaviour within the
software lifecycle is supported by a co-operative object-oriented approach that allows
the representation of collaborative behaviour between objects at different phases of
the software development /de Lemos 99/. In a co-operative object-oriented description
of a system, the role of a co-operative action (CO action) is to co-ordinate the
collaboration between classes, which also involves the description of exception

handling in both objects and co-operations. In terms of objects, when abnormal
behaviour cannot be handle locally by an object exceptions have to be propagated to
co-operating objects; co-operations provide the support for co-ordinating the
propagation and the handling of exceptions between co-operating objects. When
exceptions are raised inside co-operations that cannot be related to any specific object
involved in the co-operation, all the co-operating objects should handle the exception
in a co-ordinated manner, to guarantee that once the co-operation is finished all the
co-operating objects are in a known consistent state.

Requirements

Design

Implementation
E(d)E(a)

Handlers

E(i&s)

EH Mechanism

Application-related

Design-related

Implementation &
Support-related

E(d)E(a)

E(a)

H(a)

H(a) H(d) H(a&d)

Figure 1. Exception handling in the software lifecycle.

In a more recent work, a systematic approach for incorporating the exception
behaviour in the software lifecycle was considered in the context of Catalysis and the
idealised fault-tolerant component architecture /Ferreira 01/. Catalysis is a well
established technique for the systematic development of component-based systems
that has three primary modelling constructs: collaborations, types, and refinement
/D’Souza 98/. What differs Catalysis from other traditional approaches are
collaborations: these are considered first class entities that incorporate how a group of
objects jointly behaves when configured together. Collaborations are defined in terms
of actions with their pre- and post-conditions that define collaboration. For
representing the propagation and handling of exceptions in a collaboration, the
description of actions is extended by including the definition of signals and handlers,
and both the normal and exceptional behaviours of the collaboration are represented
in terms of collaboration diagrams. While Catalysis provides the process for
developing software, the idealised fault-tolerant component provides the elementary
architectural representation for describing the fault tolerant activities of a system /Lee
90/.

While developing the above work, we have come across several deficiencies
regarding the modelling and analysis of exceptional behaviour in the software
lifecycle, particularly, at the higher levels of abstraction. One of the problems that we
have faced was the explicit representation of exception handling in the use cases.
These were initially conceived for succinctly describing the problem at hand, but if
exceptional behaviour is to be considered at the requirements level, then exceptions
have to be represented in the use cases, thus increasing the complexity of their

description. A possible approach is to describe use cases with different levels of
detail, and to make sure that these descriptions are consistent and accurate. The three
basic stages for this description are the following. In the first stage, the use case
would be described in its usual way /Jacobson 92/. In the second stage, we would
refine the use case by identifying system variables, providing a table of exceptions
representing the causal relation between the abnormal behaviours of actors and use
cases, and providing collaboration diagrams for the exception behaviour. The
objective of this stage is to model and analyse the interdependencies between actors
and use cases taking into consideration their exceptional and failure behaviours. In the
third stage, we would formalise the use cases in terms of a first order logic that could
be used as a basis to obtain a state model, which can then be model checked. This last
stage would be very similar to the process of conducting safety analysis of a critical
system /de Lemos 01/. In this proposed approach of three stages, the balance between
being rigorous and formal depends on the criticality of the system being analysed. If
the second stage is well documented, and consistent with the underlying formal
model, then the client would be able to understand and discuss the requirements of the
system without the need of understanding a formal language.

Another problem that we have faced when dealing with exceptional behaviour at
the early phases of the software lifecycle was the representation of exception handling
at the architectural level. If the current trends of software engineering are to be
followed, i.e. the development of new systems out of existing components, then the
architectural representation of systems will have a key role in the process of adapting
either the components or the interactions between them. For example, if mechanisms
for enforcing dependability of services have to be added to an untrustworthy
component, then it is necessary to provide structural means for incorporating the
required changes. The co-operative architectural style being proposed offers the
appropriate means for structuring complex applications that are intrinsically
collaborative in their nature, and aims to provide fault tolerance in the context of how
exception handling mechanisms can be added to untrustworthy components. The key
architectural element of this style is a co-operative connector that encapsulates
collaborative behaviour between several components, which also involves co-
ordinating the handling of exceptions between components. An example of a co-
operative architecture is shown figure 2. The depicted system is composed by two
components (co1 and co2) that are interconnected by three connectors (cn1, cn2,
and cn3). The connector cn1 captures the collaborative activity associated with the
three roles of the components co1 and co2. The collaborative activities associated
with connectors cn2 and cn3 are nested to connector cn1.

A co-operative connector is described in terms of the roles involved in the
collaborative activity, and the specification of collaborative behaviour in terms of
normal, exceptional and failures behaviours. The normal behaviour in defined in
terms of the pre- and post-conditions, the invariant that should hold, and the
collaborative operation to be performed under the control of the connector. For the
specification of exceptional behaviour, a handler replaces the operation, and is
defined in terms of its start and finish events. Although the pre-conditions for normal
and exceptional behaviours are the same, the post-conditions for the exceptional
behaviour might be different, depending on the degraded outcomes of a collaborative
operation, once an exception has occurred.

co1

co2

co1.ic1

co2.ic1

co2.ic2

co1.ic1
co2.ic1
co2.ic2

cn1

co2.ic1
co2.ic2

cn2

co1.ic1
co2.ic1

cn3

(a) Components diagram. (b) Connectors diagram.

Figure 2. Co-operative software architecture.

Figure 3 shows the representation of exceptional behaviour of a co-operative
connector in terms of timed automata extended with data variables /Larsen 1997/. The
automaton on the left starts a co-operation when the pre-condition is true
(pre==true), it executes the collaborative operation (operation:=true) while the
invariant holds (invariant==true), and exists the co-operation when the post-
condition of normal behaviour is true (post_normal==true). The representation of
exception behaviour is related to the raising of an exception (signal!) that starts a
handler on the automaton on the right. Once the handler is executed (handler:=true),
the co-operation is finished assuming that the post-condition for exception behaviour
is true (pos_exceptional==true).

outCoop

startCoop

endCoop

raiseExc

outHandler

startHandler

endHandler

invariant==true

operation:=true

signal!

pre==true

signal!

post_normal==true

post_exceptional==true
leave?

signal?

handler:=true
leave!

Figure 3. Automata representation of exceptional behaviour.

Most of this work is still on going, and currently we are investigating architectural
description languages that would incorporate the adequate capabilities for
representing and analysing exceptional behaviour.

Acknowledgements. This work was performed in collaboration with Gisele R. M.
Ferreira, Alexander Romanovsky, and Cecília M. F. Rubira.

References

/Avizienis 97/ A. Avizienis. “Toward Systematic Design of Fault-Tolerant
Systems”. Computer 30 (4). April 1997. pp. 51-58.

/de Lemos 99/ R. de Lemos, A. Romanovsky. "Exception Handling in a
Cooperative Object-Oriented Approach". Proc. of the 2nd IEEE International
Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’99). Saint
Malo, France. May, 1999. pp. 3-13.

/de Lemos 01/ R. de Lemos. Analysing Failure Behaviours in Component
Interaction. UKC Computing Laboratory Technical Report. 2001.

/D’Souza 98/ D. D'Souza, and A. C. Wills. Objects, Components and Frameworks
with UML: The Catalysis Approach. Addison-Wesley, Reading, MA 1998.

/Ferreira 01/ G. Ferreira, C. Rubira, and R. de Lemos. “Explicit Representation of
Exception Handling in the Development of Dependable Component-based Software”.

/Jacobson 92/ I. Jacobson. Object-Oriented Software Engineering - A Use Case
Driven Approach. Addison-Wesley. 1992.

/Lee 90/ P. Lee, and T. Anderson. Fault-Tolerance: Principles and Practice.
Springer-Verlag 2nd Edition. 1990.

