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Abstract 
 

This work describes an approach for the 
validation of a software system responsible for 
the destruction of the sounding rocket VS-40X. 
The process of validation uses three different 
techniques ranging from the automatic state 
exploration to the laborious failure analysis. The 
purpose of the exercise was to obtain diverse 
arguments in the provision of evidence that the 
safety properties of the sounding rocket 
destruction system are always maintained. The 
software system is modeled using a co-operative 
architecture, which contains abstractions for 
modeling and analyzing the interactions between 
components. The safety analysis is performed 
using model checking, a technique that 
exhaustedly explores the state space to determine 
whether the system satisfies a safety property. 
The combination of co-operative architectures 
and model checking has shown effective when 
modeling and analyzing the interactive behavior 
between components. However, caution must be 
taken over the (false) confidence that can be 
obtained when employing solely model checking 
for the safety analysis. In order to compensate 
this deficiency we have to seek diverse sources 
of evidence to build trustworthy arguments about 
the safety of the system. The model checking 
was substantiated using laborious deductive and 
inductive analysis techniques. 

 

Introduction 
 

Safety analysis is a process that evaluates a 
critical system for determining whether the risk 
associated with the system is acceptable. The 
utilization of manually based safety analysis 
techniques, such as Fault Tree Analysis, Event 
Tree Analysis, or their variants, has shown not to 
be effective when performing the safety analysis 
of complex software intensive systems. Instead, 
alternative techniques, such as model checking, 
should be employed since they are tailored for 
analyzing highly complex systems. 

Model checking automated tools might be 
effective in dealing with some of the inherent 
complexities of software based systems, for 
example dependencies of many failure modes of 
system components (ref. 1). However, for 
increasing the effectiveness of these tools 
support must be provided to enable the analyst to 
understand the rationale behind key safety-
related decisions. Also, in order to reduce the 
risk of obtaining false confidence, the application 
of automated tools should be supported by a 
deductive and inductive analysis of the formal 
models subjected to automated analysis. In this 
paper, we present an approach in which 
traditional safety analysis techniques were used 
for validating the formal models required for the 
process of model checking. This work was 
performed in the context of the destruction 
system of the sounding rocket VS-40X, and 
consisted in replacing an existing remote 
destruction system for a self-destructing one. The 
latter would be essentially based on software, 
hence the need for providing evidence that its 
associated risk was acceptable. The evidence 
discussed in this paper is essentially qualitative 
rather than quantitative, and the criteria used for 
assessing the risk of the self-destruction system 
were obtained by the outcome of the safety 
analysis performed on the existing system. 
The starting point of our approach was to model 
both systems in terms of a co-operative 
architecture, which is based on an architectural 
notation that is amiable in reducing the impact of 
change. That is, instead of building rather 
different models for an evolving system, we have 
chosen to employ modeling abstractions that are 
able to represent those aspects of a system that 
are more prone to changes. The utilization of the 
co-operative architecture for modeling the VS-
40X destruction system has shown to provide the 
appropriate abstractions for performing safety 
analysis during the initial stages of the software 
design. This includes the identification of faults 
associated with the violation of safety 
specifications, and provision of evidence using 
model checking that the system behavior is safe 



(ref. 2). The confidence in using a co-operative 
architecture for modeling and analyzing a critical 
system was validated as described in reference 3. 
The aim of this paper is to devise an approach 
based on model checking and other safety 
analysis techniques that would allow to obtain 
diverse safety arguments for the provision of 
confidence that the risk of the new destruction 
system is acceptable. For that, laborious 
deductive and inductive analysis techniques were 
used in addition to model checking for 
performing the safety analysis of the co-
operative architecture of the VS-40X destruction 
system. This safety evaluation was performed for 
two different destruction systems: remote 
destruction and self-destruction. The outcome of 
the safety analysis of the former was used as 
criteria to evaluate the safety of the latter. For the 
sake of brevity, we will present in this paper only 
the results of the evaluation process for the self-
destruction system. 
The rest of this paper is organized as follows. In 
section 2, the destruction system of VS-40X 
sounding rocket is described. In the section 3, we 
present the co-operative architecture of the self-
destruction system. The results of the model 
checking of the co-operative architecture of the 
self-destruction system are presented in the 
section 4. In section 5, we present how deductive 
and inductive safety analysis techniques can be 
employed to provide diverse safety arguments. 
Finally, in the section 6, we summarize this work 
and provide some concluding remarks. 
 

VS-40X Sounding Rocket Destruction System 
 

The VS-40X Sounding Rocket:  The VS-40X is 
a two stages sounding rocket that has a dual 
purpose within the Brazilian Space Program: in 
addition of performing scientific experiments, it 
will be also used as an experimental platform for 
the new equipment of the Brazilian Satellite 
Launcher (VLS). Currently, a safety operator 
destroys the rocket remotely, but the intention is 
to replace it with an automatic system for its self-
destruction.  
The flight of the VS-40X comprises the 
following phases: pre-launching, which starts 
with the beginning of the counting down until 
the instant in which there was the disconnection 
of the umbilical; initial, which is when the 
vehicle is in free evolution over the launch 
platform; intermediate (I and II), which 
comprises the interval initiating 5 seconds after 
the vehicle launching until the end of the 

propelled phase; and final, which starts with the 
ballistic flight until the end of the flight.  

 
Mission and Safety Requirements of the VS-40X 
Sounding Rocket:  Among the several mission 
requirements of the vehicle, in this work we 
consider the one that can influence, or to be 
influenced by the safety requirements, which is: 
•  The vehicle should not be destroyed under 
normal conditions during the flight. 
The safety requirements of the VS-40X ensures 
the non-violation of the integrity of the 
environment of the vehicle, which is concerned 
with the potential damages to property and loss 
of lives when there is a system failure.  
Depending on the phase of the flight and of the 
trajectory of the vehicle, we identify two 
accidents: 
•  An inadvertent destruction of the vehicle 
during pre-launching or the initial flight instants 
can cause damages to the launching installations, 
injuries or loss of lives; 
•  During the rest of the trajectory, the fall of 
debris, after a failure in the behavior of the 
vehicle, can cause damages to property, injuries 
or loss of lives. 
There are two hazards (hazard_A and 
hazard_B, respectively) associated with the 
above two accidents:  
•  During the pre-launching and initial phases 
of the flight, there is a destruction of the vehicle; 
•  During the intermediate phases of the flight, 
the projection of the point of impact (PPI), of the 
vehicle’s trajectory crosses the limit line of 
impact (LLI) and reaches the protected region 
(PR). 
Based on the above hazards, we specify the 
following safety requirements for the destruction 
system of the VS-40X: 
•  The destruction of the vehicle should be 
disabled during the pre-launching and initial 
phases; 
•  The vehicle should be destroyed during the 
intermediate phases of the flight, once the 
trajectory of the vehicle violates the safety plan. 
 
Destruction System of the VS-40X:  Currently, 
the destruction system of the VS-40X is based 
essentially in the remote destruction: the safety 
operator is responsible for the activation of the 
destruction of the vehicle when there is a 
violation of the safety requirements.  
However, the remote destruction system has 
some disadvantages: the information supplied by 
the radar can be imprecise depending on several 



problems related with tracing; the system is 
vulnerable and of difficult operation and 
maintenance; and pressures from the 
organization, or even emotional reasons, can 
make the safety operator to delay the remote 
destruction of the vehicle. Although the existing 
system is appropriate for simple launching 
vehicles, the idea is to employ the VS-40X as 
experimental platform for the self-destruction 
system for more sophisticated vehicles, such as, 
the satellite launcher. 
 
Requirements for the Self-Destruction:  The self-
destruction system, without the aid of the safety 
operator, automatically destroys the vehicle 
whenever the safety requirements of the VS-40X 
are violated. The decision and command to 
destroy the vehicle are generated by the 
embedded protection system, which is enabled at 
the beginning of the intermediate phase of the 
flight. The components involved in the self-
destruction are the protection system, the inertial 
reference system (IRS), and the trajectory 
calculation system. 
During the intermediate phases of the flight, the 
data obtained by IRS are used to calculate the 
trajectory of the vehicle. This calculation allows 
the protection system to determine whether the 
vehicle should be destroyed when there is a 
violation of the flight safety plan. 
 

Co-operative Architectural Style 
 

Architectural structures for systems tend to 
abstract away from the details of a system, but 
assist in understanding broader system-level 

concerns (ref. 4). This is achieved by employing 
architectural styles that are appropriate for 
describing the software components, the 
interactions between these components, and the 
properties that regulate the composition of 
components. The co-operative architectural style 
adopts basic features of object-orientation, in 
which components are represented as classes and 
connectors as co-operative actions (CO actions). 
The instantiation of these abstractions are 
respectively, objects and co-operations. Objects 
are able to participate in several co-operations 
through the different roles that they are able to 
play while co-operations co-ordinate the 
interactions between the objects through the 
roles that objects play. The behavior of both 
objects and co-operations is described in terms of 
properties that have to be maintained for the 
system to provide the required services. The 
architectural elements of the co-operative style 
are classes as the basic components, and co-
operative actions (CO actions) as the basic 
connectors. Co-operative actions (CO actions) 
were introduced as entities for modeling 
interactions between classes that characterize 
collaborative behavior. For describing the 
architecture of a software system, two different 
diagrams are employed: a class diagram 
describing the relationships between 
components, and a CO action diagram 
describing the relationships between connectors. 
These diagrams provide a compact 
representation of the software system, which can 
be completed with a more detailed textual 
description. 
 

VS-40X System

SafetyOperatorOperatorConsole Vehicle

SISGRAF Trajectory SafetyBox

ProtectionSystem RemoteControl

 
 

Figure 1 - Class diagram of the destruction system 



 
The Co-operative Architecture of the VS-40X  

 
The integrity of using the co-operative 
architecture for the modeling and analysis of 
critical systems was demonstrated in reference 3. 
That work presented an evaluation of the co-
operative architecture of the remote destruction. 
A distinct feature of this approach compared 
with an object-oriented one is that focus is given 
to the behavior of the interactions between 
components, rather than on the components 
themselves. The evaluation of the approach was 
performed by comparing the minimal cut sets of 
the fault tree diagrams obtained from the natural 
language specification of the system and the 
corresponding co-operative object-oriented 
model. 
In the following, we present the co-operative 
architecture of the self-destruction system of the 
VS-40X. In the class diagram of figure 1, the 
three basic components of the VS-40X System 
are the SafetyOperator, OperatorConsole, and 
Vehicle. In terms of the self-destruction system, 
the relevant components of the VS-40X are: 
SafetyBox that provides the protection 
mechanism to avoid the unintentional destruction 
of the vehicle during the pre-launching and 
initial phases of the flight; Trajectory that 
calculates the flight trajectory of the vehicle 
based on information provided by the Inertial 
Reference System (IRS); and the 
ProtectionSystem that establishes whether the 
flight safety plan has been violated. 
The diagram of figure 2 shows the CO actions 
associated with the remote and self-destruction 
systems of the VS-40X. The CO actions 
EnableDestruction and SeflDestruction are 
defined to represent, respectively, the enabling of 
the destruction and the actual self-destruction of 
the vehicle.  
The co-operative action EnableDestruction, 
describes the interacting behavior of the 
components of the destruction system that 
enables the self-destruction of the vehicle. The 
normal behavior of EnableDestruction includes 
the pre-condition for the components of the 
system to enter the co-operative action: the 
safety operator enables the destruction of the 
system. The operation associated with this co-
operative action: the safety box enables the 
destruction, 5 seconds after the rupture of the 
umbilical, once the operator enables the 
destruction of the system. The post-condition for 
the components of the system to leave the co-
operative action: the destruction is inhibited by 

the safety box, or the vehicle is destroyed. The 
description of the failure behavior includes two 
conditions. A commission fault, when the 
destruction of the vehicle is enabled during the 
pre-launching and initial phases, and an omission 
fault, when the destruction is not enabled during 
the intermediate phases I and II. 
The co-operative action SelfDestruction 
describes the behavior of the components for the 
self-destruction of the vehicle. The description of 
the normal behavior of the co-operative action 
includes the pre-condition to the system 
components enter in the co-operative action: 
enabling of the destruction by the SafetyBox. 
The invariant that establishes the condition that 
should hold during the execution of the co-
operative action: the destruction is enabled by 
the SafetyBox. The operation associated with 
this co-operative action: the ProtectionSystem 
should destroy the vehicle when the vehicle 
leaves the protected region (PR), thus violating 
the safety plan. The post-condition for the 
components of the system to leave the co-
operative action: the destruction of the vehicle is 
disabled or the vehicle is destroyed. There is a 
commission fault 
(commission1_SelfDestruction) related to 
hazard_A when the SelfDestruction is 
operational: Vehicle is either in pre-launching or 
initial phases of the flight, and the 
ProtectionSystem activates the destruction of 
the Vehicle. There is another commission fault 
(commission2_SelfDestruction) related to the 
violation of the missionRequirement when 
during the intermediate phases of the flight: the 
SelfDestruction is operational, the flight 
trajectory of the Vehicle is not outside the safety 
plan, but the ProtectionSystem activates the 
destruction. There is an omission fault 
(omission_selfDestruction) related to 
hazard_B when during the intermediate phases 
of the flight: the SelfDestruction is operational, 
the flight trajectory of the Vehicle is outside the 
safety plan, but the ProtectionSystem does not 
activate the destruction. 
 

Model Checking 
 

The safety analysis of the architectural 
representation should confirm that the combined 
co-operative behavior of the system CO actions 
is able to maintain the system safety. In the 
proposed approach, model checking, a formal 
verification technique based on state exploration  
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Figure 2 – CO action diagram of RemoteDestruction and SelfDestruction 

 
has been employed for obtaining evidence that 
system safety is not violated. 
While the normal behavior of the system is 
expressed as state transitions, the failure 
behavior is specified as reachability and 
invariance properties corresponding to failure 
behaviors of the CO actions. Given a state 
transition system and a property, model checking 
algorithms exhaustedly explore the state space to 
determine whether the system satisfies the 
property. The result is either a claim that the 
property is true or a counter-example in terms of 
a sequence of states that falsifies a property. 
The model checker employed for performing the 
verification of the CO action behavioral 
specification is UPPAAL, an automated tool for 
the analysis of real-time systems (ref. 5). The 
model checker in UPPAAL can check 
reachability and invariance properties of Boolean 
combination of automata locations, and clocks 
and integers constraints. E<>φ expresses the 
possibility of reaching a state satisfying φ, which 
might be of the form  “φ is guaranteed to hold 
within time t” and may be used to verify that an 
expected situation occurs within a specified time 
bound. Dually, A[]φ expresses invariance of φ, 
which might be of the “φ is always true” and 
may be used to verify that certain situations 
never occur. The safety properties to be 
confirmed are obtained from the specification of 
failure behavior of a CO action. 
The system context for conducting the safety 
analysis of the self-destruction system consists of 
the automata presented in figure 3: 
EnableDestruction and SelfDestruction. In the 
EnableDestruction automaton, the destruction 
of the vehicle will be enabled after the safety 
operator enables the system destruction 
(v_sb_safeDest) and the safety box also 

enables the destruction, five seconds after the 
rupture of the umbilical (v_sb_enDest). In the 
selfDestruction automaton, if the destruction is 
enabled (v_sb_enDest) and the component 
trajectory detects that the flight trajectory of the 
vehicle is outside the safety plan (v_outsideSP), 
the protection system will activate the 
destruction of the vehicle (v_ps_actDest). 
Besides these two automata, other automata were 
constructed for representing the flight phases, the 
safety operator and the safety plan.  
For the analysis of the safety properties of the 
destruction system, the first step was to check 
using UPPAAL queries whether the normal 
behavior of SelfDestruction would not violate 
its safe behavior. The next step was to check 
whether the combined behavior of CO actions 
EnableDestruction and SelfDestruction is able 
to maintain the safety of the VS-40X, as we have 
already checked for the RemoteDestruction 
system. After making the co-operative model of 
the self-destruction system, we proceed with the 
verification of the safety properties using the 
UPPAAL model checker. We identified the 
following properties that would be satisfied 
during the process of model checking: 
 
•  A[] not ((FP.FP0 or FP.FP1 or FP.FP2) 
and v_destroyed==1) 
•  A[] not ((FP.FP0 or FP.FP1 or FP.FP2) 
and v_ps_actDest==1) 
•  A[] not ((FP.FP0 or FP.FP1 or FP.FP2) 
and ED.v_sb_enDest==1) 
•  E<> not ((FP.FP3 or FP.FP4) and 
(v_outsideSP==1 and v_destroyed==0) 
•  E<> not ((FP.FP3 or FP.FP4) and 
(v_tr_outsideSP==1 and v_ps_actDest==0) 
•  E<> not ((FP.FP3 or FP.FP4) and 
ED.v_sb_enDest==0) 



Figure 3 - Hybrid automata of EnableDestruction and SelfDestruction 
 

•  A[] not (FP.FP3 or FP.FP4) and 
(v_tr_outsideSP==0 and v_ps_actDest==1). 
Using the UPPAAL model checker, we have 
confirmed that the invariance and reachability 
properties associated with all CO actions were 
satisfied, that is, every automata model of the 
CO actions is able to maintain its associated 
safety behavior. Also we checked that the 
System as a whole was able to maintain its safe 
behavior. 
 

Diversity in the Safety Arguments 
 

A typical approach for the application of model 
checking to safety analysis is: the property model 
to represent the safety property that the system 
has to satisfy, usually associated with the 
negation of the system hazard, and the 
operational model to represent the system being 
designed, including the possible failures of the 
components of the system. For model checking 
to be effective as a safety analysis technique, it 
should support risk reduction and provide 
evidence for safety (ref. 2). In terms of risk 
reduction, model checking can identify the 
possible causes for the violation of the properties 
associated with the model. Once these causes are 
identified the model can be modified to eliminate 
or mitigate the risk (if both the property and 
model cannot be modified then risk remains 
unchanged). In terms of evidence, model 

checking can show that despite failures in the 
components of the system, the safety properties 
of the system are not affected (or if affected the 
risk associated with the failures is acceptable). 
As with any modeling technique, the confidence 
that can be attributed to the results obtained from 
model checking is dependent on the accuracy of 
the models, hence property and operational 
models should be validated to confirm they are 
accurate representations of the actual system. 
Although it is relatively easy to check whether 
the operational model satisfies the specified 
properties, there are several error sources in the 
process of modeling. For example, either the 
property or operational models might have a mis-
representation (inappropriate parameter which 
defines states/transitions of the automata, or 
flawed initial conditions) that allows a property 
to be confirmed for the model despite it being 
inappropriate for the real system. In particular, 
an analogy can be made with testing when 
applying model checking as a safety analysis 
technique: model checking is able to confirm the 
presence of faults in the model, but not their 
absence. Moreover, while testing is able to probe 
the actual product being developed, model 
checking is only restricted to probe a 
representation of the actual product. Hence, 
additional assurance should be provided that 
either the model being checked is an accurate 
representation of the system, or that all the 



exposed inaccuracies between the model and the 
actual system do not impact system safety. 

In this paper we claim that model checking is an 
effective technique when used in addition with  

 

Figure 4 - Fault Tree of SelfDestruction 
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other safety analysis techniques for conducting 
the safety analysis of VS-40X destruction 
system, because these techniques can provide 
means for validating the operational and property 
models of the actual system. In the following, we 
proceed to perform the safety analysis of the 
destruction system of the VS-40X, in particular 
the SelfDestruction, using deductive and 
inductive safety analysis techniques. The 
exercise consisted of obtaining the fault and 
event trees of the co-operative architecture of the 
SelfDestruction. The outcome of this analysis is 
then used to substantiate the analysis performed 
using model checking by validating its 
operational and property models, according with 
the following guidelines: check whether the 
component failures related with the primary 
events are capture in the extended timed 
automata representation, check whether the 
invariance and reachability formula captures all 
the expected failure behaviors of the system, and 
check whether the automata traces of the model 
checking counter-example that falsifies a safety 
property are equivalent to the sequence of events 
in a event tree. 
 
Fault-Tree Analysis (FTA):  The goal of this 
technique is to determine the causes for the 
occurrence of an undesirable event, which in the 
safety analysis is related to a hazard. This 
technique, through a deductive approach, starts 
from a system hazard and searches backward the 
faults of the system that could cause this hazard.  
In the FTA of the VS-40X destruction system we 
identified the following top events and their 
respective primary events (figure 4): 
•  During the pre-launching or initial phases, 
the destruction is enabled AND the protection 
system activates the destruction of the vehicle 
(commission fault 1): system protection failure 
AND (safety box failure OR operator console 
failure OR failure in disconnection of the 
umbilical; 
•  During the Intermediate I and II phases, the 
vehicle violates the safety plan, but the 
destruction is not activated (omission fault 2): 
system protection failure OR IRS failure OR 
flight trajectory calculation failure OR safety box 
failure OR operator console failure OR failure in 
disconnection of the umbilical; 
•   During the Intermediate I and II phases, the 
vehicle is inside the safety plan, but the 
destruction is activated (commission fault 2): 
system protection failure OR IRS failure OR 
flight trajectory calculation failure. 

Initially, we have checked whether the primary 
events were captured by the automata model, and 
the top events by the property model. For 
example, the third fault listed above was 
represented as a condition that cannot be reached 
by the system, if safety has to be maintained. The 
fault tree allows representing the combination of 
faults that could lead the system to enter a hazard 
state. This process helps the safety analyst to 
understand the causes of possible failures, thus 
allowing the models to be improved.  
 
Event-Tree Analysis (ETA):  This technique uses 
forward search to identify the various possible 
outcomes of a given initiating event, determining 
all sequences of events that could follow it. This 
technique was applied to the self-destruction 
system of VS-40X (figure 5) to identify the 
sequence of events that could lead to the 
violation of a mission or safety requirements, as 
previously stated: 
•  Enable destruction fault - protection system 
activates the destruction AND the trajectory OR 
IRS fails; 
•  Vehicle is not destroyed when it is outside 
the safety plan - IRS fails OR trajectory fails  OR 
protection system fails (by not destroying the 
vehicle); 
•  Vehicle is destroyed when it is inside the 
safety plan - IRS fails OR trajectory fails OR 
protection system fails (by destroying the 
vehicle). 
With the event tree analysis, we have checked 
whether the automata traces of the counter-
example that falsifies a safety property are 
equivalent to the sequence of events in an event 
tree. That is, we evaluated the sequence of events 
that leads to a system failure, identified as safety 
property that would not be satisfied in the model 
checking, and then check if the transitions 
between the states of the automata model that 
falsifies the safety property are equivalent to this 
sequence. 

After conducting the cross checking of the 
models according to the guidelines previously 
identified, we have concluded that models used 
by model checking, and their associated 
assumptions, were an accurate representation of 
the SelfDestruction system. The evidence that 
the automated destruction system 
(SelfDestruction) was able to maintain the 
safety and mission requirements of the sounding 
rocket VS-40X was based on a set diverse safety 
arguments obtained from the different analysis 
performed. 



 
Figure 5 - Event Tree of CO Enable Destruction 

 
 

Conclusions 
 

This paper has presented the use of different 
techniques for the purpose of obtaining diverse 
safety arguments in the provision of evidence 
that the safety of the system cannot be violated. 
Instead of relying solely on laborious deductive 
or inductive safety analysis techniques, we 
argued that alternative techniques, such as model 
checking, should be used because they are 
tailored for analyzing highly complex systems. 
However, the novelty in using this technique in 
safety analysis and the non-existence of a well-
trusted process for its application requires 
additional evidence to be produced in order to 
avoid the risk of obtaining false confidence.  
The approach being proposed employs both 
model checking and more traditional safety 
analysis techniques. However, instead of relying 
on the former for obtaining assurance about the 
integrity of the system, we have used fault and 
event tress to complement the outcome of the 
safety analysis based model checking. The 
outcome of combining model checking and fault 
tree analysis allows to check whether the 
component failures related with the primary 
events are capture in the extended timed 
automata representation, and whether the 
reachability formula captures all the expected 
failure behaviors of the system. The outcome of 
combining model checking and event tree 
analysis allows checking whether the automata 
traces of the counter-example that falsifies a 
safety property are equivalent to the sequence of 
events in a event tree. The feasibility of the 
proposed approach was demonstrated through 
the specification and verification of the 
destruction system of a sounding rocket. The 
combine use of model checking, fault and event 

tree analysis has provided qualitative evidence 
that safety properties of the destruction system 
are maintained. 
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