
draft paper

Refactoring Functional Programs

Simon Thompson and Claus Reinke
Computing Laboratory, University of Kent

ABSTRACT

Refactoring is the process of redesigning existing code without
changing its functionality. Refactoring has recently come to promi-
nence in the OO community. In this paper we explore the prospects
for refactoring functional programs.

Our paper centres on the case study of refactoring a 400 line
Haskell program written by one of our students. The case study
illustrates the type and variety of program manipulations involved
in refactoring. Similarly to other program transformations, refactor-
ings are based on program equivalences, and thus ultimately on lan-
guage semantics. In the context of functional languages, refactor-
ings can be based on existing theory and program analyses. How-
ever, the use of program transformations for program restructuring
emphasises a different kind of transformation from the more tradi-
tional derivation or optimisation: characteristically, they often re-
quire wholesale changes to a collection of modules, and although
they are best controlled by programmers, their application may re-
quire nontrivial semantic analyses.

The paper also explores the background to refactoring, provides
a taxonomy for describing refactorings and draws some conclusions
about refactoring for functional programs.

1 INTRODUCTION

Refactoring is ‘improving the design of existing code’ and as such,
it has been practised as long as programs have been written. Its key
characteristic is the focus on structural changes, strictly separated
from changes in functionality.

In his 1978 (!) ACM Turing Award Lecture [3], Robert Floyd
argued that serious programmers should spend part of their work-
ing day examining and refining their own methods: “After solving

c©-Notice

a challenging problem, I solve it again from scratch, retracing only
the insightof the earlier solution. I repeat this until the solution is
as clear and direct as I can hope for. Then I look for a general rule
for attacking similar problems, thatwouldhave led me to approach
the given problem in the most efficient way the first time.”. Iden-
tifying “paradigms of programming” in this way – and developing
support for such paradigms – would improve programmer abilities,
computer science teaching and learning, and language designs.

In practice, industrial software development projects will not be
restarted from scratch when they have already reached their prime
objective. Nevertheless, the idea of continuous design improve-
ments finally became attractive and feasible because: (a) the in-
creasing pressure of maintaining the design quality of long-living
“legacy software” in spite of large numbers of modifications, and
(b) the realisation that the necessary redesign could be achieved in
an incremental fashion, by employingprogram transformations.

Adapting program transformations originating in derivational (or
transformational) program development [1, 2] for languages with
side-effects, Griswold introduced the idea of automated program
restructuring to aid software maintenance [5, 6]. The techniques
were extended to cover object-oriented language features, and have
recently come to prominence in the OO and extreme programming
(XP) communities [4, 9] under the name ofrefactoring(http://
www.refactoring.com).

Given that functional program transformations were investigated
very early on, it is somewhat surprising to see this particular use
of program transformations almost exclusively limited to OO lan-
guages. Functional programmers might quip that the problems of
inflexible program structures are more pressing in OO languages,
triggering the need for complex program manipulation techniques
to compensate for shortcomings in the languages. OO programmers
might retort that functional programs are largely academic in nature
and rarely reach the necessary complexity or longevity to expose
this kind of problems. These positions are not obviously wrong or
right, and we have started to investigate refactoring in functional
languages, both to answer this kind of question and to make refac-
toring techniques and tools available to functional programmers.

The aims of the present paper are threefold: we want to alert the
semantics-based program manipulation community to this use of
program transformations in the OO and XP communities. Secondly,
we introduce and investigate the concepts of functional refactoring
in the context of a small case study, refactoring a 400 line student
program. Finally, we present some preliminary conclusions and
outline our approach towards improving support for refactoring in
functional languages.

1

http://www.refactoring.com
http://www.refactoring.com

2 REFACTORING

Refactorings are source-to-source program transformations that
change program structure and organisation, but not program func-
tionality. They are the source-level realisation of software re-
design. Typically, they either precede changes of program func-
tionality, by adapting program structure for the intended changes,
or they follow changes of program functionality, cleaning up the
structure of programs after a series of modifications. In either case,
changes in program structure and functionality are kept separate:
the first are complex, but should preserve functionality, so they need
not introduce any bugs, whereas the second do change functional-
ity, making it more difficult to identify potential bugs introduced in
the process, but they can be kept free of structural complexities (by
suitable refactorings).

When does refactoring arise? To take an example, we might first
program a system using an algebraic data type, and then decide
to change the way that the data are represented. How should we
proceed with this? One option is to modify thedata type directly,
that is to achieve the modification in a single step: this will require
us to make substantial modifications to a program’s functionality
andstructure simultaneously.

On the other hand, we might do the same in two stages. First
we could transform the algebraic data type into an abstract data
type (ADT), and only after thisrefactoringis done, would we mod-
ify the definition of the ADT. This two-stage transformation aims
to separate the structural changes (from algebraic to abstract data
type) from the changes in functionality. It also makes the program
more amenable to further change, as ADT representations can be
modified with no cost to the data type user.

We refactor in other situations too. We might program in an
exploratoryway: first establishing the functionality we seek, and
then refactoring into a more elegant form. Our experience leads us
to suspect that functional languages are particularly suited to this
form of programming, because their clean semantic basis makes
wholesale transformations more feasible than for a language in the
C family, say.

Finally, we might refactor tounderstandcode written by some-
one else, and this is the focus of the case study later in the paper,
where we try to understand a non-trivial student assessment written
in Haskell.

3 THE NATURE OF REFACTORING

One of the simplest refactorings renames a function to reflect its
use. We have already discussed the rather more complex refactoring
from an algebraic to an abstract data type. These examples share
two important characteristics of refactorings.

Diffuse Their effect is diffuse, in that they require changes
throughout a module and indeed throughout a system of mod-
ules. A change of function name needs to be effected at each
function call; a change from adata type to an ADT will re-
quire changes to all functions that directly manipulate the data
by pattern matching, for instance.

Bidirectional A change from a general name (e.g.f) to a more
specific one (e.g.findMaxVolume) might later be followed
by a change to a more general name (e.g.findMax).

We have discussed the change from an algebraic data type
to an ADT, but in other situations it is perfectly reasonable
to change an ADT into an algebraic type. One motivation

might be to use pattern matching, which leads to very concise
programs in an equational style.

4 SUPPORTING REFACTORING

We have seen that refactorings have a bureaucratic aspect: changes
have to be made at all sites that a function is called, for example.
With current technology we would use a text editor to assist in mak-
ing the changes, and rely on a type checker to catch any errors intro-
duced in the refactoring. OO refactorers underline the importance
of continual (re)testing of code to ensure correctness [?].

It is important to document refactorings. Fowler’s catalogue of
OO refactorings [4] explains the general ideas, opportunities and
traps. More importantly, it provides OO refactorers with guide-
lines on how practical refactoring tasks can be achieved by series of
smaller refactorings, and it documents the mechanics of individual
refactorings, helping refactorers to ensure that they have taken all
relevant aspects and potential problems into account.

Moreover, it is entirely feasible to support these refactorings in
a variety oftoolsof increasing levels of sophistication; the experi-
ence of the OO community [11] in this respect is broadly positive.
A tool could allow users to do and undo refactorings of various
sorts; it could also check the applicability of certain transforma-
tions, such as renaming or lifting. To enable complete rollback of
partially executed refactorings if any of their component steps fails,
support for transactions is needed; to ensure that refactorings are
completed and that refactorers do not lose sight of their original
goals, automatically maintained todo-lists would be helpful. More
detailed considerations of tool design are to be found in [?].

For a functional programming language one could use reasoning
to establish the correctness of many classes of refactorings. One
class of refactorings corresponds to the rules in an operational se-
mantics and thus these refactorings will be correct by definition. In
the absence of a formal semantics for Haskell one can gain sub-
stantial assurance from the intuitive semantics of the language. In
practice, refactorings will be larger, but one way of validating these
is to see them as composed of many smaller, validated refactorings.

Many refactorings have non-trivial syntactic, typing or static se-
mantic preconditions; one can expect tool support to play a role
here. On the other hand, some larger-scale refactorings rely upon
the maintenance of complex whole-program invariants, and in the
absence of full theorem-proving support one must rely upon a com-
bination of programmer intuition and extensive testing to validate
instances of these refactorings.

5 A CASE STUDY

The ideas in this paper stand or fall by how useful they prove to be
in practice: to explore this we now look at an illustrative example
of refactoring. The particular example refactors a Haskell program
designed to implement semantic tableaux for propositional logic,
written by a second year undergraduate student at the University of
Kent. The aim of the refactoring here is twofold.

• Refactoring helps the refactorer tounderstandthe program by
transforming it incrementally into a program which conforms
to their idiomatic style rather than the original programmer’s.

• Refactoring is used tosimplify the program and to make it
more amenable to change: in this case by extending it to deal
with predicate logic, say.

2

Ø((AÞC)Þ((AÚB)ÞC))

 (AÞC)
Ø((AÚB)ÞC)

 (AÚB)
 ØC

 C

 A B

1 -> 2,3

5

 Ý·

·
 ØA

3 -> 6,7
2 -> 4,5

4 -> 8,9

6,7

8,9

Figure 1: Semantic Tableau Example

5.1 Semantic Tableaux

A semantic tableau for a formula of propositional logic gives a sys-
tematic mechanism for finding a valuation which makes the formula
true. The tableau systematically decomposes formulae according to
their syntax.

In the case of implication, for instance, to satisfy the formula
¬(φ⇒ ψ) it is necessary forφ to be true andψ to be false: that is,
bothφ and¬ψ must be satisfied. In the example tableau in Figure
1, stages 1 and 2 show this. On the other hand, to satisfyφ ⇒ ψ
there are two alternatives: it is sufficient to satisfy either¬φ or ψ;
hence the branch in the tableau given by decomposing formula 3.

The branches of the tableau represent possible ways of satisfying
the formula at the top. Not all of them need be consistent, and
indeed if none is then the formula at the top is unsatisfiable (and
so its negation is valid). In Figure 1 the leftmost and rightmost
branches are inconsistent (as indicated by•) but the middle branch
(⇑) indicates that the formula is satisfiable ifA andC are false and
B is true.

5.2 The original program in a nutshell

The initial program is written in a concrete, first-order style. Thus,
propositions are represented by an algebraic type, branches are
given by lists of propositions and tableaux by lists of lists. Func-
tions are defined using explicit recursion, and few library functions
are used (and is an exception); one function definition uses a list
comprehension. The program is a literate script that is 402 lines
long, including comments.

The core of any tableau algorithm is an iteration in which
rules are applied successively until no expandable formulas remain.
There is a wide choice of implementations: the program in ques-
tion applies a single rule to each branch at each step. Moreover,
the rules are applied in a specified order, which is described in the
program by anInt; for each branch under consideration this value
is calculated and then passed to the iteration function to indicate the
rule to be applied.

The full sequence of refactorings is available athttp://www.

cs.ukc.ac.uk/people/staff/sjt/Refactor; it is instructive
to compare different versions using the vdiff tool: further details of
this can be found athttp://www.cs.ukc.ac.uk/development/
kst/descriptions/vdiff.html.

5.3 The refactoring sequence

The example was refactored in a series of steps, which we list now
in exactly the form that they were performed. Upon reflection they
might have been performed differently, or in a different order. Dis-
cussion of this and other observations follow in the next section.

Stage 1. The program uses lists of Propositions –Prop, an alge-
braic data type – to represent branches, and the tableau itself
is represented by a list of lists. At this stage the two types are
named:

type Branch = [Prop]

type Tableau = [Branch]

The purpose of this is twofold: it makes the script easier
to read, avoiding potential confusion between[Prop] and
[[Prop]]; more significantly it is a first step in making it pos-
sible to change the representation of branches and tableaux.

Stage 2. A number of functions are renamed to reflect their
purpose better. For instance,removeBranch is re-
namedremoveDuplicateBranches and remove becomes
removeDuplicatesInBranches; the former function re-
moves duplicate branches and the latter removes duplicate
propositionswithin branches.

Stage 3. The file is transformed from a literate script – in which
program text is explicitly flagged – into a standard script
where comments are indicated explicitly. This is done be-
cause trivial errors were being introduced on the erroneous
assumption that the file was a standard script.

Stage 4. In the original system almost all functions over lists are
defined using explicit recursion. At this stage a number of
these are replaced by calls to appropriate higher-order func-
tions from the prelude or libraries. For instance,

displayBranch :: Branch -> String

displayBranch [] = []

displayBranch (x:xs) = (show x) ++ "\n"

++ displayBranch xs

is replaced by

displayBranch = concat . map (++"\n") . map show

This refactoring makes the program more abstract: pattern
matching over a concrete type is replaced by calls to func-
tions likemap whose analogues might appear in the interface
of any collection type.

Stage 5. Not all functions can immediately be replaced by calls
to library functions. An example isremoveDuplicateProps
of typeBranch -> Branch which removes duplicate propo-
sitions from a branch. It uses the auxiliary function

3

http://www.cs.ukc.ac.uk/people/staff/sjt/Refactor
http://www.cs.ukc.ac.uk/people/staff/sjt/Refactor
http://www.cs.ukc.ac.uk/development/kst/descriptions/vdiff.html
http://www.cs.ukc.ac.uk/development/kst/descriptions/vdiff.html

findProp :: Prop -> Branch -> Prop

findProp z [] = FALSE

findProp z (x:xs)

| z == x = x

| otherwise = findProp z xs

to check whether a proposition (x, say) is contained in a
branch or not: if it is, thenx is returned; if not, the propo-
sitionFALSE is the result.

How is this function used within the calling function
removeDuplicateProps? Its result is tested againstx in
a guard:x == findProp x xs, sofindProp is effectively
only used to return a Boolean value indicating whether or not
x is an element ofxs. Thus it is possible to redefinefindProp
to return aBool:

findProp :: Prop -> Branch -> Bool

findProp z [] = False

findProp z (x:xs)

| z == x = True

| otherwise = findProp z xs

and to replace the guard by the expressionfindProp x xs.

This redefinition is correct only in certain circumstances.

• We make theclosed worldassumption that we know all
the calling sites of the function, and can modify them.
If findProp were in the interface of a module then a
type change like this would be problematic.

• It is assumed thatx will never be the propositionFALSE,
as otherwise the behaviour of the old and new defini-
tions will be different. Such an invariant might, for ex-
ample, be justified by reference to the original specifi-
cation of the problem, or could perhaps be inferred from
the behaviour of the remainder of the program.

Stage 5.1. It is now clear thatfindProp is simply a redefinition
of elem; similarly, the functionremoveDuplicateProps
should be an instance ofnub. These refactorings are also
made to the function which removes duplicate branches,
removeDuplicateBranches, since it is defined in an anal-
ogous way.

Stage 5.2. However, testing the result of this second replace-
ment reveals a problem. With the standard definition ofnub

duplicate branches (with their elements ordered differently)
appear in the test result. The reason for this is that the program
uses an alternative definition ofnub that selects thelastoccur-
rences of duplicated elements rather than first occurrences as
doesnub. The variant definition,nubVar, is added to the file.

At this stage, it becomes apparent that the program is sensitive
to the data representation and control flow in a way that could
not be expected from the problem specification.

Stage 6. The definition ofnubVar is moved into a separate mod-
ule, which is then imported into the program itself.

Stage 7. This is a housekeeping stage.

• More functions are renamed, includingfoo and bar

(really!).

• The function looseEmptyLists, which removes
empty lists from aTableau, is identified as an instance
of filter and then its single call is inlined.

• An auxiliary function is moved into awhere clause.

This tidies up the script for the next major stage.

Stage 8. There are nine different tableau rules for classical
propositional logic: two rules for each of the binary connec-
tives, one each for the un-negated and negated case; there is
also a rule to eliminate double negations. The implementation
defines three functions for each rule. For instance:

splitNotNot :: Branch -> Tableau

splitNotNot ps = combine (removeNotNot ps)

(solveNotNot ps)

removeNotNot :: Branch -> Branch

removeNotNot [] = []

removeNotNot ((NOT (NOT)):ps) = ps

removeNotNot (p:ps) = p : removeNotNot ps

solveNotNot :: Branch -> Tableau

solveNotNot [] = [[]]

solveNotNot ((NOT (NOT p)):) = [[p]]

solveNotNot (:ps) = solveNotNot ps

This design is undesirable for various reasons: a substantial
amount of code is repeated (e.g. the definition of thesplit

functions), and it also makes it difficult to modify the code, by
adding, for instance, the rules for a new connective.

The goal of this stage of refactoring is to produce three func-
tionssplit, remove andsolve which work for all connec-
tives. The refactoring performed here somewhat modifies the
algorithm: other less radical refactorings would avoid that.
In the original system, the rules are applied in a fixed order
of priority; in the new version within each branch the first
decomposable proposition is identified and the corresponding
rule is applied to it. The effect of this is to compute the same
results, but in a different order. It is a matter of debate whether
this should be seen as a refactoring, or goes beyond what is le-
gitimate. We discuss this further in Section 6.

How does the redefinition proceed? Examining the code
above, it is clear thatsplit should be defined tocombine the
results ofsolve andremove. A generalsolve is defined by
selecting from each of thesolveXXX functions the line which
embodies the rule (as emphasised insolveNotNot above)
and making this one of the cases in the general function. The
generalremove function deletes the first decomposable ele-
ment from the branch.

Stage 8.1. The redefinition of the control flow of the algorithm
changes the behaviour of the tableau mechanism. The algo-
rithm produces duplicate branches (with different orderings)
and to avoid this,map sort is added to the top-level compo-
sition of functions to sort each branch (using the derived order
onProp), prior to duplicate removal.

Stage 9. Many of the difficulties in the earlier refactorings have
come from the use of lists (and lists of lists) to represent
branches and tableaux. At this stage the type representations
were modified to

4

type Branch = Set Prop

type Tableau = Set Branch

Function definitions have then to be modified. This is helped
by earlier stages (especially 4,5,7,8) which have replaced
many explicit pattern matches over lists by calls to combi-
nations of library functions. These calls can be replaced by
the corresponding functions over an implementation of sets.

The function controlling rule application uses a primitive re-
cursion, and a corresponding function

primRecSet :: (a -> Set a -> b -> b)

-> b -> Set a -> b

needs to be added to theSet library. Of course, one needs to
apply such fold-like functions with care: to ensure a sensible
result they must only be applied to functions that are commu-
tative, associative and idempotent.

Aspects of the algorithms work element-by-element, and at
some points in the code, theflatten function is used to
transform a set into a list andpick is used to select an ele-
ment from the set.

Stage 9.1. The overall effect of this refactoring is a drastic sim-
plification. There is no need to include functions which re-
order lists, or remove duplicates from them, since the equality
of Set is order-insensitive and sets do not contain repetitions.
It is therefore much easier to see the essence of the algorithm
rather than to have it entangled with functionality designed to
maintain implicit invariants on data representations.

Further stages. The refactoring intoSet suggests further
steps. It would be possible to remove references toflatten

andpick if at each stageall possible rules are applied to a
branch, rather than applying them one at a time.

6 LESSONS LEARNED

In this section, we reflect on our experience of refactoring the
tableau program. We begin by making some specific observations
and then draw some more general conclusions.

• The granularity of the different stages is quite different: some
are simple, others complex. In particular, Stage 5 comprises a
number of separate steps. Whilst these steps could have been
presented as separate refactorings, they represent – from point
of view of the user – one logical step in the transformation of
the program.

• The order of refactorings is somewhat arbitrary: in retrospect
it would have made more sense to move from literate.lhs to
standard.hs scripts at the start of the refactoring process.

• In the actual refactoring sequence, an error was introduced at
stage 4, and only discovered at stage 5. This raises a number
of issues.

– Just because a change is type correct, it doesn’t mean
that it is completely correct. We shouldn’t therefore rely
only on type checking to validate steps, but also perform
tests on completion of each stage.

– On the other hand, type checking is really very useful:
it is completely automatic and has almost no cost to the
programmer in comparison with testing.

Beyond these points, which are specific to the example, one can
draw some more general conclusions about the refactoring process.

• Refactoring is an exploratory process. As you refactor you
discover more about the program. At the first stage you have
a general idea about what is going on in the program, by form-
ing an abstract model of the system. As you refactor you
discover that features of the program that you had initially
overlooked – subtle details of control flow or data representa-
tion, say – are in fact central to the program’s behaviour. This
allows you to build a more accurate model of the system as
refactoring proceeds.

• One can take the modelling insight further: the abstract model
can become a goal for the refactoring sequence. In the case
study it became clear that the list representation of tableaux
was problematic, but a more abstract view of the system again
became valid after the final refactoring which replaced lists
by sets throughout, and thus removed the program’s explicit
dependence on lower-level representation aspects.

• One might strengthen the point about exploration to say that
it is almost impossible to understand a program passively, and
that refactoring – like walkthroughs and code reviews – pro-
vides a deeper insight into the workings of a program than can
a mere reading or execution.

• The case study also brings to our attention the question of
what properties of the system are to be preserved. A hard-line
view of refactoring would suggest that one should preserve
every property, but in fact a weaker equivalence might be per-
missible. The refactoring sequence presented here takes this
higher-level view, but we have also done an alternative se-
quence that does not assume knowledge about invariants and
has to keep closer to the original algorithm.

The problem is well known to those working with legacy sys-
tems. In integrating a legacy system with other systems it is
important to preserve only those properties that are essential
to its behaviour, and to neglect those which are merely acci-
dental: those which are an artifact of a previous implementa-
tion discipline. Unfortunately, these differences are often un-
documented, and some users of the system may have started
to rely on accidental properties.

More formally, a weaker equivalence might preserve observa-
tional behaviour only over restricted subsets of inputs. In turn,
such inputs might themselves be characterised as those which
have a certain invariant property, such as being balanced or
search trees, rather than abritrary binary trees. Crucially any
such weaker equivalence is dependent upon thecontext in
which the program or program fragment is used.

• In any non-trivial refactoring sequence, we need to have ver-
sion control: providing undo, revert, redo and so on. Indeed,
one model would build a list of transformations by analogy
with a list of tactics in an LCF-style theorem prover like Is-
abelle [?].

The advantage of tactics is that they are more abstract than
specific syntactic transformations, and so stand more of a

5

chance of being reusable. Such tactics can also provide a basis
for user-defined refactorings.

• Machine support for refactoring is highly desirable. In
the case study we were able to use the search/replace and
undo/redo functions of an editor as well as the type check-
ing provided by a Haskell system. However, the editor’s tex-
tual search and replace had to be used with care. It is easy to
envisage support for some of the refactorings, such as renam-
ings, and indeed function redefinitions, by more semantics-
and refactoring-aware tools and it is also possible to see this
being integrated with editors and type checkers. Other refac-
torings provide more of a challenge: for example when replac-
ing lists with sets the program goes through a long period of
being in an inconsistent state, where some functions operate
over converted data and others not.

A final observation from the experience of the case study, and in-
deed from prior OO experience: it is crucial to document refactor-
ings in detail, so that they can be (re-)used with confidence, both by
their author and others. This we turn to in the next section.

7 DOCUMENTING REFACTORINGS

Our first draft catalogue of functional refactorings employed a sim-
ple format, giving for each refactoring a number, a descriptive
name, code examples for both sides of the refactoring, with com-
ments on the pros and cons of the two variants. Any other po-
tentially useful information went into a free-text comment for the
refactoring as a whole. The sole purpose of the catalogue was to
serve as printed documentation.

This format turned out to be insuffient, both from a maintenance
point of view, as we expect the catalogue to evolve continuously,
and as a basis for theory and tool development, forcing us to re-
consider the format before the development of the catalogue could
continue. The new format is more fine-grained and aims to separate
information according to expected uses. For instance, conditions
for the applicability of refactorings will later need to be formalised
to prove that refactorings are functionality preserving (and in what
sense); these condition will also serve as the basis for program anal-
yses in refactoring tools. Keeping such information separate from
the optional free-form comments forces them to be documented.

Figure 2 gives an example refactoring in the new format. Names
of refactorings have evolved intodescriptive phrases, which are
also the main form of references to refactorings. Numbers have
been dropped completely, where necessary, ashort nameor label is
used for internal references. Examples ofleft-hand codeandright-
hand codetogether withcommentson their pros and cons are still
used, catering for the role of a refactoring catalogue in the docu-
mentation of program design patterns.

New sections include a section oncross-references, both internal,
to related refactorings in our catalogue, and external, e.g., to related
refactorings in Fowler’s catalogue. Next, the refactoring is classi-
fied as eitherprimitive or ascomposedof other refactorings, and
further classifiersin the form of keywords allow forflexible cate-
gorisationsof refactorings (e.g., type-level or language-level refac-
torings). Language dependencies will be documented either by ex-
plicit references to applicable languages (Haskell, ML, etc.) or by
listing of the language features involved (lazy/strict, type classes,
functors, . . .). Note that refactorings may introduce or eliminate
specific language features, so that language dependencies may dif-
fer for both sides of a refactoring.

Crucial for the development of theory and tool support is the
documentation ofpre-, post- and side-conditions, which determine
the applicability of refactorings and thekind of program equiva-
lencepreserved. Currently, these sections guide human refactorers
around pitfalls and alert them of potential problems. Later, they will
serve as the starting point both for proofs of such equivalences and
for program analyses and program transformations in refactoring
tools. The description will also need to include clerical details such
asversion information, date of addition to the catalogue, etc. which
are probably best left to a version management tool.

The purpose of the catalogue has thus begun to shift from simple
textual documentation towards a knowledge base from which, e.g.,
the primitive, Haskell-specific refactorings can be extracted more
easily, and from which several forms of documentation can be de-
rived, including hyperlinked PDF documents. The main focus will
still be on human readability, but the refined taxonomy prepares for
the more formal specification of refactorings that will be necessary
for building functional refactoring tools.

8 RELATED WORK

There is a long history of program transformation for functional
programs, with early work in the field being described in [10]. Rep-
resentative of this is the program derivation work of Burstall and
Darlington [1], whose transformations work over source-level pro-
grams to build more efficient versions of algorithms for sequential
or parallel machines. In the extreme case, a non-executable speci-
fication is transformed into an executable program. Later work in
this vein is exemplified by the relational approach of Bird and de
Moor [?].

Program transformations are also used automatically within
compilers, acting either on source level programs or their inter-
mediate language representations: an example of this approach is
discussed in [8].

Refactoring is different from both program derivation and opti-
misation. These ‘vertical’ transformations tend to be localised in
addressing a program’s control or data flow. The kind of program
structure considered for refactoring is often non-localised and re-
lated to the overall program design and knowledge representation,
i.e., to large-scale declarative aspects rather than smaller-scale op-
erational ones.

OO refactoring was first addressed by Griswold [5, 6] and
Opdyke [9]. An approachable exposition of refactoring in OO to-
gether with a catalogue of refactorings is given by Fowler in [4].
The catalogue is kept up to date atwww.refactoring.com, which
also has links to tools and other resources. The most widely-known
tool for OO refactoring is the Refactoring Browser for Smalltalk
[11], but tools for other OO languages are under development.

9 CONCLUSIONS AND FUTURE
WORK

In this paper we have shown how the ideas of refactoring, which
have in the last few years become prominent in the OO community,
are equally important in functional programming. Indeed, the ‘code
then revise’ style of programming is perhaps the approach most
naturally adopted by many functional programmers.

The paper used the case study in Section 5 to illustrate the idea of
refactoring in a functional context, and Section 6 drew a number of

6

www.refactoring.com

Lifting definition/ Demoting definition

f x y = ... (h x y z) ...

h x y z = ...

f x y = ... (h x y z) ...

where

h x y z = ...

Lifting definition ⇐=
Lifting h to the top-level makes it accessible to the other
functions in the module containing f, and prepares for
export of h from that module. Enables reuse of auxiliary
definitions.

=⇒ Demoting definition

Demoting h to a local definition block clears up the
namespace (of the module containing f and h, and of
the whole system). Useful for auxiliary definitions that
are only used in a single context.

Pre-Conditions
h is not already defined in outer scope (if necessary, use
Renaming first); h does not depend on definitions or pa-
rameters local to f (if necessary, use Close Definition
first).

Pre-Conditions
h is not used elsewhere in outer scope.

Cleanup/Follow-Ons Cleanup/Follow-Ons
In a more local scope, it is often possible to choose a more
concise name for the auxiliary definition (Renaming), or
to gain implicit access to local definitions and parameters
(Open Definition).

Examples
An example is when f acts as a wrapper for h, computing
the parameters for h from its own parameters, but h may
be sensibly called with other wrapper functions, or on its
own.

Examples
An example is where h takes extra parameters, and f is
simply a wrapper for h that supplies the initial values
of these parameters. A concrete example is given by a
search function which takes a list of already-visited nodes
as arguments; at the top level this will be called with an
empty list. Another justificication is in creating circular
data structures: a where-defined h such as h = x:h will
create a circular representation of the infinite list of x,
for each call of f.

Potential Problems
In the special case of h not having any parameters, the demoted form leads to re-evaluation, whereas the lifted form leads to
earlier evaluation in strict languages and to a potential space leak in lazy languages. In languages with implicit export (e.g.,
empty export list in Haskell), the potential for scoping conflicts affecting lifting or demoting is aggravated.

Comments
Lifting and demoting of definitions is also possible between adjacent levels of nested definition blocks, but too deeply nested
definition blocks tend to reduce program readability.

Primitive/Composed
This is a primitive refactoring.

Classification
Classifiers: language-level, scope-related.
Language features involved: local definitions (let or where).

References
Cf. Fowler’s Move Field/Method, Push Down Field/Method, Pull Up Field/Method. Together with Close Definition, Lifting
definition is often applied as part of λ-lifting [7], and has subtle interactions with the treatment of polymorphic recursion [12].

Figure 2: An example entry from the catalogue of refactorings

7

both specific and general conclusions from this which we do not re-
iterate here. Section 7 discussed the documentation of refactorings,
and it is instructive to observe that the example of lifting/demotion
given there shows how even the simplest of refactorings can have
subtle constraints on its application.

There is ample scope for further work in this area. We aim to
build a comprehensive and detailed catalogue of functional refac-
torings, starting from our first draft attempt [?]. To do this we will
consult practising functional programmers and program transform-
ers; we will also pursue a number of other case studies.

Finally, we intend to build tool support for refactoring which can
be integrated into standard functional program development tools.

REFERENCES

[1] R. M. Burstall and John Darlington. A Transformation Sys-
tem for Developing Recursive Programs.Journal of the ACM,
24(1):44–67, 1977.

[2] J. Darlington. Program Transformations. In J. Darlington,
P. Henderson, and D. A. Turner, editors,Functional Program-
ming and its Applications, pages 193–215. Cambridge Uni-
versity Press, 1982.

[3] Robert W. Floyd. The paradigms of programming.Commu-
nications of the ACM, 22(8), August 1979. Also appears in
ACM Turing Award Lectures: The First Twenty Years 1965-
1985.

[4] Martin Fowler, Kent Beck, John Brant, William Opdyke, and
Don Roberts. Refactoring: Improving the Design of Exist-
ing Code. Addison-Wesley, 1999. see also:http://www.
refactoring.com/.

[5] William G. Griswold. Program restructuring to aid software
maintenance. PhD thesis, University of Washington, Dept. of
Computer Science and Engineering, 1991. Tech. Rep. No. 91-
08-04.

[6] William G. Griswold and David Notkin. Automated As-
sistance for Program Restructuring.ACM Transactions on
Software Engineering and Methodology, 2(3):228–269, July
1993.

[7] Thomas Johnsson. Lambda Lifting: Transforming Programs
to Recursive Equations. InProceedings 1985 Conference on
Functional Programming Languages and Computer Architec-
ture, Nancy, France, LNCS 201. Springer Verlag, 1985. (also
as part B of author’s thesis).

[8] S.L. Peyton Jones. Compiling Haskell by program transfor-
mation: a report from the trenches. InEuropean Symposium
on Programming (ESOP’96), April 1996.

[9] William F. Opdyke. Refactoring Object-Oriented Frame-
works. PhD thesis, University of Illinois, 1992.

[10] H. Partsch and R. Steinbrüggen. Program transformation sys-
tems.ACM Computing Surveys, 15(3), September 1983.

[11] Don Roberts, John Brant, and Ralph Johnson. A Refactoring
Tool for Smalltalk. Theory and Practice of Object Systems
(TAPOS), special issue on software reengineering, 3(4):253–
263, 1997. see alsohttp://st-www.cs.uiuc.edu/users/
brant/Refactory/.

[12] Peter Thiemann. ML-Style Typing, Lambda Lifting, and Par-
tial Evaluation. InCLAPF ’99, Recife, Pernambuco, Brasil,
March 1999.

8

http://www.refactoring.com/
http://www.refactoring.com/
http://st-www.cs.uiuc.edu/users/brant/Refactory/
http://st-www.cs.uiuc.edu/users/brant/Refactory/

	Introduction
	Refactoring
	The Nature of Refactoring
	Supporting Refactoring
	A case study
	Semantic Tableaux
	The original program in a nutshell
	The refactoring sequence

	Lessons learned
	Documenting Refactorings
	Related work
	Conclusions and Future Work

