

Spring Embedder Preprocessing for WWW Visualization

Paul Mutton, Peter Rodgers
University of Kent at Canterbury

{pjm2@ukc.ac.uk, P.J.Rodgers@ukc.ac.uk}

Abstract
We present a preprocessor for the spring embedder

graph drawing method and show its use in speeding up
the automatic layout of three-dimensional visualizations
of WWW sites. Spring embedding is a widely used method
for visualizing the connections in WWW maps, as it can
typically produce a reasonable layout for most general
graphs. However, the technique does not scale well and to
improve the performance when dealing with large graphs
various optimisations have been developed. Our
preprocessor is a new optimization method that attempts
to obtain a reasonably good initial drawing to be then
used by the spring embedder. This initial drawing has
edge lengths that are approximately equal along with a
minimum node separation. This produces a layout that is
closer to the final drawing than a random scattering of
nodes and so allows fewer invocations of the spring
embedder to produce an equally stable drawing.

1. Introduction

WWW sites are often visualized by graphs, with
nodes representing pages and edges representing
hyperlinks between pages. Graph drawing methods are
important in such visualizations for automatically laying
out the site in an often aesthetically pleasing manner. A
good layout can ease user exploration when discovering
paths between pages or highlighting clusters of pages
within the site. The use of three dimensions allows large
sites to be navigated more effectively than using only
two-dimensions, with advantageous usability issues in
spatial navigation, layout and semiotics [8,9,14].

Spring embedding [2,4] is a technique used for the
drawing of such graphs [6,7]. Its effect is to distribute
nodes with some separation, whilst attempting to keep
connected nodes reasonably close together. In order to
speed up the spring embedder, we have developed a novel
two stage preprocessor that attempts to get a first rough
cut at node distribution whilst keeping nearby nodes at a
suitably close distance. This allows a much quicker
equilibrium to be reached by the spring embedding that
follows. In a few cases, these initial drawings do not
require any subsequent spring embedding to achieve a
good layout. This particular aspect of the pre-processor is
best observed on mesh-like graph structures and graphs
containing several distinct clusters, where it is common to
have many similar edge lengths.

The spring embedder graph drawing process
considers the graph model as a force system that must be
simulated. Nodes are charged particles that repulse each
other and edges are springs that attract two nodes
together. The graph is drawn by repeated iterations of a
procedure that calculates the repulsive and attractive
forces on all the nodes in the graph, and moves the nodes
accordingly. The drawing process stops after a
predetermined number of iterations, or when the nodes
stop moving, which implies an equilibrium has been
found. Much previous work has concentrated on
optimising the spring embedder by speeding up the
calculation of forces between pairs of nodes [12] or
reducing the number of nodes that are paired [11,12].
Multi-level [5,13] approaches provide a heuristic method
that clusters a graph and lays out the coarsened graph,
reintroducing the other nodes in uncoarsening steps until a
final drawing is produced. Other heuristics, for example
those provided by the GEM system [1], can detect
oscillations of nodes and rotations of subgraphs.
However, most variations of the traditional spring
embedder commonly start by being applied to a graph
where the nodes have been allocated to random locations,
a binary tree or a mesh [3]. Very little research has been
performed on optimising spring embedding by
considering this initial layout.

Our preprocessor produces a reasonable init ial layout
before the iterative spring embedder is used. After use, it
typically enables the spring embedder to complete a three-
dimensional graph drawing with fewer iterations. The first
phase of the preprocessor obtains an initial layout where
all edge lengths are close to the user’s predefined ideal
length. This is achieved by means of an iterative
procedure where nodes are moved to a position that is
based on the location of its neighbours and the direction
of the emanating edges. This process is repeated a number
of times. It is much faster than the spring embedder, as
each iteration of the preprocessor has linear time
complexity, O(|E|), where |E| is the number of edges
(hyperlinks) in the graph. The classical spring embedder
has O(|N|2) complexity for each iteration it performs,
where |N| is the number of nodes (pages) in the graph.

The second phase simply attempts to ensure an even
distribution of nodes by placing the nodes on a uniform
grid. The first phase often leaves clusters of nodes very
close together, however a simple conflict resolution
method is used to place nodes at the next available
location, ensuring that nodes remain reasonably close to

their original position when allocated to the grid. This is
much quicker than the first phase, as it is not an iterative
process. Typically we expect the performance of this
phase to be close to linear, as we have noticed that most
WWW graphs result in a low occurrence of nodes
occupying the same grid location.

Section 2 describes our method in more detail.
Section 3 gives comparative results of using our method
against using spring embedding without preprocessing
and also shows the visualization of WWW sites with our
method. Section 4 gives our conclusions and proposes
some further research.

2. Description of the Preprocessor

For our experiments, we consider connected WWW
graphs in three-dimensional space, with each page being
represented by a node and hyperlinks being represented
by edges that connect pairs of nodes. We define a graph
G = (N,E), where N is the set of nodes and E is the set of
edges that connect nodes together.

Our preprocessor is a two phase procedure. The first
phase attempts to obtain an initial drawing where all edge
lengths are approximately the same. We refer to this ideal
edge length as ka, where k is a constant representing the
desired minimum node separation in the final graph
drawing and a ≥ 1. The motivation for using edge lengths
larger than k for phase 1 is that we have observed that this
improves the quality and reduces the number of spring
embedder iterations required to produce a good final
drawing. Preliminary experimentation suggests that ideal
value of a is dependant on the mean number of emanating
edges. The first stage of our preprocessor is to allocate the
nodes of the graph over a very large volume using a
uniform random distribution. Our experiments suggest
that the preprocessor works more effectively when rapidly
shrinking large random graphs. These are restricted to
within a cubic volume of side length 103ka(|N|1/3), which
is normally sufficient to ensure good results by allowing
the graph layout to contract.

m 1

m 2

ka

p 1

p 2

n

P

Figure 1

Each iteration of our preprocessor involves visiting

every node of the graph in an arbitrary order. For each
node n that we visit, we examine the set of emanating
edges, F, each of which connects n to mi. For each edge,
we calculate the position of point pi such that the vector
mipi = ka(ui), where ui is the unit vector of min. We then

move node n to the mean position of pi before repeating
this process with the next node in the graph [Figure 1].
After a number of iterations, the graph is shrunk into a
more stable graph where each edge length is near to ka.

The second phase is used to achieve the minimum
node separation. We imp ose the constraint that all nodes
must be allocated to a unique location on a three-
dimensional grid of unit size k (the minimum node
separation value). We perform this task by assigning each
node to its nearest free location on the k-grid. If a conflict
occurs, because the desired location has already been
occupied by another node, then we pick the next nearest
location. A variety of strategies exist for this conflict
resolution. In our implementation, we have chosen to
search through the surface of a cube centred about the
desired (but occupied) location. This cube continues to
grow larger until a free location is found and the node is
allocated to it. After we have allocated every node, we
end up with a new graph layout where edge lengths
remain close to the phase 1 ideal value of ka, whilst
ensuring all nodes have the final graph ideal minimum
node separation of k . This is the initial drawing to which
we apply the spring embedder.

To summarise in pseudocode: -

Phase1:
FOREACH iteration
 FOREACH node IN graph
 F = setOfEmanatingEdges(node)
 P = {}
 FOREACH edge IN F
 Calculate location of pi
 Add pi to P
 Move node to mean location in P

Phase2:
FOREACH node IN graph
 Move node to nearest free k-grid slot

We follow these two phases with the application of a

simple spring embedder based on that of Fruchterman and
Reingold [4]. This version of the spring embedder is
effective and widely used. For our purposes it also has the
advantage of using k , the ideal minimum node separation
in both attractive and repulsive forces. In this model, the
repulsive forces between nodes are –k2/d and the
attractive forces due to edges are d2/k , where d is the
distance between the two nodes.

It is worth noting that the second phase of the
preprocessor may also be used after spring embedding in
order to guarantee a minimum node separation of k ,
enabling three-dimensional node labels of this size to be
accommodated in the final drawing. It could be argued
that a number of iterations of the spring embedder,
neglecting all non-edge forces, could mimic the behaviour
of the first phase. This could take a long time to settle if
very small movements are made by nodes on each
iteration. Conversely, if the movements are too large then
oscillations and overshoots are possible. The first stage

also offers an advantage over the “edge force only” spring
embedder in that it is independent of any parameters that
determine how far nodes travel per iteration.

3. WWW Visualization results

To determine the benefit of using the preprocessor,
we have compared the use of our preprocessor followed
by spring embedding against using spring embedding
alone. In our comparisons, we consider the spring
embedder to have finished when we perform an iteration
where all nodes move less than k /100, where k is the ideal
edge length, as defined in Section 2.

The spring embedding alone has been applied to an
initial graph where all nodes have been allocated to a
random position in three-dimensional space. The initial
random graph occupies a similar volume to the final
drawn graph by constraining nodes to within a cubic
volume of side length k(|N|1/3). We believe this to be a fair
starting point as experimentation suggests that there is no
discernible advantage to be achieved by varying this
initial volume by a relatively small amount, although
when the volume is very large or small, a disadvantage
becomes apparent.

An experimentation framework, containing the
preprocessor and spring embedder, was implemented in
Java. All experiments were carried out with Sun’s Java
1.4 Virtual Machine on a Pentium 4 1.5GHz desktop
machine with 512mb RAM.

Our experimentation framework was used to produce
drawings of ten WWW sites, varying in size from 18 to
463 pages. We specified the following constant values:
k = 10, a = 5. We began our first set of drawings by using
both phases of the preprocessor, followed by the spring
embedder. Our second set of drawings was obtained by
applying only the spring embedder.

Table 1
Graph Site |N| |E|

A www.web-bits.net 18 49
B www.brettmeyers.com 23 58
C www.a-spotted-dog.com 31 127
D www.jibble.org 72 417
E www.bersirc.com 104 801
F www.ivarjohnson.com 111 223
G www.aspmessageboard.com 172 2050
H www.peacenikjive.com 226 667
I www.xml101.com 321 4327
J www.i-scream.org.uk 463 4585

The source data is given in Table 1. It was obtained
between 11 Feb and 26 Feb 2002. The authors have been
involved in the development of two of these sites:
www.jibble.org and www.i-scream.org.uk. The remaining
sites were randomly selected from a Google Web
Directory listing of free web design and development
sites.

Table 2
 With

Preprocessor
Without

Preprocessor
Graph Ip Is Ip Is

A 200 112 0 48
B 200 190 0 113
C 200 198 0 261
D 200 195 0 600
E 200 140 0 992
F 200 201 0 1700
G 200 172 0 1958
H 200 263 0 3396
I 200 268 0 3925
J 200 332 0 4263

Each drawing was created ten times, each using a

different initial random layout. We recorded the number
of iterations required for the graph drawing to reach an
equilibrium. The mean values of these results for each
graph are shown in Table 2. Ip shows the number of
iterations of preprocessing and Is shows how many spring
embedder iterations were required to finish the drawing.
When drawing all the graphs, 200 preprocessor iterations
were applied. We have yet to determine the ideal number
of pre-processor iterations for a given graph, indeed, it
has been observed that better results are often obtained if
it is not run fully to an equilibrium.

We can see from the above results that our two
smallest graphs did not benefit from the effect of the
preprocessor. Both of these required more iterations of the
spring embedder to finish drawing the graph when the
preprocessor was used. However, as the preprocessed
graphs get larger, we observe significant reductions in the
number of spring embedder iterations required to bring
the layout to an equilibrium configuration.

The time complexity of a single preprocessor
iteration is linear with respect to the number of edges in
the graph. As the size of each graph increases, the time
taken to execute a preprocessor iteration becomes much
less than the time taken to execute a single iteration of the
spring embedder. We can therefore justify the expense of
applying many iterations of the preprocessor on larger
graphs, as the time spent doing so will be negligible
compared with the time saved by reducing the number of
spring embedder iterations required to complete the
drawing.

Table 3
 With

Preprocessor
Without

Preprocessor
Graph Tp Ts Tp+Ts Ts

A 0.009 0.030 0.039 0.012
B 0.011 0.069 0.080 0.041
C 0.021 0.116 0.137 0.154
D 0.068 0.463 0.531 1.424
E 0.118 0.653 0.771 4.630
F 0.048 0.988 1.036 8.359
G 0.330 2.267 2.597 25.81
H 0.122 5.126 5.248 66.18
I 0.885 8.919 9.804 130.6
J 0.987 21.85 22.84 280.6

Table 3 shows the actual average time in seconds

taken to produce each drawing using our experimentation
framework. Tp is the amount of time spent applying the
preprocessor and Ts is the time taken to complete the
graph drawing using the spring embedder.

The improvement in performance as the graphs get
larger is reflected in these timing results, where the
preprocessing time becomes less significant as the size of
graph increases and so the benefit from reducing the
number of spring embedder iterations is clear. An overall
speed up of more than 10 times is apparent in the largest
four graphs. As the software is implemented with little
emphasis on time performance, we believe better
optimised code will produce even faster results.

We illustrate some of these initial and final graph
drawings in Figures 2-9. In Figures 10-11 we show the
effect of the preprocessor without subsequent spring
embedding on some graphs, but it should be noted that
most graphs are not amenable to preprocessing only.

Figure 2 Figure 3

Figure 2 is the result of applying 200 iterations of

preprocessing to Graph B (23 nodes). This graph was
drawn from a large random layout, which rapidly shrinks
to form this stable initial drawing. Each edge length is
approximately ka and all nodes are separated in three-
dimensional space by at least k . This graph is shown
labelled with the pages in the site, but this labelling is not
practical for larger graphs. Figure 3 shows Graph B after
spring embedding the preprocessed graph [Figure 2] to
equilibrium. On this small graph, we see no advantage in
using the preprocessor. It is, in fact, quicker to draw this
graph without using the preprocessor, unlike the larger
graphs later in this paper.

Figure 4
Graph D (72 nodes) after 200 iterations of preprocessing.
We can see that the preprocessor has produced an initial
drawing consisting of two clusters. Notice that there is
only a single hyperlink connecting the two clusters,
indicating that navigation of the web site could be
improved.

Figure 5
Graph D after spring embedding the preprocessed graph
to equilibrium. We can see that the final graph holds a
similar shape to the preprocessed graph [Figure 4]. The
minimum node separation of k imposed by the
preprocessor is useful for preventing large forces between
pairs of nodes which may cause an initial disruption to the
drawing by creating a large node displacement.

Figure 6
Graph H (226 nodes) after 200 iterations of
preprocessing. In this example, we see more clearly the
allocation of nodes to the k-grid. The use of the k-grid is
very beneficial in this case, as it has prevented many
nodes from occupying the same small region of three-
dimensional space. Several different paths link the two
clusters that have become apparent in this initial drawing.

Figure 7
Graph H after spring embedding the preprocessed graph
[Figure 6] to equilibrium. The general shape of the graph
has not changed a great deal and we can still see the same
paths between the two clusters. Once again, running the
spring embedder on the preprocessed graph offers a
reduced number of iterations to complete the drawing.

Figure 8
Graph J (463 nodes) after 200 iterations of preprocessing.
The preprocessor has rapidly shrunk the large random
graph to produce this drawing with 5 apparent clusters.
Assignment of nodes to the k-grid has been carried out in
the second phase of the preprocessor, resolving the issue
of nodes that end up separated by a small Euclidian
distance.

Figure 9
Graph J after spring embedding the preprocessed graph
[Figure 8] to equilibrium. Note that we can still see the 5
clusters previously identified by the preprocessor. Using
the preprocessor here has clearly been advantageous, as
we have been able to draw this in under 23 seconds
(including time taken to apply the preprocessor),
compared with the 280 seconds required to draw the
graph from a random layout with the spring embedder
alone.

Figure 10
A WWW graph (http://spod.cx) consisting of 700 pages
and 3255 hyperlinks. This drawing was produced in 0.025
seconds by applying 5 iterations of the preprocessor. This
is one of a very few cases where the preprocessor can
produce a good drawing in a very short amount of time
without requiring subsequent spring embedding.

Figure 11

The 2500-node grid was drawn in under 3 seconds using
400 iterations of the first stage of preprocessing and no k-
grid allocation or subsequent spring embedding. The ring
graph took less than a second using 300 iterations. The
fast generation of these types of graphs shows that the
preprocessor may have possible application areas other
than being used for WWW visualization.

4. Conclusions

We have shown how a novel preprocessor can
produce an initial three-dimensional layout of a WWW
site graph that reduces the number of spring embedder
iterations required to produce a good drawing.

In some cases, the preprocessor alone can produce
adequate graph drawings. In many graphs, clusters can be
displayed without requiring subsequent spring
embedding. We have also observed that clusters are best
displayed if the preprocessor is not run to equilibrium, as

the spring embedder appears to achieve better results in
these cases.

These are preliminary results and so improved
performance may be achieved. Needing further
investigation is the ideal number of preprocessor
iterations for a given graph in order to produce better
drawings of links between individual clusters. The
performance of the preprocessor could be improved by
including numerical optimisations such as the conjugate
gradient method used by JIGGLE [12]. The method can
also be made more attractive by using an improved spring
embedding method in the final stages, such as the FADE
algorithm [11].

Investigation is still required into the sizes and types
of graph for which our preprocessor graph drawing
method is a useful tool. We have not yet demonstrated the
benefit of using the preprocessor for drawing very large
graphs, nor have we attempted much experimentation in
other graph drawing application areas.

References

1 I. Bruβ, A. Frick. Fast Interactive 3-D Graph Visualization.
LNCS 1027. pp. 99-110. 1996.

2 P. Eades. A Heuristic for Graph Drawing. Congressus
Numerantium 42. pp. 149-60. 1984.

3 A. Frick, A. Ludwig, H. Mehldau. A Fast Adaptive Layout
Algorithm for Undirected Graphs. GD’94, LNCS 894. pp.
388-403. 1995.

4 T. M. J. Fruchterman, E. M. Reingold. Graph Drawing by
Force-directed Placement. Software – Practice and
Experience Vol 21(11). pp. 1129-1164. 1991.

5 D. Harel, Y. Koren. A Fast Multi-scale Method for
Drawing Large Graphs. GD 2000, LNCS 1984. pp. 183-
196. 2001.

6 M.L. Huang, P. Eades, R. F. Cohen. WebOFDAV —
navigating and visualizing the Web on-line with animated
context swapping. WWW7: 7th International World Wide
Web Conference. 1998.

7 D.S. McCrickard & C.M. Kehoe. Visualizing Search
Results using SQWID. WWW6: 6th International World
Wide Web Conference. 1997.

8 T. Munzner and P. Burchard. Visualizing the Structure of
the World Wide Web in 3D Hyperbolic Space. VRML '95,
special issue of Computer Graphics, ACM SIGGRAPH, pp.
33-38. 1995.

9 G. Parker, G. Franck, C. Ware. Visualization of Large
Nested Graphs in 3D: Navigation and Interaction. J. Visual
Languages and Computing, 9(3). pp. 299-317. 1998.

10 A. Quigley. Large Scale Relational Information
Visualization, Clustering and Abstraction. Thesis,
University of Newcastle, Australia. 2001.

11 A. Quigley, P. Eades. FADE: Graph Drawing, Clustering,
and Visual Abstraction. GD 2000, LNCS 1984. pp. 197-
210. 2001.

12 D. Tunkelang. JIGGLE: Java Interactive Graph Layout
Algorithm. GD ’98, LNCS 1547. pp. 413-422. 1998.

13 C. Walshaw. A Multilevel Algorithm for Force-Directed
Graph Drawing. GD 2000, LNCS 1984. pp. 171-182. 2001.

14 G.J. Wills. NicheWorks — Interactive Visualization of
Very Large Graphs. J. Computational and Graphical
Statistics 8,2 pp. 190-212. 1999.

