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Abstract. In this paper we compare three systems for tracing and de-
bugging Haskell programs: Freja, Hat and Hood. We evaluate their use-
fulness in practice by applying them to a number of moderately complex
programs in which errors had deliberately been introduced. We identify
the strengths and weaknesses of each system and then form ideas on how
the systems can be improved further.

1 Introduction

The lack of tools for tracing and debugging has deterred software developers from
using functional languages [13]. Conventional debuggers for imperative languages
give the user access to otherwise invisible information about a computation by
allowing the user to step through the program computation, stop at given points
and examine variable contents. This tracing method is unsuitable for lazy func-
tional languages, because their evaluation order is complex, function arguments
are usually unwieldy large unevaluated expressions and generally computation
details do not match the user’s high-level view of functions mapping values to
values.

In the middle of the 1980’s a wave of research into tracing methods for lazy
functional languages started and has been increasing since. In this paper we
compare the tracing systems that (a) cover a large subset of a standard lazy
functional language, namely Haskell 98 [9], (b) are publicly available and (c) are
still actively developed. Freja1 [7,5] is a system that creates an evaluation de-
pendency tree as trace, a structure based on the idea of declarative/algorithmic
debugging from the logic programming community. Hat2 [12,11] creates a trace
that shows the relationships between the redexes (mostly function applications)
reduced by the computation. The most recent system, Hood3 [2], enables the pro-
grammer to observe the data structures at given program points. It can basically
be used like print statements in imperative languages, but the lazy evaluation
order is not affected and functions can be observed as well.
1 http://www.ida.liu.se/˜henni
2 http://www.cs.york.ac.uk/fp/ART
3 http://www.haskell.org/hood
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In this paper we compare Freja 1.1, Hat 1.0 and Hood July 2000 release. We
evaluate the systems in practice by applying them to a number of moderately
complex programs in which errors are deliberately introduced. Tracing systems
are interactively used tools. In this paper we concentrate on the usefulness of
the systems for the programmer. Runtime and space usage measurements are
reported in other papers [5,6,11]. We do not aim for a quantitative comparison
to crown a winner. Only with a large number of programmers could we have
obtained statistically valid data about, for example, how long it takes to locate
a specific error with a specific system. Even these data depend for example
on how well the programmers are trained for a system, especially because the
systems are rather different. Our aim is to explore the design space of tracers
and gain insights for the future development of tracing and debugging systems.
Our experiments highlight and sometimes even uncover previously unnoticed
similarities and distinguishing features of the three systems. The experiments
enable us to evaluate the usefulness of system features and lead us to new ideas
for how the current systems can be improved or even be combined.

The paper is structured as follows. Section 2 gives a short introduction to
each of the three systems. Section 3 compares the systems with respect to their
approach to tracing, design and implementation. Section 4 reports on our prac-
tical experiments and the insights they gave us into the systems’ distinguishing
properties and their usefulness. Section 5 briefly describes other systems for
tracing and debugging. Section 6 concludes.

2 Learn Three Systems in Three Minutes

To give an idea about what the three tracing systems provide and how they are
used we give a short introduction here. Because all three systems are still under
rapid development we try to avoid details that may change soon.

We demonstrate the use of each system with the following example program4.

main = let xs = [4*2, 3+6] :: [Int]
in (head xs, last xs)

head (x:xs) = x

last (x:xs) = last xs
last [x] = x

Note that the evaluation in Section 4 is based on experiments with far larger
programs.

4 Freja actually expects main to be of type String and the other two systems expect
it to be of type IO (). Here we abstract from the details of input/output.
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2.1 Freja

Freja is a compiler for a subset of Haskell 98. A debugging session consists of the
user answering a sequence of questions. Each question concerns a reduction of a
redex – that is, a function application – to a value. The user has to answer yes,
if the reduction is correct with respect to his intentions, and no otherwise. In
the end the debugger states which reduction is the cause of the observed faulty
behaviour – that is, which function definition is incorrect.

The first question always asks if the reduction of the function main to the
result value of the program is correct. If the question about the reduction of
a function application is answered with no, then the next question concerns a
reduction for evaluating the right-hand-side of the definition of this function.
Freja can be used rather similarly to a conventional debugger. The input no
means “step into current function call” and the input yes means “go on to
next function call”. If the reduction of a function application is incorrect but all
reductions for the evaluation of the function’s right-hand-side are correct, then
the definition of this function must be incorrect for the given arguments.

The following is a debugging session with Freja for our example program.
The symbol ⊥ represents an error and the symbol ? represents an expression
that has never been evaluated and whose value hence cannot have influenced
the computation.

main ⇒ (8,⊥) no
4*2 ⇒ 8 yes
head [8,?] ⇒ 8 yes
last [8,?] ⇒ ⊥ no
last [?] ⇒ ⊥ no
last [] ⇒ ⊥ yes
Bug located! Erroneous reduction: last [?] ⇒ ⊥

2.2 Hat

Hat consists of a modified version of the nhc98 Haskell compiler5 and a separate
browser program. A program compiled for tracing executes as usual except that
alongside the normal computation it builds a redex trail in heap and instead of
terminating at the end it waits for the browser to connect to it. The browser
shows the output of the program. The user selects a part of it and asks the
browser for its parent redex. The parent redex of an expression is the redex that
through its own reduction created the expression. Each part of the redex has
again a parent redex which the browser shows on demand. A trail ends at the
function (redex) main, which has no parent. Debugging with Hat works by going
from a faulty output or error message backwards until the error is located.

The browser has a graphical user interface which we do not discuss here.
Basically the system is used as follows to locate the error in our example program.
The program aborts with an error message and the browser directly shows its
5 http://www.cs.york.ac.uk/fp/nhc98

http://www.cs.york.ac.uk/fp/nhc98
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parent redex: last []. The user is surprised that the function last is ever
called with an empty list as argument and asks the browser for the parent redex
of last []. The answer, last (3+6:[]), makes clear that the definition of last
is not correct for a single element list. The browser presents the redex trail as
shown in the following figure. To demonstrate how the parent of a subexpression
is presented (4*2 is the parent of 8), more of the redex trail is shown than is
needed for locating the error.

• last []
last (3+6:[])
last (8:3+6:[])
� 4*2
main

The browser can also show where in the program text for example last is
called with the argument [] in the equation for last (x:xs).

2.3 Hood

Hood currently is simply a Haskell library. A user annotates some expressions
in a program with the combinator observe, which is defined in the library.
While the program is running, information about the values of the annotated
expressions is recorded. After program termination the user can view for each
annotation the observed values.

We annotate the argument of last in our example program:

main = let xs = [4*2, 3+6]
in (head xs, last (observe "last arg" xs))

When the modified program terminates it gives us the following information:

-- last arg
_ : _ : []

The symbol _ represents an unevaluated expression. Note that the first element
of the list xs is evaluated by the program, but not by the function last.

To gain more insight into how the program works we observe the function
last, including all its recursive calls:

last = observe "last" last’

last’ (x:xs) = last xs
last’ [x] = x

The value of the function is shown as a finite mapping of arguments to results:

-- last
{ \ (_ : _ : []) -> throw <Exception>
, \ (_ : []) -> throw <Exception>
, \ [] -> throw <Exception>
}
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So last is called with an empty list. We draw the conclusion that last
applied to the one element list caused this erroneous call, but strictly the infor-
mation provided by Hood does not imply this.

3 Comparison in Principle

At first sight the three systems do not seem to have anything in common ex-
cept the goal of aiding debugging. However, all three systems take a two phase
approach: while the program is running, information about the computation
process is collected. After termination of the program the collected information
is viewed in some kind of browser. In Freja, the browser is the part that asks
the questions, in Hat the program that lets the user view parents and in Hood
the part that prints the observations. This approach should not be confused
with classical post-mortem debugging where only the final state of the computa-
tion can be viewed. Having a trace that describes aspects of a full computation
enables new forms of exploring program behaviour and locating errors which
should make these systems also interesting for strict functional languages or
even non-functional languages.

All three systems are suitable for programs that show any of the three kinds
of possible faulty observable behaviour: wrong output, abortion with error mes-
sage, non-termination. In the latter case the program can be interrupted and
subsequently the trace can be viewed.

3.1 Values and Evaluation

All three systems are source-level tracers. They mostly show Haskell-like ex-
pressions which are built from functions, data constructors and constants of the
program. To improve comprehensibility, all three systems show values instead of
arbitrary expressions as far as possible. Hood only shows values anyway. Both
Freja and Hat show an argument in a redex not as it was passed in the actual
computation but as a value. Only (a part of) an argument that was never eval-
uated is shown as an unevaluated redex in Hat (3+6 in the previous example)
whereas Freja and Hood represent it by a special symbol (? in Freja and in
Hood). Freja and Hat show an expression only up to a given depth (for example
map succ (0 : succ 0 : ✷) in Hat; ✷ represents the elided subexpression). A
subexpression beyond that depth is only shown on demand. None of the systems
changes the usual observable behaviour of a program. In particular, they do not
force the evaluation of expressions that are not needed by the program.

However, the systems differ in that Hood shows values as far evaluated as
they are demanded in the context of the observation position whereas both Freja
and Hat show how far values are evaluated in the whole computation, including
the effect of sharing. Hence in the previous example Freja and Hat show the first
element of the list argument in the first call of last as 8 whereas Hood only
represents that element by .
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main ⇒ (8,⊥)

4 * 2 ⇒ 8 head [8,?] ⇒ 8 last [8,?] ⇒ ⊥

last [?] ⇒ ⊥

last [] ⇒ ⊥

Fig. 1. Evaluation dependency tree

main

4 * 2 8 3 + 6

[]• : •• : •

head • • last •

last •

last • ⊥

(•,•)

Fig. 2. Redex trail

3.2 Trace Structures

In Hood a trace is a set of observations. These observations are shown in full to
the user. In contrast, each of Freja and Hat create a single large trace structure
for a program run. It is impossible to show such a trace in full to the user. The
browser of each system permits the programmer to walk through the structure,
always seeing only a small local part of the whole trace.

Freja creates an Evaluation Dependency Tree (EDT) as trace. Each node
of the tree is a reduction as shown in the browser. The tree is basically the
derivation/proof tree for a call-by-value reduction with miraculous stops where
expressions are not needed for the result. The call-by-value structure ensures
that the tree structure reflects the program structure and that arguments are
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maximally evaluated. Figure 1 shows the EDT for our example program of Sec-
tion 2. The symbol ⊥ represents the value of the error message.

Hat creates a redex trail as trace. A redex trail is a directed graph of value
nodes and redex nodes. Each node, except the node for main, has an arrow to
its parent redex node. Because subexpressions of a redex may have different
parents or may be shared, redex nodes may contain arrows to nodes of their
subexpressions. Figure 2 shows the redex trail for our example program of Sec-
tion 2. Dotted arrows point to subexpressions. Both dashed and solid arrows
denote the parent relationship. (8,⊥) is the result value of the computation. As
in Freja, ⊥ represents the value of the error message.

The graphs of the two trace structures are laid out to stress their similarity.
All arrows of the EDT are also present in the redex trail but point in the oppo-
site direction. If the redex trail held information about which parent relations
correspond to reductions (these are shown as solid arrows), then the EDT could
be constructed from the redex trail (however, see also the next paragraph and
Section 4.1 about free variables). In contrast, the redex trail contains more infor-
mation than the EDT, because it additionally links every value with its parent
redex and describes how expressions are shared.

The redex trail shown in Figure 2 is a simplified version of the one that is
really created by Hat. The real redex trail has an additional node xs with parent
main and children 4 * 2, 3 + 6, the two • : • nodes and []. That is, the redex trail
also records the reduction of the let expression. The whole let expression is a
redex, but in the redex trail it is represented by the defined variable xs. Similarly
a node xs ⇒ [8,?] that records the reduction of the let expression could be
added to the EDT. So recording a let reduction is an option for both the
EDT and the redex trail and the implementors of Freja and Hat made different
decisions with respect to this option. On the one hand recording let reductions
leads to larger traces with an unusual kind of redex. On the other hand it enables
more fine grained tracing (cf. Section 4.3).

Because Hood observations contain values as they are demanded in a given
context, whereas both the EDT and the redex trail contain values in their most
evaluated form, it is not possible to gain Hood observations from either the EDT
or the redex trail. Conversely, even observing every subexpression of a program
with Hood would not enable us to construct an EDT or redex trail, because
there is no information about the relations between the observations.

3.3 Implementation and Portablility

Each system consists of two parts, the browser and a part for the generation of
the trace. We will discuss the browsers in Section 4.

The developers of the three systems made different choices about the level at
which they implemented the creation of the trace. In Freja the trace is created in
the heap directly by modified instructions of the abstract graph reduction ma-
chine. Hat transforms the original Haskell program into another Haskell program.
Running the compiled transformed program yields the redex trail in addition to
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the normal result. Finally, in Hood the trace is created as a side effect by the
combinator observe, which is defined in a Haskell library.

The level of implementation has direct effects on the portability to different
Haskell systems. Hood can be used with different Haskell systems, because the
library only requires a few non-standard functions such as unsafePerformIO
which are provided by every Haskell system6. The transformation of Hat is cur-
rently integrated into the nhc98 compiler but could be separated. A transformed
program uses a few non-standard unsafe functions to improve performance. Fur-
thermore, some extensions of the Haskell run-time system are required to retain
access to the result after termination or interruption and to connect to the
browser. Finally, Freja is a Haskell system of its own. Adding its low-level trace
creation mechanism to any other Haskell system would require a major rewriting
of this system.

3.4 Reduction of Trace Size

In Hood the trace consists only of the observations of annotated expressions.
Hence its size can be controlled by the choice of annotations7. In contrast, both
Freja and Hat construct traces of the complete computation in the heap.

To reduce the size of the trace, both Freja and Hat enable marking of func-
tions or whole modules as trusted. The reduction of a trusted function itself is
recorded in the trace, but not the reductions performed to evaluate the right-
hand-side of its definition. The details of the trusting mechanisms of both sys-
tems are non-trivial, because the evaluation of untrusted functions which are
passed to trusted higher-order functions have to be recorded in the trace. Usu-
ally at least the Haskell Prelude is trusted.

To further reduce the space consumption, both Freja and Hat support the
construction of partial traces. In Freja, first only an upper part of the EDT may
be constructed during program execution. When the user reaches the edge of
the constructed part of the EDT in the browser, this part is deleted and the
whole program is re-executed, this time constructing the part of the EDT that
can be reached next by the questions. So, except for the time delay caused by
re-execution, the user has the impression that the whole EDT is present.

Hat can produce partial traces by limiting the length of the redex trails. Be-
cause a redex trail is browsed backwards, the system prunes away those redexes
that are further than a certain length away from the live program data or out-
put. Hat does not provide any mechanism like re-execution in Freja to recreate
a pruned part of the redex trail.
6 The version of Hood which can handle not only terminating programs but also those

that abort with an error message or do not terminate requires the non-standard
exception library supplied with the Glasgow Haskell compiler.

7 A variant of Hood allows the annotated running program to write observed events
directly to a file, so that the trace does not need to be kept in primary memory.
However, to obtain observations, the events in the file need to be sorted. Hence the
browser for displaying observations reads the complete file and thus has problems
with large observations.
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Requiring less heap space may reduce garbage collection time, but Hat still
spends the time for constructing the whole trace whereas Freja does not need to
spend time on trace construction after construction of an upper part of an EDT.

4 Evaluation of the Systems

Differences between the systems directly raise several questions. Is it desirable
to add a feature of one system to another system? Does an alternative design
decision make sense? How far is a distinguishing feature inherent to a system,
possibly determined by its implementation method or its tracing model? Because
the design space for a tracer is huge, it is sensible to evaluate system features
in practice early. We applied the three systems to a number of programs in
which errors had deliberately been introduced. The errors caused all three kinds
of faulty observable behaviour mentioned earlier: wrong output, abortion with
error message and non-termination.

Our evaluation experiments use the following protocol: At least two program-
mers are involved. First the author of a correctly working program explains how
the program works. Then one programmer secretly introduces several deliberate
errors into the program, of a kind undetected by the compiler. Given the faulty
program, the other programmers use a tracing system to locate and fix all the
errors, thinking aloud and taking notes as they do so.

All the participants are experienced Haskell programmers.
The programs used in the experiments are of moderate complexity. The

largest program, PsaCompiler, a compiler for a toy language, consists of 900
lines in 13 modules and performs 20,000 reductions for the input we provided.
The longest running program, Adjoxo, an adjudicator for noughts and crosses
(tic tac toe), consists of only 100 lines but performs up to 830,000 reductions
for our inputs. In our choice of programs we were restricted by the subset of
Haskell that Freja supports. For example, Freja does not implement classes and
unfortunately not even every Freja program is a valid Haskell program. Freja
had been applied to a mini compiler with 16 million reductions [6] and Hat had
been applied to a version of nhc98 with 14,000 lines and 5.2 million reductions
and a chess end-game program with 20 million reductions [11]. These papers give
performance figures but do not indicate how easy debugging programs of this
size is. We cannot make such statements either, but our programs are definitely
beyond toy examples and of a size often occurring in practise. Our programs also
do not perform monadic input/output. Freja does not implement it and Hat only
supports a few operations. It would be interesting to see if Hood’s ability to show
the return value of an executed input/output action is sufficient in practice.

4.1 Readability of Expressions

In contrast to our preliminary fears that the expressions shown by the browsers
– reductions, redexes and values – would be too large to be comprehensible, for
our programs they are mostly of moderate size and easily readable.
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As we will discuss in Section 4.2 the user of a tracing system not only views
the trace but also the program. Nonetheless in Freja and Hat informative variable
(function) names, that convey the semantics of the variable well, substantially
reduce the need for viewing the program and thus increase the speed of the
debugging process substantially.

Unevaluated Expressions. Freja shows unevaluated expressions as ? and the
undefined value as ⊥. This property makes expressions even shorter and more
readable. This also holds for Hood. Only in some cases more information would
be desirable for better orientation. In Hat the display of the unevaluated redexes
in full sometimes obscures higher level properties, for example the length of a
list. All in all our observations suggest that unevaluated expressions should be
collapsed into a symbol by default but should be viewable on demand.

Hood shows even less of a value than Freja, because it only shows the part
demanded in a given context. Note that this amount of information would suffice
for answering the questions of Freja. Because Hat is not based on questions, it is
less clear if showing only demanded values would be suitable for it. Finally, the
fact that Freja and Hat show values to the extent to which they are evaluated in
the whole computation whereas Hood shows them to the extent to which they
are demanded is closely linked to the respective implementations of the systems
and thus not easily changeable.

Functions. In Haskell, functions are first-class citizens and hence function val-
ues may appear for example as arguments in redexes or inside data structures.

For the representation of function values, Hood deviates from the principle
of showing Haskell-like expressions. It shows function values as finite mappings
from arguments to results. Because the mapping contains only expressions that
were demanded during the computation, the representation is short in most
cases. However, for functions that are called often and especially for higher-
order functions the representation is unwieldy. The representation requires some
time to get used to. In return, it permits a rather abstract, denotational view of
program semantics which is useful for determining the correctness of part of a
program.

In Freja and Hat a function value is shown as a function name, a λ-abstraction,
or as a partial application of a function name or a λ-abstraction. Function names
and their partial applications are easily readable but λ-abstractions are not. Both
systems do not show a λ-abstraction as it is written in the program but repre-
sent it by a new symbol: <lambda#n> for a number n in Freja and (\) in Hat.
Both systems can show the full λ-abstraction on demand. However, because
of the necessary additional step and because λ-abstractions are often large ex-
pressions, reading expressions involving λ-abstractions is hard. We conjecture
that with Freja or Hat debugging programs that make substantial use of λ-
abstractions, as commonly done for stylised abstractions such as continuation
passing, higher-order combinators and monads, is rather difficult. Our programs
hardly use stylised abstractions. In fact, PsaCompiler uses only named functions,
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even in the definitions of its parser combinators, where most Haskell program-
mers would use λ-abstractions. During tracing, Freja and Hat show very readable
expressions for PsaCompiler.

Free Variables. Both λ-abstractions and the definition bodies of locally defined
functions often contain free variables. To answer a question in Freja the values of
such free variables must be known. Hence Freja shows this information in a where
clause. The following question from an evaluation experiment demonstrates that
this information usually adds to the comprehensibility of a question considerably:

tableRead
"y"
(TableImp
(newTableFunction
where
newIndex = "x",
newEntry = 1,
oldTableFunction = implTableEmpty))

=>
Just 1

The correct answer is obviously no.
Hat does not show the values of free variables. This information can be ob-

tained only indirectly by following the chain of parent redexes of such a function.
To realise that a function has free variables and to see the corresponding argu-
ments of parent redexes it is necessary to follow links to the program source.

In Hood an observation of a locally defined function can be misleading. The
observation is really for a family of different functions, with different values for
free variables. In our experiments one observation of a local function moveval is
presented as follows

-- moveval
{ . . . , \ 8 -> Draw, . . . }
{ . . . , \ 8 -> Win, . . . }

4.2 Locating an Error

With all three systems we successfully locate all errors in our programs. For
locating an error in our largest program we answer between 10 and 30 questions
in Freja, look at 0 to 6 parents in Hat and add observe up to 3 times for
Hood. The relation between these numbers is typical. However, the numbers
cannot be compared directly to determine speed of use, because the counted
operations are completely different. A major difference between the systems
is the time the user has to spend thinking about what to do next, and the
effort required to do it. For example, the time required in Hood for deciding
where to add observe annotations, modifying the program (discussed further in
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Section 4.4), recompiling the program and reexecuting it is substantially higher
than answering a question or selecting an expression for viewing its parent.
Furthermore, the amount of data produced by a single observe annotation is
usually substantial.

Guidance and Strategies. Freja asks questions which the user has to answer
whereas in both other systems the user also has to ask the right questions. Freja
guides the user towards the error.

Hat at least starts with the program output, an error message or the last
evaluated redex in an interrupted program and the main operation is to choose
a subexpression and ask for its parent. There are usually many subexpressions
to choose from and the system never states that an error has been located at a
given position in the program. Wrong parts in the output or wrong arguments in
redexes are candidates for further enquiry. Nonetheless, for the less experienced
user it is easy to get lost examining an irrelevant region of the redex trail.

Hood gives the complete freedom to observe any value in the program. The
initial choice of what to observe is difficult and often seems arbitrary. In general
Hood users apply a top-down strategy in their placement of observe combina-
tors, if the faulty behaviour does not point to any program location, for example
when the program does not terminate. Then the questions the Hood users asks
are similar to those asked by Freja. If, on the other hand, the position where
the observable fault is caused can be identified, for example when the program
aborts with an error message occurring only once in the program, then a Hood
user tries to apply a bottom-up strategy reminiscent of Hat.

Our programs contain several errors. Users of Hat and Hood locate the er-
rors in the same order, because they always locate the error that causes the
observed faulty behaviour. In contrast, the questions of Freja sometimes lead to
the location of a different error. It is possible to tackle a specific faulty behaviour
by answering some questions incorrectly, but that requires care. One may easily
steer into irrelevant regions of the EDT.

General Usability. Hat with its complex browser has the steepest learning
curve for a new user. In contrast, the principle of questions and answers of
Freja is easy to grasp and Hood has the advantage of using the idea of print
statements, which are well-known from imperative languages. Hence a mode that
would hide some features from the beginner seems desirable for Hat.

Information Used. A Hood user has to modify the program and hence look
at it. Sometimes just the process of searching for a good placement of observe
reveals the error. Users of Freja and Hat, especially the former, tend to neglect
the program. As long as the user knows the intended meaning of functions he
can use Freja without ever looking at the program. This does however imply
that the user does not try to follow Freja’s reasoning and to understand how the
finally located error actually caused the observed faulty behaviour. Redexes as
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shown by Hat are not intended to be the only source of information for locating
an error. Viewing the program part where a redex is created gives valuable
context information and at the end the program is needed to locate the error.
Both Freja and Hat provide quick access to the part of the program relating
to the current question or redex. Nonetheless, it seems worthwhile to test if
automatically showing the relevant part of the program when a new question or
parent is shown would improve usability.

In contrast to the other two systems Hat also gives information about which
expressions are shared. This information is useful in some cases, usually when
expressions are shared unexpectedly.

A trace of Hood is a set of observations. The trace unfortunately contains no
information about the relations between these observations. Hence, with a few
exceptions, we observe functions to obtain at least a relation between arguments
and result. In particular, the representation of an observed function shows clearly
which (part of an) argument is not demanded by the function for determining
its result. This feature is helpful for locating errors.

Wrong Subexpressions. Often, in the questions posed by Freja, a specific
subexpression of a result is wrong. For example in the following program the 1
in the second list element should be a 2. But there is no way to give Freja this
information. We can only confirm or refute the reduction as a whole.

translateStatement
(TableImp
(newTableFunction
where
newIndex = "y",
newEntry = 2,
oldTableFunction = newTableFunction

where
newIndex = "x",
newEntry = 1,
oldTableFunction = implTableEmpty))

?
(Assignment "x" (Compound (Var "x") Minus (Var "y")))

=>
_Tuple_2 [Lod 1,Lod 1 ,Sb,Sto 1] 4

In contrast, the redex trail contains the parent of every subexpression. A
Hat user seldom asks for the parent of a complete expression but usually for the
parent of some subexpression. We believe that this is the major reason why we
look at far less parents with Hat than we answer questions of Freja for locating
the same error. A Hood user obviously also tries to use information about wrong
subexpressions but it is not easy to decide where to place the next observe
combinator.
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Reduction of Information. In Hood, the user determines the size of the trace
by the placement of observe combinators. It is, however, sometimes not easy to
foresee how large an observation will be. The trusting mechanisms in Freja and
Hat not only save space but also reduce the amount of information presented to
the user. The ability of the Freja browser to dynamically trust a function and
thus avoid further questions about it is useful. For Hat a corresponding feature
seems desirable. In Freja, sometimes a question is repeated, because the same
reduction is performed again. Hence memoisation of questions and their answers
is desirable. It would also be useful to be able to generalise an answer, to avoid
a series of very similar questions all requiring the same answer.

Runtime Overhead. With respect to the time overhead caused by the creation
of traces the low-level implementation of Freja pays off. The overhead is not no-
ticeable. In contrast, in Hat traced computations are more than ten times slower.
For some inputs adjoxo seems to be non-terminating but it is only slow! We ex-
perience the same with Hood when we observe at positions that are computed
very often and that lead to large observations. So in Hood the time overhead is
considerable but it is only proportional to the amount of observed data.

Compiler Messages. A helpful error message from a compiler can reduce
the need for a tracer. If a function is called with an argument for which no
matching equation exists, then the aborting program gives the function name if
it was compiled with the Glasgow Haskell compiler8, but not if it was compiled
with Freja or nhc98. However, in that case Hat directly shows the function with
its arguments whereas Freja requires the answers to numerous questions before
locating the error.

4.3 Redexes and Language Constructs

A computation does not only consist of reductions of function applications. We
noted already in Section 3.2 for let expressions that there are other kinds of
redexes. This aspect only concerns Freja and Hat, because Hood only shows
values.

CAFs. A constant applicative form (CAF) is a top-level variable of arity zero,
in other words a top-level function without arguments. Its value is computed on
demand and shared by its users. Both Freja and Hat take the view that a CAF
has no parent. Hence the trace of a program in Freja is generally not a single
EDT but a set of EDTs, an EDT for each CAF including main. These EDTs are
sorted so that a CAF only uses those CAFs about which questions have already
been asked and which are hence known to be free of errors. Unfortunately one of
our experiment programs containes 35 CAFs. We have to confirm the correctness
of evaluation for all CAFs before reaching the question about main, although
8 http://www.haskell.org/ghc

http://www.haskell.org/ghc
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none of these CAFs are related to any of the errors. Freja can be instructed
to start with the question about main. However, that implies stating that the
evaluation of all CAFs is correct, which may not be the case and thus lead Freja
to give a wrong error location. An alternative definition of the EDT could imply
that all users of a CAF are its parents. Then a question about a CAF would be
asked only if it were relevant and memoisation of the question and its answer
could avoid asking the same question when another reduction using the CAF
were investigated.

For Hat a corresponding modification without losing sharing of CAFs seems
to be more difficult, because the redex trail is browsed by going backwards from
an expression to its unique parent. In our experiments the fact that a CAF
has no parent in a redex trail is not noticeable, because none of the introduced
errors concernes CAFs. However, programs can be constructed where this lack
of information hinders locating an error:

nats :: [Int]
nats = 0 : map succ nats

main = print (last nats)

The computation of this program does not terminate. When the programmer
interrupts the computation, Hat may show map succ (0 : succ 0 : ✷) as
next redex to be evaluated. The parent of this redex is nats, which has no
parent. The error may well be that the programmer intended to call another
function than last in the definition of main, but unfortunately the redex last
nats is unreachable.

We stated in Section 3.2 that Hat has a special kind of redex for locally
defined variables of arity zero (defined in let expressions and where clauses).
The parent of such a variable redex is the redex that created the definition and
not – as for function application redexes – the redex that created the application.
So as for CAFs redexes may become unreachable.

Guards, cases and ifs. In Haskell the selection of an equation of a definition
may not only be determined by pattern matching but may also depend on the
value of a guard:

test :: (a -> Bool) -> a -> Maybe a

test p x | p x = Just x
| otherwise = Nothing

In Freja the reduction of a guard (p x) is a child of the reduction of the function
(test). Redex trails are, however, traversed backwards from the result value
(Just x or Nothing). To hold the information about the reduction of a guard,
redex trails have an additional sort of redexes. In the example, if the first equation
were chosen, then the value Just x would have the parent | True ✁ test p
x, and if the second equation were chosen, then the value Nothing would have
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the parent | True ✁ | False ✁ test p x. By asking for the parents of the
truth values True and False in the redexes, the user can obtain information
about the evaluation of the guards.

Similarly, Hat uses special redexes for case and if expressions. On the one
hand, these special redexes complicate the system. On the other hand, they are
useful for large function definitions. The special redexes enable more fine grained
tracing up to the level of guards, cases and ifs, whereas Freja only identifies
a whole function reduction as faulty. Similar to the situation for locally defined
variables it is possible to extend the definition of Freja’s EDT by special nodes
for guard, case and if reductions. For Hat, special redexes for these reductions
are important to make parts of the redex trail reachable by backward traversal
that otherwise would be unreachable.

4.4 Modification of the Program

Whereas Freja and Hat are applied to the original program, requiring only special
compilation, Hood is based on modifying the program. Sometimes the introduc-
tion of the observe combinator requires modifications which are non-trivial, if
an operator is observed (because of its infix position) or if not a specific call but
all calls of a function are observed as in our example in Section 2.3. Furthermore,
the main function has to be modified and the library has to be imported in every
program module that uses its entities. Most importantly, a data type can only
be observed if it is an instance of a class Observable. Some of our experiment
programs define many data types; because we want to observe most of them, we
have to write many instance definitions. Writing these instance definitions is easy
but time consuming. Additionally, all these modifications potentially introduce
new errors in the program and also make the program less readable.

On the other hand it might be useful to leave the modifications for Hood in
the program. They could be en-/disabled during compilation by a preprocessor
flag for a debug mode. Then most modifications, especially writing instances of
the class Observable, require only a one-time effort. The observe combinator
may even be placed to observe the main data structures of the program. Thus
debugging is integrated more closely into program development. In contrast,
Freja and Hat cannot save any information from a tracing session for future
versions of the program.

5 Other Tracers and Debuggers

Buddha [4,10] is a tracing system which like Freja constructs an EDT. Its imple-
mentation is based on a source-to-source transformation, but unlike the trans-
formation of Hat this transformation is not purely syntax-directed but requires
type information. Buddha is still actively developed.

Booth and Jones [3,1] sketch a system which creates a trace quite similar to
an EDT. The main difference is that a parent node is only connected directly
to one child. All sibling nodes are connected with each other according to the
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structure of the definition body of the parent node. Thus the trace has the nice
property that all connecting arrows denote equality, unlike the arrows in an EDT
or a redex trail. The authors describe a browser which gives more freedom in
traversing the trace than the questions of Freja.

There also exist several systems for showing the actual computation sequence
of a lazy functional program. Section 2.2 of [14], Chapter 11 of [5] and Chapter
2 and Section 7.5 of [8] review a large number of tracing and debugging systems
for lazy functional languages.

We could not include any of these systems in our experiments, because there
are only limited prototypes, not publicly available.

6 Summary and Conclusions

We have compared and evaluated the tracing and debugging systems Freja, Hat
and Hood by applying them to a number of programs.

Tracing and debugging systems for lazy functional languages have made con-
siderable progress in recent years: all three systems prove to be effective tools
for debugging our programs. Though none of our programs is very large, some
of them are large enough to show that the scope of application for the tools
goes well beyond easy exercises. Unfortunately the practical usability of Hat
and especially Freja is currently limited by the fact that they do not support
full Haskell 98.

Each of the tracing tools takes a unique approach with specific strengths. In
particular, Freja has a systematic fault-finding procedure; Hat starts at the ob-
served error and enables exploring backwards the history of every subexpression;
Hood observes the data flow at specific program points by need.

Based on our experiments we identify in Section 4 the strengths but also the
weaknesses of each system. For some weaknesses we already suggest improve-
ments, often based on the convincing solutions of the problems in other systems.
Other weaknesses are linked either to the tracing method or the implementa-
tion, which we discuss in Section 3. Hence they are more difficult to address
and require further research. For example, Freja cannot take advantage of the
common case that only a subexpression of a reduction is wrong, Hat is slow
and Hood gives almost no indication of how values are related. We claim that
an integration of Freja into Hat is feasible whereas Hood’s approach is rather
different from the approaches of the other two systems.

Finally, good tools are not sufficient for debugging. The user needs advice on
how to effectively use each system; a strategy needs to be developed for Hat and
especially for Hood, but even Freja would benefit from advice on how to employ
its advanced features. Also a strategy for using several systems together, taking
advantage of their respective strengths, is desirable.
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