
A novel architecture for active service
management

I. W. Marshall, H. Gharib, J. Hardwicke and C. Roadknight
BTexaCT,
Adastral Park,
Martlesham Heath,
Ipswich IP5 3RE UK
ian.w.marshall@bt.com

Abstract

Future multiservice networks will be extremely large and complex. In this
environment, Active Services will be needed to enable the rapid service evolution
demanded by users. Active services also enable service management to be delegated
to network users as a large set of independent small-scale management systems, thus
minimising management costs. However, novel management solutions will be
required to enable efficient multi-user management of the sites where the active
services are run. We present an architecture for management of a network offering
active services, which uses a combination of policies and adaptive algorithms to
enable multi-user management of network based service components.

Keywords
Active Service, Policy, Adaptive Control, Autonomy, Configuration

1. Introduction
New Internet services and features are currently being introduced more slowly than
users require, since existing human-intensive processes cannot cope with the rate of
change. Active services [1, 2] are based on programs supplied by the users of the
services. The programs run on devices owned by network operators or network
service providers (such as caches, mirrors, conference controllers and firewalls). The
aim is to enable users to have access to the services they require (custom services),
whilst avoiding any requirement for operators and providers to manage large
numbers of services. Active services should prevent the current problems being
exacerbated by increased diversity of demand, but will not in themselves solve the
current difficulties. A future network providing active services will be unbounded in
both scale and function, since an enormous range of services will develop and evolve
at an unprecedented rate. In order to fully realise the intended flexibility it will be
necessary to combine active services with a highly automated management and
control system. A ‘global state’ of the system will be impossible to ascertain due to
its massive scale. In cases, such as this, conventional methods of control and

management do not apply and adaptive methods of control must be used [3]. In this
paper we provide a brief description of our active service network implementation,
based on an extended version of the application layer active networking (ALAN)
proposal [1]. This is followed by a description of the management architecture we
have designed for ALAN. The first part of the architecture description provides
details of a flexible, policy driven system for the creation and distribution of
management information using a combination of policies, messaging and active
programming. The second part describes how the degree of automation of the system
can be increased using an adaptive control mechanism. This uses a novel distributed
algorithm, partly inspired by observations of bacterial communities [4]. Finally we
present some initial results that demonstrate the effectiveness of our proposal. The
management system we describe is to our knowledge the first to successfully
combine, policies, active programming and adaptive control, as we believe is
required for future active service networks.

2. ALAN
ALAN [1] is based on users supplying java based active code (proxylets) that runs on
edge systems (dynamic proxy servers - DPS) provided by network operators. It is
assumed that many proxylets will be multiuser, and most requests will be to “run” a
proxylet that already exists in the network. Messaging in the extended version uses
HTML and XML and is normally carried over HTTP. ALAN is primarily an active
service architecture, and the discussion in this paper refers to the management of
active programming of intermediate servers. Figure 1 shows a schematic of a
possible ALAN node. The arrows represent the possible information flows. Objects
should be thought of as peers (no explicit hierarchy is intended).

A u t o n o m o u s c o n t r o l l e r

D P S

P r o x y l e t s

M a n a g e m e n t a g e n t

U s e r s

A d m i n s

Figure 1. Schematic of proposed ALAN node design.

We have designed and partially implemented an active management solution for
active service networks based on role-driven policies [5,6]. The management system

supports a conventional management agent interface that can respond to high level
instructions from system operators. This interface is also open to use by users (who
can use it to run programs/active services by adding a policy pointing to the location
of their program and providing an invocation trigger). Typically the management
policies for the user programs are included in an XML metafile associated with the
code using an XML container, but users can also separately add management policies
associated with their programs using HTTP post commands. In addition the agent
can accept policies from other agents and export policies to other agents. Our system
provides an extensible monitoring and configuration service that enables users to
specify their configuration, monitoring and notification requirements to network
devices using policies. Each policy specifies a subject (the policy interpreter), a
target list (the objects to be changed if the policy is activated), an action list (the
things to be done to each target), a grade of service statement, and the authorisation
code, id and reply address of the originator. The policies are named using a universal
policy name, which is also part of the policy. The names currently take the form
upn:originator id.subject.target_list.last_modified_time and are likely to be globally
unique. The actions take the form of conditionals, some of which will be true on first
reading and false thereafter. Others will be true when some trigger event occurs that
the policy interpreter can detect. The policies can carry enclosures (e.g. the code
required to execute an action, or a pointer to it) embedded in the action list, so we
describe the management system as 'Active'. The enclosures can obviously be
instances of active services, i.e. proxylets. We refer to policies containing active
services as service execution policies. Normally an execution policy would contain a
pointer to a proxylet rather than the proxylet itself, but the policy and the proxylet
will often be part of the same notification, especially if the notification is a request to
run a service originating from an end user. A notification is implemented as an XML
entity that must contain a policy (or a pointer to an appropriate policy if the policy
was sent before) with at least one action such as ‘store the enclosed data’ or ‘run the
enclosed service’, and an appropriate data enclosure. The enclosure may include
several additional policies targeting different local entities, the code (or pointer) for a
proxylet, or an event report. This extends the usual TMN definition of notification to
include all management information that needs to be disseminated, rather than just
event reports. The notifications are multicast to relevant hosts (using an appropriate
anycast or multicast address), where they are received by a management agent, and
any enclosed policies are stored in a local policy store if the appropriate key is
present (i.e. a key associated with a role authorised to supply policies to the target
device). The management agent has an extensible table of authorisation policies to
enable this decision. Roles are allocated using a public key infrastructure. If a
notification addressed to the management agent encloses a number of component
policies, each component policy must specify the subject (normally an object
oriented program) intended to use it as part of their rule-base. The local policy store
has a table of policies for each registered subject and the management agent will
store the component policies in the appropriate parts of the database.

Our approach avoids many information handling problems by using a lightweight
scalable mechanism for notification transfer. The Information Management System
[7] consists of a hierarchy of ‘store and forward’ notification stores, with
notifications being classified by their propagation characteristics and storage
duration. Two types of these information stores are used, their selection depending on
the complexity of querying required against storage availability. While simple but
fast stores offer a load balancing and traffic controlling function, more complex
stores permit management information analysis.

The DPS also has an autonomous control system that performs management
functions delegated to it via policies (scripts and pointers embedded in XML
containers). This autonomous control system is intended to be adaptive, and is
integrated with the conventional agent by sharing policy stores.

Not shown in the figure are some low level controls required to enforce sharing of
resources between users, and minimise unwanted interactions between users. There
is a set of kernel level routines [8] that enforce hard scheduling of the system
resources used by a DPS and the associated virtual machine that supports user
supplied code. In addition the DPS requires programs to offer payment tokens before
they can run. In principle the tokens should be authenticated by a trusted third party.
At present these low level management activities are carried out using a conventional
hierarchical approach. We hope to address adaptive control of the operating system
kernel supporting the DPS in future work.

3. Management agent services
The management agent receives notifications from any entities that send them, and
interprets the policy named in the notification wrapper. If authorised by the sending
entities' role (identified in the wrapper policy) it stores any embedded events in the
event log, and any embedded code in the proxylet cache. In addition it places any
embedded policies in the policy store, informs the subject(s) and associated
management facilities of the update to the store and generates an event recording the
change in an event log. The subject will then activate the policy and either enact it
immediately or await the trigger condition. For example the policy may specify the
management agent must record each usage instance for a particular interface that it
supports. The default target is the local event log so the agent must forward the
usage data to an event logger, and provide the event logger with a policy for handling
the data (this policy would be embedded in the action list of the first policy). The
action to install the embedded policy is immediate, but the action to forward data is
triggered by use of the interface. When data is forwarded the event logger will
generate an event from the base data, adding a timestamp, a sequence number, an
event class, a time to live, the source object name (management agent) and the
generating policy name(s). The agent must also inform any entity nominated in the
triggered policy that the event has occurred, using a notification service. The address
list is identified using a name server. The name server maintains a list of subjects,

targets, policies, and manager ids registered at the local node. Each list resolves to
the address(es) of the entities. In the case of managers, such as the agent, the address
could be a multicast address the manager obtained from the information management
system.

Figure 2 illustrates the overall design of the Event and Notification services
supported by the management agent at a single node.

A Notification Provider is any entity (including other management agents) that
requests the export of information in the form of notifications. The receiving agent
(a notification consumer) distributes any policies embedded in notifications to the
local Event Service Elements or Notification Service Elements as required. There can
be any number of local Event/Notification Service Elements in the system, some of
which could be proxylets (or groups of proxylets) that implement the custom
management services required by VPN customers. Based on the policies supplied,
the Event Service Elements generate events and pass them to the Notification Service
Elements, which in turn dispatch them to Notification Consumers identified by the
notification policies. A Notification Consumer is any entity that accepts notifications.

Notification Policy

Event Policy

Notification

Notification Event

Event Service
Element

Notification Service
Element

Notification
Providers

Notification
Consumers

Notification Service

Event Service

Management
Agent

Figure 2. Relationship between Event and Notification Service Elements.

It is possible for an Event/Notification Service Element to receive multiple policies
whose targets overlap. In this case, for each target the service element needs to
determine which policy takes precedence over the others. This is achieved by
considering first the local scope of role of the policy creator and then the local scope
of the policy targets. A policy whose creator has higher authority (at the object where
the conflict occurs) will take precedence; for instance, a policy created by a manager
will usually supersede one created by a user, if the manager has configuration
authority over the object, but the precedence order can be altered for each object if
required (using a further policy generated by the root administrator for the object).
For policies whose creators have equal role scope, the one whose scope of targets is

larger (i.e. includes the targets specified by the other) will take precedence. In
circumstances where the scope of targets overlap, but one is not a superset of the
other, the overlapped set will be the target of both policies.

3.1 Event Service
The Event Service is realised via Event Service Elements (ESEs) as shown in figure
3. Operation of the service is initiated when an authorized entity, such as a user or
administrator, requests the monitoring and generation of events by sending an event
policy to one or more ESEs. The policy can contain information such as:
• The entities and attributes that need to be monitored
• The processing (e.g. aggregation, averaging, threshold detection, etc.) required
• Event destination (logged locally or exported in the form of notifications).
In addition, it is possible to perform actions on a policy already running in an ESE:
• De-activate: stops all interpretation of a policy.
• Activate: activates a de-activated policy.
• Delete: deletes a de-activated/active policy.

M O M O M O
. . .

E v e n t G e n e r a t o r

E v e n t F i l t e r M a n a g e m e n t

 A g e n t

P o l i c y

D a t a b a s e

N o t i f i c a t i o n S e r v i c e

E v e n t
P o l i c y

P o l i c y
P r o v id e r

E v e n t

E v e n t F i l t e r e d
E v e n t

P o l i c y

E v e n t
L o g g e r

E v e n t
L o g

P o l i c y

Figure 3. Components of an Event Service Element (within dotted line).

The role of each component is now described.
• MO: Managed objects whose attributes are being monitored to detect

occurrences.
• Event Generator: polls managed objects periodically to detect the occurrences.

Alternatively, the objects may send occurrence reports asynchronously to the
event generator. According to the event policy, once the Event Generator has
formatted the occurrence into an event, it either stores the events in the Event
Log, sends them to Event Filter or delivers them directly to the Notification
Service.

• Event Filter: receives events and filters them according to the event policy.

• Policy Database: The active, deactivated and deleted policies are held in the
policy database. The change of status (e.g. from active to deactivated, etc.) for
each policy is time stamped.

• Event Logger: Stores the events sent to it in the event log (a database)

Each event policy contains sub-policies for each component of the Event Service
Element. It is possible that some of these sub-policies might be null. An event policy
has the following form:
if subject then

load Sub-Policy-1 to Event-Generator
load Sub-Policy-2 to Event-Filter

endif
Here subject identifies the management agent (acting for an ESE) that is expected to
receive and store the policy. Therefore, the management agent should first check
whether it is the intended subject before commencing loading the sub-policies. It is
also possible that the same policy may need to be sent to more than one ESE. In this
case, the policy sender may use a group name for the subject. The group name will
represent all the intended policy recipients. The policy can be distributed to the
recipients via multicast. Upon receiving a policy, the policy receiver should check
whether it is a member of the group represented by the group name.

Each event will carry the following information:
• Time-stamp: indicates event creation time.
• Event Sequence Number: uniquely identifies each event generated within an

ESE. The sequence numbers generated by different ESEs may overlap.
• Management Agent Name: identifies the agent that has generated the event.
• Source Distinguished Name: identifies the attribute/resource about which the

event is reported.
• Attribute Type: indicates the type of the attribute about which the event is

reported. For instance, integer, character, etc.
• Attribute Value: value of the attribute, interpreted according to the attribute type.
• Time-to-live: indicates the length of time (after event generation) that the event

is valid. This is used to mark those events that lose their informational value after
a period of time. If an event is received after its time-to-live has expired it can be
deleted without any processing.

• Policy class/id: identifies the policy resulting in the generation of the event.
• Requesting Manager: names the entity, which has issued the policy resulting in

the creation of the event. This is useful, for example, when the event recipient
itself has not requested the creation of the event.

• Version Number: identifies which version of ESE generated the event.

A key type of event records payments as its attribute value, and associates payments
with the policy that resulted in the payment. Such events are stored in a special
section of the event log known as the payment log.

3.2 Notification Service
The Notification Service is responsible for transmission of management information
and associated data between management agents. The information could be event
reports, policy distributions and updates, service code distributions and updates, or
any combination of these. The Notification Service is realised via Notification
Service Elements distributed across the system. Figure 4 illustrates the components
of a Notification Service Element.

The role of each component in the diagram is now described.
• Information Receiver: receives management information from an information

source (e.g. an ESE or a policy generator), or extracts it from a log if there is an
appropriate authorization policy. The information is forwarded to the Notification
Filter component.

• Notification Filter: filters information received by the information receiver
according to the criteria specified in a notification policy.

• Notification Encryptor: encrypts the information according to the notification
policy. The policy can either refer to the default encryption algorithm provided by
Encryptor, or alternatively, provide its own algorithm.

• Notification Wrapper: adds a notification wrapper.
• Notification Dispatcher: receives notifications from the Notification Wrapper

and sends them to destinations identified by the notification policy. The
notifications may also be logged locally.

E n c r y p t o r

W r a p p e r

M a n a g e m e n t
A g e n t

P o l i c y
D a t a b a s e

I n f o r m a t i o n

N o t i f i c a t i o n
L o g g e r

N o t i f i c a t i o n
L o g

P o l i c y
P r o v i d e r

E n c r y p t e d
I n f o r m a t i o n

W r a p p e d
N o t i f i c a t i o n

N o t i f i c a t i o n
P o l i c y

D i s p a t c h e r

F i l t e r

I n f o r m a t i o n
R e c e i v e r

P o l i c y

F i l t e r e d
I n f o r m a t i o n

I n f o r m a t i o n

Figure 4. Components of a Notification Service Element (within dotted line).

Each notification policy identifies the Notification Service Element (NSE) that it is
destined for, and also contains sub-policies for each component of the NSE. Some of
these sub-policies might be null. A notification policy has the following form:
if subject then

load Sub-Policy-1 to Event Receiver
load Sub-Policy-2 to Filter
load Sub-Policy-3 to Encryptor
load Sub-Policy-4 to Dispatcher

endif
Here subject identifies the management agent (acting as an NSE) that is expected to
receive and interpret the policy. The information provided by the sub-policies for the
NSE’s components are as follows:
Information Receiver: Identification of which entities are allowed to send
information to the Information Receiver. The policy may specify that the information
reciever should extract the information from a named datastore such as a log.
Notification Filter: Any processing/selection which needs to be performed on
information. For example, it may be required to report only a single event of a certain
type during a time-period to some consumers.
Notification Encryptor: The encryption algorithm to be applied.
Notification Wrapper: Whether a recipient should acknowledge the receipt of
notification, and the priority level to be assigned to each notification type.
Notification Dispatcher : List of notification recipients, and their notification
attributes, e.g. immediate/deferred, transport protocol choice, time to live

Each notification can be considered to consist of two parts, a data part and a
notification wrapper part. The notification wrapper is an XML container with the
following mandatory tags:
• Management Agent Name: uniquely identifies the agent (and NSE) that has

generated the notification.
• Notification Sequence Number: uniquely identifies each notification generated

by a NSE.
• Reply Needed Flag: indicates whether the recipient is expected to return an

acknowledgement.
• Priority (low, medium, high): indicates the notification’s priority. This can be

used to categorise the notifications and determine the resources required for their
processing. For instance, high priority notifications may be placed on high
priority output queues, and hence, transmitted quicker.

• Version number: identifies which version of the Notification Service has
generated the notification.

• Policy location: The policy may be part of the data enclosure or in the policy
store of the receiving agent.

• Policy name: Points to the policy for processing the notification. Any data
enclosures in the notification must conform with the implicit expectations of the
policy’s action list. Normally the data enclosure is also an XML document

4. Autonomous controller
The system described above will rapidly generate large numbers of policies and as it
grows, the need for user intervention will tend to grow even faster. It is thus
imperative to combine the policy based management approach with a significant
improvement in management automation. Given the nature of the problem domain
this can only be done using adaptive control. Conventional control of dynamic
systems is based on monitoring state, deciding on the management actions required
to optimise future state, and enforcing the management actions. Adaptive control [3]
is based instead on learning and adaptation. The idea is to compensate for lack of
knowledge by performing experiments on the system and storing the results
(learning). Commonly the experimental strategy is some form of iterative search,
since this is known to be an efficient exploration algorithm. Adaptation is then based
on selecting some actions that the system has learnt are useful using some selection
strategy (such as a Bayesian estimator) and implementing the selected actions.
Unlike in conventional control, it is often not necessary to assume the actions are
reliably performed by all the target entities. This style of control has been proposed
for a range of Internet applications including routing [9], security [10,11], and fault
ticketing [12]. As far as we are aware the work presented here is the first application
of distributed adaptive control to service configuration and management.

Holland [13] has shown that Genetic Algorithms (GAs) offer a robust approach to
evolving effective adaptive control solutions. More recent work [14] has
demonstrated the effectiveness of distributed GAs using an unbounded gene pool and
based on local action (as would be required in a multi-owner internetwork). In
addition Ackley and Littman [15], demonstrated that to obtain optimal solutions in an
environment where significant changes are likely within a generation or two, the
slow learning in GAs based on mutation and inheritance needs to be supplemented by
an additional rapid learning mechanism. Our bacterial algorithm [4] is a distributed
GA with an additional rapid learning mechanism, and forms the basis of the
adaptation performed by the autonomous controller in our architecture. In this paper
we aim to identify the role of autonomous control in our policy driven management
system and describe how the autonomous controller is integrated and provide only a
brief sketch of the bacterial algorithm.

One of the most distinctive features of bacterial genetics is the process of plasmid
interchange, in which one bacterium accepts copies of genes exported by another.
This process is in effect a learning mechanism, and enables bacteria to acquire new
capabilities (such as antibiotic resistance) extremely rapidly. In our controller we
treat policies as though they were genes, and policy exchange between entities as
plasmid interchange. If the controller is programmed (like a bacterium) to
autonomously export policies that improve its performance, and de-activate policies
that degrade performance, useful policies will spread and poor policies will cease to
be executed (until conditions change).

In fact the controller monitors all the execution policies in the policy database that
name it as subject, and autonomously deactivates those that are generating the least
revenue (as recorded in the payment log). The payment events are recorded in the
log by the event service. In order for a service to be autonomously controlled its
execution policy must include an action that loads a polling policy into the event
generator in addition to the expected actions ‘do procedure’ or ‘run service instance’.
We assume that control will not be needed for all actions, only those with a high
resource cost, so we only apply control to execution policies, i.e. policies that contain
at least one action with the semantic ‘load and run a programme’. We also assume
that services (or some other entity specified in the polling policy that can provide
payment on behalf of the service) will be polled for payment, as this allows the
charging regime to be localised. In addition the controller exports to its immediate
neighbours in the network graph (via the notification service) the policies generating
the most revenue when the node fitness function (revenue - cost) is high. Exported
policies have one or more remote autonomous controllers as subject. A receiving
management agent simply stores them as de-activated policies in the appropriate part
of the policy store. Whenever the autonomous controller deactivates a policy it will
examine all the deactivated policies and activate a random selection, to compensate.
It will also inform the originator of the policy that it has been deactivated (if the user
defined the appropriate grade of service when he wrote the policy). This allows user
to increase the level of payment and avoid permanent deactivation if the policy has a
high priority. The autonomous controller has two further capabilities: it will shut
down the DPS if fitness has been low for some time, and copy the DPS to a nearby
vacant site if fitness has been high for some time. Policies that are never useful will
tend to disappear completely, since nodes that possess them will be more likely to
shut down. Policies that are useful for some demand but not for others will persist
but may not always be activated. Since the active services can only run if a policy
pointing to them is triggered or interpreted, this effectively means that useful active
services will spread, and useless ones will disappear, i.e. service deployment,
configuration and withdrawal have been automated.

The autonomous controller is thus acting as a configuration manager, distributing
policies/services (remember services or pointers will be embedded in notifications
containing execution policies) to where they are needed and activating them on
demand, without needing any knowledge of what the demand is or what the policies
represent. It is also acting as a low-level account manager since all the policies it
controls, that point to services, will not execute unless payment events are generated
by the service they point to. This is very convenient since an active services network
must respond rapidly to the introduction of new services, enabling them to spread to
wherever there is demand, whilst providing a stable quality of service for existing
services. When a user develops a new proxylet, or an improved version of an
existing proxylet, he should not be required to identify all the locations where it
should be stored and/or run. Typically the user lacks both the time and the
knowledge to make such a decision for himself and in any case cannot predict
demand from other users of his program. At the same time if a user introduces a new

service he should not be able to access his service until he has paid the appropriate
fee. In our system the user introduces the policy to a default home server (e.g. the site
of the web cache he is using) and the placement/distribution of the service is then
fully automated. Given that the number of DPSs will be large, and the number of
proxylets unbounded, the correct configuration algorithm will be one, like ours, that
needs as little human/manual intervention as possible, as the manual optimisation of
proxylet placement soon becomes untenable.

5. Experiments
To test our approach, and demonstrate the automated deployment, distribution and
withdrawal of a service using only the autonomous controller, an event service and a
notification service, we simulated a community of 400 DPSs, each of which was
controlled by an adaptive management agent as described in the architecture above.
The network supported a range of 8 active services and the traffic distribution was
random in both space and time. An execution policy enabling a new service (service
h) was then introduced to one node (using a notification), along with some simulated,
network wide demand for the service provided by the corresponding proxylet.
Initially the users did not offer payment for this new service. It can be seen (Figure
5) that for a brief period some requests are handled (hence the success rate is briefly
>0) but the network soon fails to execute any of the requests for the new service.
This is because any proxylets for this service are not earning their DPS any revenue
(no payment events are generated), and the execution policy is therefore being
replaced by more lucrative policies. This illustrates how the autonomous controls
deal with the introduction of malicious code intended to defraud the operator. Once
the users start to pay for the new service the request dropping rate decreases and the
proxylet autonomously spreads around the network using the notification service.

0

20

40

60

80

100

0 500 1000 1500 2000

Tim e (Seconds)

a
b
c
d
e
f
g
h

Introduct ion of a
new, valueless service

New serv ice
given a va lue

Success
Rate (%)

Figure 5. Service provisioning consequences of introducing a new service.

Figure 6 shows the results of the same experiment expressed in terms of handling
latency. When the service gene for service h is introduced, a few requests are handled
without affecting the latency of existing services, and the new service quickly dies

out as no users are offering payment. Subsequently no latency is given for the new
service as no nodes are processing it (all the requests are dropped). Later, when users
start paying for the service there is a period of high latency as the plasmid distributes
around the network but soon the latency of the new service is similar to that for the
other services.

0

5

10

15

20

25

30

35

0 500 1000 1500 2000

Time (Seconds)

a

b

c

d

e

f

g

h

Introduction of a
new, valueless
service

New service
given a valueLatency

(ms)

Figure 6. Latency Consequences of introducing a new service.

In figure 7 we show the average request drop rate across the network of bacteria and
compare the performance with a number of alternative methods of distributing the
active services. The alternatives are:
a) Random static placement of services at network nodes
b) Caching of requested services with a random replacement algorithm (Cache I)
c) Caching using a least recently used replacement algorithm (Cache II)

0

5

10

15

20

25

low med high

Load

D
ro

pp
ed

 (
%

) bacteria

random

cache I

cache II

Figure 7. Request drop rates for different distribution mechanisms.

The tests were performed at loads of 10% (Low), 40% (Medium) and 80% (High).
At low loads all the algorithms offer similar performance levels. As might be
expected, at medium and high load our algorithm is a significant improvement over

random placement. More surprisingly it also significantly outperforms caching. We
believe this is due to the small size of the caches. Each cache holds up to eight
services (4 live and 4 paged out - the same as the bacteria). This is intended to
represent the number of proxylets that can be held in the RAM of a low spec PC,
such as might be used in a commodity based cluster at a network server farm.

Variable Load

0

2

4

6

8

10

12

14

16

18

low med high

Load

La
te

nc
y

bacteria

random

cache I

cache II

Figure 8. Average latency of several approaches to distributing active services.

Figure 8 shows the average end to end latency experienced by service requests in our
modelled network (expressed in milliseconds), and compares it with the latency
experienced using the alternative active service distribution mechanisms listed above.
As before the adaptive bacterial approach is as good as the other alternatives at low
loads, and is clearly an improvement over the best alternative (standard LRU based
caching - CacheII) at medium and high loads. The simple experiments we have
shown illustrate that our system can automate key aspects of performance,
configuration, account and security management of the services in an active service
network. It is also clear that the network will adaptively work around faults until
they either die, or are manually repaired.

6. Discussion
There has been an extensive study of policy based management undertaken within
the IETF [www.ietf.org]. Unfortunately the policy schema used in this work is not
sufficiently expressive to meet the needs of an environment with multiple managers,
such as an active network, since it does not allow policies to be linked to the role of
the originator. We have instead based our notion of policy on the work of Sloman
et.al. [5]. Our policy schema differs from theirs in a number of ways, in particular;

a) we do not distinguish between authorization and obligation since many of
our policies can do both depending on the context in which they are applied

b) we express constraints as part of the action statements and replace the

constraint field with a grade of service field. This is to allow managers to
customize their priorities for policy handling, and ensure key policies are
acted even when the system is overloaded

c) we express policies in XML – a purely pragmatic decision.

The notification and event services were initially implemented in CORBA [16], but
we found performance was poor and coding was hard. Since the ethos of active
services is to make creation of new services easy we moved to XML on the basis that
coding is straightforward and lightweight. We have found [17] performance in wide
area contexts is also rather better since the messaging is asynchronous and there is
therefore a low probability of blocking whilst awaiting delayed replies. Of course
CORBA now provides good support for asynchronous messaging too (it did not at
the time of the original work) but there is no benefit to be gained from a further
rewrite in CORBA.

The autonomous controller has not yet been implemented, since we are still tuning
the algorithm and attempting to identify how much we can usefully manage using it.
We plan a full implementation in the near future.

To the best of our knowledge, our integration of the bacterial control algorithm [4]
with conventional management services is entirely novel. This integration enables
the retention of well developed and understood techniques for those aspects of active
service management that require control by the operator, whilst enabling highly
automated control to be implemented on behalf of end users (who would not wish to
control the system in detail). Crucially the application demonstrated enables low cost
deployment and withdrawal of a large range of new services, as envisaged in an
active network. We do not feel this is possible using conventional hierarchical
manual control. In addition we feel the autonomous control of policies is an
extremely promising solution to the explosion in the number of managed entities that
policy based management entails

7. Conclusions
Active networks will require extensive use of adaptive control techniques,
particularly where user supplied code has to be managed. The most obvious control
point is the DPS in the ALAN approach. An autonomous adaptive control
architecture for dynamic proxy servers in an active network has been proposed, based
on combining a novel genetic algorithm inspired by observation of real bacterial
communities, with policy based management techniques and active programming of
management systems. Simulations have shown that the proposed system can handle
key aspects of fault, configuration, account, performance and security management
successfully in a large scale, dynamic environment.

8. References
[1] M. Fry and A. Ghosh “Application Layer Active Networking” Computer
Networks, 31, 7, pp. 655-667, 1999.
[2] E. Amir, S. McCanne, R. Katz, “An active service framework and its application
to real time multimedia transcoding” Computer Communications review 28, 4,
pp178-189, Oct 1998.
[3] Y.Z. Tsypkin. "Adaptation and learning in automatic systems", Mathematics in
Science and Engineering Vol 73, Academic press, 1971.
[4] C.M.Roadknight and I.W.Marshall, "Adaptive management of an active services
network", BTTJ 18, 3, Oct 2000
[5] Sloman M., "Policy Driven Management for Distributed Systems", Plenum press
Journal of Network and Systems Management, Plenum Press
[6] Lupu E., Sloman M., " A Policy-based Role Object Model", Proceedings of the 1st
IEEE Enterprise Distributed Object Computing Workshop (EDOC '97).
[7] Bates J., Bacon J., Moody K., and. Spiteri M., “Using Events for the Scalable
Federation of Heterogeneous Components”, Proceedings of 8th ACM SIGOPS
European Workshop, Sintra, Portugal. September 1998.
[8] D.G. Waddington and D. Hutchison, "Resource Partitioning in General Purpose
Operating Systems, Experimental Results in Windows NT", Operating Systems
Review, 33, 4, 52-74, Oct 1999.
[9] G. DiCaro and M. Dorigo, "AntNet: Distributed stigmergic control for
communications networks", J. Artificial Intelligence Research, 9, pp. 317-365, 1998.
[10] D.A. Fisher and H.F. Lipson, "Emergent algorithms - a new method of
enhancing survivability in unbounded systems", Proc 32nd Hawaii international
conference on system sciences, IEEE, 1999
[11] M. Gregory, B. White, E.A. Fisch and U.W. Pooch, "Cooperating security
managers: A peer based intrusion detection system", IEEE Network, 14, 4, pp.68-78,
1996.
[12] L. Lewis, "A case based reasoning approach to the management of faults in
telecommunications networks", Proc. IEEE conf. on Computer Communications (Vol
3), pp. 1422-29, San Francisco, 1993.
[13] J.H. Holland, "Adaptation in Natural and Artificial Systems" MIT press, 1992.
[14] R. Burkhart, "The Swarm Multi-Agent Simulation System", OOPSLA '94
Workshop on "The Object Engine", 7 September 1994.
[15] D.H. Ackley and M.L. Littman, "Interactions between learning and evolution".
pp. 487-507 in Artificial Life II (ed C.G. Langton, C. Taylor, J.D.Farmer and S.
Rasmussen), Adison Wesley, 1993.
[16] J.R.Fallows and I.W.Marshall "A CORBA assisted multimedia proxy server" in
"Multimedia applications services and techniques" ed Hutchison and Schafer, LNCS
1425, pp149-162, Springer Verlag 1998
[17] I.W. Marshall et. al., "Active management of multiservice networks", Proc.
IEEE NOMS2000 pp981-3

