
Describing Evolving Dependable Systems
using Co-operative Software Architectures

Rogério de Lemos

Computing Laboratory
University of Kent at Canterbury, CT2 7NF, UK

r.delemos@ukc.ac.uk

Abstract
This paper describes an architectural approach that

facilitates the modelling and analysis of dependable
systems that are built from untrustworthy components
whose designs, we assume, cannot be changed. The
approach is based on the definition of an architectural
style in which connectors are considered as first class
entities, which embody the description of collaborative
behaviour between components. This style is shown to be
particularly suitable for describing system components
that have to evolve in order for the system to provide
dependable services. The feasibility of the proposed
architectural style in dealing with evolving dependable
systems is demonstrated in terms of the gas station case
study.

1. Introduction

One of the problems when building large-scale
software systems out of existing software components are
the architectural mismatches that might occur between
system components [12]. An architectural mismatch
occurs when the assumptions that a component makes
about another component, or the rest of the system, do not
match. Mismatches occur when building dependable
system out of untrustworthy components, which is
essentially an evolution problem since the system, its
components, and their interactions have to change
according to the required dependable needs. However, the
approach taken in this paper instead of changing the
system components, it relies in changing the interactions
between the components by adding or changing the roles
that components play when providing different kinds of
services. The focus being taken is at the architectural
level, since it is the software architecture that tends to
affect the flexibility of software in adapting to changes.

Architectural structures for systems tend to abstract
away from the details of a system, but assist in
understanding broader system-level concerns [21]. This is
achieved by employing architectural styles that are
appropriate for describing systems in terms of
components, the interactions between these components -
connectors, and the properties that regulate the
composition of components - configurations. The major
difference between a component (a unit of computation or
data store), and a connector (a unit of interaction among
components or rules that govern that interaction) is that
connectors may not correspond to compilation units in an
implemented system [15].

In this paper, we define an architectural style that is
appropriate for representing the evolution of components,
such as commercial off-the-shelf components (COTS),
legacy systems, and component systems of systems-of-
systems. The type of constraint usually associated with
this sort of component is the inability of changing the
component’s design according to the different services
required from it. Alternative means have to be found for
permitting change to be made on the services delivered by
a component without having to change the actual
component itself. For example, if mechanisms for
enforcing dependability of services have to be added to an
untrustworthy component, then it is necessary to provide
structural means for incorporating the required changes,
without having to change the internals of the component.
The proposed co-operative architectural style offers the
appropriate means for structuring complex applications
that are intrinsically collaborative in their nature, which is
a feature of most fault tolerant mechanisms for enforcing
the dependability of services. This paper discusses the
provision of fault tolerance in the context of how
exception handling mechanisms can be added to
untrustworthy components.

The rest of the paper is organised as follows. In
section 2, we briefly discuss the architectural

representation of evolving components. Section 3 presents
a variant of the gas station case study, which is used for
showing how different architectural styles are able to
describe evolving dependable systems. In section 4, we
describe the co-operative style being proposed, which is
suitable for representing collaborative activity between
components, an essential feature for the provision of
dependable services. In section 5, we re-visited the gas
station case study for showing the representation of
exception behaviour in co-operative architectures. Finally
in section 6, concludes with a discussion evaluating our
contribution.

2. Architectural Representation of Evolving
Components

Although there are several surveys that compare how
architectural description languages handle the
representation of an evolving system [15], in this paper,
we focus instead on the architectural elements and
constraints that form the basis of these languages, that is,
the architectural styles [21. We believe that, the capability
of an architectural representation to adapting to changes is
more a feature of a style rather than of a language.

The architectural representation of components that
have to change for enforcing the delivery of dependable
services is discussed from the viewpoint of obtaining
trustworthy interfaces from untrustworthy ones. But
before that, we discuss our understanding of interface
mismatch (which is the general case of architectural
mismatch), the techniques to deal with it, and the
architectural styles that are more appropriate to support
these techniques.

2.1. Interface Mismatches

An interface between two components can be defined
as the assumptions that components make about each
other [19]. An interface mismatch occurs when the
interface assumptions of both components do not match
up. That is, the assumptions that describe the service
provided by a component are different from the
assumptions that describe the services required by a
component for behaving as specified [18]. When building
systems from existing components, it is inevitable that
incompatibilities between the service delivered by a
component, and the service that the rest of the system
expects from that component give rise to interface
mismatches. These mismatches are not exclusive to the
behavioural aspects of components; mismatches may also
include non-behavioural aspects, such as dependability,
which can be related to component failure mode
assumptions or its safety integrity levels.

Since the concern of this work is with architectural
mismatches that are dependability related, in the following

we describe the basis for obtaining dependable services
from untrustworthy components by changing the interface
of these components. There are two types of interfaces
that can be associated with a component, depending on
the dependability services required from it:
• Untrustworthy interfaces – are the interfaces of a

component that are not able to deliver the required
dependable services;

• Trustworthy interfaces – are the modified interfaces
of a component that are able to deliver the required
dependable services;
For obtaining trustworthy interface-components out of

untrustworthy interfaces, we can rely on Neuman’s
concept of depends on [16] which is based on the concept
of depends upon from Parnas [20]. If a component
depends upon other component, then if the latter does not
meet its requirements then the former may not also meet
its requirements. On the other hand, the concept of
depends on introduces the generalised sense of
dependence in which greater trustworthiness can be
achieved despite the presence of less trustworthy
components. There are several mechanisms that enables to
achieve a resulting trustworthiness greater than the
constituent components [17].

2.2. Architectural Styles supporting Evolution

There are three classes of techniques for dealing with
interface mismatch which are based on inserting code for
mediating the interaction between the components [11]:
• Wrappers – are a form of encapsulation whereby

some component is enclosed within an alternative
abstraction, thus yielding to an alternative interface to
the component;

• Bridges – translate some of the assumptions of the
components interfaces. Different from a wrapper, a
bridge is independent of any particular component,
and needs to be explicitly invoked by an external
component;

• Mediators – exhibit properties of both wrappers and
bridges. Different from a bridge, a mediator
incorporates a planning function that results in the run-
time determination of the translation. Similar to
wrappers, mediators are first class software
architecture entities due to their semantic complexity
and runtime autonomy.
From the three techniques above, we are specifically

concerned with bridges. According with Shaw, there are
two architectural styles that are considered appropriate as
a structural solution for mediating interface mismatches
[22]: the data-centred or repository style, and the
communicating processes style. The first style is a
repository that is accessed and updated by several clients,
which have their own control threads. The main
architectural representatives of this style are traditional

databases or file systems as passive repositories, and
blackboard system as active repositories. The main
features of using the repository style for representing an
evolving software system is the relative independence of
the clients from each other, and their independence
towards the repository. Moreover, software architectures
that instantiated from this style are scalable because
clients can be easily added and modified without affecting
the other clients.

If the clients are built as independently executing
processes and the repository is considered passive, the
interaction between a client and the repository can be
represented by the communicating processes architectural
style, being the client-server a well-know subtype [22]. In
this style, a server provides services to clients, from which
services requests are originated. The interchange between
the server and the clients can either be synchronous or
asynchronous. In the latter case, the client has its own
thread of control. In architectures based on this style,
interface mismatches of an evolving component are fixed
by adding new interface-components. An evolving
component is considered a black box server since its
design is assumed to remain unchanged. The interface-
components are the clients that implement the necessary
bridges that provide additional services, by adapting the
component behaviour. Also in this architecture, an
interface-component can eventually evolve by associating
to it other interface-components.

For the definition of a conceptual model for
representing architectures, we follow the ontology
established by the architectural interchange language
Acme [13]. The basic elements for architectural
description are components, connectors, and their
configurations. Components and connectors have
interfaces that are defined as a set of ports and a set of
roles, respectively. A port is a point of interaction with a
component; hence a component can have multiple
interfaces by using different types of ports. A role is a
point of interaction with a connector, and defines a
participant of an interaction that is represented by the
connector. In this conceptual model, a component plays a
role, through its ports, when collaborating with other
components, and that component may play different roles
according with the collaborations in which is involved.

In the following sections, we exemplify, in terms of
the gas station case study, how the evolution of software
components can be achieved using the client-serve
architectural style.

3. The Gas Station Case Study

The gas station system consists of customers who
come to a gas station to obtain gas for their vehicles,
cashiers who sell the gas, and pumps that discharge the
gas. A representation of money is exchanged between

customers and cashiers, and between cashiers and pumps,
and a representation of gas is exchanged between
customers and pumps. In this paper, we consider that the
gas station can evolve in two ways: depending on the gas
available on the tanks, gas can be rationed to the
customers, and the gas station can evolve from manual to
automatic payment.

With the aid of collaboration diagrams [6], in the
following we proceed to describe an evolving gas station
in terms of three possible scenarios. We start with the
scenario in which the customer gets the gas first, and then
pays for it (GetPayGas). The customer selects first the
pump and gets the gas, and then communicates the ID of
the pump to the cashier for he/she to read the amount, and
then the customer pays the gas. When the transaction is
finished, the cashier releases the pump. This scenario is
represented in collaboration diagram of figure 1.

ch:cashier

ct:customer

p:pump

1:selectPump

2:serveGas

3:PumpID
5:payGas

4:getAmount

6:releasePump

Figure 1. Customer gets the gas first and then pays
(GetPayGas).

In the second scenario, we consider the case in which
the rationing of gas is introduced depending on the
amount of gas available on the tanks. This implies that the
pump has to check first the availability of the gas before
delivering it to the customer.

In the third scenario, we consider a self-service gas
station, where the customer does not interact with the
cashier (SelfServeGas). The sequence of events is: the
customer first selects the pump, gets the gas and pays for
it, and finally the cashier releases the pump. This scenario
is represented in collaboration diagram of figure 2.

The changes in this scenario are to eliminate the
interaction between the customer and cashier, and provide
means for the customer to pay directly to the pump but
without having to change the pump.

The exceptional behaviour to be considered is the
situation where the pump runs out of gas while the
customer is being served. This is the typical scenario
where the pump alone cannot deal with this exception,
because it has to raise an exception to the customer and
cashier for them to handle the abnormal behaviour.

ch:cashier

ct:customer

p:pump

1:selectPump
2:serveGas

3:payGas

4:releasePump

Figure 2. A self-service gas station (SelfServeGas).

3.1. Evolving the Gas Station using Client-Server
Architectures

For illustrating how the client-server architectural style
may be used to represent evolving components, we
employ the gas station case study, and for the sake of
brevity, we focus on the evolution of a single component,
rather than the whole system. A simplified architectural
representation of the gas station is shown in figure 3, in
terms of its three basic components and relations between
them (for simplifying the architectural diagrams, we have
chosen to represent several connectors between two
components as a single line). The ports associated with
each of the components are the following:
• cashier – getAmount, releasePump, payGas, and

givePumpID.
• customer – payGas, givePumpID, selectPump,

and serveGas.
• pump – getAmount, releasePump, selectPump,

serveGas, availableGas, and loadPump.
We assume that connectors are simple RPCs, each

with two roles: the caller and the callee.
In addition to the three basic components of the gas

station, we have also included in the diagram of figure 3
the interface-components responsible for ensuring that gas
is rationed when there is a shortage (IC_serveGas), and
that the customer is able to pay for her/his gas without
having to interact with the cashier (IC_payGas). The
ports associated with these interface-components are the
following:

• IC_serveGas – gasAvailable, loadPump, and
serveGas;

• IC_payGas – givePumpID, getAmount, and
payGas.

customer

cashier

pump

IC_serveGas

IC_payGas

Figure 3. Architectural representation of a self-service
gas station (SelfServeGas).

The behavioural description of components and
interface-components will be made in terms of the
UPPAAL model [14]. The basis of the UPPAAL is the
notion of timed automata extended with data variables,
such as integer and Boolean variables. The automata
consist of a collection of control nodes connected by
edges. The control nodes of the automata are decorated by
invariants that are conditions expressing constraints on
the clock values. The edges of the automata are decorated
with guards that express a condition to be satisfied for the
edge to be taken, synchronisation actions that are
performed when the edge is taken, and clock resets and
assignments to integer variables.

In the following, we specify using extended time
automata only the component pump, and its two
associated interface-components. The automaton for the
pump is presented in figure 4. All the ports associated
with the pump are specified as synchronisation labels
(p_getAmount?, p_releasePump?, p_selectPump?,
p_serveGas?, p_availableGas?, and p_loadPump?),
and the activity of each port is specified in terms of pre-
and post-conditions, following the configuration
GetPayGas of the gas station.

P0

pumpSelected==false
p_selectPump?
pumpSelected:=true

pumpSelected==true

p_serveGas?

gasObtained:=true

gasObtained==true

p_getAmount?

pumpSelected==true
p_releasePump?
pumpSelected:=false,
gasObtained:=false,
gasPayed:=false

pumpSelected==true
p_availableGas?

pumpSelected==true

p_loadPump?

Figure 4. Automaton Pump.

The automata for the two interface-components are
presented in figure 5. The interface-component
IC_serveGas is responsible for intercepting any request
from the customer to serve gas (ct_serveGas?), and
check before delivering the gas (serveGas!) the amount
of gas available in the tanks of the station (gas
Available!). Rationing is imposed (loadPump!) if the gas
available is below a certain threshold. The self-loop in
control mode IC_serveGas.SG4 captures an exception
being raised when the pump runs out of gas (the
exceptional behaviour of the gas station is discussed in
section 5).

The interface-component IC_payGas allows the
customer to pay his/her gas directly on the pump without
interacting with the cashier. This additional functionality
is provided to the pump without changing the actual
pump. All the interactions needed for accomplishing this
service can be made transparent to the customer. For
example, the need for the customer to provide the
identification of the pump (pumpID!) is a pre-condition,
in the original system, for the customer to pay the gas, and
this interaction can be made transparent in the process of
the customer selecting the pump and taking the gas. For
the cashier to accept the payment for the gas (payGas!),
via the IC_payGas, it is necessary first for the cashier to
receive the amount of gas taken (getAmount!).

In this section, we have shown how the client-server
architectural style can be employed for representing
evolving components. However, the architectural elements
of this style become inadequate when changes involve the
representation of collaborative activity between system
components, which is the case when describing means for
enforcing the delivery of dependable services, such as,
exceptional behaviour. In the next section, we present an
architectural abstraction that allows capturing the
behavioural dependencies between interface-components,

thus facilitating the structuring of systems at the
architectural level, which enhances the design and
implementation of dependable systems.

SG3

SG2

SG1

SG0

SG4

icsg_ct_serveGas?

icsg_p_availableGas!

icsg_p_loadPump!

icsg_p_serveGas!

icsg_p_serveGas!

icsg_outOfGas!

 (a) Automaton IC_serveGas.

PG4

PG3 PG2

PG1

PG0PG5

icpg_ct_payGas?

icpg_ch_getAmount?

icpg_p_getAmount!

icpg_ch_payGas!

icpg_ct_givePumpID?

icpg_ch_givePumpID!

 (b) Automaton IC_payGas.

Figure 5. The automata for the interface-components.

4. Co-operative Architectural Style

Considering a collaboration to be a set of components
and a set of rules (or allowed behaviour) that determines
how components interact [23], the client-server style on
its own is not effective in representing component-based
software systems that are collaborative in their nature, that
is, there are more than two components interacting for
providing a specific service. Additional abstractions have
to be devised for describing interactions between the
system components (or interface-components), and the
properties associated with these interactions. In this
section an architectural style is identified which enhances
the client-server style by providing an abstraction, in the
form of a “sophisticated” connector, that captures the
collaborative behaviour between architectural
components.

Instead of relying on the provision of means and
mechanisms that focus on supporting the adaptation of
components [1, 7], the proposed approach for evolution is
based on adapting the interactions between components.
The motivation for this approach comes from the current
trend of component-based software engineering that relies
on the re-use of ready available software components,
such as COTS and legacy software, which are not
expected to undergo any type of change. Hence, it is
assumed that components remain unchanged, while the
behavioural dependencies between the components may
change according to the evolving needs of the software.

In order to represent interactions between the
components for the purpose of facilitating the
incorporation of change, components and connectors are
employed as architectural abstractions: while components
embody computation, connectors embody the description
of interacting behaviour between components. However,
in the proposed approach, connectors in addition of
mediating interactions between components, they are also
able of describing collaborative behaviour between
components in terms of the roles played by the
components [3]. That is, connectors in addition of being
the place of communication between components, they are
also the place of state and computation. This approach has
some similarities with the features of collaboration-based
designs. In these designs, software systems are
represented as a composition of independently-definable
collaborations [23].

In the following, we present the main features of the
co-operative architectural style in terms of its architectural
elements and configuration, and how exception behaviour
can be represented.

4.1. Architectural Elements

Components support the representation of both
structural and behavioural aspects of a system. A

component is described by a template with the following
fields: a name, declaration of attributes, a description of
its structure that enumerates the components which is
composed of and the intra-relations between the
components and its subcomponents, and finally, a
description of the behaviour of the component, which
identifies the ports of the components. The behaviour
field includes the initial state of the component, and
behavioural assumptions or (consistency invariants)
associated with the component. The behavioural field also
includes the specification of the complete space of the
behaviour of the component, in terms of its normal,
exceptional and failure behaviours.

Co-operative connectors in addition of being the place
of communications, they are also the place for
computation. In this style, the difference between
components and co-operative connectors is that
components perform local computation, while connectors
encapsulate the collaborative activity between the several
components: either co-ordinates the activity of the
components, or performs some local computation that is
not part of any component. Hence, our notion of
connectors can be seen as a collection of roles played by
the components taking part in a collaborative activity. As
mentioned before, a component can play several roles,
thus allowing the component to participate simultaneously
in several collaborative activities.

A connector is described by a template with the
following fields: a name, declaration of attributes in
terms of the names and types of the roles involved in the
collaborative action, which identifies the roles of the
connectors, and the specification of the collaborative
behaviour. The behaviour field includes the initial state,
and the specification of the complete behaviour space of
the connector, in terms of its normal, exceptional and
failure behaviours. Associated with the description of
normal behaviour, pre-condition and post-condition
establish the respective conditions for a set of components
to start and finish a particular collaborative activity, the
invariant establishes the conditions that should hold
while the collaborative activity is being performed, and
the collaborative operation to be performed under the
control of the connector. The successful execution of a
collaborative operation occurs when the pre- and post-
conditions of the normal behaviour are satisfied, and that
the invariant associated with the collaborative activity is
not violated during its execution.

For the specification of exceptional behaviour, a
handler replaces the operation, and defined in terms of its
start and finish events. Although the pre-conditions for
normal and exceptional behaviours are the same, the post-
conditions for the exceptional behaviour might be
different, depending on the degraded outcomes of a
collaborative operation, once an exception has occurred.
In addition of specifying the collaborative operation in

terms of what should do, it is equally important to specify
what should not do, mainly those behaviours that can
affect the safety of the system. Two types of failure
behaviours have to be considered: failures of omission,
and failures of commission.

4.2. Architectural Configuration

For the description of systems, the configuration rules
of the co-operative style define how components and
connectors can be combined.

In a co-operative architecture each component and
connector has a unique name. The ports of a component
can be linked to several connectors, and at least two
components have to be associated with a connector, thus
avoiding the “dangling” of connectors. A connector
defines and is defined by the roles of the components, thus
creating the context in which components collaborate.
Only connectors contain relational information. An
advantage of this is that, connectors can be added or
removed without interfering with the implementation of
components, thus restricting the impact of change.

Two different diagrams describe the co-operative
architecture of a software system: a component diagram
describing the relationships between components, and a
connector diagram describing the relationships between
co-operative connectors. The behavioural complexity of
connectors can be as high as that of components, hence
the need to represent the relationship between connectors
in the same way to that of components. Moreover, it was
chosen not to represent the links between two diagrams
because this will give rise to complex diagrams with a
multitude of links, since a connector can be linked with
several components and a component can be linked to
several connectors. An example of a co-operative
architecture is shown figure 6. The depicted system is
composed by two components (co1 and co2) that are
interconnected by three connectors (cn1, cn2, and cn3),
which means that these two components are able to
interact in three different ways. For example, the
connector cn1 captures the collaborative activity between
the three roles associated with components co1 and co2.
Also it is shown that the collaborative activities associated
with connectors cn2 and cn3 are nested to connector cn1.

co1

co2

co1.ci1

co2.ci1

co2.ci2

(a) Components diagram.

co1.ic1
co2.ic1
co2.ic2

cn1

co2.ic1
co2.ic2

cn2

co1.ic1
co2.ic1

cn3

(b) Connectors diagram.

Figure 6. Co-operative software architecture.

In the following, we present how the co-operative
connector can be used to represent exceptional behaviour
in a self-service gas station. For that, we combine the
client-server and the co-operative architectural styles. In
this hybrid architectural style there are two ways of
expressing connectors. If connectors capture simple flow
of information between components, of the RPC type,
then they are represented by lines, as depicted in figure 3.
However, if connectors capture complex interactions
between components, then they are represented by
rounded boxes, as depicted in figure 6.

4.3. Representation of Exceptional Behaviour

Exception handling is structuring technique that
facilitates the design of dependable computing systems by
encapsulating the process of error recovery [8]. It is a
typical activity that requires co-ordinated co-operation
between components in order to recuperate the system
into a known consistent state, once an abnormal behaviour
is detected. Dealing with concurrent manifestations of
several faults at different phases of system development
has been recognised as a serious problem which has not
received enough attention [2]. Only recently exceptional
behaviour has been considered in the general context of
the software lifecycle [10], and in the particular context of
the requirements phase [24]. In this paper, we consider
exceptional behaviour at the architectural level, similarly
to what was presented in [9], but introducing the notion of
a sophisticated connector to deal with collaborative
activities.

Figure 7 shows the representation of exceptional
behaviour of a co-operative connector in terms of timed
automata extended with data variables [14]. The
automaton on the left starts a co-operation when the pre-
condition is true (pre==true), it executes the collaborative
operation (operation:=true) while the invariant holds
(inv==true), and exists the co-operation when the post-
condition of normal behaviour is true
(post_normal==true). The representation of exception
behaviour is related to the raising of an exception

(signal!) that starts a handler on the automaton on the
right. Once the handler is executed (handler:=true), the
co-operation is finished assuming that the post-condition
for exception behaviour is true
(pos_exceptional==true).

endCoop

startCoop

raiseExc

outCoop

inv==true

operation:=true

signal!

pre==true

signal!

post_normal==true

post_exceptional==true
leave?

outHandler

startHandler

endHandler

signal?

handler:=true
leave!

Figure 7. Automata representation of exceptional
behaviour.

In the following we present how the above model of a
co-operative connector can be used for representing
exceptional behaviour in the self-service gas.

5. Exceptional Behaviour in Co-operative
Architectures

In this section, we present how to obtain a trustworthy
interface by using the co-operative architectural style.
While the interface-components of the client-serve style
provide the adequate support for changing the interface of
components, the connectors of the co-operative style are
able to represent complex behavioural dependencies
between components, which are typical of exceptional
behaviour. In the case of the gas station, the exceptional
behaviour is related to the situation where the pump runs
out of gas while the customer is being served.

A new architectural representation of the self-service
gas station is shown in figure 8, in terms of its three basic
components, the two interface-components previously
specified, and a co-operative connector. The purpose of
the co-operative connector is to structure the collaborative
activity between the components, in order to avoid the
propagation of errors, and to encapsulate the process of
error recovery. The role that a connector has in a co-
operative architecture is similar to that of co-operative
actions (CO actions) in the context of object-oriented
design, which is to co-ordinate the collaborative activity
between classes, involving also the handling of exceptions
[10].

ct_selectPump
p_selectPump
ct_serveGas
icsg_ct_serveGas
ct_payGas
icpg_ct_payGas
ch_releasePump
p_releasePump

CC_SSG

ct_payGas
icpg_ct_payGas
ch_releasePump
p_releasePump

EH_CC_SSG

customer

cashier

pump

IC_serveGas

IC_payGas

Figure 8. A co-operative architecture of a self-service
gas station (SelfServeGas).

Comparing the diagrams of figure 8 with the
architectural representation of the gas station of figure 3,
we notice that some of the connectors of the latter have
been removed. These connectors have been replaced by a
co-operative connector, which encapsulates key
collaborative activity between the system components.

The behavioural description of the co-operative
connector CC_SSG is presented in figure 9, in terms of
extended timed automata. The automaton on the left
(CC_SSG) captures the collaborative activity between
the components, while the automaton on the left
(EH_CC_SSG) describes the handler when an exception
is raised.

There are two flows on the automaton of the left: the
normal behaviour flow that establishes the sequence of
collaborative activities associated with the purchase of gas

in a self-service station (ct_payGas?), and the
exceptional behaviour flow that captures an exception
when gas runs out while the customer is being served
(signal_outOfGas!). This exception is initially raised by
the interface-component IC_serveGas
(icsg_outOfGas!), which is then propagated to the co-
operative connector CC_SSG (icsg_outOfGas?).

CC3

CC2

CC1

CC0

CC9

CC8

CC7

CC11

CC6

CC10

CC5

CC4

p_selectPump!

ct_serveGas?

icsg_ct_serveGas!

ct_payGas?

icpg_ct_payGas!

ch_releasePump?

icsg_outOfGas?

signal_outOfGas!

leave_outOfGas?
pumpOccupied:=false

pumpOccupied==false

ct_selectPump?
pumpOccupied:=true

pumpOccupied:=false

p_releasePump!

(a) Automaton CC_SSG.

EH5

EH4

EH3

EH2

EH1

EH0

signal_outOfGas?
tanksWithGas:=false

leave_outOfGas!
tanksWithGas:=true

ct_payGas?

icpg_ct_payGas!

ch_releasePump?

p_releasePump!

(b) Automaton EH_CC_SSG.

Figure 9. The automata for the co-operative connector
and its exception handler.

According with the co-operative connector CC_SSG,
the collaborative activity between the components of the
gas station starts when the pre-condition holds true
(tanksWithGas==true and pumpOccupied==false).
When the flow of control reaches CC_SSG.CC5, it can
either follow the normal flow by accepting the gas
payment from the customer (ct_payGas?), or follow the
exceptional behaviour by capturing the exception being
propagated by IC_serveGas. Following the normal flow,
the collaborative activity is finished when the post-
condition holds true. On the other hand, when the
exceptional flow is followed the exception handler
EH_CC_SSG is invoked. This handler will then
performed a series of activities to leave the gas station in a
consistent state (another alternative measure could be to
send a notification message to both the customer and
cashier), before stopping the gas station. Once the handler
finishes its operations, the flow leaves the handler
(leave_outOfGas!), and finishes the co-operation when
the post-condition for the exceptional behaviour
(tanksWithGas==false) holds true.

The behavioural description of the architectural
components, in particular the co-operative connector,
using extended time automata has facilitated the task of
model checking whether the architectural model of the gas
station is able to satisfy the required system properties.
Once an acceptable architectural representation of the gas
station is obtained, the system can be designed and
implemented using either the approach described in [10]
or the one described in [5].

6. Conclusions

The claim of this paper is that existing architectural
styles, such as the client-server, may not effectively
represent the fault-tolerant mechanisms that allow
obtaining trustworthy components from untrustworthy
ones. Instead, new forms for representing software
systems are necessary if there is the need to deal with
dependability related architectural mismatches, which
might be associated with the necessity for obtaining
dependable services from untrustworthy components. The
co-operative architectural style discussed in this paper
considers connectors as first class entities that embody the
description of collaborative behaviour, which provides the
basis for implementing error recovery in the presence of
faults. The combining usage of the co-operative and the
client-server styles form the basis of a notation that
facilitates the structural representation of dependability
means that permit obtaining trustworthy component
interfaces from untrustworthy ones.

The feasibility of the proposed approach was
demonstrated in the context of an evolving gas station:
during the evolution of the system, there was no need to
change its components because the focus of change was

instead the interactions between components. This
approach has shown to be particularly appropriate when
dealing with exceptional situations, such as when the gas
runs out while the client was being served. In such
situations, it is fundamental to structure the interactions
between components for restricting error propagation and
facilitating error recovery. However, when considering
systems that do not contain interactions involving several
components that have to agree on the conditions for
entering, holding and leaving co-operations, the proposed
architectural solution might prove too expensive during
run-time because of the number of checks that are
required. For these cases, architectural solutions like the
client-server should be sufficient for the problem at hand.

In this paper, the behaviour of architectural elements is
represented in terms of extend timed automata, but the
intent is to define an architectural description language
that is able to capture the structural and behavioural
features of the co-operative style. The objective is to
obtain a language with a formal underpinning that would
facilitate the precise high-level description and analysis of
dependable systems that are built from untrustworthy
components. Currently, we are also investigating how the
co-operative style can be useful in enforcing other
dependability attributes at the architectural level.

Acknowledgements. The author would like to thank
Alexander Romanovsky for the fruitful discussions on the
initial drafts of this paper.

References

[1] M. Aksit, K. Wakita, J. Bosch, L. Bergmans, A. Yonezawa.
“Abstracting Object-Interactions Using Composition-Filters”.
Proceedings of the Workshop on Object-Based Distributed
Programming at the European Conference on Object-Oriented
Programming (ECOOP’93). Kaiserslautern, Germany. 1993.
Lecture Notes in Computer Science 791. R. Guerraoui, O.
Nierstrasz, and M. Riveill (eds). Springer-Verlag. 1994. pp.
152-184.

[2] A. Avizienis. “Toward Systematic Design of Fault-Tolerant
Systems”. Computer 30 (4). April 1997. pp. 51-58.

[3] R. Balzer. Instrumenting, Monitoring, and Debugging
Software Architectures.
http://www.isi.edu/divisions/index.html.

[4] L. Bass, P. Clements, R. Kazman. Software Architecture in
Practice. Addison-Wesley. 1998.

[5] D. Beder, B. Randell, A. Romanovsky, C. Rubira. “On
Applying Coordinated Atomic Actions and Dependable
Software Architectures for Developing Complex Systems”. 4th
IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC’01). Magdeburg, Germany.
May 2001.

[6] G. Booch, J. Rumbaugh, I. Jacobson. The Unified Modeling
Language User Guide. Addison-Wesley. Reading, MA. 1998.

[7] J. Bosch. “Superimposition: A Component Adaptation
Technique”. Information and Software Technology. Elsevier.
1999.

[8] F. Cristian. “Exception Handling and Tolerance of Software
Faults”. Software Fault Tolerance . Ed. M. Lyu. Wiley. 1995.
pp. 81-107.

[9] V. Issarny, J.-P. Banâtre. Architecture-Based Exception
Handling. 2000.

[10] R. de Lemos, A. Romanovsky. “Exception Handling in a
Cooperative Object-Oriented Approach”. Proc. of the 2nd IEEE
International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC’99). Saint Malo, France. May,
1999. pp. 3-13.

[11] R. DeLine. "A Catalog of Techniques for Resolving
Packaging Mismatch". Proceedings of the 5th Symposium on
Software Reusability (SSR'99). Los Angeles, CA. May 1999. pp.
44-53.

[12] D. Garlan, R. Allen, J. Ockerbloom, “Architectural
Mismatch: Why Reuse Is So Hard”. IEEE Software 12(6).
November 1995. pp. 17-26.

[13] D. Garlan, R. Monroe, D. Wile. “Acme: An Architecture
Description Interchange Language”. Proceedings of
CASCON’97. November 1997.

[14] K. G. Larsen, P. Pettersson, W. Yi. “UPPAAL in a
Nutshell”. International Journal on Software Tools for
Technology Transfer 1(1–2). October 1997. pp. 134–152.

[15] N. Medvidovic, R. N. Taylor. “A Classification and
Comparison Framework for Software Architecture Description
Languages”. IEEE Transactions on Software Engineering TSE
26(1). January 2000. pp. 70-93

[16] P. G. Neumann. Architectures and Formal Representations
for Secure Systems. Technical Report CSL 96-05. SRI
International. Menlo Park, CA. October 1995.

[17] P. G. Neumann. Practical Architectures for Survivable
Systems and Networks. SRI International. Menlo Park, CA.
January 1999. http://www.csl.sri.com/neumann/arl-one.html

[18] P. Oberndorf, K. Wallnau, A. M. Zaremski. “Product
Lines: Reusing Architectural Assets within an Organisation”. In
[4]. pp. 331-344.

[19] D. L. Parnas. “Information Distribution Aspects of Design
Methodology”. Proceedings of the 1971 IFIP Congress.
Amsterdam. 1971.

[20] D. L. Parnas. “The Influence of Software Structure on
Reliability”. Current Trends in Programming Methodology I.
Ed. R. Yeh. Prentice-Hall. 1977. pp. 111-119.

[21] M. Shaw, D. Garlan. Software Architecture: Perspectives
on an Emerging Discipline. Prentice-Hall. 1996.

[22] M. Shaw. “Moving from Qualities to Architecture:
Architecture Styles”. In [4]. pp. 93-122.

[23] Y. Smaragdakis, D. Batory. “Implementing Reusable
Object-Oriented Components”. Proceedings of the 5th
International Conference on Software Reuse (ICSR’98).
Victoria, Canada. June 1998.

[24] A. van Lamsweerde, E. Letier. “Integrating Obstacles in
Goal-Driven Requirements Engineering”. Proceedings of the
20th International Conference on Software Engineering. Kyoto,
Japan. April, 1998. pp. 53-62.

