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Abstract 
We present a preprocessor for the spring embedder 

graph drawing method and show its use in speeding up 
the automatic layout of three-dimensional visualizations 
of WWW sites. Spring embedding is a widely used method 
for visualizing the connections in WWW maps, as it can 
typically produce a reasonable layout for most general 
graphs. However, the technique does not scale well and to 
improve the performance when dealing with large graphs 
various optimisations have been developed. Our 
preprocessor is a new optimization method that attempts 
to obtain a reasonably good initial drawing to be then 
used by the spring embedder. This initial drawing has 
edge lengths that are approximately equal along with a 
minimum node separation. This produces a layout that is 
closer to the final drawing than a random scattering of 
nodes and so allows fewer invocations of the spring 
embedder to produce an equally stable drawing. 

1. Introduction 

WWW sites are often visualized by graphs, with 
nodes representing pages and edges representing 
hyperlinks between pages. Graph drawing methods are 
important in such visualizations for automatically laying 
out the site in an often aesthetically pleasing manner. A 
good layout can ease user exploration when discovering 
paths between pages or highlighting clusters of pages 
within the site. The use of three dimensions allows large 
sites to be navigated more effectively than using only 
two-dimensions, with advantageous usability issues in 
spatial navigation, layout and semiotics [8,9,14]. 

Spring embedding [2,4] is a technique used for the 
drawing of such graphs [6,7]. Its effect is to distribute 
nodes with some separation, whilst attempting to keep 
connected nodes reasonably close together. In order to 
speed up the spring embedder, we have developed a novel 
two stage preprocessor that attempts to get a first rough 
cut at node distribution whilst keeping nearby nodes at a 
suitably close distance. This allows a much quicker 
equilibrium to be reached by the spring embedding that 
follows. In a few cases, these initial drawings do not 
require any subsequent spring embedding to achieve a 
good layout.  This particular aspect of the pre-processor is 
best observed on mesh-like graph structures and graphs 
containing several distinct clusters, where it is common to 
have many similar edge lengths. 

The spring embedder graph drawing process 
considers the graph model as a force system that must be 
simulated. Nodes are charged particles that repulse each 
other and edges are springs that attract two nodes 
together. The graph is drawn by repeated iterations of a 
procedure that calculates the repulsive and attractive 
forces on all the nodes in the graph, and moves the nodes 
accordingly. The drawing process stops after a 
predetermined number of iterations, or when the nodes 
stop moving, which implies an equilibrium has been 
found. Much previous work has concentrated on 
optimising the spring embedder by speeding up the 
calculation of forces between pairs of nodes [12] or 
reducing the number of nodes that are paired [11,12]. 
Multi-level [5,13] approaches provide a heuristic method 
that clusters a graph and lays out the coarsened graph, 
reintroducing the other nodes in uncoarsening steps until a 
final drawing is produced. Other heuristics, for example 
those provided by the GEM system [1], can detect 
oscillations of nodes and rotations of subgraphs. 
However, most variations of the traditional spring 
embedder commonly start by being applied to a graph 
where the nodes have been allocated to random locations, 
a binary tree or a mesh [3]. Very little research has been 
performed on optimising spring embedding by 
considering this initial layout. 

Our preprocessor produces a reasonable init ial layout 
before the iterative spring embedder is used. After use, it 
typically enables the spring embedder to complete a three-
dimensional graph drawing with fewer iterations. The first 
phase of the preprocessor obtains an initial layout where 
all edge lengths are close to the user’s predefined ideal 
length. This is achieved by means of an iterative 
procedure where nodes are moved to a position that is 
based on the location of its neighbours and the direction 
of the emanating edges. This process is repeated a number 
of times. It is much faster than the spring embedder, as 
each iteration of the preprocessor has linear time 
complexity, O(|E|), where |E| is the number of edges 
(hyperlinks) in the graph. The classical spring embedder 
has O(|N|2) complexity for each iteration it performs, 
where |N| is the number of nodes (pages) in the graph. 

The second phase simply attempts to ensure an even 
distribution of nodes by placing the nodes on a uniform 
grid. The first phase often leaves clusters of nodes very 
close together, however a simple conflict resolution 
method is used to place nodes at the next available 
location, ensuring that nodes remain reasonably close to 



their original position when allocated to the grid. This is 
much quicker than the first phase, as it is not an iterative 
process. Typically we expect the performance of this 
phase to be close to linear, as we have noticed that most 
WWW graphs result in a low occurrence of nodes 
occupying the same grid location. 

Section 2 describes our method in more detail. 
Section 3 gives comparative results of using our method 
against using spring embedding without preprocessing 
and also shows the visualization of WWW sites with our 
method. Section 4 gives our conclusions and proposes 
some further research. 

2. Description of the Preprocessor 

For our experiments, we consider connected WWW 
graphs in three-dimensional space, with each page being 
represented by a node and hyperlinks being represented 
by edges that connect pairs of nodes. We define a graph  
G = (N,E), where N is the set of nodes and E is the set of 
edges that connect nodes together. 

Our preprocessor is a two phase procedure. The first 
phase attempts to obtain an initial drawing where all edge 
lengths are approximately the same. We refer to this ideal 
edge length as ka, where k  is a constant representing the 
desired minimum node separation in the final graph 
drawing and a ≥ 1. The motivation for using edge lengths 
larger than k  for phase 1 is that we have observed that this 
improves the quality and reduces the number of spring 
embedder iterations required to produce a good final 
drawing. Preliminary experimentation suggests that ideal 
value of a is dependant on the mean number of emanating 
edges. The first stage of our preprocessor is to allocate the 
nodes of the graph over a very large volume using a 
uniform random distribution. Our experiments suggest 
that the preprocessor works more effectively when rapidly 
shrinking large random graphs. These are restricted to 
within a cubic volume of side length 103ka(|N|1/3), which 
is normally sufficient to ensure good results by allowing 
the graph layout to contract. 
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Figure 1 

 
Each iteration of our preprocessor involves visiting 

every node of the graph in an arbitrary order. For each 
node n that we visit, we examine the set of emanating 
edges, F, each of which connects n to mi. For each edge, 
we calculate the position of point pi such that the vector 
mipi = ka(ui), where ui is the unit vector of min. We then 

move node n to the mean position of pi before repeating 
this process with the next node in the graph [Figure 1]. 
After a number of iterations, the graph is shrunk into a 
more stable graph where each edge length is near to ka. 

The second phase is used to achieve the minimum 
node separation. We imp ose the constraint that all nodes 
must be allocated to a unique location on a three-
dimensional grid of unit size k  (the minimum node 
separation value). We perform this task by assigning each 
node to its nearest free location on the k-grid. If a conflict 
occurs, because the desired location has already been 
occupied by another node, then we pick the next nearest 
location. A variety of strategies exist for this conflict 
resolution. In our implementation, we have chosen to 
search through the surface of a cube centred about the 
desired (but occupied) location. This cube continues to 
grow larger until a free location is found and the node is 
allocated to it. After we have allocated every node, we 
end up with a new graph layout where edge lengths 
remain close to the phase 1 ideal value of ka, whilst 
ensuring all nodes have the final graph ideal minimum 
node separation of k . This is the initial drawing to which 
we apply the spring embedder. 

 
To summarise in pseudocode: - 
 

Phase1: 
FOREACH iteration 
 FOREACH node IN graph 
  F = setOfEmanatingEdges(node) 
  P = {} 
  FOREACH edge IN F 
   Calculate location of pi 
   Add pi to P 
  Move node to mean location in P 
 
Phase2: 
FOREACH node IN graph 
 Move node to nearest free k-grid slot 

 
We follow these two phases with the application of a 

simple spring embedder based on that of Fruchterman and 
Reingold [4]. This version of the spring embedder is 
effective and widely used. For our purposes it also has the 
advantage of using k , the ideal minimum node separation 
in both attractive and repulsive forces. In this model, the 
repulsive forces between nodes are –k2/d and the 
attractive forces due to edges are d2/k , where d is the 
distance between the two nodes. 

It is worth noting that the second phase of the 
preprocessor may also be used after spring embedding in 
order to guarantee a minimum node separation of k , 
enabling three-dimensional node labels of this size to be 
accommodated in the final drawing. It could be argued 
that a number of iterations of the spring embedder, 
neglecting all non-edge forces, could mimic the behaviour 
of the first phase. This could take a long time to settle if 
very small movements are made by nodes on each 
iteration. Conversely, if the movements are too large then 
oscillations and overshoots are possible. The first stage 



also offers an advantage over the “edge force only” spring 
embedder in that it is independent of any parameters that 
determine how far nodes travel per iteration. 

3. WWW Visualization results 

To determine the benefit of using the preprocessor, 
we have compared the use of our preprocessor followed 
by spring embedding against using spring embedding 
alone. In our comparisons, we consider the spring 
embedder to have finished when we perform an iteration 
where all nodes move less than k /100, where k  is the ideal 
edge length, as defined in Section 2. 

The spring embedding alone has been applied to an 
initial graph where all nodes have been allocated to a 
random position in three-dimensional space. The initial 
random graph occupies a similar volume to the final 
drawn graph by constraining nodes to within a cubic 
volume of side length k(|N|1/3). We believe this to be a fair 
starting point as experimentation suggests that there is no 
discernible advantage to be achieved by varying this 
initial volume by a relatively small amount, although 
when the volume is very large or small, a disadvantage 
becomes apparent. 

An experimentation framework, containing the 
preprocessor and spring embedder, was implemented in 
Java. All experiments were carried out with Sun’s Java 
1.4 Virtual Machine on a Pentium 4 1.5GHz desktop 
machine with 512mb RAM. 

Our experimentation framework was used to produce 
drawings of ten WWW sites, varying in size from 18 to 
463 pages. We specified the following constant values:    
k  = 10, a = 5. We began our first set of drawings by using 
both phases of the preprocessor, followed by the spring 
embedder. Our second set of drawings was obtained by 
applying only the spring embedder. 

 
 

Table 1 
Graph Site |N| |E| 

A www.web-bits.net 18 49 
B www.brettmeyers.com 23 58 
C www.a-spotted-dog.com 31 127 
D www.jibble.org 72 417 
E www.bersirc.com 104 801 
F www.ivarjohnson.com 111 223 
G www.aspmessageboard.com 172 2050 
H www.peacenikjive.com 226 667 
I www.xml101.com 321 4327 
J www.i-scream.org.uk 463 4585 

 
 
 
 
 
 
 
 
 

The source data is given in Table 1. It was obtained 
between 11 Feb and 26 Feb 2002. The authors have been 
involved in the development of two of these sites: 
www.jibble.org and www.i-scream.org.uk. The remaining 
sites were randomly selected from a Google Web 
Directory listing of free web design and development 
sites. 

Table 2 
 With 

Preprocessor 
Without 

Preprocessor 
Graph Ip Is Ip Is 

A 200 112 0 48 
B 200 190 0 113 
C 200 198 0 261 
D 200 195 0 600 
E 200 140 0 992 
F 200 201 0 1700 
G 200 172 0 1958 
H 200 263 0 3396 
I 200 268 0 3925 
J 200 332 0 4263 

 
Each drawing was created ten times, each using a 

different initial random layout. We recorded the number 
of iterations required for the graph drawing to reach an 
equilibrium. The mean values of these results for each 
graph are shown in Table 2. Ip shows the number of 
iterations of preprocessing and Is shows how many spring 
embedder iterations were required to finish the drawing. 
When drawing all the graphs, 200 preprocessor iterations 
were applied. We have yet to determine the ideal number 
of pre-processor iterations for a given graph, indeed, it 
has been observed that better results are often obtained if 
it is not run fully to an equilibrium. 

We can see from the above results that our two 
smallest graphs did not benefit from the effect of the 
preprocessor. Both of these required more iterations of the 
spring embedder to finish drawing the graph when the 
preprocessor was used. However, as the preprocessed 
graphs get larger, we observe significant reductions in the 
number of spring embedder iterations required to bring 
the layout to an equilibrium configuration. 

The time complexity of a single preprocessor 
iteration is linear with respect to the number of edges in 
the graph. As the size of each graph increases, the time 
taken to execute a preprocessor iteration becomes much 
less than the time taken to execute a single iteration of the 
spring embedder. We can therefore justify the expense of 
applying many iterations of the preprocessor on larger 
graphs, as the time spent doing so will be negligible 
compared with the time saved by reducing the number of 
spring embedder iterations required to complete the 
drawing. 

 
 
 
 
 
 



Table 3 
 With 

Preprocessor 
Without 

Preprocessor 
Graph Tp Ts Tp+Ts Ts 

A 0.009 0.030 0.039 0.012 
B 0.011 0.069 0.080 0.041 
C 0.021 0.116 0.137 0.154 
D 0.068 0.463 0.531 1.424 
E 0.118 0.653 0.771 4.630 
F 0.048 0.988 1.036 8.359 
G 0.330 2.267 2.597 25.81 
H 0.122 5.126 5.248 66.18 
I 0.885 8.919 9.804 130.6 
J 0.987 21.85 22.84 280.6 
 
Table 3 shows the actual average time in seconds 

taken to produce each drawing using our experimentation 
framework. Tp is the amount of time spent applying the 
preprocessor and Ts is the time taken to complete the 
graph drawing using the spring embedder. 

The improvement in performance as the graphs get 
larger is reflected in these timing results, where the 
preprocessing time becomes less significant as the size of 
graph increases and so the benefit from reducing the 
number of spring embedder iterations is clear. An overall 
speed up of more than 10 times is apparent in the largest 
four graphs. As the software is implemented with little 
emphasis on time performance, we believe better 
optimised code will produce even faster results. 

We illustrate some of these initial and final graph 
drawings in Figures 2-9. In Figures 10-11 we show the 
effect of the preprocessor without subsequent spring 
embedding on some graphs, but it should be noted that 
most graphs are not amenable to preprocessing only. 

 

 
Figure 2 Figure 3 

 
Figure 2 is the result of applying 200 iterations of 

preprocessing to Graph B (23 nodes). This graph was 
drawn from a large random layout, which rapidly shrinks 
to form this stable initial drawing. Each edge length is 
approximately ka and all nodes are separated in three-
dimensional space by at least k . This graph is shown 
labelled with the pages in the site, but this labelling is not 
practical for larger graphs. Figure 3 shows Graph B after 
spring embedding the preprocessed graph [Figure 2] to 
equilibrium. On this small graph, we see no advantage in 
using the preprocessor. It is, in fact, quicker to draw this 
graph without using the preprocessor, unlike the larger 
graphs later in this  paper. 

 

Figure 4 
Graph D (72 nodes) after 200 iterations of preprocessing. 
We can see that the preprocessor has produced an initial 
drawing consisting of two clusters. Notice that there is 
only a single hyperlink connecting the two clusters, 
indicating that navigation of the web site could be 
improved. 
 

Figure 5 
Graph D after spring embedding the preprocessed graph 
to equilibrium. We can see that the final graph holds a 
similar shape to the preprocessed graph [Figure 4]. The 
minimum node separation of k  imposed by the 
preprocessor is useful for preventing large forces between 
pairs of nodes which may cause an initial disruption to the 
drawing by creating a large node displacement. 



Figure 6 
Graph H (226 nodes) after 200 iterations of 
preprocessing. In this example, we see more clearly the 
allocation of nodes to the k-grid. The use of the k-grid is 
very beneficial in this case, as it has prevented many 
nodes from occupying the same small region of three-
dimensional space. Several different paths link the two 
clusters that have become apparent in this initial drawing. 
 

Figure 7 
Graph H after spring embedding the preprocessed graph 
[Figure 6] to equilibrium. The general shape of the graph 
has not changed a great deal and we can still see the same 
paths between the two clusters. Once again, running the 
spring embedder on the preprocessed graph offers a 
reduced number of iterations to complete the drawing. 

 

Figure 8 
Graph J (463 nodes) after 200 iterations of preprocessing. 
The preprocessor has rapidly shrunk the large random 
graph to produce this drawing with 5 apparent clusters. 
Assignment of nodes to the k-grid has been carried out in 
the second phase of the preprocessor, resolving the issue 
of nodes that end up separated by a small Euclidian 
distance. 

Figure 9 
Graph J after spring embedding the preprocessed graph 
[Figure 8] to equilibrium. Note that we can still see the 5 
clusters previously identified by the preprocessor. Using 
the preprocessor here has clearly been advantageous, as 
we have been able to draw this in under 23 seconds 
(including time taken to apply the preprocessor), 
compared with the 280 seconds required to draw the 
graph from a random layout with the spring embedder 
alone. 



Figure 10 
A WWW graph (http://spod.cx) consisting of 700 pages 
and 3255 hyperlinks. This drawing was produced in 0.025 
seconds by applying 5 iterations of the preprocessor. This 
is one of a very few cases where the preprocessor can 
produce a good drawing in a very short amount of time 
without requiring subsequent spring embedding. 
 

 
Figure 11 

The 2500-node grid was drawn in under 3 seconds using 
400 iterations of the first stage of preprocessing and no k-
grid allocation or subsequent spring embedding. The ring 
graph took less than a second using 300 iterations. The 
fast generation of these types of graphs shows that the 
preprocessor may have possible application areas other 
than being used for WWW visualization. 

4. Conclusions 

We have shown how a novel preprocessor can 
produce an initial three-dimensional layout of a WWW 
site graph that reduces the number of spring embedder 
iterations required to produce a good drawing. 

In some cases, the preprocessor alone can produce 
adequate graph drawings. In many graphs, clusters can be 
displayed without requiring subsequent spring 
embedding. We have also observed that clusters are best 
displayed if the preprocessor is not run to equilibrium, as 

the spring embedder appears to achieve better results in 
these cases. 

These are preliminary results and so improved 
performance may be achieved. Needing further 
investigation is the ideal number of preprocessor 
iterations for a given graph in order to produce better 
drawings of links between individual clusters. The 
performance of the preprocessor could be improved by 
including numerical optimisations such as the conjugate 
gradient method used by JIGGLE [12]. The method can 
also be made more attractive by using an improved spring 
embedding method in the final stages, such as the FADE 
algorithm [11]. 

Investigation is still required into the sizes and types 
of graph for which our preprocessor graph drawing 
method is a useful tool. We have not yet demonstrated the 
benefit of using the preprocessor for drawing very large 
graphs, nor have we attempted much experimentation in 
other graph drawing application areas. 

References 

1 I. Bruβ, A. Frick. Fast Interactive 3-D Graph Visualization. 
LNCS 1027. pp. 99-110. 1996. 

2 P. Eades. A Heuristic for Graph Drawing. Congressus 
Numerantium 42. pp. 149-60. 1984. 

3 A. Frick, A. Ludwig, H. Mehldau. A Fast Adaptive Layout 
Algorithm for Undirected Graphs. GD’94, LNCS 894. pp. 
388-403. 1995. 

4 T. M. J. Fruchterman, E. M. Reingold. Graph Drawing by 
Force-directed Placement. Software – Practice and 
Experience Vol 21(11). pp. 1129-1164. 1991. 

5 D. Harel, Y. Koren. A Fast Multi-scale Method for 
Drawing Large Graphs. GD 2000, LNCS 1984. pp. 183-
196. 2001. 

6 M.L. Huang, P. Eades, R. F. Cohen. WebOFDAV — 
navigating and visualizing the Web on-line with animated 
context swapping. WWW7: 7th International World Wide 
Web Conference. 1998. 

7 D.S. McCrickard & C.M. Kehoe. Visualizing Search 
Results using SQWID. WWW6: 6th International World 
Wide Web Conference. 1997. 

8 T. Munzner and P. Burchard. Visualizing the Structure of 
the World Wide Web in 3D Hyperbolic Space. VRML '95, 
special issue of Computer Graphics, ACM SIGGRAPH, pp. 
33-38. 1995. 

9 G. Parker, G. Franck, C. Ware. Visualization of Large 
Nested Graphs in 3D: Navigation and Interaction. J. Visual 
Languages and Computing, 9(3). pp. 299-317. 1998. 

10 A. Quigley. Large Scale Relational Information 
Visualization, Clustering and Abstraction. Thesis, 
University of Newcastle, Australia. 2001. 

11 A. Quigley, P. Eades. FADE: Graph Drawing, Clustering, 
and Visual Abstraction. GD 2000, LNCS 1984. pp. 197-
210. 2001. 

12 D. Tunkelang. JIGGLE: Java Interactive Graph Layout 
Algorithm. GD ’98, LNCS 1547. pp. 413-422. 1998. 

13 C. Walshaw. A Multilevel Algorithm for Force-Directed 
Graph Drawing. GD 2000, LNCS 1984. pp. 171-182. 2001. 

14 G.J. Wills. NicheWorks — Interactive Visualization of 
Very Large Graphs. J. Computational and Graphical 
Statistics 8,2 pp. 190-212. 1999. 


