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Abstract.

A novel approach to quality of service control in an active service network (application

layer active network) is described.  The approach makes use of a distributed genetic

algorithm based on the unique methods that bacteria use to transfer and share genetic

material.  We have used this algorithm in the design of a robust adaptive control system

for the active nodes in an active service network.  The system has been simulated and

results show that it can offer clear differentiation of active services.  The algorithm

places the right software, at the right place, in the right proportions; allows different

time dependencies to be satisfied and simple payment related increases in performance.
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Introduction.

To be popular with customers an active service platform must provide some clear

service quality assurances.  Users of an active service network supply the programs and

policies required for their custom services in transport packets alongside their data.

Clearly it should be possible for these users to specify the Quality of Service (QoS)

using any metric that is important to them.  The rate of loss of packets carrying service

requests or policies, and the service response time (latency) are two obvious examples.

In this paper we discuss the management of QoS in an Application Layer Active

Network (ALAN) [1] that enables users to place software (application layer services) on

servers embedded in the network.  Despite the obvious virtual networking overheads,

the resulting end to end service performance will often be significantly better than if the

services executed in the user's end systems (as at present).  For example, a network

based conference gateway can be located so as to minimise the latency of the paths used

in the conference, whereas an end system based gateway will usually be in a sub-

optimal location.

For the purposes of this work we have assumed that the latency and loss associated

with the network based servers is significantly greater than the latency and loss

associated with the underlying network.  In the case of latency this is clear - packet

handling times in broadband routers are around ten microseconds, whilst the time taken

to move a packet into the user space for application layer processing is a few

milliseconds.  In the case of loss the situation is less clear since currently servers do not

drop requests, they simply time-out.  However, measurement of DNS lookup [2]

suggest DNS time-outs occur significantly more frequently than DNS packet losses, so

we feel our assumption is reasonable.



In the next section we briefly describe our active services platform ALAN and its

associated management system.  We then justify our approach to QoS in an ALAN

environment.  We then describe a novel control algorithm, which can control QoS in the

desired manner.  Finally we show the results of some simulations using the novel

algorithm.  The results are very encouraging and illustrate for the first time that a

distributed AI approach may be a productive QoS management tool in an active services

network.  However, further work is required before we can justify the use of our

approach in a working active network.

ALAN

ALAN [1] is based on users supplying java based active code (proxylets) that

runs on edge systems (dynamic proxy servers - DPS) provided by network operators.

Messaging uses HTML/XML and is normally carried over HTTP. There are likely to be

many DPSs at a physical network node.  It is not the intention that the DPS is able to act

as an active router.  ALAN is primarily an active service architecture, and the discussion

in this paper refers to the management of active programming of intermediate servers.

Figure 1 shows a schematic of a possible DPS management architecture.

Figure 1.  Schematic of proposed ALAN design



The DPS has an autonomous control system that performs management

functions delegated to it via policies (scripts and pointers embedded in XML

containers).  Currently the control system supports a conventional management agent

interface that can respond to high level instructions from system operators [3].  This

interface is also open to use by users (who can use it to run programs/active services) by

adding a policy pointing to the location of their program and providing an invocation

trigger.  Typically the management policies for the program are included in an XML

metafile associated with the code using an XML container, but users can also separately

add management policies associated with their programs using HTTP post commands.

In addition the agent can accept policies from other agents and export policies to other

agents. This autonomous control system is intended to be adaptive.

Not shown in the figure are some low level controls required to enforce sharing

of resources between users, and minimise unwanted interactions between users.  There

is a set of kernel level routines [4] that enforce hard scheduling of the system resources

used by a DPS and the associated virtual machine that supports user supplied code.  In

addition the DPS requires programs to offer payment tokens before they can run.  In

principle the tokens should be authenticated by a trusted third party.  At present these

low level management activities are carried out using a conventional hierarchical

approach.  We hope to address adaptive control of the o/s kernel supporting the DPS in

future work.

Network level QoS

Currently there is great interest in enabling the Internet to handle low latency traffic

more reliably than at present.  Many approaches, such as intserv [5], rely on enabling



the network to support some type of connection orientation.  This matches the properties

of older network applications, such as telephony, well.  However it imposes an

unacceptable overhead on data applications that generate short packet sequences.  Given

that traffic forecasts indicate that by the end of the next decade telephony will be approx

5% of total network traffic, and short data sequences will be around 50% of network

traffic, it does not seem likely that connection orientation will deliver optimal results.

A recent alternative has been to propose differentiated services [6], an approach

that is based on using different forwarding rules for different classes of packet, and

maintaining the properties of the best class by admission control at the ingress to the

network.  There are difficulties however.

• Admission control does not work well with short packet sequences [7]

• The proposed algorithms assume Poisson burst intervals when real traffic is in fact

fractional Gaussian [8,9] and much harder to predict

• The performance benefits can only be obtained if the distribution of demand is such

that only a small proportion of the traffic wishes to use the better classes [10]

• The proposed classes typically propose a low loss, low latency class that uses a

disproprtionate proportion of the available network resources

Despite the difficulties it is clear that differentiated services is currently the best

available alternative.  It therefore seems advisable to base any proposals for QoS

management of active services on the diffserv approach.  However, it also seems

advisable to modify the approach and attempt to avoid some of the difficulties

identified.



Emergent approach to differentiated active services

We propose a new approach to differentiating active services, controlled by an

emergent control algorithm.  Users can request low latency at the cost of high loss,

moderate latency and loss, or high latency and low loss by adjusting the time to live (ttl)

of the packets they send.  Short ttl packets will experience high loss when the network is

congested and long ttl packets will experience high delay when the network is

congested.  Users cannot request low loss and low delay together.  This choice means

that all the classes of service we support have approximately the same resource cost.  As

a result we do not have to consider complex admission control to ensure a favourable

demand distribution, and we do not have to allocate significant resources to support a

minority service.  Two adaptations are possible if the performance is reduced by

congestion; either the application sends less packets or the application persists until an

application specific latency cut-off is reached and then terminates the session.  Services

such as telephony would use a low latency/high loss transport regime.  This would

require the application to be more loss tolerant than at present, however as mobile

telephones demonstrate this is not hard to achieve.  Interoperation with legacy

telephones could be achieved by running loss tolerant algorithms (e.g. FEC) in the

PSTN/IP gateway.  We do not believe that users want an expensive low loss, low

latency service.  The current PSTN exemplifies this service and users are moving to

VoIP as fast as they are able, despite lower quality, in order to benefit from reduced

prices.

Near optimal end to end performance across the network is obtained by enabling

the servers to retain options in their application layer routing table for fast path, medium

path and slow path (i.e. high loss medium loss and low loss). Packets are then quickly



routed to a server whose performance matches their ttl.  This avoids any need to

perform flow control and force sequences of packets to follow the same route.

For this approach to work well the properties of the servers must adapt to local load

conditions.  Fast servers have short queues and high drop probabilities, slow servers

have long queues and low drop probabilities.  If most of the traffic is low latency the

servers should all have short buffers and if most of the demand is low loss the servers

should have long buffers.  Adaptation of the buffer length can be achieved using an

adaptive control mechanism [11], and penalising servers whenever a packet in their

queue expires.  Use of adaptive control has the additional advantage that it makes no

assumptions about traffic distributions, and will work well in a situation where the

traffic has significant Long Range Dependency.  This then resolves the final difficulty

we noted with the current network level diffserv proposals.

Adaptive control

 Conventional control of dynamic systems is based on monitoring state,

deciding on the management actions required to optimise future state, and enforcing the

management actions.  In classical control the decision is based on a detailed knowledge

of how the current state will evolve, and a detailed knowledge of what actions need to

be applied to move between any pair of states (the equations of motion for the state

space).  Many control schemes in the current Internet (SNMP, OSPF) are based on this

form of control.  There is also a less precise version known as stochastic control, where

the knowledge takes the form of probability density functions, and statistical

predictions.  All existing forms of traffic management are based on stochastic control,

typically assuming Poisson statistics.



Adaptive control [11] is based instead on learning and adaptation.  The idea is to

compensate for lack of knowledge by performing experiments on the system and storing

the results (learning).  Commonly the experimental strategy is some form of iterative

search, since this is known to be an efficient exploration algorithm.  Adaptation is then

based on selecting some actions that the system has learnt are useful using some

selection strategy (such as a Bayesian estimator) and implementing the selected actions.

Unlike in conventional control, it is often not necessary to assume the actions are

reliably performed by all the target entities.  This style of control has been proposed for

a range of Internet applications including routing [12], security [13,14], and fault

ticketing [15].  As far as we are aware the work presented here is the first application of

distributed adaptive control to service configuration and management.

Holland [16] has shown that Genetic Algorithms (GAs) offer a robust approach

to evolving effective adaptive control solutions.  More recently many authors [17,18,19]

have demonstrated the effectiveness of distributed GAs using an unbounded gene pool

and based on local action (as would be required in a multi-owner internetwork).

However, many authors, starting with Ackley and Littman [20], have demonstrated that

to obtain optimal solutions in an environment where significant changes are likely

within a generation or two, the slow learning in GAs based on mutation and inheritance

needs to be supplemented by an additional rapid learning mechanism.  Inman [21]

pointed out that gene interchange (as observed in bacteria [22,23]) could provide the

rapid learning required.  This was recently demonstrated by Furuhashi [24] for a

bounded, globally optimised GA.  In previous work [25] we have demonstrated that a

novel unbounded, distributed GA with “bacterial learning” is an effective adaptive

control algorithm for the distribution of services in an active service provision system

derived from the application layer active network (ALAN).  In this paper we



demonstrate for the first time that our adaptive control algorithm can deliver

differentiated QoS in response to user supplied metrics.

Algorithm Details.

Our proposed solution makes each DPS within the network responsible for its

own behaviour.  The active service network is modelled as a community of cellular

automata.  Each automaton is a single DPS that can run several programs (proxylets)

requested by users.  Each proxylet is considered to represent an instance of an active

service.  Each member of the DPS community is selfishly optimising its own (local)

state, but this 'selfishness' has been proven as a stable model for living organisms [26].

Partitioning a system into selfishly adapting sub-systems has been shown to be a viable

approach for the solving of complex and non-linear problems [27].

In this paper we discuss results from an implementation that supports up to 10

active services. The control parameters given below are examples provided to illustrate

our approach.  Our current implementation has up to 1000 vertices connected on a

rectangular grid (representing the network of transport links between the dynamic proxy

servers). Each DPS has an amount of genetic material that codes for the rule set by

which it lives. There is a set of rules that control the DPS behaviour. There is also a

selection of genes representing active services. These define which services each node

will handle and can be regarded as pointers to the actual programs supplied by users.

The service genes also encode some simple conditionals that must be satisfied for the

service to run. Currently each service gene takes the form {x,y,z} where:

x.  is a character representing the type of service requested (A-J)

y.  is an integer between 0 and 200 which is interpreted as the value in a statement of the

form "Accept request for service [Val(x)] if queue length < Val(y)".



z.  is an integer between 0 and 100 that is interpreted as the value in a statement of the

form "Accept request for service [Val(x)] if busyness < Val(z)% "

The system is initialised by populating a random selection of network vertices

with DPSs (active nodes), and giving each DPS a random selection of the available

service genes.  Requests are then entered onto the system by injecting a random

sequence of characters (representing service requests), at a mean rate that varies

stochastically, at each vertex in the array.  If the vertex is populated by a DPS, the items

join a queue.  If there is no DPS the requests are forwarded to a neighbouring vertex.

The precise algorithm for this varies and is an active research area, however the results

shown here are based on randomly selecting a direction in the network and forwarding

along that direction till a DPS is located.  This is clearly sub-optimal but is easy to

implement.  The traffic arriving at each DPS using this model shows some Long Range

Dependency (LRD), but significantly less than real WWW traffic.  Increasing the

degree of LRD would be straightforward.  However, the necessary change involves

additional memory operations that slows down the simulation and makes the results

harder to interpret.  In any case inclusion of significant LRD would not change the

qualitative form of the main results since the algorithm is not predictive and makes no

assumptions regarding the traffic pdf. Each DPS evaluates the items that arrive in its

input queue on a FIFO principle.  If the request at the front of the queue matches an

available service gene, and the customer has included payment tokens equal to (or

greater than) the cost for that service in the DPS control rules, the service will run.  In

the simulation the request is deleted and deemed to have been served, and the node is

rewarded by a value equal to the specified cost of the service.  If there is no match the

request is forwarded and no reward is given.  In this case the forwarding is informed by

a state table maintained by the DPS using a node state algorithm. Packets with a short ttl



are forwarded to a DPS with a short queue and packets with a long ttl are forwarded to a

DPS with a long queue.  Each DPS is assumed to have the same processing power, and

can handle the same request rate as all the others.  In the simulation time is divided into

epochs (to enable independent processing of several requests at each DPS before

forwarding rejected requests).  An epoch allows enough time for a DPS to execute 3-4

service requests, or decide to forward 30-40 (i.e. forwarding incurs a small time

penalty).  An epoch contains 100 time units and is estimated to represent O(100)ms. The

busyness of each DPS is calculated by combining the busyness at the previous epoch

with the busyness for the current epoch in a 0.8 to 0.2 ratio, and is related to the revenue

provided for processing a service request.  For example, if the node has processed three

requests this epoch (25 points each) it would have 75 points for this epoch, if its

previous cumulative busyness value was 65 then the new cumulative busyness value

will be 67.  This method dampens any sudden changes in behaviour.  A brief schematic

of this is shown in figure 2.

Figure 2  Future network model



The DPS also has rules for reproduction, evolution, death and plasmid

migration. It is possible to envisage each DPS as a bacterium and each request for a

service as food.  The revenue earned when a request is handled is then analagous with

the energy released when food is digested.  This analogy is consistent with the

metabolic diversity of bacteria, capable of using various energy sources as food and

metabolising these in an aerobic or anaerobic manner.

Genetic diversity is created in at least 2 ways, mutation and plasmid migration.

Mutation involves the random alteration of just one value in a single service gene, for

example:

"Accept request for service A if DPS < 80% busy" could mutate to to "Accept request

for service C if DPS < 80% busy" or alternatively could mutate to "Accept request for

service A if DPS < 60% busy".

Plasmid migration involves genes from healthy individuals being shed or

replicated into the environment and subsequently being absorbed into the genetic

material of less healthy individuals.  If plasmid migration doesn't help weak strains

increase their fitness they eventually die.  If a DPS acquires more than 4-6 service genes

through interchange the newest genes are repressed (registered as dormant). This

provides a long term memory for genes that have been successful, and enables the

community to successfully adapt to cyclic variations in demand.  Currently, values for

queue length and cumulative busyness are used as the basis for interchange actions, and

evaluation is performed every five epochs.  Although the evaluation period is currently

fixed there is no reason why it should not also be an adaptive variable.

If the queue length or busyness is above a threshold (both 50 in this example), a

random section of the genome is copied into a 'rule pool' accessible to all DPSs. If a

DPS continues to exceed the threshold for several evaluation periods, it replicates its



entire genome into an adjacent network vertex where a DPS is not present. Healthy

bacteria with a plentiful food supply thus reproduce by binary fission.  Offspring

produced in this way are exact clones of their parent.

If the busyness is below a different threshold (10), a service gene randomly

selected from the rule pool is injected into the DPS's genome.  If a DPS is 'idle' for

several evaluation periods, its active genes are deleted, if dormant genes exist, these are

brought into the active domain, if there are no dormant genes the node is switched off.

This is analogous to death by nutrient deprivation.

So if a node with the genome {a,40,50/c,10,5} has a busyness of >50 when

analysed, it will put a random rule (e.g. c,10,5) into the rule pool.  If a node with the

genome {b,2,30/d,30,25} is later deemed to be idle it may import that rule and become

{b,2,30/d,30,25/c,10,5}.

Experiments.

The basic traffic model outlined above was adjusted to enable a range of ttls to

be specified. The ttls used were 4, 7, 10, 15, 20, 25, 30, 40, 50, 100 (expressed in

epochs).  Approximately the same number of requests were injected at each ttl.  The

DPS nodes were also given an extra gene coding for queue length, and penalised by 4

time units whenever packets in the queue were found to have timed out.  A DPS with a

short queue will handle packets with a short ttl more efficiently since the ttl will not be

exceeded in the queue and the DPS will not be penalised for dropping packets.  Thus if

local demand is predominantly for short ttl DPS nodes with short queues will replicate

faster, and a colony of short queue nodes will develop.  The converse is true if long ttl

requests predominate.  If traffic is mixed a mixed community will develop.  In figure 3

the red dots represent DPS nodes with long queues, the blue dots represent intermediate



queues and the green dots represent short queues.  It is clear that the distribution of

capability changes over time to reflect the distribution of demand, in the manner

described above.

Figure 3.  Distribution of DPS nodes with short medium and long queues at three

different times.

Figure 4 illustrates the differentiated QoS delivered by the network of DPS

nodes. The time taken to process each request is shown on the y access and the elapsed

system time is shown on the x axis.  It can be seen that the service requests with shorter

times to live are being handled faster than those with a longer time to live, as expected.

Figure 5 shows the expected corrollary.  More service requests with short ttls are being

dropped.  This is due to them timing out, and is the essential down-side to specifying a

short ttl.  Although the numbers of requests at each ttl value are roughly equal, fewer

short ttl requests are handled.
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Figure 5.  Different dropping rates for requests with differing times to live.

In addition to varying the latency and loss associated with service requests users

may also wish to vary the price they are willing to pay.  In the basic algorithm it was

assumed that the network provider allocated a reward to each DPS for processing a

service request.  We investigated the impact of allowing the DPS to collect a greater



reward.  In the modified model the DPS is rewarded by the amount of tokens the user

includes with the request.  The traffic input was adjusted so that requests for different

services carried different amounts of payment tokens. Initially the DPS nodes were

rewarded equally (25 'tokens') for each of three services A, B and C.  After 500 epochs

the rate of reward is changed so that each DPS is rewarded 4 times as much for

processing service C (40 tokens) as it is for processing service A (10 tokens), with B

staying at 25.  This is equivalent to offering users a choice of three prices for a single

service. Fig 6 shows the latency of service requests for the 3 different service types.

0

1

2

3

4

5

6

7

0 200 400 600 800 1000 1200 1400 1600 1800

Epochs

25/25/25 10/25/40 25/25/25

Figure 6.  Effects of different charging levels on age related QoS

It is apparent that within 100 epochs the average latency for providing service C

is reduced while the latency for A is increased.  Fig 7 shows that requests for service A

are also dropped (due to timing out) more than requests for service B and C.  Before the

change in reward the numbers of DPSs handling each service were similar. After the

reward rate change the plasmids for handling services C and B have spread much more



widely around the network at the expense of the plasmid for the relatively unrewarding

service A.  After 1000 epochs the rate of requests for all three services was returned to

the original state.  It can be seen, in both figures, that equality in quality of service, both

in terms of loss rate and latency, quickly returned.
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Figure 7.  Effects of different charging levels on dropping of requests

These last results indicate that the control method could potentially be used for a range

of user specified parameters.  We see no reason why other parameters of interest could

not be added to the model, and are very encouraged by the initial results.  In particular

we note that the latencies and loss rates are comparable to those obtained in many

conventional approaches to differentiated services, but many of the difficulties

concerning admission control have been avoided.

Conclusions.

Our initial results show that the long-term self-stabilising, adaptive nature of

bacterial communities are well suited to the task of creating a stable community of



autonomous active service nodes that can offer consistent end to end QoS across a

network.  The methods used for adaptation and evolution enable probabilistic

guarantees for metrics such as loss rate and latency similar to what can be achieved

using more conventional approaches to differentiated services.
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