
Diversity of Safety Arguments in the Validation of a Sounding Rocket Destruction System

M. A. D. Abdala; Institute of Aeronautics and Space; S. J. Campos, S. Paulo, Brazil

C. Lahoz; Institute of Aeronautics and Space; S. J. Campos, S. Paulo, Brazil

R. de Lemos, Ph.D.; Computing Laboratory, University of Kent at Canterbury, UK

Keywords: safety analysis, safety arguments, model checking, sounding rockets

Abstract

This work describes an approach for the
validation of a software system responsible for
the destruction of the sounding rocket VS-40X.
The process of validation uses three different
techniques ranging from the automatic state
exploration to the laborious failure analysis. The
purpose of the exercise was to obtain diverse
arguments in the provision of evidence that the
safety properties of the sounding rocket
destruction system are always maintained. The
software system is modeled using a co-operative
architecture, which contains abstractions for
modeling and analyzing the interactions between
components. The safety analysis is performed
using model checking, a technique that
exhaustedly explores the state space to determine
whether the system satisfies a safety property.
The combination of co-operative architectures
and model checking has shown effective when
modeling and analyzing the interactive behavior
between components. However, caution must be
taken over the (false) confidence that can be
obtained when employing solely model checking
for the safety analysis. In order to compensate
this deficiency we have to seek diverse sources
of evidence to build trustworthy arguments about
the safety of the system. The model checking
was substantiated using laborious deductive and
inductive analysis techniques.

Introduction

Safety analysis is a process that evaluates a
critical system for determining whether the risk
associated with the system is acceptable. The
utilization of manually based safety analysis
techniques, such as Fault Tree Analysis, Event
Tree Analysis, or their variants, has shown not to
be effective when performing the safety analysis
of complex software intensive systems. Instead,
alternative techniques, such as model checking,
should be employed since they are tailored for
analyzing highly complex systems.

Model checking automated tools might be
effective in dealing with some of the inherent
complexities of software based systems, for
example dependencies of many failure modes of
system components (ref. 1). However, for
increasing the effectiveness of these tools
support must be provided to enable the analyst to
understand the rationale behind key safety-
related decisions. Also, in order to reduce the
risk of obtaining false confidence, the application
of automated tools should be supported by a
deductive and inductive analysis of the formal
models subjected to automated analysis. In this
paper, we present an approach in which
traditional safety analysis techniques were used
for validating the formal models required for the
process of model checking. This work was
performed in the context of the destruction
system of the sounding rocket VS-40X, and
consisted in replacing an existing remote
destruction system for a self-destructing one. The
latter would be essentially based on software,
hence the need for providing evidence that its
associated risk was acceptable. The evidence
discussed in this paper is essentially qualitative
rather than quantitative, and the criteria used for
assessing the risk of the self-destruction system
were obtained by the outcome of the safety
analysis performed on the existing system.
The starting point of our approach was to model
both systems in terms of a co-operative
architecture, which is based on an architectural
notation that is amiable in reducing the impact of
change. That is, instead of building rather
different models for an evolving system, we have
chosen to employ modeling abstractions that are
able to represent those aspects of a system that
are more prone to changes. The utilization of the
co-operative architecture for modeling the VS-
40X destruction system has shown to provide the
appropriate abstractions for performing safety
analysis during the initial stages of the software
design. This includes the identification of faults
associated with the violation of safety
specifications, and provision of evidence using
model checking that the system behavior is safe

(ref. 2). The confidence in using a co-operative
architecture for modeling and analyzing a critical
system was validated as described in reference 3.
The aim of this paper is to devise an approach
based on model checking and other safety
analysis techniques that would allow to obtain
diverse safety arguments for the provision of
confidence that the risk of the new destruction
system is acceptable. For that, laborious
deductive and inductive analysis techniques were
used in addition to model checking for
performing the safety analysis of the co-
operative architecture of the VS-40X destruction
system. This safety evaluation was performed for
two different destruction systems: remote
destruction and self-destruction. The outcome of
the safety analysis of the former was used as
criteria to evaluate the safety of the latter. For the
sake of brevity, we will present in this paper only
the results of the evaluation process for the self-
destruction system.
The rest of this paper is organized as follows. In
section 2, the destruction system of VS-40X
sounding rocket is described. In the section 3, we
present the co-operative architecture of the self-
destruction system. The results of the model
checking of the co-operative architecture of the
self-destruction system are presented in the
section 4. In section 5, we present how deductive
and inductive safety analysis techniques can be
employed to provide diverse safety arguments.
Finally, in the section 6, we summarize this work
and provide some concluding remarks.

VS-40X Sounding Rocket Destruction System

The VS-40X Sounding Rocket: The VS-40X is
a two stages sounding rocket that has a dual
purpose within the Brazilian Space Program: in
addition of performing scientific experiments, it
will be also used as an experimental platform for
the new equipment of the Brazilian Satellite
Launcher (VLS). Currently, a safety operator
destroys the rocket remotely, but the intention is
to replace it with an automatic system for its self-
destruction.
The flight of the VS-40X comprises the
following phases: pre-launching, which starts
with the beginning of the counting down until
the instant in which there was the disconnection
of the umbilical; initial, which is when the
vehicle is in free evolution over the launch
platform; intermediate (I and II), which
comprises the interval initiating 5 seconds after
the vehicle launching until the end of the

propelled phase; and final, which starts with the
ballistic flight until the end of the flight.

Mission and Safety Requirements of the VS-40X
Sounding Rocket: Among the several mission
requirements of the vehicle, in this work we
consider the one that can influence, or to be
influenced by the safety requirements, which is:
• The vehicle should not be destroyed under
normal conditions during the flight.
The safety requirements of the VS-40X ensures
the non-violation of the integrity of the
environment of the vehicle, which is concerned
with the potential damages to property and loss
of lives when there is a system failure.
Depending on the phase of the flight and of the
trajectory of the vehicle, we identify two
accidents:
• An inadvertent destruction of the vehicle
during pre-launching or the initial flight instants
can cause damages to the launching installations,
injuries or loss of lives;
• During the rest of the trajectory, the fall of
debris, after a failure in the behavior of the
vehicle, can cause damages to property, injuries
or loss of lives.
There are two hazards (hazard_A and
hazard_B, respectively) associated with the
above two accidents:
• During the pre-launching and initial phases
of the flight, there is a destruction of the vehicle;
• During the intermediate phases of the flight,
the projection of the point of impact (PPI), of the
vehicle’s trajectory crosses the limit line of
impact (LLI) and reaches the protected region
(PR).
Based on the above hazards, we specify the
following safety requirements for the destruction
system of the VS-40X:
• The destruction of the vehicle should be
disabled during the pre-launching and initial
phases;
• The vehicle should be destroyed during the
intermediate phases of the flight, once the
trajectory of the vehicle violates the safety plan.

Destruction System of the VS-40X: Currently,
the destruction system of the VS-40X is based
essentially in the remote destruction: the safety
operator is responsible for the activation of the
destruction of the vehicle when there is a
violation of the safety requirements.
However, the remote destruction system has
some disadvantages: the information supplied by
the radar can be imprecise depending on several

problems related with tracing; the system is
vulnerable and of difficult operation and
maintenance; and pressures from the
organization, or even emotional reasons, can
make the safety operator to delay the remote
destruction of the vehicle. Although the existing
system is appropriate for simple launching
vehicles, the idea is to employ the VS-40X as
experimental platform for the self-destruction
system for more sophisticated vehicles, such as,
the satellite launcher.

Requirements for the Self-Destruction: The self-
destruction system, without the aid of the safety
operator, automatically destroys the vehicle
whenever the safety requirements of the VS-40X
are violated. The decision and command to
destroy the vehicle are generated by the
embedded protection system, which is enabled at
the beginning of the intermediate phase of the
flight. The components involved in the self-
destruction are the protection system, the inertial
reference system (IRS), and the trajectory
calculation system.
During the intermediate phases of the flight, the
data obtained by IRS are used to calculate the
trajectory of the vehicle. This calculation allows
the protection system to determine whether the
vehicle should be destroyed when there is a
violation of the flight safety plan.

Co-operative Architectural Style

Architectural structures for systems tend to
abstract away from the details of a system, but
assist in understanding broader system-level

concerns (ref. 4). This is achieved by employing
architectural styles that are appropriate for
describing the software components, the
interactions between these components, and the
properties that regulate the composition of
components. The co-operative architectural style
adopts basic features of object-orientation, in
which components are represented as classes and
connectors as co-operative actions (CO actions).
The instantiation of these abstractions are
respectively, objects and co-operations. Objects
are able to participate in several co-operations
through the different roles that they are able to
play while co-operations co-ordinate the
interactions between the objects through the
roles that objects play. The behavior of both
objects and co-operations is described in terms of
properties that have to be maintained for the
system to provide the required services. The
architectural elements of the co-operative style
are classes as the basic components, and co-
operative actions (CO actions) as the basic
connectors. Co-operative actions (CO actions)
were introduced as entities for modeling
interactions between classes that characterize
collaborative behavior. For describing the
architecture of a software system, two different
diagrams are employed: a class diagram
describing the relationships between
components, and a CO action diagram
describing the relationships between connectors.
These diagrams provide a compact
representation of the software system, which can
be completed with a more detailed textual
description.

VS-40X System

SafetyOperatorOperatorConsole Vehicle

SISGRAF Trajectory SafetyBox

ProtectionSystem RemoteControl

Figure 1 - Class diagram of the destruction system

The Co-operative Architecture of the VS-40X

The integrity of using the co-operative
architecture for the modeling and analysis of
critical systems was demonstrated in reference 3.
That work presented an evaluation of the co-
operative architecture of the remote destruction.
A distinct feature of this approach compared
with an object-oriented one is that focus is given
to the behavior of the interactions between
components, rather than on the components
themselves. The evaluation of the approach was
performed by comparing the minimal cut sets of
the fault tree diagrams obtained from the natural
language specification of the system and the
corresponding co-operative object-oriented
model.
In the following, we present the co-operative
architecture of the self-destruction system of the
VS-40X. In the class diagram of figure 1, the
three basic components of the VS-40X System
are the SafetyOperator, OperatorConsole, and
Vehicle. In terms of the self-destruction system,
the relevant components of the VS-40X are:
SafetyBox that provides the protection
mechanism to avoid the unintentional destruction
of the vehicle during the pre-launching and
initial phases of the flight; Trajectory that
calculates the flight trajectory of the vehicle
based on information provided by the Inertial
Reference System (IRS); and the
ProtectionSystem that establishes whether the
flight safety plan has been violated.
The diagram of figure 2 shows the CO actions
associated with the remote and self-destruction
systems of the VS-40X. The CO actions
EnableDestruction and SeflDestruction are
defined to represent, respectively, the enabling of
the destruction and the actual self-destruction of
the vehicle.
The co-operative action EnableDestruction,
describes the interacting behavior of the
components of the destruction system that
enables the self-destruction of the vehicle. The
normal behavior of EnableDestruction includes
the pre-condition for the components of the
system to enter the co-operative action: the
safety operator enables the destruction of the
system. The operation associated with this co-
operative action: the safety box enables the
destruction, 5 seconds after the rupture of the
umbilical, once the operator enables the
destruction of the system. The post-condition for
the components of the system to leave the co-
operative action: the destruction is inhibited by

the safety box, or the vehicle is destroyed. The
description of the failure behavior includes two
conditions. A commission fault, when the
destruction of the vehicle is enabled during the
pre-launching and initial phases, and an omission
fault, when the destruction is not enabled during
the intermediate phases I and II.
The co-operative action SelfDestruction
describes the behavior of the components for the
self-destruction of the vehicle. The description of
the normal behavior of the co-operative action
includes the pre-condition to the system
components enter in the co-operative action:
enabling of the destruction by the SafetyBox.
The invariant that establishes the condition that
should hold during the execution of the co-
operative action: the destruction is enabled by
the SafetyBox. The operation associated with
this co-operative action: the ProtectionSystem
should destroy the vehicle when the vehicle
leaves the protected region (PR), thus violating
the safety plan. The post-condition for the
components of the system to leave the co-
operative action: the destruction of the vehicle is
disabled or the vehicle is destroyed. There is a
commission fault
(commission1_SelfDestruction) related to
hazard_A when the SelfDestruction is
operational: Vehicle is either in pre-launching or
initial phases of the flight, and the
ProtectionSystem activates the destruction of
the Vehicle. There is another commission fault
(commission2_SelfDestruction) related to the
violation of the missionRequirement when
during the intermediate phases of the flight: the
SelfDestruction is operational, the flight
trajectory of the Vehicle is not outside the safety
plan, but the ProtectionSystem activates the
destruction. There is an omission fault
(omission_selfDestruction) related to
hazard_B when during the intermediate phases
of the flight: the SelfDestruction is operational,
the flight trajectory of the Vehicle is outside the
safety plan, but the ProtectionSystem does not
activate the destruction.

Model Checking

The safety analysis of the architectural
representation should confirm that the combined
co-operative behavior of the system CO actions
is able to maintain the system safety. In the
proposed approach, model checking, a formal
verification technique based on state exploration

(i) Remote destruction
(ii) Self destruction

SafetyOperator
OperatorConsole
Vehicle

DestructionSystem

OperatorConsole
Vehicle
V.SafetyBox

EnableDestruction

SafetyOperator
OperatorConsole
Vehicle

DestructionSystem

OperatorConsole
Vehicle
V.SafetyBox

EnableDestruction

SafetyOperator
OC.SISGRAF
Vehicle
V.SafetyBox
V.RemoteControl

RemoteDestruction

Vehicle
V.SafetyBox
V.Trajectory
V.ProtectionSystem

SelfDestruction

Figure 2 – CO action diagram of RemoteDestruction and SelfDestruction

has been employed for obtaining evidence that
system safety is not violated.
While the normal behavior of the system is
expressed as state transitions, the failure
behavior is specified as reachability and
invariance properties corresponding to failure
behaviors of the CO actions. Given a state
transition system and a property, model checking
algorithms exhaustedly explore the state space to
determine whether the system satisfies the
property. The result is either a claim that the
property is true or a counter-example in terms of
a sequence of states that falsifies a property.
The model checker employed for performing the
verification of the CO action behavioral
specification is UPPAAL, an automated tool for
the analysis of real-time systems (ref. 5). The
model checker in UPPAAL can check
reachability and invariance properties of Boolean
combination of automata locations, and clocks
and integers constraints. E<>φ expresses the
possibility of reaching a state satisfying φ, which
might be of the form “φ is guaranteed to hold
within time t” and may be used to verify that an
expected situation occurs within a specified time
bound. Dually, A[]φ expresses invariance of φ,
which might be of the “φ is always true” and
may be used to verify that certain situations
never occur. The safety properties to be
confirmed are obtained from the specification of
failure behavior of a CO action.
The system context for conducting the safety
analysis of the self-destruction system consists of
the automata presented in figure 3:
EnableDestruction and SelfDestruction. In the
EnableDestruction automaton, the destruction
of the vehicle will be enabled after the safety
operator enables the system destruction
(v_sb_safeDest) and the safety box also

enables the destruction, five seconds after the
rupture of the umbilical (v_sb_enDest). In the
selfDestruction automaton, if the destruction is
enabled (v_sb_enDest) and the component
trajectory detects that the flight trajectory of the
vehicle is outside the safety plan (v_outsideSP),
the protection system will activate the
destruction of the vehicle (v_ps_actDest).
Besides these two automata, other automata were
constructed for representing the flight phases, the
safety operator and the safety plan.
For the analysis of the safety properties of the
destruction system, the first step was to check
using UPPAAL queries whether the normal
behavior of SelfDestruction would not violate
its safe behavior. The next step was to check
whether the combined behavior of CO actions
EnableDestruction and SelfDestruction is able
to maintain the safety of the VS-40X, as we have
already checked for the RemoteDestruction
system. After making the co-operative model of
the self-destruction system, we proceed with the
verification of the safety properties using the
UPPAAL model checker. We identified the
following properties that would be satisfied
during the process of model checking:

• A[] not ((FP.FP0 or FP.FP1 or FP.FP2)
and v_destroyed==1)
• A[] not ((FP.FP0 or FP.FP1 or FP.FP2)
and v_ps_actDest==1)
• A[] not ((FP.FP0 or FP.FP1 or FP.FP2)
and ED.v_sb_enDest==1)
• E<> not ((FP.FP3 or FP.FP4) and
(v_outsideSP==1 and v_destroyed==0)
• E<> not ((FP.FP3 or FP.FP4) and
(v_tr_outsideSP==1 and v_ps_actDest==0)
• E<> not ((FP.FP3 or FP.FP4) and
ED.v_sb_enDest==0)

Figure 3 - Hybrid automata of EnableDestruction and SelfDestruction

• A[] not (FP.FP3 or FP.FP4) and
(v_tr_outsideSP==0 and v_ps_actDest==1).
Using the UPPAAL model checker, we have
confirmed that the invariance and reachability
properties associated with all CO actions were
satisfied, that is, every automata model of the
CO actions is able to maintain its associated
safety behavior. Also we checked that the
System as a whole was able to maintain its safe
behavior.

Diversity in the Safety Arguments

A typical approach for the application of model
checking to safety analysis is: the property model
to represent the safety property that the system
has to satisfy, usually associated with the
negation of the system hazard, and the
operational model to represent the system being
designed, including the possible failures of the
components of the system. For model checking
to be effective as a safety analysis technique, it
should support risk reduction and provide
evidence for safety (ref. 2). In terms of risk
reduction, model checking can identify the
possible causes for the violation of the properties
associated with the model. Once these causes are
identified the model can be modified to eliminate
or mitigate the risk (if both the property and
model cannot be modified then risk remains
unchanged). In terms of evidence, model

checking can show that despite failures in the
components of the system, the safety properties
of the system are not affected (or if affected the
risk associated with the failures is acceptable).
As with any modeling technique, the confidence
that can be attributed to the results obtained from
model checking is dependent on the accuracy of
the models, hence property and operational
models should be validated to confirm they are
accurate representations of the actual system.
Although it is relatively easy to check whether
the operational model satisfies the specified
properties, there are several error sources in the
process of modeling. For example, either the
property or operational models might have a mis-
representation (inappropriate parameter which
defines states/transitions of the automata, or
flawed initial conditions) that allows a property
to be confirmed for the model despite it being
inappropriate for the real system. In particular,
an analogy can be made with testing when
applying model checking as a safety analysis
technique: model checking is able to confirm the
presence of faults in the model, but not their
absence. Moreover, while testing is able to probe
the actual product being developed, model
checking is only restricted to probe a
representation of the actual product. Hence,
additional assurance should be provided that
either the model being checked is an accurate
representation of the system, or that all the

exposed inaccuracies between the model and the
actual system do not impact system safety.

In this paper we claim that model checking is an
effective technique when used in addition with

Figure 4 - Fault Tree of SelfDestruction

self destruction
failure
G1

commission fault 1:
during the pre-launching or initial

phases, the destruction is enabled
and the protection system activate

the destruction of the vehicle
G2

the destruction is
enabled

and the protection
system activate the

destruction of the vehicle
G4

system protection
failure

1

commission fault:
the destruction is

enabled by a
equipament failure

G5

damages to property,
injuries or loss of lives
due to the fall of debris

G0

failure in
desconection

of the umbilical
4

operator
console
failure

 3

safety box
failure

2

failure in the
safety box entries

G6

pre-launching, initial
phases

G7

omission fault:
during the Intermediate I and II phases ,
 the vehicle violated the safety plan, but

the destruction is not activated
G3

 the vehicle violated
the safety plan, but

the destruction is not
activated

G4

the vehicle
violated the
safety plan

6

the destruction
is not activated

G5

omission fault :
the destruction of the
vehicle is not enabled

in tdelay >= 5s

G6

equipaments sign that
the vehicle is inside the

safety plan
G7

IRS
failure

7

flight trajectory
calculation

failure
8

safety box
failure

2

operator
console
failure

3

failure in
desconection

of the umbilical
4

 Intermediate I and II
phases

G8

system
protection

failure
1

other safety analysis techniques for conducting
the safety analysis of VS-40X destruction
system, because these techniques can provide
means for validating the operational and property
models of the actual system. In the following, we
proceed to perform the safety analysis of the
destruction system of the VS-40X, in particular
the SelfDestruction, using deductive and
inductive safety analysis techniques. The
exercise consisted of obtaining the fault and
event trees of the co-operative architecture of the
SelfDestruction. The outcome of this analysis is
then used to substantiate the analysis performed
using model checking by validating its
operational and property models, according with
the following guidelines: check whether the
component failures related with the primary
events are capture in the extended timed
automata representation, check whether the
invariance and reachability formula captures all
the expected failure behaviors of the system, and
check whether the automata traces of the model
checking counter-example that falsifies a safety
property are equivalent to the sequence of events
in a event tree.

Fault-Tree Analysis (FTA): The goal of this
technique is to determine the causes for the
occurrence of an undesirable event, which in the
safety analysis is related to a hazard. This
technique, through a deductive approach, starts
from a system hazard and searches backward the
faults of the system that could cause this hazard.
In the FTA of the VS-40X destruction system we
identified the following top events and their
respective primary events (figure 4):
• During the pre-launching or initial phases,
the destruction is enabled AND the protection
system activates the destruction of the vehicle
(commission fault 1): system protection failure
AND (safety box failure OR operator console
failure OR failure in disconnection of the
umbilical;
• During the Intermediate I and II phases, the
vehicle violates the safety plan, but the
destruction is not activated (omission fault 2):
system protection failure OR IRS failure OR
flight trajectory calculation failure OR safety box
failure OR operator console failure OR failure in
disconnection of the umbilical;
• During the Intermediate I and II phases, the
vehicle is inside the safety plan, but the
destruction is activated (commission fault 2):
system protection failure OR IRS failure OR
flight trajectory calculation failure.

Initially, we have checked whether the primary
events were captured by the automata model, and
the top events by the property model. For
example, the third fault listed above was
represented as a condition that cannot be reached
by the system, if safety has to be maintained. The
fault tree allows representing the combination of
faults that could lead the system to enter a hazard
state. This process helps the safety analyst to
understand the causes of possible failures, thus
allowing the models to be improved.

Event-Tree Analysis (ETA): This technique uses
forward search to identify the various possible
outcomes of a given initiating event, determining
all sequences of events that could follow it. This
technique was applied to the self-destruction
system of VS-40X (figure 5) to identify the
sequence of events that could lead to the
violation of a mission or safety requirements, as
previously stated:
• Enable destruction fault - protection system
activates the destruction AND the trajectory OR
IRS fails;
• Vehicle is not destroyed when it is outside
the safety plan - IRS fails OR trajectory fails OR
protection system fails (by not destroying the
vehicle);
• Vehicle is destroyed when it is inside the
safety plan - IRS fails OR trajectory fails OR
protection system fails (by destroying the
vehicle).
With the event tree analysis, we have checked
whether the automata traces of the counter-
example that falsifies a safety property are
equivalent to the sequence of events in an event
tree. That is, we evaluated the sequence of events
that leads to a system failure, identified as safety
property that would not be satisfied in the model
checking, and then check if the transitions
between the states of the automata model that
falsifies the safety property are equivalent to this
sequence.

After conducting the cross checking of the
models according to the guidelines previously
identified, we have concluded that models used
by model checking, and their associated
assumptions, were an accurate representation of
the SelfDestruction system. The evidence that
the automated destruction system
(SelfDestruction) was able to maintain the
safety and mission requirements of the sounding
rocket VS-40X was based on a set diverse safety
arguments obtained from the different analysis
performed.

Figure 5 - Event Tree of CO Enable Destruction

Conclusions

This paper has presented the use of different
techniques for the purpose of obtaining diverse
safety arguments in the provision of evidence
that the safety of the system cannot be violated.
Instead of relying solely on laborious deductive
or inductive safety analysis techniques, we
argued that alternative techniques, such as model
checking, should be used because they are
tailored for analyzing highly complex systems.
However, the novelty in using this technique in
safety analysis and the non-existence of a well-
trusted process for its application requires
additional evidence to be produced in order to
avoid the risk of obtaining false confidence.
The approach being proposed employs both
model checking and more traditional safety
analysis techniques. However, instead of relying
on the former for obtaining assurance about the
integrity of the system, we have used fault and
event tress to complement the outcome of the
safety analysis based model checking. The
outcome of combining model checking and fault
tree analysis allows to check whether the
component failures related with the primary
events are capture in the extended timed
automata representation, and whether the
reachability formula captures all the expected
failure behaviors of the system. The outcome of
combining model checking and event tree
analysis allows checking whether the automata
traces of the counter-example that falsifies a
safety property are equivalent to the sequence of
events in a event tree. The feasibility of the
proposed approach was demonstrated through
the specification and verification of the
destruction system of a sounding rocket. The
combine use of model checking, fault and event

tree analysis has provided qualitative evidence
that safety properties of the destruction system
are maintained.

Acknowledgements

The authors would like to acknowledge the
financial and logistic support of CAPES, of the
British Council, and of the Institute of
Aeronautics and Space, IAE.

References

1. A. L. Turk, S. T. Probst, and G. J. Powers.
Verification of Real Time Chemical Processing
Systems. Proceedings of the International
Workshop on Hybrid and Real-Time Systems.
Lecture Notes in Computer Science 1201. Ed. O.
Maler. Grenoble, France. March 1997. pp. 257-
272.
2. R. de Lemos, A. Saeed. Validating Formal
Verification using Safety Analysis Techniques.
Proceedings of the 18th International
Conference on Computer Safety, Reliability and
Security (SAFECOMP’99). Toulouse, France.
September, 1999. pp. 58-66.
3. C. Lahoz, M. Abdala, C. A. T. Moura, R. de
Lemos. Evaluation of Co-operative Actions in
the Safety Analysis of the Destruction System of
the Sounding Rocket VS-40X. Proc. of the
Symposium on Safety and Security of
Information Systems. São José dos Campos,
Brazil. October 2000. pp. 49-58. (In Portuguese)
4. M. Shaw, D. Garlan. Software Architectures:
Perspectives on an Emerging Discipline.
Prentice-Hall, Inc. Upper Saddle River, NJ.
1996.
5. K. G. Larsen, P. Pettersson, W. Yi. UPPAAL
in a Nutshell. International Journal on Software

fault (enabling before
specification)

protection systemCO enable
destruction

 doesn't activate the
destruction

fails and activates the
destruction

fault

failure

OK

failure

IRS trajectory
calculation

OK

OK

commission

commission

commission

Tools for Technology Transfer 1(1–2). October
1997. pp. 134–152.

Biography

M. A. D. Abdala; Technologist, Institute of
Aeronautics and Space, Pça Mal Eduardo
Gomes, 50, S. J. Campos, S. Paulo, Brazil,
telephone – (55 12) 3474968, facsimile – (+55
12) 3475019, e-mail – martha@iae.cta.br.
She is a system analyst, who has been working
for the last sixteen years for the Brazilian
government Institute of Aeronautics and Space
(IAE/CTA). She has been involved in the
development of the on-board software for the
Satellite Launch Vehicle (VLS).

C. Lahoz; Technologist, Institute of Aeronautics
and Space, Pça Mal Eduardo Gomes, 50, S. J.
Campos, S. Paulo, Brazil, telephone – (+ 55 12)
3474901, facsimile – (+55 12) 3475019, e-mail –
lahoz@iae.cta.br.
He is a system analyst, who has been working
for the last seventeen years for the Brazilian
government Institute of Aeronautics and Space
(IAE/CTA). He has been involved in the
development of the on-board software for the
Satellite Launch Vehicle (VLS).

R. de Lemos, Ph.D.; Lecturer, Computing
Laboratory, University of Kent at Canterbury,
Canterbury, Kent CT2 7NF, UK, telephone –
(+44 1227) 823628, facsimile – (+44 1227)
762811, e-mail – r.delemos@ukc.ac.uk
He is a lecturer at the University of Kent at
Canterbury since 1999, and before that he was a
senior research associate for several years at the
Centre for Software Reliability at the University
of Newcastle upon Tyne. His area of interest is
software development for safety-critical systems,
in particular, application of formal methods,
validation of formal models and integration of
requirements analysis and safety analysis.

