
An Architectural Support for Self-Adaptive Software for
Treating Faults

Rogério de Lemos
Computing Laboratory

University of Kent at Canterbury, UK

r.delemos@ukc.ac.uk

José Luiz Fiadeiro
ATX Software S.A, and LabMOL–University of Lisbon

Alameda António Sérgio 7 – 1 C
2795-023 Linda-a-Velha, Portugal

jose@fiadeiro.org

ABSTRACT
Capitalising on previous work on building systems from
existing components that allow neither code inspection nor
change, an architectural approach for treating faults through
self-adaptation is outlined that, instead of providing
mechanisms and techniques at the component level, relies on
the interactions between components for obtaining flexible
software structures that are nevertheless robust to the
occurrence of undesirable events.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Languages, patterns.

D.4.5 [Reliability]: Fault tolerance.

General Terms
Design, Reliability, Languages.

Keywords
Software architectures, dependability, fault tolerance, fault
treatment, dynamic adaptation.

1. INTRODUCTION
As software systems become more complex, ridding their
execution from the occurrence of faults can only be a false
promise or assumption. Hence, when building systems,
provisions have to be made to include mechanisms and
techniques that will enable them to operate in spite of the
presence of faults.

In this paper, we suggest the adoption of an architectural
approach for treating faults in complex software systems that
is centred on interactions between components, The focus is
on the isolation of faulty components and reconfiguration of
system structure, assuming that mechanisms for fault
identification and localisation are already available.

The emphasis on interactions is justified by the fact that, in
order to achieve the levels of flexibility and responsiveness
required for self-adaptation, fault treatment needs to be

directed not to the core components of the system but to the
interconnections through which they interact. “Repairing”
components is normally either impossible because they are
“black-boxes”, or difficult to control because it can have side
effects, be error-prone and time-consuming. “Replacing”
components with equivalent ones may also be impossible
because redundancies may not be available for all kinds of
required services. Acting on the interactions, making them
“light-weight” architectural connectors that can be easily
plugged in and out of system configurations, provides more
control on the adaptation process because it makes it
compositional over the architecture of the system.

Furthermore, by adopting technologies based on the
separation between computation, coordination, and
configuration we can provide the means for such systems to be
reconfigurable in run-time, without interruption of service.
This is general enough to address operations like isolating or
modifying the behaviour of a faulty component, and
expressive enough to support a reactive approach to
reconfiguration that can handle self-adaptation, what
sometimes is called “self-healing”. Our aim is to define a
coordination-based configuration language in which we can
program ways in which the system can react to events that arise
from the occurrence of faults by executing “configuration
transactions”. By this we mean collections of elementary
reconfiguration operations that need to be collectively
executed in an atomic way [9], but not in any prescribed order:
this order should emerge from the nature of the operations to
be executed and the context in which they need to be executed.
This is important in order to guarantee that the system can
react to “unexpected” situations but through “predictable”
means.

In some applications, the resources from which solutions can
be pulled are normally limited or constrained. Hence,
reconfiguration is not a mere replacement of components by
“equivalent” ones, but requires a revision of the connectors
that related the faulty component to the rest of the system so
that it “adapts” the replacement to the expectations that other
components of the system have on the services that it will
provide. In the architectural approach that we propose, a
component may not be able to support a given set of service
requirements but, suitably adapted, may be able to contribute
to a downgraded, but acceptable, level of service.

The rest of the paper is structured as follows. Section 2 gives a
brief overview of fault tolerance. Section 3 describes the
proposed architectural solution for treating faults. Section 4
briefly describes some related work. Finally, the conclusions
are presented in section 4.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
WOSS '02 , Nov 18-19, 2002, Charleston, SC, USA.
Copyright 2002 ACM 1-58113-609-9/02/0011 ...$5.00.

2. FAULT TOLERANCE
Dependability is a vital property of any system justifying the
reliance that can be placed on the service it delivers [8]. Fault
tolerance is a means of achieving dependability, working
under the assumption that a system contains faults (e.g. ones
made by humans while developing or using systems, or caused
by aging hardware), and aiming at providing the specified
services in spite of their presence. Fault tolerance together
with fault avoidance, removal and forecasting are known as
dependability means.

The causal relationship between the dependability
impairments, that is, faults, errors and failures, is essential to
characterise the major activities associated with fault
tolerance. A fault is the adjudged or hypothesized cause of an
error. An error is the part of the system state that is liable to
lead to the subsequent failure. A failure occurs when a system
service deviates from the behaviour expected by the user.

Fault tolerance is carried by error processing, aiming at
removing errors from the system state before failures happen,
and fault treatment, aiming at preventing faults from being
once again activated. Error processing typically consists of
three steps: error detection, error diagnosis and error recovery.
Fault treatment consists of fault diagnosis, which determines
the causes of the error, in terms of location and nature, and
fault removal, which isolates the faulty components to avoid
the reactivation of faults. The removal of faults may consist in
reconfiguring the system by modifying its structure in order
for the system to continue to deliver an acceptable service.

3. PROPOSED ARCHITECTURE
The approach being proposed in this paper is based on a set of
modelling primitives that have been recently proposed for an
architecture-based approach to evolution [1,2,5]. It is based on
the enforcement of a strict separation of three layers:
computation that manages the computations that are
performed locally within components, coordination that is
responsible for enforcing the interactions between
components that are required for global system properties to
emerge, and configuration that determines when and how the
components and connectors should be linked. This strict
separation allows for each level to be managed independently

of the other, which leads to the required degree of dynamic
reconfigurability. Hence, this approach will make a significant
advance to the state of the art in fault treatment because it will
target specifically the interconnections rather than the
components. However, the architectural-based approaches to
evolution mentioned above need, nevertheless, to be extended
in order to incorporate mechanisms for supporting dynamic
reconfiguration, including the means for modelling and
evaluating configuration transactions in a stable way.

3.1 Separating Computation, Coordination
and Configuration
The need to operate, in “real-time”, with “surgical” precision
for limiting the impact of the treatment, in contexts of
increasing interdependency, requires a clear separation of
concerns to be enforced in the way we model and manage such
systems. The proposed three-layered architecture that separates
what we consider to be the key concerns involved in this
problem is shown in figure 1.

The separation between computation and coordination is
enforced by modelling explicitly the interactions that exist in
the system as first-class entities – architectural connectors that
we call coordination contracts. These connectors coordinate
the way the components that reside in the computation layer
interact. The latter correspond to “core” entities of the domain
that provide basic services that, usually, cannot be “repaired”
because they are performed by “black-boxes”. By externalising
all interactions as connectors, it becomes possible to
circumscribe treatment of faults occurring at the level of a
component to the connectors through which it interacts with
the rest of the system [5]. Basically, because it is often
impossible to find a component that performs “equivalent”
services, we see fault treatment as consisting of searching,
within the available resources, components that offer
alternative services, even if in a downgraded mode, and
establishing the connectors that can adapt them to the
expectations of the components with which they are required
to interact.

This model supports the means for fault treatment to be
performed through dynamic reconfiguration, in run-time,
without interruption of service. For this process of

Figure 1. A three layered architecture.

Computation
 Resources

Coordination
 Resources

Configuration Layer

A B

C
o

m
p

u
tatio

n

L
ayer

C
o

o
rd

in
atio

n
L

ayer

Units controlling the
interactions and behavior of
basic components

Services and rules for
controlling the evolution of
the system

Components that perform the
computations that ensure core
services

reconfiguration to be able to be programmed, leading to self-
adaptive and self-healing features, we propose a third
architectural layer consisting of entities that can react to
events and act on the configuration, which are treated, again, as
first-class citizens.

3.2 Fault Treatment
A key characteristic of several software systems is the need to
continuously provide acceptable level of service, even in the
presence of faults. The ability of a system to deliver its
required service relies on its capability of isolating faults and
being reconfigured in order to avoid faults from being
activated again, which might lead to the eventual failure of the
system as a whole. The successful reconfiguration of a system
depends on the availability of redundancies, the ability to
modify system structure, and the definition of acceptable (but
less desirable) levels of service [8]. The reconfiguration of
systems can be achieved but is not limited to the provision of
mobility through resource location, design diversity through
implementation, and dynamic architectures through
interconnection [13]. The approach being proposed relies on
the dynamic reconfiguration of the architecture, in which the
diversity in the services provided by the system components
might provide the appropriate redundancies for certain classes
of failure.

A potential solution would be to perform system
reconfiguration through a sequence of atomic transactions
until a stable state of the system configuration is achieved.
However, in between fault localisation and the end of system
reconfiguration, several decisions have to be taken depending
on the resources available in the system and the services to be
provided by the system.

4. RELATED WORK
The proposed architectural approach tries to address the
challenging problem of reconfiguring complex software
systems in the presence of faults. Although some work has
been done in adaptive fault tolerance [6,7], most of this work
did not consider fault treatment in the context of complex
large-scale systems, where redundancies for the provision of
fault tolerance may not be available at the system support
level. In the proposed approach, the provisions for tolerating
faults should rely on redundancies in the services provided by
the system components. Very few studies have considered the
description of software architectures with respect to their non-
functional properties, and in particular dependability
properties [10,11,12]. Moreover, these do not cover the issues
specifically for representing, at the architectural level, system
reconfiguration for the purpose of fault treatment.

In the context of software architectures, some efforts have been
made for providing mechanisms for monitoring and
controlling the actual execution of a system through its
architectural model, thus allowing self-healing/self-repair of
the system at higher levels of abstraction. One of these
initiatives relies on extending existing architectural styles by
incorporating constraints that capture the desired behaviour of
the system [3].

5. CONCLUSIONS
While most of the work in fault-treatment has been directed to
software components, we suggested in this paper a focus on
component interconnections as a means of achieving hiher

levels of architectural flexibility for supporting run-time
adaptability.

Although the suggested approach is based on modelling
techniques that we have developed, formalised and applied in
the design of complex software systems, their application to
fault treatment poses a series of new challenges. In the context
of fault treatment: how to identify available redundancies, how
to instantiate system and component level reconfiguration
policies into strategies, and how to realize a strategy without
disrupting the system service, just to name a few. While, in
terms of software architectures: how to represent
reconfiguration policies and strategies at the component and
system level, how to represent at the interface of the
components the services they should be able to provide,
including their non-functional properties, and how to
incorporate into the architectural models mechanisms for
evaluating and validating architectural configuration during
run-time. These challenges are at the core of a research
programme that we intend to pursue in the near future, namely
through the application of the proposed techniques to
concrete case studies.

REFERENCES
[1] L. Andrade and J. Fiadeiro. “Coordination Technologies

for Managing Information System Evolution”.
Proceedings of CAiSE'01. K. Dittrich, A. Geppert and M.
Norrie Eds. LNCS 2068. Springer-Verlag. 2001.pp. 374-
387.

[2] L. Andrade, and J. Fiadeiro. “Coordination: The
Evolutionary Dimension”. Proceedings TOOLS Europe
2001. Ed. W. Pree. IEEE Computer Society Press. 2001.pp.
136-147.

[3] S.-W. Cheng, D. Garlan, B. Schmerl., J. Sousa, B.
Spitznagel, and P. Steenkiste. “Using Architectural Style
as the Basis for Self-repair”. The Working IEEE/IFIP
Conference on Software Architecture 2002. Montreal,
Canada. August 2002. (to appear)

[4] R. de Lemos. “A Co-operative Object-Oriented
Architecture for Adaptive Systems”. Proceedings of the
7th IEEE International Conference and Workshop on the
Engineering of Computer-Based Systems (ECBS’00).
Edinburgh, Scotland. April 2000. pp. 120-124.

[5] R. de Lemos. “Describing Evolving Dependable Systems
using Co-operative Software Architectures”. Proceedings
of the IEEE International Conference on Software
Maintenance (ICSM’02). Florence, Italy. November 2001.
pp. 320-329.

[6] J. Goldberg, L. Gong, I. Greenberg, R. Clark, E. D. Jensen,
K. Kim and D. Wells. Adaptive Fault-Resistant Systems.
SRI Technical Report. 1994.

[7] M. A. Hiltunen and R. D. Schlichting. “Adaptive
Distributed and Fault-Tolerant Systems”. International
Journal of Computer Systems and Engineering 11(5).
1995. pp. 125-133.

[8] J.-C. Laprie. “Dependability: Basic Concepts and
Terminology”. Special Issue of the Twenty-Fifth
International Symposium on Fault-Tolerant Computing
(FTCS- 25) . IEEE Computer Society Press, 1995.pp. 42-54.

[9] P. Oriezy, M. M. Gorlick, R. N. Taylor, G. Johnson, N.
Medvidovic, A. Quilici, D. Rosenblum, and A. Wolf. “An
Architecture-Based Approach to Self-Adaptive Software”.
IEEE Intelligent Systems 14(3). May/June 1999. pp. 54-
62.

[10] T. Saridakis and V. Issarny. “Developing Dependable
Software Systems using Software Architectures”. Software
Architecture. Kluwer Academic Publisher. 1999.

[11] D. Sotirovski. “Towards Fault-Tolerant Software
Architectures”. Proceedings of the Working IEEE/IFIP

Conference on Software Architecture. Amsterdam, The
Netherlands. pp. 7-13. August 2001.

[12] V. Stavridou and R.A. Riemenschneider. “Provably
Dependable Software Architectures”. Proceedings of the
Third ACM SIGPLAN International Software Architecture
Workshop. pp. 133-136. 1998.

[13] K. Sullivan, J. C. Knight, X. Du and S. Geist. “Information
Survivability Control Systems”. Proceedings of the 21st

International Conference on Software Engineering
(ICSE’99). Los Angels, CA. May 1999.pp. 184-192.

