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Abstract

The construction of concurrent programs is especially complex due mainly to the

inherent non-determinism of their execution, which makes it difficult to repeat test

scenarios. Concurrency has proved to be a fascinating subject and there are many

subtle distinctions which one can make. This dissertation presents an approach

for constructing concurrent programs using a set of process algebra constructs (for

CSP) implemented as an object-oriented framework in Java called JACK; it stands

for Java Architecture with CSP kernel.

The main objective of the framework is an implementation of process algebra

constructs that provides, as naturally as possible, the algebraic idiom as an extension

to this concurrent object-oriented programming language. By naturally, we mean a

design and implementation that provide the process abstraction as if it were included

in the Java language itself (i.e. embedded in the Java language as an extension

package).

JACK is a framework that implements a process algebra. A process algebra is

a formal language that has notations for describing and reasoning about reactive

systems. It implements a modern version of the Hoare’s Communication Sequential

Process (CSP) formalism. The framework is provided as a Java extension package

that supplies CSP operators embedded in the Java language. The library is struc-

tured using UML, role modeling for framework design and construction, and make

use of design patterns and pattern languages. Furthermore, JACK follows some of

the most important software engenieering practices to build frameworks and as a

result its design achievies important properties like reusability, simplicity, expres-

sive power, modularity, extensibility, and so forth. JACK is provided as a gray-box

(white, and black-box) framework tailored to run CSP specifications in Java; it can

also be used to model unified specifications like Circus and CSP-OZ, that combines

CSP with Z.

The implementation is built using separation of concerns in a way that is highly

beneficial to class-based design of frameworks. This work empathizes the use of

design patterns and pattern languages to properly build frameworks, achieve desired

software engineering properties and software quality requirements. The user of the

JACK framework is able to describe its process specification in Java, either in CSP

or in a combined algebra one, like in CSP-OZ or in Circus.
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Resumo

A construção de programas concorrentes é de natureza complexa principalmente

por conta do não-determinismo herdado da sua forma de execução, o que dificulta

a repetição de cenários de teste. Concorrência tem provado ser um tema fascinante

existindo muitas sutis distinções que podem ser feitas. Esta dissertação apresenta

uma proposta para construção de programas concorrentes utilizando um conjunto

de construções de álgebra de processos (para CSP) implementadas como uma ar-

quitetura orientada a objetos em Java chamada JACK.

O principal objetivo da arquitetura é a implementação de construtores de álgebra

de processos que forneça, da maneira mais natural posśivel, o idioma algébrico como

uma extensão desta linguagem de programação concorrente e orientada a objetos.

Por natural, entede-se um projeto e implementação que forneça a abstração de

processo como se ele estivesse inclúido em Java como um pacote de extensão.

JACK é uma arquitetura que implementa uma álgebra de processos. Uma

álgebra de processos é uma linguagem formal que possui notação para descrição

e racioćinio sobre sistemas reativos. Ela implementa uma versão moderna do for-

malismo Communication Sequential Process (CSP) desenvolvido por Hoare. A ar-

quitetura está dispońivel como um pacote de Java que provê operadores de CSP

para esta linguagem. A biblioteca é estruturada utilizando UML e modelo de papéis

para projeto e construção de arquiteturas, fazendo uso de padrões e linguagens

de projeto. Além disso, JACK segue algumas dos mais importantes práticas em

engenharia de software para construção de arquiteturas, e, como um resultado, seu

projeto possui importantes propriedades como reusabilidade, simplicidade, poder de

expressão, modularidade, extensibilidade, etc. JACK é disponibilizada como uma

arquitetura gray-box (white, e black-box) constrúida para rodar especificações CSP

em Java. Ela pode ainda ser utilizada para modelar especificações unificadas como

Circus e CSP-OZ, que combinam CSP com Z.

A implementação é construida utilizando separação de facetas de uma forma

altamente benéfica para o projeto de arquitetura baseado em classes. Este trabalho

enfatiza o uso de padrões e linguagens de projeto para construir arquiteturas de

forma adequada, alcançando propriedades de engenharia de software e requisitos de

qualidade desejados.
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Chapter 1

Introduction

Process algebras [61, 124, 93] are very attractive formalisms to describe concur-

rent and dynamic aspects of complex computer systems. However, the execution

of specifications must deal with concurrent programming, a non-trivial task. This

introductory Chapter presents the main motivation to deal with formal concurrent

specification and programming languages with respect to software quality require-

ments.

Section 1.1 presents a short introduction on formal languages. Next in Sec-

tion 1.2, the main motivation for this work is presented. Then in Section 1.3, im-

portant software engineering requirements to build object-oriented frameworks are

listed. Finally, in Section 1.4, we present the general structure of the dissertation.

1.1 Formal Languages

A language is a set of signs that serves as a communication medium between people.

To express that communication, these signs must be organized following a set of rules

and principles. Those rules are called the language grammar; all languages must

have a grammar.

To build something useful with the language, the user needs to know how to

build expressions with these signs, and how to compose them to create an expressible

discussion. The syntax of the language is the part of the grammar that defines those

signs organization. Each signal has by itself a specific meaning that needs to conform

between related signs in a sentence. The semantics of a language specifies that

relationship of significance between the language signs1. Therefore, to completely

understand and make use of any kind of language, we need to know the language

signs, its syntax, and its semantics.

The main difference between a formal language (like CSP [124] or Z [147]) and

a natural language (like English or Portuguese) is how their syntax and semantics

1Semantics comes from the Greek semantiké, that means the art of significance.
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are defined. While the natural languages have an open possibility for different

meanings and ambiguity in their grammars, formal languages, in the opposite side,

have a strict and singular meaning for all their possible constructions: mathematical

treatment of the language rules. This rigour of formal languages is necessary due

to its intention: computational reasoning. Up to now, a computer could not infer a

meaning without a specific rule to apply. Computers do not support ambiguity in

their processing.

In this sense, to describe computer software we need a formal language. There

are many types of formal languages. For instance, a concurrent object-oriented

programming language like Java [4, 72]. Java is a formal language in the sense that

it has a well-defined grammar with syntax and semantic definitions. Furthermore,

there are other types of formal languages like specification languages, refinement

languages, and so forth. For instance, there is CSP (Communicating Sequential

Process) [61, 124], that is a specification language for behaviour description of both

concurrent and sequential processes.

Nevertheless, for each kind of problem, there is the need of a specific sort of lan-

guage to deal with that problem domain. It is important to choose the appropriate

language for the referred problem. The language ought to provide enough expressive

power to solve the problem. It is also important that there is tool support to that

language in order to make it use widespread.

1.2 Motivation

The construction of concurrent programs is especially complex due mainly to the

inherent non-determinism of their execution, which makes it difficult to repeat test

scenarios. It should be noted that the execution order of two concurrent activities

is influenced by external programming conditions, such as processor load and in-

terruptions. Various techniques, tools, and methods have been proposed to help

programmers write concurrent programs.

A process algebra is a formal language that has notations for describing and

reasoning about reactive systems. A process algebra introduces the concept of a

system of processes, each with its own private set of variables, interacting only by

sending messages to each other via handshaken communication. All these languages

use synchronization on atomic events as the foundation for process interaction, and

all provide some way of expressing event occurrence, choice, parallel composition,

abstraction, and recursion [130]. By event we mean an instantaneous communication

that can only occur when the participant process and the external environment

agree [124].

Process algebras are useful because they bring the problems of concurrency into

sharp focus. Using them, it is possible to address the problems that arise, both
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at the high level of constructing theories of concurrency, and at the lower level of

specifying and designing concrete systems, without worrying about other issues [124].

A process algebra theory consists of a well-defined set of semantic laws that describe

the behaviour of processes. These descriptions may use both operational laws [108]

and denotational laws [127] to properly define different theoretic parts [126, Chapters

3 and 4]. Concurrency has proved to be a fascinating subject and there are many

subtle distinctions which one can make, both at the level of choice of language

constructs (i.e. its operators) and in the subtleties of the theories used to model

them (i.e. its semantic laws).

This dissertation presents an approach for constructing concurrent programs

using a set of process algebra constructs (for CSP) implemented as an object-oriented

framework. It is implemented as a framework in order to achieve desired software

engineering quality requirements and be ready for both black-box and white-box

reuse. This framework is called JACK and stands for Java Architecture with CSP

kernel. The main objective of the framework is an implementation in Java [4, 72]

of process algebra constructs that provide, as naturally as possible, the algebraic

idiom as an extension to this concurrent object-oriented programming language. By

naturally, we mean a design and implementation that provide the process abstraction

as if it were included in the Java language itself [126, 28] (i.e. embedded in the

Java language as an extension package). The framework solutions are based on

micro-architectures of cooperating objects which ought to be applied, combined,

and customized to build a process specification using that programming language

extension. The resultant program can be used either as a simulation/prototype of a

CSP specification, or as an implementation of the CSP network in a programming

language that can physically run.

As already mentioned in [31], Java is suitable for this kind of library implementa-

tion since it has built-in concepts of concurrent programming and communication. It

is also platform independent, well-suited for the development of embedded systems,

has many research efforts to give it a formal semantics [65, 27, 25, 24]

Object-oriented frameworks promise higher productivity of application develop-

ment through design and code reuse. Object orientation comprises object-oriented

analysis, design, and programming [90]. Using a small set of concepts (objects,

classes, and their relationships), developers can model an application domain (anal-

ysis), define a software architecture to represent that model on a computer (design),

and implement the architecture to let a computer execute the model (program) [113].

None of these activities (analysis, design, and implementation), nor the resulting

models, are trivial. To carry them out effectively, developers have invented addi-

tional concepts that represent the conceptual entities they are dealing with. One

such key concept is the object-oriented framework. An object-oriented framework

is a reusable design together with an implementation and documentation. The de-

sign represents a model of an application domain or a pertinent aspect thereof; the
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implementation defines how this model can be executed, at least partially; and the

documentation states and guides how the framework can be properly used (black-

box use) or extended (white-box use). Although, in principle, the JACK framework

is not configured to a specific process algebra, our particular focus of attention is

CSP [124, 126, 130].

Communicating Sequential Process (CSP) [124] has become a very attractive

formalism to describe concurrent and dynamic aspects of computer systems. It is a

process algebra that has a formal semantics [124, 126, 61], tool support [33, 34],

up-to-date references [130], and in progress research [12, 36, 82]. Despite this,

there are many research lines under development related to frameworks and CSP,

such as unified language [62] specifications [148, 30, 29, 30, 29, 31, 100]; libraries

that implements occam [53], a language that implements an old CSP [61, 60] ver-

sion [107, 59, 51, 144]; description of real-world specification examples [99, 45]; for-

mal implementation strategies for CSP and combined specifications [12, 35, 82, 1];

and so on.

The CSP under consideration in this dissertation is the one described in [126,

124]. This is the updated version of the initial C.A.R. Hoare [61, 60] CSP descrip-

tion. Its main well-known implementation is the model checker FDR (Failures and

Divergences Refinement) [33] and specification animation ProBE [34] tools. In this

new version, there are two main differences from the original approach. The pro-

cesses alphabet needs to be explicitly declared, which gives a greater flexibility in

the parallel construction of process networks [124, Chapter 2]. An important as-

pect is the multidimensional typed channel. Other minor features are added, like

modeling decisions against process termination (skip rules) and value manipulation

(functional expression language). In spite of this, there are two new aspects related

to this new version that are quite complicate. It is the multisynchronization and

backtrack problems. The former is related to the parallel operator that now can

multi-synchronize in more than two processes, an old restriction. The latter occurs

due to the need of dealing with infinite data types without expansion (i.e. through

a symbolic approach); that is, when there is some data dependency related to the

communication under consideration. These topics are detailed in Sections 2.3.3

and 2.3.2 respectively.

CSP has become well-suited to describe most requirements related to the dy-

namic behaviour of distributed and concurrent aspects of complex computer sys-

tems. With this in mind, tools like FDR are adequate for simple toy examples and

large real-world industrial ones.

With the use of this tool, one can design a system and proof some important

properties like deadlock freedom, livelock freedom, non-determinism, refinements

between specifications, and so on. At the level of processes implementation, it is

necessary to achieve the same results (i.e. the same properties) as in the modeling

stage. Nevertheless, a process specification in FDR cannot run, but just be analysed
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(i.e. one can prove properties, but cannot see a process physically running). In this

sense, there is a gap between process specification design and process implementation

execution, that needs to be solved. Therefore, there is the wish to run a specification

in an environment that captures the correct semantics of the processes.

As far as we know, there is the lack of a framework that describes CSP [124] in a

programming language in the formal methods field. There are only implementations

of occam [53], a programming language based on an old CSP version [61]. There

is only one available tool related to process animation called ProBE [34]; it cannot

physically run a process, but just iterate through its expected semantics. Therefore,

there is a clear motivation to build a framework to deal with CSP [124] specifications.

Despite this, the process framework opens the possibility for the user to deal with not

only CSP process specifications, but also in specifications of combined languages like

Circus [148, 149] or CSP-OZ [31], and works related to refinement calculus [96, 95, 5]

of such languages [12], due to its ability to allow users to define their own process

behaviours. In this way, the CSP process algebra is selected to be the language

under consideration for a framework implementation.

1.3 Software Engineering

Software engineering deals with the construction of systems whose complexity re-

quires the intervention of teams of engineers. Due to the interaction and cooperation

among team members, software engineering must have a set of principles applicable,

not only to the developed products, but also to their development process. These

principles are less relevant when applied in the context of application development

by a single programmer, or a framework that will never be extended. Software en-

gineering principles are the basis for the methods, techniques and tools used by the

software engineer. In [133], seven quality principles related to software engineering

are mentioned; they are briefly enumerated below.

1. Rigor and Formalism — The use of a mathematical formalism based on a

combination of both theoretical and experimental results.

2. Separation of Concerns—Separate handling of different aspects of program

construction, in order to better control complexity and also allow separation

of responsibilities, thus improving teamwork.

3. Modularity — Decomposition of a program into modules; the composition of

a program from existing modules; and understanding each part of a program

separately.

4. Abstraction — Identification of relevant aspects, with details ignored, thus

allowing better complexity management and stepwise development.
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5. Anticipation of Change — A program must be prepared to anticipate

change in order to reduce its impact. The identification of a program’s fu-

ture evolutions must be carried out at the requirements gathering stage. The

isolation of parts to be changed may be done using modularity.

6. Generality — The construction or use of a tool or method to solve a more

general problem may be reused in the context of different programs, like design

patterns [28] and pattern languages [121].

7. Incrementallity — A program is built in successive increments, allowing in

this way, incremental testing and debugging of a programs.

We try to follow these requirements in order to provide a well-defined framework

implementation with evolution support.

From a software engineering perspective, and based on the aforementioned prin-

ciples, an approach to the development of concurrent programs must satisfy, in

addition to functional and non-functional requirements, a set of quality require-

ments [133]. Thus, the definition of an approach to the development of concurrent

programs, capable of satisfying the previous stated software engineering quality re-

quirements, constitutes an important goal of the JACK process algebra framework

implementation. In what follows, we identify some JACK aspects related to each

quality requirement. Most of them come from [133, 113, 126].

1. Rigor and Formalism — The process algebra constructs implementation

follows strictly operational laws [126, 130, 124] and implementation guide-

lines [126, 61] of CSP, which leads the framework to implement the rigor and

formalism of CSP.

2. Separation of Concerns — JACK uses separation of concerns inherited

from DASCO [133], which is itself a framework that deals with concurrency,

synchronization, and recovery as orthogonal matters.

3. Modularity — Since we use separation of concerns, it becomes easier to

achieve modularity. Despite this, JACK was modeled using the very modular

technique of role modeling [113]. Thus, the whole framework has highly cohe-

sive modules presenting low coupling between layers. This topic is detailed in

Chapter 4.

4. Abstraction — With DASCO’s separation of concerns (see Chapter 6 and

[133]), it is possible to completely abstract a specific concern like concur-

rency or synchronization. With the use of Hoare’s solution to implement

processes [61, pp. 38], it is also possible to abstract process algebra constructs

before their complete implementation, thus providing also incrementallity.
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5. Anticipation of Change — The use of role modeling [113], design pat-

terns [28, 123, 102, 23, 81, 121], pattern languages [121], and framework mod-

eling [22, 113] techniques caters for anticipation of changes.

6. Generality — Role modeling and design patterns used by JACK are an im-

portant basis for the framework ability to be general and extensible, by fol-

lowing rigorous steps through well-documented guidelines.

7. Incrementallity—Again, with DASCO’s separation of concerns and Hoare’s

abstractions, it is possible to incrementally develop both low-level concurrency

aspects (i.e. threads, locks, transactions) and high level process algebra con-

struct aspects (i.e. CSP operators and user defined processes).

Satisfaction of these quality requirements by the approach implies a rigorous set

of well-defined and clear stages. The proper definition of these stages results from

an extensive analysis of existing solutions for each concern at the proper framework

layer. The application of the results of this analysis reflects itself in each module’s

correction (i.e. proper layer model, design, and implementation) [133].

Other important aspect to be mentioned is documentation. The lack of proper

model and source code documentation in other process algebra libraries [107, 59],

limites the possibility of extension and proper use of them (see Chapter 3 and [36]).

Framework modules must be documented, so that it is possible to understand

their function at different abstraction levels. For instance, it must be possible to

understand a module’s collaboration structure independently from its implementa-

tion. Documentation must allow different kinds of module users, according to the

required knowledge level (i.e. user developer or extension developer).

JACK provides many sources of documentation. This varies from detailed Java-

Doc source code documentation [38], UML and Role Models [38], test case and

example classes [38], and tutorials specifically tailored for user developers [41], for

extension developers [42], and so forth.

1.4 Structure of the Dissertation

This dissertation consists of seven Chapters and one Appendix. A short description

of what follows is given.

• Chapter 2—Description of the CSP process algebra constructs. The Chapter

also states two important problems to be solved by the framework, that is,

backtracking and multisynchronization of processes.

• Chapter 3 — Description of why to build JACK as an object-oriented frame-

work with design patterns and pattern languages. A brief introduction to
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these topics and framework role modeling is also given. It makes a comparison

between JACK and other available process libraries.

• Chapter 4 — Introduction to the JACK framework from the end user (i.e.

a JACK client) point of view. It describes the framework documentation and

packaging rules, the type system used to describe process elements, the set of

CSP operators available, and so on.

• Chapter 5 — Presents the JACK architecture. It specifies the main layers of

the framework, how they are organized, and which role each layer must play.

• Chapter 6 — Presents the JACK implementation project. It details the

layers at the lower levels of abstraction, establishes how layers and sub-layers

get composed, and how the framework can be configured and extended by

some advanced user or extension developer.

• Chapter 7 — Summarizes dissertation main contributions, future work, and

final remarks. This Chapter also provides a range of expected improvements

for JACK future releases, and possible tools that can use the framework.

• Appendix A — Provides web links for other sources of information related to

JACK, like on-line documentation, UML model, tutorials, other documents,

and so forth.
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Chapter 2

CSP Presentation

Communicating Sequential Processes (CSP) [124] has become a very attractive for-

malism to describe concurrent and dynamic aspects of computer systems. It has a

formal semantics, tool support, up to date references, and in progress research. The

version of CSP considered in this work is the one described in [124]. This is the

updated version of the initial C.A.R. Hoare’s CSP description [61].

The CSP operators can be implemented in a concurrent object oriented program-

ming language, such as Java [72], to allow construction of concurrent programs with

these operators. This implementation would be done in order to provide more ab-

stract concurrent constructors for the language to allow designers and programmers

to describe their programs in CSP.

Section 2.1 makes a short introduction to CSP. Next, in Section 2.2, a description

of the most important CSP operators are given, with some discussion about the

main differences between Hoare’s version and Roscoe’s version of CSP. After that,

in Section 2.3, the main problems observed to achieve the implementation of this

version of the formalism, extended to deal with infinite data types, is shown. Finally,

in Section 2.4, a summary and some final considerations are given.

2.1 CSP

The problem domain under consideration for this dissertation is the formal specifi-

cation of concurrent systems. There are many specification languages used for this

purpose, like for instance, CCS [94], LOTUS [10], and CSP [61, 124].

Our main objective is an implementation of a CSP framework that provides,

as naturally as possible, the CSP idiom in Java [4, 72], in order to provide more

abstract concurrent constructs to software developers. By naturally, we mean a

kind of implementation that directly maps, as much as possible, the CSP language

constructors into Java.

CSP [124] has become a very attractive formalism to describe concurrent and dy-
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namic aspects of computer systems. One of the fundamental features of CSP is that

it can serve as a notation for writing programs which are close to implementation,

as well as more abstract specifications which may be remote from implementation.

CSP was designed to be a notation for describing and analysing systems whose

primary interest arises from the ways in which different components interact at

the level of communication. CSP is a notation and calculus designed to help us

understand interaction. The primary applications areas are those where the main

interest lies in the structure and consequences of interactions.

The most fundamental object in CSP is therefore a communication event. Events

are assumed to be inside a set Σ (the Greek capital letter “Sigma”) which contains

all possible communications for processes in the universe under consideration. We

should think of a communication as a transaction between two or more processes,

rather than as necessarily being the transmission of data one way.

A CSP specification contains the definition of processes. A CSP process is com-

pletely described by the way it can communicate with its external environment.

To construct a process the specifier needs to decide on an alphabet of communi-

cation events. The choice of the process alphabet determines the level of detail or

abstraction in the final specification.

The fundamental assumptions about communications in CSP are the following:

• They are instantaneous: there is no consideration about the real time intervals

during the performance of communication events. They occur atomically —

conceptually at the moment when they become inevitable. This property leads

the specification to be safe with respect to possible race conditions during event

occurrences.

• They can occur only when both the process and its environment allow them;

but when the process and its environment do agree on an event, then it must

happen (handshaking communication). This guarantees the liveness property

of the specification.

CSP defines a way to reason about the interaction of processes with their envi-

ronment using this model of communication.

2.2 CSP Operators

CSP has a variety of operators specifically tailored to describe the behaviour of

processes. There are primitive basic processes, and operators to describe sequential,

concurrent, and non-deterministic aspects of a system. There are other operators

that deal with more complex features like renaming, piping, labelling, timed aspects,

and so on.
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For a comprehensive description of CSP and those operators see [124, 130]. For

yet another short description of CSP operators see [49, Appendix A] and [99, Ap-

pendix A].

2.2.1 Primitive Processes

CSP has three primitive processes described as follows:

• STOP — Represents a deadlocked process, that cannot do anything (i.e. a

broken machine).

• SKIP — Represents a process that has finished its job successfully.

• DIV — Represents a livelocked process that only performs communications

invisible to its outside environment.

2.2.2 Prefix Operator

To express a process that represents the occurrence of an event, and then follow

behaving as another process, there is the prefix operator (→, or −> in machine

readable CSP1) as follows:

e→ P (read as “e then P”).

In the process given above, e represents an event and P the process that follows

the occurrence of this event. The meaning of this process is very simple, after the

occurrence of the event e, the whole process then behaves like P . Some examples of

pritimive processes and prefix are given below:

CSPIntroduction = (primitiveElements→ description→
example→ SKIP )

BrokenWatch = (tick → tack → STOP )

CrazyWatch = (tick → tack → DIV )

JohnsWakeUpRoutine = (wakesUp→ brushesTeeth→
takesBreakfast→ goesToWork → SKIP )

The first equation defines a well-behaved process CSPIntroduction that starts

performing primitiveElements, passing through their description, and then giving

an example. It is finished by SKIP , indicating successful termination.

The second equation, BrokenWatch, presents a watch that has some problem.

It only performs one tick and tack cycle, STOPping indefinitely afterwards. It is

said that the process is deadlocked, or that the watch is broken.

1This is the input format accepted by tools that uses Roscoe’s version of CSP, like FDR [33]

and ProBE [34]. It is normally called CSPm.
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The third CrazyWatch, presents a watch that has a funny behaviour. It suc-

cessfully performs one tick and tack cycle and after that the external environment

cannot infer anything about that process. It can either continue to work without

our knowledge or just be broken. It is said that the process is livelocked.

The last equation JohnsWakeUpRoutine, presents the behaviour of John ev-

ery morning. Firstly he wakesUp, then he brushesTeeth and takesBreakfast,

then goesToWork, and finally he successfully finishes his waking up routine.

2.2.2.1 Prefix Communications

An event can also be a communication event, which is represented by the pair

c.v

where c is the name of the channel, and v is the value of the message that is passed.

Inputs and outputs are, respectively, the read event c?v and the write event c!v,

which are performed when both processes are ready, and a communication over

channel c is performed.

An input or read prefix process is defined as

c?x : T → P (x)

This is a process that behaves as process P (x) after the value x is read by channel

c. The value x is restricted to be an element of the set T . In this sense, T acts as a

value constraint over the possible values to be read through channel c.

An output or write prefix processes is defined as

c!v → P

This is a process that behaves as process P after the value v is sent through channel

c.

This tightly defined communication protocol is called rendezvous communication.

The set of messages communicable on channel c is defined as

type(c) = {v|c.v ∈ P}
where P is a predicate which constrains the values accepted for communication.

2.2.3 Fixed Point Operator

Sometimes there is the need to introduce repetitive behaviour for processes specifi-

cations; to do so, we use recursion. Recursion in CSP can be achieved by a reference

to the process name on the right side of the equation that defines it. For instance,

in a equation like P = (e→ P ), P performs the event e and behaves like P again.

Therefore, this process behaves like an infinite process that is always enabled to

perform the event e.

As an other example, one can describe an analogic watch as follows:

12



AnalogicWatch = (tick → tack → AnalogicWatch)

which performs tick and tack forever.

There is an important point to be mentioned about recursive processes related

to its initial event. If a recursive equation is prefixed by an event like in P = e→ P ,

it is called a guarded recursion. In this case, the equation has a single solution that

can be described using another important CSP operator, called recursion. Uses of

this operator takes the form µx : Args.Body, where x is a process name, Args are

the process arguments, and Body is a process definition that typically refers to x to

denote recursive behaviour. The solution of a recursive guarded equation P = E(P )

that has an alphabet αP = A is defined as µC : A.E(C), where C is a name for the

locally defined process. Therefore, the analogic watch process can be redefined as

follows:

AnalogicWatch2 = µAW : {tick, tack}.(tick → tack → AW )

or simply as

AnalogicWatch2 = µAW.(tick → tack → AW )

where the alphabet is left implicit.

2.2.4 Concurrent Processes

The term concurrent process is used to designate actions performed by a set of pro-

cesses at a given moment. Each process defines its own execution flow, therefore

we reach systems where there is more than one execution flow at the same time.

In this context, events shared by two or more processes could interact in the sense

that they could agree on the occurrence of that event. This is called a synchronous

communication model, because if a process that has this shared event in its alpha-

bet and cannot perform it, the other participant processes that wish to engage in

the event must wait. There is the possibility that this process interaction never oc-

curs, leading the whole synchronization to fail, behaving like the canonical deadlock

process STOP .

The operator used to denote concurrent behaviour with synchronous interactions

is parallelism ([|X|]). To completely specify the parallel operator, one needs to

provide two processes and a synchronization alphabet: P [|X|]Q, where X is a set of

events such that X ⊆ αP ∪ αQ.

For instance, suppose that two employees of a factory are arranging boxes inside

a truck for delivery. The first employee, called John, gets a box from the floor and

gives it to the second employee called Joseph. After that, Joseph arranges the box

inside the truck. Both employees need to agree in one event: when John holds a box

and gives it to Joseph, he must want and be prepared to take that box. Therefore, at
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this point, a synchronization between John and Joseph must occur. We can model

that system as follows:

John = µC.(getBoxOnFloor → boxOnHand→ C) and

Joseph = µD.(boxOnHand→ arrangeBox→ D), therefore

TruckArrangement = (John‖Joseph)

which is equivalent to

TruckArrangement = µE.(getBoxOnFloor → boxOnHand

→ arrangeBox→ E)

The interpretation of the process TruckArrangement is simple. The events

that are not shared by both process operands can be performed independently, by

whatever process, while for the common event both processes must agree. In this

case, if John works faster than Joseph, he must hold on with the box N until

Joseph finishes the arrangement of the previous box and is prepared again to have

another box on hand. After that, we provide the same process equivalently defined

as sequential recursive process that represents the same behaviour as the concurrent

one.

An important note about the parallel operator must be given. This Section

presents Roscoe’s [124] version of it. Nevertheless, there is an older version defined

by Hoare [61] that is quite different. Hoare’s version of the parallelism operator

makes an implicit use of the participant process alphabets, therefore the process

P‖Q is uniquely determined by the alphabets of P and Q (i.e. αP and αQ). Hoare’s

version can be described in terms of the Roscoe’s version by just making the process

alphabet explicit (i.e. P [|αP ∩ αQ|]Q).

In the following, we present the example of the Truck using the Hoare’s version

of the parallel operator:

John = µC.(getBoxOnFloor → boxOnHand→ C)

with alphabet αJohn = {getBoxOnFloor, boxOnHand} and

Joseph = µD.(boxOnHand→ arrangeBox→ D)

with alphabet αJoseph = {boxOnHand, arrangeBox}, therefore

TruckArrangement = (John‖Joseph)

which is equivalent to

TruckArrangement2 = µE.(getBoxOnFloor → boxOnHand

→ arrangeBox→ E)

The equivalence between TruckArrangement and TruckArrangement2 is a-

chieved applying some algebraic transformation laws related to the parallel operator.
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2.2.4.1 Generalized Choice — External Choice

The generalized choice, also called External Choice (2 , or [] in machine readable

CSP), can be used to express any choice operator of CSP: it can behave as a non-

deterministic choice (u), or as a Simple Choice (|). The simple choice operator can

only be used when processes with distinct initial events are described, while the

Internal (u) and External (2) choice apply to any processes. The external choice is

called generalized because in the case of prefixed processes with equal initial events,

its semantic meaning is equivalent to the Internal Choice operator; otherwise, if

their initial events differ, its semantic meaning is equivalent to the Simple Choice

operator.

As a process algebra, CSP has a set of algebraic laws that define equivalencies

between (syntactically) different processes. The following laws applies for 2:

((a→ P )2(b→ Q)) =

{

((a→ P )|(b→ Q)), ifa 6= b

((a→ P ) u (b→ Q)), otherwise

For example, to model the keyboard of a single calculator, where the user can

press a numeric key at any moment, one could specify the following process:

SingleCalcNumPad = µC. (zero→ C)

2 (one→ C)

2
...

2 (nine→ C)

The events zero, one, . . ., nine, represent the press of the corresponding key.

2.2.5 Non-Deterministic Processes

A non-deterministic process performs events without the interference of its external

environment. For instance, for abstraction, normally deterministic processes can be

defined non-deterministically. This is convenient because the more deterministic a

specification becomes, the more detailed and complex it is.

In CSP, non-determinism can be modelled in a variety of ways, depending on

the desired results. The following subsections present these operators.

2.2.5.1 Non-deterministic or — Internal Choice

The non-deterministic or process, also called Internal Choice (u or |~| in machine

readable CSP), describes a behaviour that does not depend on its environment.

The process (P uQ) can behave like either P or Q, with the process selection not

depending on the environment.

As already mentioned, non-determinism is useful to abstract specification details.

In this sense, the introduction of non-determinism can be used to avoid detailing
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behaviour. For example, a mail router program might offer one of two possible

routes, considering the network traffic; the user is not concerned with the route, but

simply in the correct delivery of the message, and is therefore happy to leave the

responsibility for making the choice to the router program. Of course, looking at

the router program internally, there is some shortest path algorithm implemented

to select the best route. Nevertheless, it at a certain point of our design we are not

worried about this internal detail, the router program can be described as follows:

ROUTER = (ROUTEA uROUTEB)

As another example, one can define a process that neither initialises variables

nor checks preconditions, just runs and does not guarantee any results. For instance,

if a programmer wants to test or implement some desired behaviour as quickly as

possible, just to see it working, not worrying if the program crashes at the first

moment, the process below can be used.

2.2.5.2 Interleaving

The interleaving (|||) operator is a particular case of the parallelism operator. In fact

it can be viewed as a parallel operator with an empty synchronization alphabet X,

meaning that there are no interactions between the two concurrent processes.

The execution behaviour of (P |||Q) is given by the execution of any event of

either P or Q in any order. For example, a fax machine may be described as follows:

FAX = µC.(acceptDocument→ printIt→ C)

The machine is initially ready to accept any document. After accepting a docu-

ment, the FAX must print it and start behaving like FAX again. Suppose that a

collection of four fax machines may be connected to the same phone number (with

four lines): any of them is suitable for processing incoming faxes.

FAXES = FAX|||FAX|||FAX|||FAX

The system provides the facility for processing up to four incoming faxes at the

same time. There is neither the need to control which FAX will be selected nor

to enforce any agreement between the FAX machines. The interleaving operator is

associative. Thus, there is no need to put parenthesis in the above definition.

In the following we present two interesting algebraic laws about |||:

(P |||SKIP ) = P

(SKIP |||SKIP ) = SKIP

this means that an interleaving process terminates only when the two processes

terminate.
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2.2.6 Sequential Processes

The behaviour of the sequential operator (;) is very simple. It grants the permission

to the second process to execute when the first one has successfully terminated.

For example, a purchase process has two well-defined sequential behaviours. First

one needs to choose a set of products and after that pay for it. One can pay only

after terminating selecting the products. First we define the CHOOSE process that

represents selection of products.

CHOOSE = (select→ (keep→ SKIP

2 return→ CHOOSE))

Then the PAY process that represents the payment for the already selected prod-

ucts.

PAY = (cash→ receipt→ SKIP

2 cheque→ receipt→ SKIP

2 card→ swipe (sign→ receipt→ SKIP

2 reject→ PAY ))

Finally, we define the PURCHASE process representing the sequential composition

of product selection and payment.

PURCHASE = CHOOSE;PAY

The client can choose as many products as he or she wants, terminating when no

more items are desired. The payment procedure can be achieved either by cash,

cheque, or credit card.

Another interesting use of the sequential operator is to introduce recursion. Re-

peated execution of the same component or sequence of components can be described

by means of a recursive loop. A recursive process that describes a recurrent spending

is given below.

SPENDING = PURCHASE;SPENDING

The use of the sequential operator to describe recursive behaviour is also called

iteration. It is described below.

P ∗ = P ;P ∗

Roscoe mentions the iteration operator [124, Chapter 6] as a particular case of the

sequential operator.
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2.3 Considerations for an Implementation of Roscoe’s CSP

The CSP described here is the newer, updated version of the initial C.A.R. Hoare

[60, 61] version, implemented in FDR and described in [126] and [124]. In this

new version, we have two main differences from the original approach. The process

alphabets need to be explicitly declared, which gives us a greater flexibility in the

parallel construction of process networks, although looses its associative property.

Another aspect is the multidimensional typed channels, where a prefix can mix

both read and write operations. Minor features are added like modeling decisions

involving process termination (SKIP rules) and manipulation of values (functional

expression language).

The available libraries, that are related to process algebra implementation (see

Section 3.2) deal with occam [53]. This is a programming language with built-in

Hoare’s CSP constructs.

This new version of the formalism brings up new problems to be treated in

an implementation of Roscoe’s CSP in another target host language: Java. The

following subsections present a discussion about some of these identified problems,

in order to illustrate the main difficulties of this implementation work.

2.3.1 Complexity of New Operators

Roscoe’s version of CSP has a variety of new operators that are much more complex

to implement and reason about than the traditional Hoare’s CSP. A brief description

of those concepts and a discussion about them are given in the subsections below.

2.3.1.1 Behaviour and Data

In Hoare’s version of the formalism there is no support to describe data structures.

It covers only behavioural descriptions.

The new version of CSP makes it possible to the designer to specify both be-

haviour and data, with a companion functional expression language. CSP is not

tailored to deal with formal description of data structures, as in languages such as

Z [147]. Nevertheless, the ability to describe behaviour related to some specialized

data structures increases the whole expressive power of the language. In [100], this

is elegantly explored; that work proposes a strategy to model check combined spec-

ifications like CSP-OZ [31], using FDR, by transforming the original CSP-OZ input

to normal CSPm2 input, making use of the available functional programming lan-

guage. In this way, a data structure in Z and a behaviour definition in CSP can be

directly model checked using this transformation3 and FDR.

2Machine readable version of CSP implemented by tools like FDR and ProBE.
3There is a semi automatic tool, that make a best effort approach to give an accurate translation

from CSP-OZ to CSPm [1].
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For instance, Roscoe’s CSP allows the designer to define many sorts of types

and type constraints, to build and use sets, lists and other structures related to

functional languages [106].

2.3.1.2 Communication Concept

Hoare’s communication input prefix (c?x → P ) and output prefix (c!e → P ) are

treated differently in Roscoe’s version of the formalism. Both input and output

are translated to a so-called communication event in the form c.v. For the output

prefix, the expression e is evaluated. The input prefix has a type constraint over

the possible read values (c?x : T ); it is converted into a simple choice between all

possible read values. For instance if we consider the read prefix

(c?x : {0 . . . 2} → P )

this process is translated to become

(c.0→ P 2 c.1→ P 2 c.2→ P )

This expansion brings up a big difference between implementations of the for-

malisms. For instance, in model checkers like FDR [33], that do analysis of some

process properties like deadlock or livelock freedom, this expansion does not lead

to many troubles, since model checking cannot deal with infinite data types. Nev-

ertheless, for a programming language implementation of the formalism, this kind

of expansion cannot be achieved for infinite data types nor it should be done, for

instance, when we are using types like Object classes.

In this sense, a different solution must be provided to solve this expansion prob-

lem. Such a solution is the execution of the input operator without expansion using

a symbolic execution approach, in order to avoid expansion at all. This is important

in order to allow inifite data types in prefix communications.

2.3.1.3 Generalized Parallelism

In Roscoe’s CSP two or more process can synchronize, which is called multi-synchro-

nization of processes, and give rise to another sort of problem specifically discussed

in Section 2.3.3. In Hoare’s version of the parallelism operator, only two process can

synchronize on a shared channel name. With Roscoe’s generalized parallelism, it is

possible to build more flexible networks than with Hoare’s version

Another important difference is the fact that the new operator accepts synchro-

nization on a communication (i.e. channel and value pair — c.v) instead of on a

channel. This opens the possibility to make use of the formalism of data types,

which brings up some data dependency problems what in turn gives rise to another

sort of problem specifically discussed in Section 2.3.2.
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An important point that must be observed is that Roscoe’s version of the op-

erator looses the associative property, which could be a problem. This leads the

operator to have a weak associative property when both interfaces are the same

P [|X|](Q[|X|]R) = (P [|X|]Q)[|X|]R

but the possibility, in P [|X|](Q[|Y |]R), of X containing an event not in Y that Q

and R can both perform, makes it hard to construct a universally applicable and

elegant associative law.

When a very complex network needs to be analysed by the FDR model checker,

the state explosion of the network can starve the tool. With the associative law, a

specification designer can check each part of the parallelism and infer that the whole

composition satisfies the observed properties. This is not true if the associative law

does not hold.

2.3.1.4 Multidimensional Prefix

The multidimensional prefix is an extended version of the normal prefix that accepts

a mixture of input and output operations at the same communication. In this sense,

it extends the concept of communication from a pair of a channel and a value (c.v) to

become a channel and a list of values (c?x!z?y!w), each one following the underlying

input or output law.

With this new operator, the expressive power of the language is again raised

due to the possibility to include data type constraints and functional language ex-

pressions inside this kind of construct, leading to complex communication prefixed

constructs like

c?x : {0 . . . 2}!(y + z)?w : {3 . . .}!(k ∗ 5)→ P

This tightly defined communication protocol is called multi-way rendezvous [13,

131] communication.

2.3.2 Backtracking

In the following sections we mention some operational problems related to the ime-

plementation of these new considerations of the Roscoe’s CSP. When we start deal-

ing with infinite data types, expansion of all possible paths of the network are not

more possible. In this sense, a different symbolic approach must be provided. This

new solution gives raise to a new problem of communication ability that is called

backtracking problem.

Backtrack here refer to the ability of discarding a selected network path to try

another available one, without effectively communicating anything. By path here,

we mean the external environment selection for a communication that fires a specific
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channel aux, a, b, c: int

P = aux?x -> (x >= 0 && x <= 3) & a?x -> b!x -> P

Q = c?y -> aux!y -> a!y -> Q

R = (P || Q) \ {aux}

Figure 2.1: Data Dependency Example — Hoare’s Version

operator operational semantic law. For analysis tools like FDR [33], this problem

does not exist at all, since since they expand all possible paths that the network can

reach. Doing so, FDR avoids the backtracking problem through expansion, with the

trade-off to do not deal with infinite data types. However, in tools whose objective

is to simulate, prototype, or implement an specification, it is not possible to expand

all available paths of the network due to the possible presence of infinite data types.

Backtracking happens basically due to the constraint set of the read prefix (c? :

x : T ) operator. It occurs because, without expansion, the synchronization with a

writer prefix occurs if both processes are enabled to communicate, but due to the

constraint restriction, it may not effectively be performed.

In this sense, backtracking can be solved with the external choice (2) and/or gen-

eralized parallel ([|X|]) operators. When the external choice or generalized parallel

operator becomes ready to run, it can preview whether or not some communication

will or not put the whole network in a backtrack state, and what possible commu-

nication paths can be taken.

In the following subsections we present some illustrative examples of backtracking

and how it can be solved using the two mentioned versions of the CSP formalism.

The first example uses the data dependency condition for backtracking. The next

one uses the combinatorial choice selection for the same purpose.

2.3.2.1 Data Dependency Example

Let P be a process that reads values between 0 and 3 (inclusive) on a channel a

of integers. Then it writes the read value on another channel of integers named b.

Finally it starts again behaving like P .

Let Q be another process which reads any value from a channel of integers

named c. Then it writes the read value on channel a, that value is used by P for

read operations. Finally, it starts again behaving like Q.

Let R be a third process which represents the parallel composition of P and Q

synchronizing on all possible communications on the shared channel a. These two

processes ought to behave like a one-sized buffer that communicates values sharing

a channel; it is also called rendezvous communication.

In one possible execution path of the process R, process Q can read any value
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channel a, b, c: int

% Build a set containing x’ that comes from {0...3}

T = {x’ | x’ <- {0..3}}

P = a?x:T -> b!x -> P

Q = c?y -> a!y -> Q

R = P [|{|a|}|] Q

Figure 2.2: Data Dependency Example — Roscoe’s Version

from channel c and write it on channel a. Since the Q process is writing in a channel

inside the synchronization set, it must wait for P to read from this shared channel.

Another possible execution path of R is the process P executing first. In this case,

it also waits for process Q to write the value that it reads. When processes P

and Q reach the synchronization condition, the communication takes place and the

processes continue their executions.

Attention should be given to the fact that there is a data dependency between the

execution descriptions. For instance, if Q reads from channel c some value outside

the integer type constraint of P , a deadlock condition arises on the buffer.

The problem treated here is the abstraction of the data dependency and what

must be done in order to express it in a higher level. The description of this example

in Hoare’s and Roscoe’s CSP respectively, are given in machine readable CSP in

Figures 2.1 and 2.2. This example is discussed below for each different version of

CSP.

Hoare’s CSP

In Hoare’s CSP [60, 61], the data dependency problem may be solved adding new

process guards to the data dependency restriction, and auxiliary channels for in-

dependent communication on the synchronization points. To avoid the possible

deadlock situation, the process must accept any communicated value inside the in-

teger type range through the auxiliary channel aux. After that, it must filter this

value using a boolean guard that states the data restriction on the value commu-

nicated (in this case, to be inside the closed interval [0 . . . 3]). This means that to

solve the problem some actions are needed; they are given below.

1. Identify the synchronization points;

2. Auxiliary communication channels must be added for all identified synchroni-

zation points;
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P = ( a.0 -> b.0 -> P ) [] ( a.1 -> b.1 -> P ) []

( a.2 -> b.2 -> P ) [] ( a.3 -> b.3 -> P )

Figure 2.3: Data Dependency Example — FDR expansion

3. Add boolean guards that applies the data restriction after the auxiliary com-

munication channels for all identified synchronization points;

4. Hide the auxiliary channels4.

This solution of boolean guards and auxiliary channels can be achieved easily for

single process networks, but there seems to be no way to generalize it for arbi-

trary network in a compositional way. Also, with this kind of solution, the process

specification becomes polluted with auxiliary channels outside the problem domain.

With the proposed backtrack strategy, a more transparent solution to this problem

is given.

This problem does not arise if we do not deal with data types as in the case

in [61], which deals with control behaviour only. With the possibility to deal with

data types, the formalism gains expressive power and also the ability to be part of

unified languages [62] like Circus [148, 149] or combined ones like CSP-OZ [31].

Roscoe’s CSP

Roscoe’s version of CSP has built-in support for functional language expressions

and data type descriptions. With this sort of constructor, set comprehension or

data type definitions can be used as the type constraint to restrict the possibly

communicable data.

In the example of Figure 2.2, the channel a of Q communicates some value y

input by the channel c. The process P is enabled to communicate through the input

channel a. However, when the value is received, the whole communication may fail,

due to the type constraint T in a on P .

Just to make a comparison, in analysis tools like FDR, this situation is solved,

provided the data type of the channel (in this case the interval 0..3 of int) is finite.

The solution is a consequence of the expansion of all possible communicable events

on the channel. That expansion strategy is guided by applying the step-laws of the

CSP operators [124]. In this case, the external choice step-law is applied. The result

of the expansion of P by FDR is shown in the Figure 2.3.

This expansion strategy elegantly avoids the problem for finite data types. It

does not loose the compositional property of the specification, since it uses an al-

gebraic (transformation) law that gives a semantically equivalent process. It also

4The hide operator (P \ X) is not discussed here; its definition in JACK is mentioned in

Section 4.2.4.2. It is completely described by Hoare in [61].
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channel aux, a: int

P = aux?x -> (x % 2 != 0) & a?x -> STOP

[]

a!2 -> STOP

Q = (aux!2 -> a!2 -> STOP [] aux!3 -> a!3 -> STOP)

R = (P || Q) \ {aux}

Figure 2.4: Combinatorial Choice Example — Hoare’s Version

does not add any idiosyncratic constructor (i.e. auxiliary channels) to the original

CSP specification, as in the Hoare’s version discussed previously. In this way, this

solution is elegant and adequate to solve the problem for finite data types.

Nevertheless, this can be applied only for specifications with finite data types.

How to expand an infinite type like Object, that can occur in a specification runner

like JACK? This suggests that we need a general solution for any data type, either

finite or infinite. This topic is discussed in Section 2.3.2.3.

2.3.2.2 Combinatorial Choice Example

Let P be a process that makes an external choice between two prefixes, one that

reads some integer value x from a channel a with a type constraint T that restricts

the communication to odd numbers only, and another that writes the value 4 on

the same channel a. After the communication, both prefixes behave like a broken

machine (i.e. STOP ).

Let Q be a process which makes an external choice between two prefixes, one

that writes an integer value 2 on a, and another that writes the value 3 on a. After

the communication both prefixes behave like a STOP .

Let R be another process formed of the parallel composition of P and Q, syn-

chronizing on all possible communications on the shared channel a. The description

of this example in Hoare’s and Roscoe’s CSP, respectively, are given in machine

readable CSP in Figures 2.4 and 2.5.

In one possible execution path of the process R of Figure 2.5, processes P and Q

behave like one of the choice branches enabled. Process R selects the possible

communications. In this case all branches are enabled, since all of them want to

communicate through the channel a. For this example, suppose that the left side

branch of P and Q are selected by the implementation strategy of the related oper-

ators. In this way, Q is wishing to communicate 2 on channel a, and P wishing to

read from this shared channel a. So the synchronization is enabled to occur and the

communication can proceed. Nevertheless, since P does not know the value that Q

will communicate, it must wait for that communication. After that, it can perform
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channel a: int

% Type constraint that builds a

% set containing odd numbers only.

T = {x’ | x’ <- int, (x % 2 != 0)}

P = a?x:T -> STOP

[]

a!2 -> STOP

Q = (a!2 -> STOP [] a!3 -> STOP)

R = P [|{|a|}|] Q

Figure 2.5: Combinatorial Choice Example — Roscoe’s Version

the type constraint check to accept odd numbers only. From an operational point of

view, P must notify R that the communication could not occur, and a backtracking

must be done. Some other possible path must be tried, and the already executed

ones must be marked as invalid for this communication example.

The relevant problem here is the need to make a combinatorial analysis of pos-

sible choice selections. This is needed in order to either find a possible successful

communication path, or to ensure that there are no available paths and, therefore,

the process must deadlock. In this simple example the job seems easy, but this

might not be the case in a more realistic example. In a generic machine that runs

the process, a deep nested combination of choices must be analysed, one against

all the others. This is what is done in order to consider all possible paths, before

notifying a deadlock condition.

This example is discussed below for each different CSP approach available.

Hoare’s CSP

Again, to avoid the possible deadlock situation, the process must accept any com-

municated value inside the integer type range through the auxiliary channel aux.

After that, it must filter this value using a boolean guard that states the data re-

striction on the value communicated. This means that the specification will again

become polluted with unexpected information.

In this case, the solution does not solve the problem. When the communication

happens on the auxiliary channel aux, if the type constraint is not satisfied, it be-

haves like STOP , and no backtracking is possible due to the already communicated

and synchronized value. Therefore, the solution described previously does not work

for this problem. If there are nested choices, as in our present example, the solution
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int = 0..3

channel a: int

P = (a.1 -> STOP [] a.3 -> STOP)

[]

a!2 -> STOP

Q = (a!2 -> STOP [] a!3 -> STOP)

R = P [|{|a|}|] Q

Figure 2.6: Combinatorial Choice Example — FDR expansion

is even more complicated.

Roscoe’s CSP

As considered before, the left branch of P and Q are selected in the execution,

then the process P is enabled to communicate through the input channel a. How-

ever, when the value is received, the whole communication fails due to the type

constraint T in a on P .

In analysis tools like FDR, this situation is indirectly solved, provided the data

type of the channel (in this case an int range) is finite. The solution is achieved

by the expansion of all possible communicable events on the channel. Assuming

that int type ranges from 0 to 3, the type constraint yields the following constraint

set: {1, 3}. The same example expanded by FDR is shown in the Figure 2.6.

Differently from the process obtained using Hoare’s approach, no deadlock occurs

because the left side of P is never selected, since there is no matching communication

for it. In this way, the right side is chosen. In this sense, this solution is elegant and

adequate to solve the backtrack problem for finite data types.

2.3.2.3 Infinite Data Types

As mentioned above, the expansion strategy is not appropriate to deal with back-

track for infinite data types. Instead of this, a symbolic approach that applies all

operational semantic laws, as the expansion approach does, is considered.

The symbolic approach is definitely more adequate for both infinite data types,

and finite as well. With the symbolic approach, the expansion problem for infinite

data type is avoided. The problem is the starvation of the network due to the

attempt to expand all possibilities.

In the formal methods research field, a symbolic solution does not seem to have

yet been explored, for a process algebra implementation in a programming language.

A general solution for the backtracking problem is an important motivation.
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The symbolic approach seems to be more appropriate to solve the backtracking

problem in general. It is also easier to operationally implement than full expansion.

This is the approach for the operational implementation of CSP used in the JACK

framework. This decision was made based on previous research on the available

implementations [59, 107, 32], and on an experimental CSP system that has a quite

small multi-dimension data type [45, 99, 100].

Another research was done in the direction of finding and defining how this

solution should be implemented. In [36, 35, 82] it is stated which paths the im-

plementation should follow, and which it must avoid. In [36], it is observed that

available process algebra implementation libraries [59, 107] mix functional (i.e. op-

erator semantics) and non-functional (i.e. concurrency and synchronization model)

concerns. This breaks the reusability and extensibility property of object-oriented

frameworks, since that mixture in those libraries code makes it complex and obscure.

This topic is reviewed in Section 3.2.

In [82], we explain how to implement the operational semantics [126, 124] of CSP,

using action semantics [97, 14]. Other important sources of information are [99, 98,

100, 12, 20, 31].

2.3.3 Multisynchronization

Multisynchronization is the situation where nested levels of parallelism need to be

synchronized together. In the original version of CSP, this problem never occurs due

to the restriction that only two processes can be involved in a communication. In

that version, the parallel operator synchronizes independently of any other operator

or state of the whole specification network. In this sense, it is completely autonomous

with respect to the work that another parallel operators are doing.

Roscoe’s version of the generalized parallel operator has a controlled autonomy,

managed by its synchronization alphabet and the external environment event selec-

tion. Multisynchronization can lead the network to backtracking, due to a possible

communication path that will not multi-synchronize. The implementation of the

operator must backtracks to attempt another way, if one exists. This is better

illustrated with examples. In the following sections we present some illustrative ex-

amples of the multisynchronization problem and how it is interpreted using the two

mentioned versions of the formalism. We also show the consequences of the presence

of multisynchronization and backtracking together.

2.3.3.1 Read Multisynchronization

Two illustrative examples of the read multisynchronization are given below.

Prefix Multisynchronization
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channel c

A = (c?x -> STOP)

B = (c!1 -> STOP) || A

C = (A || B)

Figure 2.7: Multisynchronization Example — Hoare’s Version

channel c: {0..1}

A = (c?x -> STOP)

B = (c!1 -> STOP) [|{|c|}|] A

C = (A [|{|c|}|] B)

Figure 2.8: Multisynchronization Example — Roscoe’s Version

Let A be a process which reads any value from channel c and then behaves like

STOP . Let B be a process which is the parallel composition of A and an unnamed

process that writes the value 1 on channel c, and then behaves like STOP . The

parallel composition in B must multi-synchronize on all possible communications on

channel c. Let C be the top level process formed of the parallel composition of A

and B synchronizing on all possible communications on the shared channel c. In

Figures 2.7 and 2.8 we present the machine readable CSP description of this example

in Hoare’s and Roscoe’s version of CSP, respectively. In the following paragraphs,

an implementation view of how each CSP version can be solved is given.

In Hoare’s version, the execution of process C starts both processes A and B.

Then, process A waits for a communication on channel c and process B will syn-

chronize performing the communication c.1 and follow the execution to synchronize

and wake up process A. Process C in turns synchronizes, and the whole process

finishes behaving like STOP . This does not mean multisynchronization. In Hoare’s

version, the synchronization of processes can only occur in pairs.

In Roscoe’s version, process C must inform that both A and B that they must

synchronize on all possible communications of c. This means that these processes

have autonomy, but they are controlled by this information, which is given by an

outer parallel operator, that acts like a supervisor environment. Process A waits

for a communication on channel c. Process B does not synchronize performing the

communication c.1, because it knows that its supervisor must also synchronize on

that communication. Process B must agree with its supervisor and waits for a

decision from it before the communication can occur. Finally, process C signals the

decision about the communication c.1 for its pupils that in turn make the whole

multi synchronization of this example, and then finish behaving like STOP .
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channel c: {0..1}

P = (c!1 -> STOP)

Q = (c?x -> STOP) [|{|c|}|] (c?x -> STOP)

R = (P [|{|c|}|] Q)

Figure 2.9: Choice Multisynchronization Example — Roscoe’s Version

There is an important difference between these two views of the parallel operator.

When we include data dependency between processes, the supervisor can decide

if the selected path leads to a non-desired situation, like the ones shown in the

backtracking examples above. With this fine control concerning the occurrence of a

communication, the multisynchronization becomes possible, which does not occur in

the Hoare’s version. Next, another example where this situation can cause trouble

and why the operator raises its expressive power is shown.

2.3.3.1.1 Choice Multisynchronization

Let P be a process which writes the value 1 on a channel of integers named c

and then it behaves like STOP . Let Q be a process which is the parallel compo-

sition of two unnamed processes that just read any value on channel c and then

behave like STOP . The parallel composition in Q must synchronizing on all possi-

ble communications on channel c. Let R be another process formed of the parallel

composition of P and Q synchronizing on all possible communications on the shared

channel c.

In Figure 2.9, we present the machine readable CSP description of this example

in Roscoe’s version of CSP. It is not possible to describe this example using the

Hoare’s version of CSP.

In Roscoe’s version, process R informs both P and Q that they must synchronize

on all possible communications of c, before starting them. This means that these

processes have autonomy, but they are controlled by this information given by an

outer parallel operator that acts like a supervisor environment. Process P waits for

a communication on channel c. Process Q informs the situation to its supervisor

asking if it must synchronize on channel c. The supervisor process R knows that it

has another process waiting to synchronize on the requested channel. In this case,

the multisynchronization can take place. Process R informs both processes about the

situation which in turn makes the multisynchronization on the communication c.1.

Finally, after the successful communication c.1, it finishes behaving like STOP .

There is also another similar multisynchronization problem not mentioned here

related to write multisynchronization. It is very similar to the examples shown
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typeOfc = {0..4}

channel c: typeOfc

% Type constraint that builds a set

% containing even numbers only - {0,2,4}.

T = {x’ | x’ <- typeOfc, (x’ % 2) == 0}

P = (c!1 -> STOP [] c?x:T -> STOP)

Q = (c!2 -> STOP [] c!3 -> STOP)

S = (c?x -> STOP)

X = (P [|{|c|}|] Q)

R = (S [|{|c|}|] X)

Figure 2.10: Multisynchronization with Backtracking — FDR input

above, but instead of read prefixes, write prefixes are playing. In the following, an

interesting example that mix multisynchronization with backtracking is shown.

2.3.3.2 Multisynchronization with Backtrack

Backtracking can also occur due to a multisynchronization. For instance, when

combining the examples of the previous subsections, such kind of situation can

arise, as shown in Figure 2.10.

In one possible execution path of process R, both process P and Q can select

the right operand of the external choice operator since they are both enabled to

communicate and synchronize. Assuming that the process is not expanded, be-

cause typeOfC can be infinite, the supervisor process R cannot previously know

that there is a data restriction on the selected side of P that forbids communication

on odd numbers. Process S waits for a notification from its supervisor process (R)

to continue.

When process X is notified by one of its pupils about the impossible communi-

cation, X in turn notifies the situation to R. This procedure will follow the network

structure until a process without a supervisor is found, which in turn must make

the decision about the whole network. In the given example, R asks X if there is

other execution possibility, then X forwards the request to its pupils in order to try

another path.

This attempt-oriented approach is necessary since we cannot previously infer a

right decision because no expansion was done. In this simple example, the only

possible available path is to try the left operand of Q against the right operand

of P . Luckily, this decision allows the communication to occur at X, which must be

informed to the supervisor. Finally, process R signals every pupil that the multisyn-

30



chronization can take place, since process S is able to perform the communication

desired by X.

Therefore, to run this specification example, we need to both make use of back-

tracking and multisynchronization. Backtracking is used to solve a data dependency

problem, searching for alternative paths availability. Multisynchronization is used

to allow the multi-level synchronization, and also to allow the backtracking to solve

the whole synchronization, that otherwise leads the main process R to deadlock.

In this way, we briefly explain our approach to implement and solve these prob-

lems operationally in a programming language implementation of CSP. As men-

tioned in Chapters 5 and 6, this supervision-oriented approach follows the guidelines

stated by Hoare in [61, pp. 38] to describe generic processes, and operational laws

described in [126, 124] to describe CSP operators semantics.

2.3.3.3 Multisynchronization and Backtracking Implementation

It is important to deal with both multisynchronization and backtracking in a frame-

work implementation of Roscoe’s CSP. These problems arise because we are also

dealing with infinite data types. Nevertheless, both tools do not allow infinite data

types. Dealing with these sort of problems is, therefore, the trade off to have an im-

plementation that accepts infinite data types. The problems mentioned are the mix

of data dependency, combinatorial choice selection, and multi-level synchronization.

An implementation of this sort of features has shown to be quite complex and

tricky. Such kind of implementation does not seem to have been adopted in any

available process algebra library (see Section 3.2). In the following chapters, we

present what tools are available, how to properly build a framework to deal with

this sort of problem, and how the JACK framework is organized in order to achieve

these objectives.

2.3.3.4 Strategy Selection

A detailed study [36] was done for each mentioned problem, in order to infer how a

framework implementation of CSP with generic user process definitions can be done.

The implementation must generically deal with both CSP and user process defini-

tions without mixing functional semantic problems with non-functional concurrency

problems.

Many strategies were considered for the implementation of the framework. For

instance, we firstly try to strictly follow the operational semantics laws described

by Scattergood [126], but it does not fit well for our problem domain due to our

requisite to allow transparently both CSP operators and user processes. After that,

a network search algorithm was tried, in order to properly implement the multi-

synchronization stop condition and the backtrack path availability and selection

possibilities; this solution again fails because we loose the compositional property of
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the operators. Finally, we found a solution that solves both CSP operators and user

processes generically based on guidelines defined by Hoare [61, Chapter 1]. These

guidelines are described in Chapters 5 and 6.

2.4 Final Considerations

The CSP language’s most basic operators have been introduced as well as some

implementation difficulties that arise in the new Roscoe’s version of the formalism.

Those problems have been exemplified.

This chapter has also mentioned the already known problems to be treated by an

implementation of the new version of CSP, like backtracking, multisynchronization,

and new operators complexity. The next chapter presents some discussion about how

to deal with these problems in a framework that implements CSP in a concurrent

object-oriented programming language. It also compares other available process

algebra libraries and modeling techniques.
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Chapter 3

Framework Construction

This Chapter presents an overview about framework construction using design pat-

terns and pattern languages. It also shows related process algebras and general pur-

pose framework studied in the process of our framework construction. The JACK

framework’s main objectives, the design pattern initiative, and other aspects related

to those tools are also presented.

In Section 3.1, a brief description of frameworks, design patterns, and pattern

languages are given; that section also provides some discussion about the adequacy

and importance of frameworks. Next, in Section 3.2, a list of related component

libraries, frameworks, and methodologies is given. In Section 3.3, it is presented

a brief discussion about the Java language selection to build JACK. After that, in

Section 3.5, the JACK main objectives are defined and compared in Section 3.6

with other process algebra implementations [59, 107]. In Section 3.4, the model-

ing technique selected to design JACK is briefly presented. In Section 3.7, final

considerations are presented.

3.1 Relevance of Framework and Design Patterns

Frameworks are an important kind of class library organization that specifically

describe how each library entity is defined and how it should be integrated. The

process of framework construction involves many steps and guidelines.

Framework modeling techniques are also important in order to make the frame-

work widespreaded available. This modeling is normally achieved by using well-

known design patterns to solve selected problem of a specific domain.

3.1.1 Framework

A framework is represented by a set of recurring relationships, constraints, or design

transformations in different aspects of object systems. Frameworks can be viewed

as an implementation of a Design Pattern [28], or a related set of design patterns.
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In the following, we give some definitions of what a framework is, what it can

do, when or where it can be applied, and so forth. These definitions vary from more

abstract to more concrete from a set of different sources.

1. “A framework is a generic architecture that provides an extensible template

for applications within a domain” [74, Chapter 13 pp.284]. “It is a package

consisting of design patterns”[74, Chapter 14 pp.504].

2. A framework is at the heart of many patterns, but a pattern usually also

includes less-formal material about alternative strategies, advices on when to

use it, and so on. When one keeps a framework in a class library, it should be

packaged with this documentation.

A framework is a template package; a package that is designed to be imported

with substitutions. It “unfolds” to provide a version of its contents that is

specialized based on the substitutions made. A framework can abstract a

collaboration, a generic type, a design pattern, and even a bundle of generic

properties.

“Therefore, it is more than a collection of collaborating abstract classes; they

have companion documentation, related modeling decisions, and well-defined

ways of use and integration with other frameworks” [22, Chapter 9 pp.340—

341]. “We use frameworks to explicitly document the mapping from domain

terms to terms and roles in the abstract problem descriptions” [22, Chap-

ter 6 pp.279].

“In this way, model frameworks can be used to express relationships that strad-

dle type boundaries and to encapsulate relationships made up of a collection

of types, associations, and actions. They are a powerful tool for abstraction

and a useful unit to reuse” [22, Chapter 9 pp.380].

3. “Use frameworks to build specifications and designs as well as refinements

between the two. Used properly, frameworks let one better document the

main refinement decisions. This results in a design that is traceable” [22,

Pattern 6.5 pp.283].

4. “A common aspect about frameworks is that they are adaptable. The frame-

work provides mechanisms by which it can be extended (white-box reuse), or

directly used (black-box reuse)” [22, Chapter 11 pp.461]. “In this way, a

framework implementor ought not to build models from scratch, but instead

build them by composing frameworks” [22, Pattern 10.3 pp.448].

5. “A framework is a set of cooperating classes that make up a reusable design

for a specification of software. The framework dictates the architecture of your

application. It defines the overall structure, its partitioning into classes and
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object instances, the key responsibilities, how the classes and objects collabo-

rate, and the thread of control. The framework captures the design decisions

that are common to its application domain. Frameworks thus emphasize de-

sign reuse over code reuse. An added benefit comes when the framework is

documented with the design patterns it uses” [28, Chapter 2 pp.26—27].

6. A good framework can reduce the cost of developing an application by an order

of magnitude, because it lets one reuse both design and code. Frameworks take

a common path while they evolve. This can occur in the following steps [123,

Chapter 26]:

(a) Application Examples — How to start designing a framework?

(b) White-box Framework — How to properly extend a framework after its

construction?

(c) Black-box Framework — How does the framework exposes its services to

the final application domain?

(d) Component Library — When one is using white-box frameworks, simi-

lar objects must be implemented for each problem the framework solves.

How to avoid rewriting similar objects on different framework instantia-

tions?

(e) Hot Spots — How do one eliminate common code inside the mature

framework while the code evolves?

(f) Pluggable Objects — How to add components to frameworks?

(g) Fine-Grained Objects — How to refactor the framework to increase reuse?

(h) Separation of Concerns — How to combine frameworks?

In this sense frameworks are adequate for the construction of evolutive, and

complex object-oriented systems.

7. “A framework is a model of a particular domain or an important aspect thereof.

A framework can model any domain, be it a technical domain like distribu-

tion or garbage collection, or an application domain like banking or insur-

ance. A framework provides a reusable design and reusable implementations

to clients. A framework is represented by a class model, together with” [113,

Chapter 4 pp.54]:

A free role type set — a set of roles in which framework clients may par-

ticipate.

A built-on class set — a set of classes from other frameworks that this

framework depends on.
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An extension-point class set — a set of classes that may be subclassed by

framework-external classes.

Object-oriented frameworks promise higher productivity and shorter time-to-

market for the development of object-oriented applications. These goals are

achieved through design and code reuse. While many projects show that these

promises can be met, failed projects also show that they are not always easy to

reach. Role modeling for framework design addresses three pertinent technical

problems of designing, learning, and using object-oriented frameworks: com-

plexity of classes, complexity of object collaboration, and lack of clarity of

requirements put upon use-clients of a framework

“Role modeling for framework design combines the strengths of role modeling

with those of class-based modeling, while leaving out their weaknesses. It is

therefore an evolutionary extension of current methods that preserves existing

investments” [113, pp. iii].

“A good framework’s design and implementation is the result of a deep under-

standing of the application domain, usually gained by developing several appli-

cations for that domain. The framework represents the cumulated experience

of how the software architecture and its implementation for most applications

in the domain should look like. It leaves enough room for customization to

solve a particular problem in the application domain” [113, Chapter 1 pp. 2].

“A good framework has well-defined boundaries, along which it interacts with

clients, and an implementation that is hidden from the outside” [113, Chap-

ter 2 pp.8].

Attention should be given to another aspect that the framework solution ap-

proach raises. “If applications are hard to design, and toolkits are harder, then

frameworks are the hardest of all” [28, Chapter 2 pp.27]. This trade off seems

acceptable when comparing different approaches to process algebra implementa-

tions [59, 107] (see also Sections 3.2 and 3.6) against the resulting design.

3.1.2 Design Patterns and Frameworks

A design pattern represents a model of a specific domain or concern. Design patterns

can be viewed as design artifacts used to document, abstract, and make discussing

with a development team easier.

Because patterns and frameworks have some similarities, people often wonder

how or even it they differ in some way. It is actually very important to clearly

distinguish between them. Frameworks are different from design patterns due to

three main reasons [28, Chapter 2 pp.27]:
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• Design patterns are more abstract than frameworks — differently from design

patterns, frameworks cannot only be studied, but also be executed and reused

directly.

• Design patterns are smaller architectural elements than Frameworks — a

framework normally implements several design patterns, the reverse is never

true.

• Design patterns are less specialized than frameworks — frameworks comes

from an application domain, design patterns [28] can be used in any kind of

application.

In the following, we give some definitions of what a design pattern is, what it

can do, when or where it can be applied, and so on. These definitions are given

from more abstract to more concrete descriptions from a set of different sources.

1. “A design pattern is a common solution to a common problem in a given

context” [56, Chapter 28 pp.383].

“A design pattern is a parameterises collaboration that represents a set of

classifiers, relationships, and behaviour that can be applied to multiple situa-

tions by binding elements from the model to the roles of the pattern. It is a

collaboration template” [74, Chapter 13 pp.387].

2. “A design pattern is a set of ideas that can be applied to many situations” [22,

Chapter 9 pp.341].

“Design Patterns enable designers to discuss their designs clearly with their

colleagues and to convey sophisticated ideas rapidly” [22, Chapter 6 pp.669].

3. “A design pattern systematically names, motivates, and explains a general

design that addresses a recurring problem in object-oriented systems. It de-

scribes the problem, the solution, when to apply the solution, and its con-

sequences. It also gives implementation hints and examples. The solution

is a general arrangement of objects and classes that solve the problem. The

solution is customized and implemented to solve the problem in a particular

context” [28, pp.360].

The design patterns show how to use primitive techniques such as objects,

inheritance, and polymorphism. They show how to parameterise a system

with an algorithm, a behaviour, a state, or the kind of objects it is supposed

to create. “Design patterns provide a way to describe more of the why of a

design and not just record the results of your decisions” [28, Chapter 6 pp. 353].
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The description of a pattern is done in a consistent format. “Each pattern

may be divided into sections which leads to a uniform structure to the in-

formation, making the design pattern easier to learn, compare, and use” [28,

Chapter 1 pp.6].

These templates format evolved on time to acquire more complex and extended

features of object-oriented design. Doug Lea proposes a new template format

for concurrent systems [81]. Rito Silva advance in this field, proposing yet

another extended template that captures the composition of complex patterns

as a design pattern by itself [133].

4. A design pattern is the abstraction from a concrete form which keeps recur-

ring in specific non-arbitrary contexts. A pattern is frequently described as a

problem/context/solution triple. Design patterns identify, name, and abstract

common themes in object-oriented design. They preserve design information

by capturing the intent behind a design. They identify classes, instances, their

roles, collaborations, and the distribution of responsibilities.

Despite much recent work on design patterns, many misunderstandings about

patterns remain. Perhaps the most common and most harmful misunder-

standing is to take the structure diagram of a design pattern description as

the expected structure of a design pattern implementation. The structure dia-

gram and the description of its participants are an illustration of one common

form of the pattern. Therefore, a design pattern is an abstract idea that defies

formalization and precise definition [113, Chapter 3 pp. 49].

Frameworks are normally divided into layers that solves specific problem do-

mains. The definition of framework layers is also an important aspect of the frame-

work construction. Each layer must capture a specific aspect to solve, and provide

the solved functionality at well-defined and widespreaded interface points. The

framework team ought to start the development with these definitions very clear, in

order to properly use these powerful concepts.

3.1.3 Pattern Languages

Aside from design patterns, there are pattern languages. A pattern language is more

than a pattern collection or catalogue. It explains how patterns are applied to a

more general problem than the one solved by a single pattern

Some definitions from a different set of sources of what a pattern language is,

what it can do, when or where it can be applied, and so forth, are presented below.

1. “Design patterns describe solutions for design problems, but they do not define

how they should be applied in the more general context of the development

process. Thus, from an object-oriented programming perspective, the concept
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of pattern language as defining a set of activities for program construction

is also introduced. These activities integrate design patterns in a program

generation process” [133, Chapter 3 pp. 36].

2. “A pattern language may be an alternative solution to parts of a problem

described by a set of related design patterns. A pattern language is respon-

sible, therefore, for factoring the problem and its solution into a number of

related problem-solution pairs, capturing each as a pattern in a collection of

patterns” [121, pp.102].

3. “A pattern language is a collection of patterns that build on each other to

generate a system. A pattern in isolation solves an isolated design problem;

a pattern language builds a system. It is through pattern languages that

patterns achieve their fullest power” [19, Chapter 2 pp.17].

The use of pattern languages establishes a well-defined methodology for proper

usage and composition of design patterns.

3.1.4 Conclusion

The definitions above are sufficient to motivate us to build our CSP library im-

plementation using frameworks, design patterns, and pattern languages due to its

complexity and size. The definitions also suggest that these solutions are very rea-

sonable for our problem domain.

As discussed shortly (in Sections 3.2 and 3.6), there are many desired properties

for this kind of implementation, and also a lot of mistakes and problematic situations

to avoid. In order to clearly identify these points, the proposed library is strongly

based on framework, design pattern, and pattern language concepts.

We think that this construction approach is very important to any complex

object-oriented library. Despite this fact, dealing with CSP processes operational

semantics [126] implemented using the language threading support is a complex

problem by itself. Therefore, the so called pattern initiative seems to be imperative

to build an extensible, reusable, modular, and yet simple process algebra implemen-

tation in Java [72].

With that decision, there are some important questions that need to be answered.

Some of them are listed below:

1. How many and which layers will the framework need to have?

2. How many and which responsabilities does each identified layer deal with?

3. Which patterns and pattern languages to use in other to achieve the respon-

sibility goals?
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4. Are these patterns implementations or designs available?

5. Which modeling technique to use in order to accurately describe the framework

roles?

6. Is the framework prepared for gray-box reuse?

These questions are answered in Chapters 5 and 6. They define the JACK

framework architecture details which includes its layers, design patterns, and design

pattern templates1 [113, Chapter 3]. In Chapter 6, a detailed discussion about how

those layers must interact and their services and configurations are given.

The JACK framework is built-on one other framework. It is called JDASCO2;

it deals with the non-functional requirement of JACK: support for concurrency,

synchronization, and recovery. This is done in order to leave the heart of JACK

to deal only with its functional requirement: provide support for processes in Java

with the operational semantics of CSP [124].

The most complex part of our framework implementation was identified [36] as

the concurrency and synchronization schemes to execute CSP processes and deal

with problems like multisynchronization (see Section 2.3.3); recovery schemes to

solve the backtrack problem mentioned in Section 2.3.2; and implementation of CSP

language operators and user processes. In other libraries [59, 107], these aspects

are mixed with process semantics, which makes the understanding of the library

internals for extensions very difficult, leading to a loss of modularity.

The decision to build the library as a framework with well-defined layers and

problem domains has shown to be very important in order to achieve desired soft-

ware engineering properties like modularity, reusability, simplicity, and so on. The

selected thread support library must both be designed as a framework, with design

patterns, and explained by a pattern language.

The composition of the non-functional layer exposed services with the functional

layer responsibilities is another complex task. In other words, the composition of

concurrency and synchronization schemes with CSP processes operational seman-

tics is not trivial. A presentation of the layers is given in Chapter 5, as already

mentioned. A detailed discussion about their composition is given in Chapter 6.

The Coplien’s tutorial about pattern writing [19] is a philosophic discussion

about design patterns and pattern languages. In that work, all concepts mentioned

here are clearly identified and summarized, many different kinds of pattern and

1A design pattern template is a design pattern instantiated in a generic purpose programming

language, in our case Java.
2Java Developing Applications with Separation of Concerns. This is a Java implementation

of the original framework called DASCo [132, 133]. This framework is basically the composition

of three complex design patterns: Object Synchronization [102, Chapter 8 pp.111], Object Recov-

ery [123, Chapter 15 pp.261], and Object Concurrency [133, Chapter 4].
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pattern languages formats are presented, and also some not mentioned (but not less

important) concepts like antipatterns are provided.

3.2 Libraries Related to Process Algebras

In this section, a brief discussion about available process algebras and related im-

plementations is given.

3.2.1 JCSP

Java Communicating Sequential Process (JCSP) [107] is a Java library that im-

plements occam [53] primitives like guards, alternatives, parallelism, channels etc.

Here, we present an overview of the library, its main advantages and deficiencies.

The terms Java threads and processes are very close. Assigning a thread to an

object creates an active object [81, Section 4.5] (a process). In Java, more than one

thread may be assigned to an object. The user can control each thread by a diversity

of methods, which must be used in a proper way. However, to get synchronization

between threads correct is very difficult and therefore error prone.

Programming with Java threads allow concurrent programs to be described but

it introduces complexity. The thread of control flows through objects by method

invocation. This results in a shift from object-oriented to method-oriented modeling.

The complexity increases even more when multiple threads may meet each other on

shared variables. To prevent race hazards and invalid states, these threads must

be synchronized so that only one thread may update these variables. The Java

synchronized() keyword provides a critical region around the shared variables.

However, this synchronization construct is very expensive for just one single thread

of control.

Thinking in terms of threads is less abstract and less cognitive for the developers

than thinking in terms of processes. Processes have only one thread of control that

is encapsulated within the process and does not overlap the thread of control of

other processes. Cooperation between threads is done by communication events

(i.e. by sending and receiving messages). Synchronization between processes is

purely established by channel communication. Processes do not invoke each other’s

methods but they communicate through channels.

JCSP is a library tailored to build networks of communicating processes. It

conforms to the CSP model of communicating systems. In this sense, it can be

brought to bear in the support of Java multi-threaded applications.

In JCSP, processes interact solely via CSP synchronising primitives, such as

channels. Processes do not invoke each other’s methods. Processes may be defined

to run in sequence or in parallel. Processes may be combined to wait passively on

a number of alternative events, with one of them triggered into action only by the
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external generation of that event. Such collections of events may be serviced fairly

(guaranteeing no starvation of one event by the repeated arrival of its siblings), by

a user-defined priority or in an arbitrary manner.

JCSP is an alternative to the built-in monitor model for Java threads [72, Chap-

ter 14 and 17]. JCSP primitives should not normally be mixed into designs with syn-

chronized method declarations, instances of the java.lang.Runnable interface or

java.lang.Thread class, or invocations of the wait(), notify(), or notifyAll()

methods from java.lang.Object. It is interesting to note that JCSP model pro-

cesses using a simple extension to normal Java threads. Nevertheless, there is a

mixture between non-functional controlling code and functional semantic code.

Finally, it is important to note that the JCSP library reflects the occam [53]

realisation of CSP, with some extensions to take advantage of the dynamic nature of

Java. An occam [53] process declaration maps simply into a class implementing the

CSProcess interface, whose constructor parameters mirror the process parameters

and whose run method mirrors the process body.

This brief introduction is based on the JavaDoc documentation of the JCSP [107]

package version 1.0rc—2. For a detailed discussion about the JCSP packages and

available functionality see [36, 145, 144].

3.2.1.1 Advantages

The JCSP approach to model processes trusts and uses the thread architecture and

thread scheduling policy of Java [72, Chapter 17] to model its concurrent behaviour.

With JCSP, existing Java frameworks that interact with user software via listener

registration and callback interfaces (such as the standard AWT [55, 64, 63] and

Swing [141, 64, 63]) can be easily tailored to operate as processes with channels

based on JCSP interfaces.

JCSP also provides a wide range of plug and play components. These compo-

nents are CSP processes normally used in many different kinds of specifications. This

in many cases frees the user from having to start the specification from scratch. It

also serves as usage examples and bugless implementation of common specification

pieces.

Another important advantage is the separation of channel I/O operations from

physical I/O via data store interfaces. Each channel can have a different data store,

which can handle different data types of physical I/O. Channel data stores are also

used to make a simple kind of multi synchronization between processes.

3.2.1.2 Deficiencies

An important limitation of JCSP is the Alternative constructor. It is not declared

as a class that implements the CSProcess interface, so it looses the compositional

property of process declarations expected in CSP specifications. In order to achieve
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this composition, the user process is obliged to select and use the alternative guards

manually. In this sense, an intuitive process that makes use of the alternative

constructor cannot run naturally; the user does not call a run() method for an

Alternative; it must use a different approach that is two low-level. In other words,

the user must implement part of the operator, since the operator gives only the

selection of process to us; its the user responsibility to run the selected process,

which in turn breaks the compositionality of the CSP operators.

Alternative is not modeled in such a way to allow backtracking (see Sec-

tion 2.3.2), which is an essential aspect of our work. When the decision about

a communication is taken, there is no easily defined way to go back if some back-

tracking circumstance occurs. This is due to way the Alternative is implemented.

Differently from what the JavaDoc introduction says, the Alternative implementa-

tion makes use of Java monitors (i.e. synchronized blocks, and java.lang.Object

methods — wait(), notify(), and notifyAll()). With a locking scheme handled

using notification instead of execution queuing, it is difficult to restore all the mon-

itors state (i.e. involving Channels, other Alternative constructs, or Parallel

processes) consistently with respect to its previous state before the communication

had taken place. We must say, however, that in occam [53], backtracking is not a

concern; so, JCSP was not meant to handle this problem.

JCSP has other minor deficiencies and problems mentioned below.

• JCSP uses primitive types instead of wrapper class references. This closes

the possibility to the user to change the underlying value after submitting the

process to run.

• JCSP does not define a type model. This may not be a problem, since CSPm

is also typeless. On the other hand, in order to allow type correctness in

Java (a strong typed language), JCSP states that for each data type to be

communicated, a different Channel implementation must be provided. This

increases the necessary code to be used.

For each Channel implementation, it is also necessary to define the underlying

ChannelDataStore responsible for the physical I/O with the desired new type,

due to the hard coupling between Channel and ChannelDataStore. This lets

channel extension to be achieved trough the use of a copy-and-paste like pro-

gramming technique, which makes the whole implementation both less modu-

lar, and not safely extensible. Moreover, the data stores have a hard coupling

between channels which make them both less reusable and less extensible.

• The JCSP Parallel constructor uses Channel names to synchronize pro-

cesses: internally it makes use of channels as Java monitors. This is adequate

for an occam implementation that uses Hoare’s version of the parallel oper-

ator, which does not have an explicit alphabet and in which synchronization
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is achieved through channel names. Nevertheless, for the generalized parallel

operator of Roscoe’s CSP, a different approach must be available: we need a

parallel operator with explicit synchronization alphabet declaration.

Despite this, it is difficult to leave the whole network stable in the case of a

backtracking situation, due to the notification scheme used in JCSP. It uses

Java monitor lock methods (i.e. java.lang.Object.wait()) instead of a

kind of execution history record. This kind of notification makes it difficult to

retrieve the state of all processes involved in a communication that needs to

backtrack.

• As identified in [36], it is not be possible to make the necessary changes to avoid

some of the mentioned disadvantages, since some necessary access methods

and classes are declared to be package or private visible; for instance, class

jcsp.lang.Guard is declared package visible.

It has been observed that, with JCSP, the backtracking problem can be partially

solved with many internal changes, and restrictions in the available operators in the

language. JCSP neither provides nor points solutions to the generalized parallel

operator. This sounds far from a solution to our problem domain.

3.2.1.3 Discussion

We conclude that JCSP is modeled to implement only a subset of CSP rather than

a robust extensible framework. This is interesting because it remains simple. In

spite of this fact, it implements occam and not CSP. This makes a lot of difference

due to the lack of some much more complex CSP operators like hiding, functional

renaming, or generalized parallel (see Chapter 2 and [49, Appendix A]).

JCSP also lacks a documented framework, model or design pattern decisions.

JCSP does not seem to be built to be extended, but to be used. Therefore, it is

inadequate to our goals (see Section 3.5), since it neither solves our problems, nor

provides a well-defined way to do so.

Nevertheless, we have learned a lot from its source code and we found and follow

many interesting design decisions. For instance, studying the JCSP code while it

executes, it was found that the Alternative and Parallel operators are important

to the solution to the backtracking problem.

We strongly believe that a framework model approach is necessary in order to

both provide a solution to these new sort of complex problems (and operators),

and also to allow the component library to be extended and integrated with other

frameworks in a guided way. On the other hand, JCSP is a very useful library, and it

inspired our framework design and implementation in many points. We have learned

with its advantages and problems in order to try to give a more robust solution.
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3.2.2 CTJ

Concurrent Threads in Java (CTJ) [59], like JCSP, implements occam [53] primitives

like guards, alternatives, parallelism, channels, and so on. Here, we present an

overview of the library and its main advantages and deficiences.

CTJ follows the same philosophy of JCSP in the sense of the treatment of threads

and processes; that is, they share the idea of the implementation of active objects [81,

Chapter 4]. The concept of programming with processes and communication be-

tween processes via channels is also provided by this Communicating Threads for

Java (CTJ) package. In CTJ the user needs to specify his or her object to be a CSP

process.

A CSP process is an active object with a private thread of control. Processes

communicate only by channels and never invokes methods on processes when they

are active. A process is an active object when its run() method has been invoked by

some thread of control and has not yet been returned (i.e. successfully terminated).

A process is a passive object when its run() method is not invoked. Therefore, a

parent process should only invoke run() on a child process when its child process is

in passive state. Sharing a process by two or more processes is forbidden (design rule)

and therefore the run() method can never be invoked simultaneously by multiple

processes. This simple rule avoids race hazards and strictly separates each thread

of control to enable a secure multithreading environment.

This discussion is based on one of the tutorials [50] of the CTJ [59] package

version 0.9, revision 10. For a detailed discussion about CTJ packages and available

functionality see [36, 50, 51, 49].

3.2.2.1 Advantages

The CTJ approach to model processes is very robust. It builds up a completely new

thread architecture to deal with concurrency, as opposed to JCSP [107], which, as

previously discussed, is based on the thread architecture of Java. CTJ builds-up a

completely new processor and process scheduler abstractions. There are trade offs

in both libraries, nevertheless one can find many good convergence points between

CTJ and JCSP.

CTJ is a library modeled to capture real-time dependent aspects of systems.

The new thread architecture that it implements is important to achieve this goal.

For instance, it builds up completely new abstractions like threads, processor, con-

text switcher, critical region, scheduler, and so on. This leads its implementation

to be quite complex, but sufficiently accurate to simulate real-time properties. The

new thread architecture of CTJ adds many advantages to the library, like fine con-

trol over process scheduling policies. For instance, there is a platform independent

implementation of thread priorities, and time slicing between context switches.

Differently from JCSP, the CTJ Alternative constructor is declared as a process
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so that it can run() directly, which makes its use very close to that natural for the

alternative operator of occam [53]. This makes the use of the alternative more

intuitive, easier, and without any user assistance.

The channel modeling has the same limitation as JCSP, that is the use of many

channel classes: one for each data type. However, it is better than JCSP, because

CTJ data types are always treated as object instances, instead of primitive variables.

In spite of this, there is a tool to support the channel skeleton code creation. This

is an advantage compared with JCSP, but being typeless is a disadvantage.

The selection of processes and guards is made by specialized queues that control

the whole processes. This is far better to control and implement the backtracking

solution than the simple arrays and monitor notifications used in JCSP. In CTJ, the

user can create a specialized kind of semaphore to deal with concurrency, instead

of using Java monitors. This is not an advantage, but makes it more flexible to

implement more complex functionalities like backtracking.

An interesting contribution of CTJ is its I/O architecture for channels, with the

use of link drivers. A link driver determines the actual way of communication. It can

provide internal (i.e. via memory such as a rendezvous or buffered mechanism) or

external (i.e. by peripherals such as RS232, PCI or TCP/IP) communication. The

link driver can be plugged into a channel and provides a protocol for data-transfer via

hardware (i.e. memory or peripherals). The channel provides the necessary synchro-

nization and scheduling. The combination of channels and link drivers is powerful,

in that the concept provides a general solution for communication between two or

more threads in the same address space (i.e. same memory) or for communication

between (possible distributed) systems. As a result, processes become highly inde-

pendent of their physical location on the total system. This enlarges the portability

of the CTJ package.

With CTJ link drivers, existing Java frameworks that interact with user software

via listener registration and callback interfaces (such as the standard AWT [55, 64,

63]) can be easily tailored to operate as processes with channel based on CTJ link

drivers.

3.2.2.2 Deficiencies

The main deficiency of CTJ is its code complexity. The package is easy to use, and

there are very well-implemented and commented examples, but understanding and

extending the library is very hard work. It also does not use the Java concurrent

primitives, except in some low level constructions. In the background of the library,

it uses its own semaphores and distributed monitor primitives in such a way that

resembles old time concurrency programming, which is quite tricky and complex.

This leads to confusion when extensions are necessary. In other words, extending

CTJ is an error prone job.
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Other interesting implementation features of CTJ is that it has queues for noti-

fications and synchronization between threads and communicating processes. Nev-

ertheless, the available functionality is neither clear nor seem to be prepared for

extension. For instance, the queue implementation is confusing as far as method

meaning (i.e. expected functionality from the method name) and intended docu-

mented behaviour are concerned.

CTJ has other minor problems mentioned below.

• The alternative constructor has a queue of available guards to control its pos-

sible execution paths of Alternative constructors. In principle, this can be

used to deal with backtrack. Nevertheless, there is a very coupled definition

between the alting queue behaviour and other internal scheduling queues: the

ready queue used by the process dispatcher, and the waiting queue used by the

locking monitor semaphore. To alter the alting queue, those queues must also

be adjusted. In order to achieve this goal in practice, low-level details about

the CTJ thread architecture must be well-understood to avoid implementation

mistakes. Despite this fact, there is no sufficient documentation to completely

understand those low-level classes, which brings us to a complicated situation

in the way to extend CTJ to deal with backtrack.

Another minor point about the alting queue is that it has package visibility,

which forces us to alter the CTJ package instead of extending it. This breaks

completely the code reuse property of object-oriented frameworks.

• The redefined monitor primitive used in CTJ constructs uses three controlling

semaphores. Therefore, when some state needs to be restored due to a possible

backtracking occurrence, there is the need to handle three waiting (semaphore)

queues. To identify which one of them became altered and must be restored

is very error prone and difficult task.

It was observed that, with CTJ, the backtracking problem can be partially solved

with many internal changes. For multi-synchronization, the solution is even more

complex since occam does not support it at all, and so neither CTJ. In this way,

this is far from a solution to our problem domain.

3.2.2.3 Discussion

We conclude that CTJ is modeled to be a robust process algebra library that deals

with real-time aspects, but not a robust extensible framework. Moreover, it imple-

ments occam and not CSP.

Nevertheless, we have learned a lot with the CTJ source code and tutorials freely

available from its web site [59], following many of its design decisions. For instance,

studying the CTJ source code, we decided to implement JACK channels and data
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links, which is clearly a CTJ contribution to our work. Another important idea

that comes after studying CTJ source code, is the observation that, to deal with

backtracking, there is the need for some kind of queuing or history sensitive execution

of processes in order to properly identify and solve backtracking situations. Finally,

the idea of an active object that has its run method called by its own thread of

control and a passive object that has its run method called by its process parent, is

followed in the final JACK implementation.

3.2.3 Jass

Java with Assertions (Jass) [32] implements assertions, class and loop invariants,

pre- and post-conditions, guarantee about method result, trace assertions, and so

forth. Here, we present an overview of this framework3.

Assertions are statements about the state of objects. They describe properties of

these objects, which have to be true at specific points of time during the execution

of the program.

Assertions are based on the concept of design by contract [89, 90], that is ex-

amined and transferred to Java. For this purpose, certain instructions have been

included in the Jass language that make it possible to express assertions in the pro-

grams. These instructions have the form of comments, so that an extended program

is still accepted by the Java compiler. A precompiler translates these comments into

statements in Java, which then checks the assertions during runtime and trigger ex-

ceptions in the case of violations.

The result of this work is the extended language Jass, including the precompiler

to translate the extensions. The chosen translation approach in the transference to

Java operators leads to a completely transparent handling of assertions for the devel-

oper. At the same time, it includes numerous additional options for the precompiler,

with which the degree of the translation can be regulated.

Nevertheless, what an assertion framework (i.e. language and precompiler) has

in common with process algebras? The concept of trace assertions, which is a contri-

bution of Fischer [31]. They help us to specify the dynamic behaviour of programs

at runtime. Trace assertions lay down the order of valid method invocations. Fur-

thermore a method invocation can be bound to certain conditions. Trace assertions

are defined as a kind of Jass assertion, so it is also a regular Java comment to the

Java compiler that has class global scope to the Jass precompiler.

The discussion above is based on one of the Jass companion documentation [32]

and Fischer’s PhD thesis [31]. The version under consideration is the Jass version

2.0. For a detailed discussion about the Jass package and available functionality

see [32, 31].

3Unlike CTJ and JCSP, Jass was built as an object-oriented framework. It also has formal

syntax and semantics descriptions [31], and also tool support as a Java precompiler [32].
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3.2.3.1 Advantages

Jass is neither a Java extension package nor a process algebra library. It is a language

with a precompiler to be used behind the Java compiler. The main advantage of

Jass is that it adds the option of design by contract to Java. Therefore, it acts as a

kind of software functionality checker.

Users of Jass neither need to extend nor to implement any Jass class or interface.

They need only to follow its defined syntax and semantics [31]. In this sense Jass

is a kind of black-box framework tailored to be used by the final user and not to be

extended by him.

The two most important advantages of Jass for the process algebra implementa-

tion context are:

• Jass implements design by contract, and has a formal syntax and semantics.

• Jass provides trace assertions for process specifications.

The design by contract concept was first suggested by Bertrand Meyer [89, 90]

and bundles a plethora of theoretical and practical insights. It combines the object-

oriented approach, abstract data types and methods taken from software verification.

The idea is made up of four major aims:

• Formal specification — A formal specification can be given as an intrinsic part

of the language without requiring further efforts in the learning process nor in

the actual use.

• Documentation — The specification is part of the program code and can be

automatically extracted from it.

• Debugging — The program can check itself during runtime.

• Software-tolerance — In the case of a violation of the contract, an exception

is triggered, which can itself be handled by the programmer.

The trace assertions facility of Jass can be viewed as an independent feature of

the language. With trace assertions, users can ensure the expected execution order

of their methods. In this way, the trace assertions act as a kind of class invariant,

because they enforce the specified behaviour. At this point, Jass touches the idea

of a process algebra package for Java.

Therefore, Jass acts as a kind of class dynamic behaviour debugger or execu-

tion checker, which is very different from an extension package that provides CSP

operators.
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3.2.3.2 Deficiencies

As mentioned in last paragraph, Jass acts as a kind of class dynamic behaviour

debugger or execution checker. It is the user responsibility to deal with threads,

concurrency, synchronization locks, and so on. The framework does not provide any

abstraction facility to deal with concurrent or synchronized aspects of the execution.

It adds debugging facilities to process dynamic behaviour execution, nevertheless it

does not provide any support to properly define processes, which leaves the process

specification at a low-level.

This conflicts with the expected process algebra framework behaviour, that is

to provide an extension package to abstract non-functional aspects of processes

execution (i.e. process algebras operators). Jass is also not tailored to be extended

(i.e. white-box reuse) by the application user by inheriting from one of its classes

or implementing some of its interfaces.

One may use Jass to check if the process execution is working as expected. It is

important to note that Jass provides a powerful way to do this. Jass provides from

class invariants, to quantifiers (i.e. ∀, ∃, etc.), which are very useful for verifying the

implementation correctness with respect to unified languages [62] like CSP-OZ [31]

or Circus [148, 149].

3.2.3.3 Discussion

We conclude that Jass is modeled to be a Java language extension instead of a

process algebra extension package. For this reason, Jass does not implement any

CSP operator.

Jass is implemented as a framework, it has clear documentation, design patterns

decisions, and a formal syntax and semantics. Nevertheless, it is inadequate to our

goals (see Section 3.5). Actually it is not tailored to deal with such goals.

Nevertheless, we have learned a lot with the Jass source code and tutorials [32].

For instance, JACK abstract syntax trees and interpreter are inspired in the Jass

implementation. This whole structure is not different from what is expected follow-

ing some well-known reference [143], nevertheless, it is an instantiated example that

uses CSP operators. Yet another important contribution from Jass is the idea of

execution inspection. Based on this idea, JACK provides a set of protocol interfaces

that must implement the Failures and Divergencies [33, 124] CSP model. This first

version of JACK does not provide a complete implementation of that feature, but

it can be used in the future as inspector of the execution of a given CSP network.

These are clearly Jass contributions to our work.
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3.2.4 Other Frameworks

This Section presents some other frameworks studied during the JACK framework

construction. They are neither strictly process algebra frameworks, nor implement

CSP; nevertheless, they are related to sotware specification and concurrent execution

of processes. The information about these libraries comes directly from their main

references. The references are mentioned sorted by relevance to our work.

3.2.4.1 ACE

The Adaptive Communication Environment (ACE) [138, 128] is an object-oriented

framework and toolkit that implements core concurrency and distribution patterns

for communication software. ACE includes several components to help in the de-

velopment of communication software and to achieve better flexibility, efficiency,

reliability, and portability.

Components in ACE can be used for the following purposes:

• Concurrency and Synchronization.

• Interprocess communication (IPC).

• Memory Management.

• Timers and Signals

• File System management.

• Thread Management.

• Event demultiplexing and handler dispatching.

• Connection establishment and service initialization.

• Static and dynamic configuration and reconfiguration of software.

• Layered protocol construction and stream-based frameworks.

• Distributed communication services — naming, logging, time synchronization,

event routing and network locking, etc.

There is a Java version of ACE called JACE that bridges Java applications to

use the ACE framework, originally written in C++. One of the most important

framework on which JACK is based is DASCo [132, 133]. DASCO and JACK also

use some of the ACE ideas to implement low-level concurrency and synchronization

features.
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3.2.4.2 Alloy and Alloy Constraint Analyser

Alloy is a new language for object modeling [21, 69]. The Alloy Constraint Analyzer

is a tool for analysing Alloy object models. The two were designed hand-in-hand: the

Alloy Constraint Analyzer exploits the structure of Alloy models, and Alloy was

designed to be analysable. Alloy has the same aim as object modeling languages such

as Rational’s UML [56, 74]. Its basic structuring mechanism is strongly influenced

by these languages (and early work on semantic data models), but its semantic basis

is taken from Z [11, 136, 137, 147].

The Alloy Constraint Analyzer can generate instances of states satisfying in-

variants, simulate executions of operations, and check properties of a model, such

as whether one invariant implies another, or whether an operation preserves an in-

variant. Since Alloy is undecidable, the Alloy Constraint Analyzer cannot prove

theorems. In practice though, the Alloy Constraint Analyzer can find counterexam-

ples of properties that do not hold quickly.

The Alloy Constraint Analyzer is essentially a compiler. It translates the problem

to be analysed into a (usually huge) boolean formula. This formula is handed to a

solver, and the solution is translated back by the Alloy Constraint Analyzer into the

language of the model. All problems are solved within a user-specified scope that

bounds the size of the domains, and thus makes the problem finite (and reducible

to a boolean formula). Some of the solvers are complete, and will eventually find a

solution if one exists; others are incomplete, and may not find a solution even if one

exists within the scope.

Alloy is neither a model checker, nor a theorem prover. The Alloy Constraint

Analyzer’s analysis is fully automatic, and when an assertion is found to be false, it

generates a counterexample. What the Alloy Constraint Analyzer does is more like

refutation than proof. Alloy is less expressive than the languages typically handled

by theorem provers. Unlike most theorem provers, the Alloy Constraint Analyzer

is not a general purpose engine for mathematical analysis, but is designed for the

analysis of object models.

The JACK type system makes use of ideas from Alloy Constraint Analyser source

code to implement set comprehension and value constraints for channel communica-

tions. This forms the base of a simple normal form reduction algorithm of a subset

of the predicate calculus used to avoid communication expansion. For more details

about the Alloy language and the Alloy Constraint Analyser see [67, 21, 66, 69]. For

details about the method used to solve boolean formula constraints, see [68].

3.2.4.3 JValue

JValue [117, 44] is a value object framework for Java. Most software developers

who hear the word value or data think of chars, integers, floats or strings. The

value concept is not restricted to these primitive value types. When designing and
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programming, we also use domain-specific value types like HTML tags and URL’s

in the Internet domain, Time and Date in the calendar domain, and Currency and

Money in the finance domain.

Most programming languages, including Java, restrict programmers to using

primitive value types only. Domain-specific value types are designed and imple-

mented as regular classes. At runtime, their instances behave like regular objects

rather than like values. However, because values have value semantics rather than

object semantics, and because value semantics is much more restricted than object

semantics, crucial opportunities are missed for making programs safer and faster.

Using value semantics, programs get safer, because value semantics guarantee

freedom from side-effects. If we could properly implement value semantics for ob-

jects, thereby making them value objects, we could get rid of a whole class of nasty

bugs. This is the objective of JValue. Some interesting and important characteristics

of JValue are summarized below.

• Immutable objects — Implements value objects as immutable objects.

Being immutable, value objects can not be changed (by definition), and hence

one avoid unwanted side-effects.

• Shared objects — Shares immutable objects efficiently using the Flyweight [28,

Chapter 4 pp.195] pattern. Sharing value objects can significantly reduce

memory footprint and the time spent on garbage collection.

These implementation strategies for value objects allows the application of some

or all of the performance enhancements mentioned below. In order to make it

clear, think integer whenever one reads value in the following list, and then imagine

the argument applies not only to integers but also to monetary amounts, that is

double/string pairs, or other domain-specific value types.

• Concurrency — The user cannot directly change the state of a value object,

because he or she only has reading access to it (but this can be relaxed if

necessary). Hence one has no locking overhead, because one does not need to

worry about concurrent write accesses.

• Distribution — Between processes, values are always copied as part of their

embedding object and never referenced across process boundaries. Hence, one

avoids unwanted round trips across process boundaries.

• Databases — When writing a value to a database, one can write it directly

into a table as part of an object. Once written to a table, no outside references

remain, so there is no need to maintain an id or primary key. This minimizes

lookup time.

53



• Serialization — When writing a value, one can write the value directly into

the buffer. One does not have to worry whether it has been written before,

because the current information is sufficient to restore the value object when

reading it later.

The JACK type system uses some of the concepts available in JValue to describe

types and value semantics. The data link and value serializer architectures also use

some of the ideas of JValue serialization, an implementation of the Serializer [123,

Chapter 17 pp.293] design pattern. JValue lacks proper documentation and its full

design is not publicly available. For more information about it, see [117, 44, 112, 111].

3.2.4.4 FSP

FSP [84] stands for Finite State Processes, and it is a process calculus like CSP [61,

124], and Calculus of Communicating Systems (CCS) [94], to describe process mod-

els. With FSP descriptions, the user can define processes, composition of processes

(i.e. parallel, sequential, etc.), constants, labels, ranges, safety properties, progress

properties, and so forth. Furthermore, with FSP one can describe a process specifi-

cation. With FSP, it is possible to concisely describe and reason about concurrent

programs. Its main objective is to provide a concise way to describe Labeling Tran-

sition Systems (LTS).

FSP has a formal syntax and semantic description of its textual input; it was

designed to be machine readable. In addition, FSP has a companion tool freely

available called LTSA Analyser [85]. The analyser translates FSP descriptions to

an equivalent graphical representation of it using an LTS.

The internal representation of the JACK process network is built using a LTS.

The FSP descriptions helped us to properly configure our LTS to better represent

a process network with user processes and language operators mixed, and also to

properly “label” the graph to solve the backtrack and multisynchronization problems

(see references on this topic in Appendix A).

3.2.4.5 Triveni

The design of Triveni is based on a process algebra that adds preemption combi-

nators [7] to the standard combinators from process algebra such as parallel com-

position, waiting for events, hiding events, and so forth. The aim of that research

is to enhance the practice of thread programming with ideas from the theory of

concurrency, such as process algebras [61, 94].

Triveni has a formal description with a compositional semantics (operational,

denotational, and logical) for a process algebra enhanced with input/output actions

and preemption combinators, in the presence of fairness. A case study in Java Triveni

is described in [17], involving the reimplementation of a piece of telecommunication
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software “the Carrier Group Alarms (CGA) software of Lucent Technologies” 5ESS

switch.

In practice, Java Triveni is defined as a programming language and a program-

ming environment that deals with processes, concurrency, and event based notifica-

tion of processes built in Java. For more details about Java Triveni see [16, 18].

This work helped us to take a better understanding on the dynamic execution

behaviour of a process network that represents a process algebra. Triveni is not

an extension package of Java but a programming environment, which make its goal

different from JACK’s goals.

3.2.4.6 JOMP

JOMP [77, 104, 75] stands for “Java OpenMP”. It is an effort to provide OpenMP

primitives and directives in Java. The OpenMP is a collection of compiler directives,

library functions, and environment variables that can be used for shared memory

parallel programming.

The OpenMP programmer supplements his code with directives, which instruct

an OpenMP-aware compiler to take certain actions. Some directives indicate pieces

of code to be executed in parallel by a team of threads. Others indicate pieces of

work capable of concurrent execution. Others provide synchronisation constructs,

such as barriers and critical regions.

The directives are specified in such a way that they are ignored by a compiler

without OpenMP support. This makes it easy to write portable code which exploits

parallelism.

3.3 Programming Language Selection — Why Java?

Java is a fully object-oriented language. Everything in Java except primitive data

types is an object. The Java syntax and semantics are also clear to understand,

different from C++, that is error-prone. For instance, in Java one never needs to deal

with memory leaks, pointers, pointer arithmetic, null-terminated character arrays,

and so forth. Java eliminates multiple inheritance, replacing it with a new notion of

interface. Java interfaces gives what is expected from multiple inheritance, without

the complexity that comes with managing multiple inheritance hierarchies

The distinction between classes and interfaces is a well-established and undoubt-

edly important concept in software engineering. The introduction of interfaces in

Java programming is an important improvement over other programming languages.

Java has many more important aspects to our problem domain more than just

interfaces to abstract communication protocols. They are listed below.

• Built-in concurrent programming and communication primitives.
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• Strongly typed and object-oriented concepts.

• Platform independency.

• Support for distribution and security.

• Since it is interpreted, Java is well-suited for the development of embedded

systems.

• Has a continued research to give it a better formal description and a full proof

compiler.

Java also has the package concept. With this, it is possible to clearly separate

design decisions, framework layers, interface protocols from concrete implementa-

tions, and so on. This is very important in order to allow concurrent framework

development. Each development team can be responsible for one package or specific

functionality.

Another advantage of Java is its companion packages and good documentation

that provide useful basic functionality for framework construction. These and other

reasons are better described in [4, 64, 72].

3.4 Framework Modeling

Here we present a brief description of role modeling, the modeling technique selected

to be used in JACK. The information is based on [113, Chapter 5] and [120].

3.4.1 Role Modeling

A primary problem in designing and integrating frameworks is related to the way

they are modeled. A class-based approach is the dominant option, but it fails to

adequately describe object collaboration behaviour. When designing a framework a

set of guidelines ought to be observed and clarified. For instance, the responsibilities

an object has, the contexts these responsibilities depend on, how these responsibili-

ties can be combined, and so on. Another important definition states how a client

interacts with a framework; it defines who are those clients and what they expect

from the framework.

There are many problems involved in framework design [120]:

• Class Complexity — how a class interacts with its clients?

• Object Collaboration — how object instances interact with their partners?

• Separation of Concerns — complex functionality used for different purposes

should be kept separate to ease understating and increase reuse.
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• Reusable models and design patterns.

Framework integration also has problems like client constraints, and unantici-

pated use-contexts.

Role modeling for framework design and integration defines some new concepts

like role, role type, role constraint, object collaboration task, role model, built-on

class, extension points, and so on [113, Chapters 3 and 4]. The JACK framework

was built based on these modeling concepts.

The macro structure of JACK layers is divided and defined based on some ex-

amples of frameworks that use role modeling (i.e. JValue [117], JHotDraw [113,

Chapter 8]). One important aspect observed from these examples is the separation

of concerns, and the separation of service interface protocols with respect to their

corresponding implementation. The DASCO project [133, 132] also suggests this

kind of modeling technique as a future extension work.

This modeling approach increases modularity, reusability, expressive power, clar-

ity, and many other desired software engineering properties. It also minimizes the

compilation interdependencies which decrease the whole framework coding and test-

ing time. For a brief and clear discussion of role modeling for framework design,

see [120]. For a detailed presentation of role modeling concepts and examples in

industrial frameworks, see [113].

3.4.2 UML and Role Modeling

UML offers a rich metamodel for modeling object systems, which makes it easy to

extend it with role modeling concepts. The extension of UML with role modeling

concepts relies only on three basic UML concepts [56, 74]: Class, Interface, and

Stereotype.

When working with UML Role Modeling, developers use UML classes and inter-

faces as usual. If needed, they add additional role type and role model information.

They tag interfaces and classes as specific kinds of role types by using UML stereo-

types, and make the role models explicit by connecting role type interfaces and

classes.

From a UML perspective, the role type interfaces are just interfaces that relate to

other interfaces and classes without further qualification. In this sense, role modeling

extends UML information and does not contradict or conflict with.

3.4.3 Java and Role Modeling

Java provides interfaces, classes, and packages as concepts that can be used to

implement role model based designs. Java interfaces and classes can be used to

represent role types and classes, and Java packages can be used to provide a name

space for role models, class models, and frameworks.
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The use of abstract classes as a representation mechanism of a free role type

does not make sense, because Java classes are restricted to single inheritance. A

free no-op role type [113] of a class model may be represented as an empty Java

interface (or not at all). A role type of a reusable role model is represented as a

Java interface. The same argument that applies to a free role type of a class model

applies here as well. Classes are simpler to represent.

In both cases, it is possible to tie in the different role types that a class must

provide. If the class is represented as a Java interface, it inherits from the interfaces

that represent (some of) the role types it is to provide. If the class is represented

as a Java class, it simply implements them. In addition, non-reusable role types are

textually and directly embedded into the Java interface or the Java class.

Role models that are considered reusable should get their own Java package. The

package introduces a convenient name space for the role types of the role model. A

framework should also get its own package. It ties in reusable role models by means

of import statements.

3.5 The JACK Framework Main Objectives

The main objective of our framework is to provide processes embedded in the Java

Language constructors as an extension package. These processes ought to be either

CSP operators or user defined processes. JACK also ought to provide both CSP

operators and other common CSP elements like types, alphabets, guards, channels,

and so forth.

The CSP operators implemented are defined in [124], and briefly discussed in

Section 2.2. JACK follows the operational semantics laws outlined and discussed

in [130, 126]. A user process presents any user-defined functionality, that can be

composed with the use of CSP operators with data structures. With this possibility,

the implementation of unified formalisms is possible. For instance, CSP-OZ [31] (a

combination of Object-Z [134] and CSP) or Circus [148, 149] specifications can be

implemented, as discussed in [12].

Another important objective is to provide a framework modeled and prepared for

either black-box, or white-box reuse; the so called grey-box reuse. Black-box reuse

means that the framework can be used directly in some application domain, for

instance, to model a user specification. White-box reuse means that the framework

is prepared to be extended, for instance for the implementation of new operators.

The most important difference between JACK and other similar libraries are

the fact that JACK deals with Roscoe’s CSP [124], instead of occam [53]. This

new version of the formalism requires that different kinds of problems are handled,

like multisynchronization and backtracking, as already mentioned in the previous

chapter.
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Another goal of the JACK framework is to give a semantic meaning to the

backtracking problem. This is expected to be done in such a way that the designer

of the original specification does not need to be aware of this problem; he needs only

to think and take care of the problems of his system domain.

The JACK implementation also ought to follow a well-defined implementation

model in order to avoid obscure problems in its design. JACK follows the most

recent framework modeling techniques, like role modeling [113], and implementa-

tion techniques using well-known design patterns [28, 123, 102, 121, 133]. This is

necessary in order to achieve desired software engineering properties like expressive

power, reusability, extensibility, simplicity, modularity, and so forth.

3.6 JACK versus other Frameworks and Libraries

In this Section, a comparison between JACK goals against similar process algebra

implementations is presented to summarize our previous discussion. The differences

between each approach is also exposed. The main differences between JACK and the

other process algebra implementation libraries (i.e. CTJ and JCSP) are as follows:

• JACK is modeled as a framework instead of a class library. It has a well-defined

set of layers that provides well-defined services to each other. Functionality

and complexity are clearly distributed among those layers.

With the separation of concerns and functionalities between layers, it was pos-

sible to solve each problem inside its own domain without making a mixture of

concepts and goals, as it occurs in some points of the mentioned libraries. For

instance, both CTJ and JCSP mix concurrency and synchronization related

code with process semantics related code. With this approach, problems like

inheritance anomaly [86] arise when extensions are made necessary.

• JACK processes and its CSP operators implementation are based on Roscoe’s

version [124] of CSP, instead of occam [53].

• JACK has a strong type system to define channels, alphabets, types, and

communication patterns.

• JACK distinguishes the process execution environment, that is generic, from

the process execution behaviour, that is specific. With this separation, it is

observed that the final user process becomes light weight with respect to the

corresponding process in the other two libraries, that mix those perspectives

of the problem.

In what follows we mention the main identified deficiencies between JACK and

the other library implementations.
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• The objectives of JACK differs from the objectives of other libraries. It was

designed to implement the Roscoe’s version of CSP in Java instead of occam

like other libraries. In this sense, the framework must deal with many new

problems and dificulties which makes it more complex and bigger than the

other libraries.

• The integration between JACK layers is a very complex task.

• There is no performance tests available for JACK. In this way, costy imple-

mentations like the multisynchronization and backtracking problems, can be

reviewed.

• JACK provides a useful type system used to allow strong type checking for

communications. This is interesting benefit in order to avoid abnormal pro-

gram execution due to type inconsistency. Despite this, the end user must

know how to use the type system which can delay the learning process to use

the framework.

In the following, we present some discussion about specific points that JACK

inherits or avoids from each referred library.

3.6.1 JACK and JCSP

Some aspects in which JACK clearly differs from JCSP are discussed below.

• JACK is modeled to be a grey-box framework, whereas JCSP is made to be

black-box reused.

• JCSP is semantically weak in some points. For instance, the Alternative

constructor is not built as a process, which makes it play a different role in the

processes network construction. With this kind of modeling, the user must

deal with alternative selection manually, which might be very cumbersome.

Both CSP [124] and occam [53] idioms provide a well-defined semantics for

this operator, that is not followed by the JCSP implementation.

• JCSP has prioritised versions of the alternative and parallel constructor, JACK

does not.

In spite of this, JACK has many characteristics inspired by JCSP.

• JCSP uses the concept of barriers to synchronize parallel processes. The same

concept is used in JACK to make the synchronization of the generalized par-

allelism operational. Nevertheless, instead of using an explicit locking scheme

through Java monitors, JACK makes use of its execution (bottommost) layer,

that provides those synchronization and concurrency services. The execution

layer is JDASCO, a Java implementation of DASCo [133, 132].
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• Channels in JCSP have a separate data store to perform the low-level physical

I/O operation; the same concept is adopted in JACK.

Generally, JCSP has contributed to many points of the JACK design. A detailed

comparison between an early prototype version of JACK and JCSP is given in [36].

3.6.2 JACK and CTJ

The CTJ library is more robust and expressive than JCSP. For instance, it deals

with real time aspects of specifications. Nevertheless, it is more complex than JCSP

due to its own thread architecture. Some points where JACK clearly differs from

CTJ are listed below.

• CTJ implements a new scheduler, processor and thread abstractions in order

to achieve its real time goal. JACK relies on its execution layer to provide

those abstractions.

• CTJ captures real time aspects of specifications, JACK does not.

• CTJ has prioritised versions of the alternative and parallel constructor, JACK

does not.

• CTJ does not use the Java concurrency primitives of monitors and scheduling

policy for threads. It builds up a completely new model to this.

On the other hand, JACK separates the use of concurrency and synchroniza-

tion primitives at the execution layer . JACK also seems to have a much clearer

lock scheme that is simple and powerful (thanks to DASCo framework [133]),

in contrast to CTJ that has locks in many places with a proprietary lock

scheme, which makes it much more complex.

• CTJ provides as default a environmental process to the alternative operator.

In other words, a sole alternative operator can run without deadlocking due

to a missed paired parallel operator. The CTJ execution engine detects this

situation and starts a parallel environment that offers any communication,

avoiding this way the alternative to become deadlocked.

In JACK an external choice (the CSP operator correspondent to the occam

alternative operator) without a paired parallel operator behaves like a broken

machine (i.e. the STOP process), following the semantics of CSP [124].

Despite this, JACK has many characteristics inspired by CTJ.

• The use of queuing structures to store execution information is observed inside

the low-level CTJ scheduling primitives.
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• CTJ Link drivers are very interesting in the sense that they completely abstract

the semantics of communication from its underlying physical I/O operations.

The same idea is followed in JACK, that also provides the same concept of link

drivers for channels, called data links. This makes the library I/O completely

flexible to any kind of medium, from local memory to remote machines through

socket connections.

• CTJ uses event listeners (i.e. observer design pattern [28]) to register for

some specifically defined events. This is an interesting design decision both

for backtracking and for distributed termination condition notification. JACK

makes use of a specialized version of that pattern for event notification [110]

intra/inter object and across related layers.

More details comparing JACK and CTJ internals can be found in [36].

3.6.3 JACK and Jass

The most important intersection between JACK and Jass goals is the trace as-

sertions facility. With trace assertions, Jass can guarantee the execution order of

methods, which in turn means that it can guarantee the behaviour of some process

specification.

Jass is provided as a black-box framework to be used as an extension to the Java

language.JACK is a grey-box framework, that allows users to specify their processes

using well-known CSP operators.

Despite this, JACK has some characteristics inspired by Jass. For instance,

the JACK topmost layer (JCAST) is structured as an abstract syntax tree (called

JCAST) that is firstly inspired by the Jass and Triveni abstract syntax tree represen-

tation of processes. The visitor pattern [28] used in Jass was observed to be a very

useful way to provide process interpretation for the JACK framework. This is an

important facility towards the semi-automatic translation [12, 1] from specification

source code (i.e. CSPm, Circus, CSP-OZ) to Java classes using JACK.

3.7 Final Considerations

In this chapter, an overview of framework construction using design patterns and

pattern languages was given. An interesting reflection about design pattern usage

can also be found in [15, 2]. After that, an overview of the available related libraries

was presented in order to show the state of art in this field of formal methods.

Next, some of the most important JACK goals and modeling techniques used were

presented. We concluded with a comparison between those referred libraries and

JACK.
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In the next chapter, JACK main objectives are discussed in more detail. We

also show JACK usage from the user point of view. That chapter can be viewed as

a short guided introduction to the framework.

Next, in Chapters 5 and 6, the required prerequisites of well-designed frameworks

are discussed, like layering and the design pattern initiative. In Chapter 6, detailed

decisions and pattern templates (i.e. instances of defined design patterns) are shown.
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Chapter 4

Using JACK

As mentioned in the previous chapter, JACK is built to be a gray-box reuseable

framework (i.e. white-box and black-box). This chapter aims at describing how

a JACK framework client can use the available constructs, in order to properly

define its process specifications. The chapter presents basic available constructs

like processes, CSP operators, and some type system facilities. A more complete

description of these facilities can be found in [38, 41].

In Section 4.1, an overview of the JACK processes structure is given. Then in

Section 4.2, the structure of some of the most important CSP operators available in

JACK, together with some code examples are presented. After that, in Section 4.3,

more details about user processes definition are mentioned. Next, in Sections 4.4

and 4.5, an overview of the JACK type system and some details about the process

infrastructure are provided. Finally, in Section 4.6, some final considerations are

given.

4.1 JACK Processes

The most important aspect of JACK is the ability to deal with processes. A JACK

process is an independent entity that defines a behaviour that can be executed. The

process abstraction represents a piece of a specification, but can also be used to

implement concurrent aspects of systems with a high-level concurrency abstraction.

The common use of a process is related to the operating system concept of a unit

of resource allocation (normally executable assembled code) for both CPU time and

memory [84, pp. 23]. The processes execute for a while, running independently

of any other processes [139]. Processes have a controlled autonomy managed by a

supervisor environment that selects events to be communicated. In JACK, a process

acts like an entity that has concurrent behaviour from the operational system point

of view. Thus, a JACK process object instance is a kind of active object [78].

In the object-oriented world, different threads of execution are used to propel
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conceptually active messages (i.e. method calling) sent among conceptually passive

objects (i.e. object instances). However, it can be productive to approach some

design problems from the opposite perspective: active objects sending each other

passive messages [81, pp. 367]. In this sense, a JACK process can be constructed

as a special kind of object, in which:

• Processes have no externally invocable methods related to their semantics.

Since there are no directly invocable methods, it is impossible for methods to

be invoked by different threads. Thus, there is no need for dealing explicitly

with locks.

• Processes communicate only by signaling, reading, or writing data through

communication channels.

• Processes need not spin forever in a loop accepting messages (although many

do). They may signal, read, or write messages on various (possible shared)

channels as desired.

• Channels are synchronous and can perform either signal, read or write opera-

tions.

There are two main groups of processes in JACK: CSP operators, and user defined

processes. The former implements the well-known CSP [124] operators, and the

latter provides a way to a user to define its own active object to execute the desired

behaviour.

The state transition diagram in Figure 4.1 expresses the transitions between

possible process states. A process can be either in user or kernel mode of execution.

In the user mode, the process is completely prepared to run, but it is not physically

running yet. During the physical execution of a process, it is in kernel mode. At

this stage, the JACK execution layer assigns activities and locks to the process, in

order to allow the execution of its functionality according to the expected semantics.

These states are mentioned below.

• Initialized — the process is allocated and prepared to run, or successfully

terminated. The process is in user mode when instantiated.

• Started — the process is notified that it will enter in kernel mode of execu-

tion. At this point, users ought to initialize any entity related to the running

procedure, like other process or any data structure.

• Running — the process enters in kernel mode and becomes an active object

with its own thread of control. At this stage, the process gets executed.

• Ready — the process is not running and is ready to execute. This state is

achieved when the operating system schedules other processes to run.
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Initialized

Started

Starts Process execution( 
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CPU Preemption[ time slice ]

Meet multiway rendezvous / 
notify rendezvous
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Execution Barrier / waits for 
synchronization 

^supervisor.barrier(process)

Execution terminated( status ) 
^behaviour.finish(CSPSupervisorEnvironment

, CSPBehaviourSignal)

sve = CSPSupervisorEnvironment

Figure 4.1: JACK Process Finite State Machine
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• Waiting — the process is waiting for some execution condition to be reached.

For instance, a process that represents a prefix operator may be put to sleep

by a process that represents a generalized parallel operator (i.e. barrier on

the generalized parallel operator to form a multiway rendezvous [13, 131],

until the synchronization condition holds). This situation occurs due to the

implicit semantic implementation of processes, the user never needs to directly

deal with this.

• Finished — the process has finished its execution and leaves the kernel mode.

This can happen due to either successful termination, or some abnormal exe-

cution condition.

• Garbage — the process is terminated and will never be assigned to execute

again. The Java garbage collector may clean it up.

A complete definition of processes and how they are implemented in JACK are

given in Chapters 5 and 6.

4.1.1 JACK Process Structure

A JACK process is composed by four main aspects:

1. The process interface — responsible for dealing with process infrastructure

and generic information.

2. The process behaviour — responsible for dealing with process behavioural and

specific information.

3. The process semantic model — responsible for dealing with proper process

semantic execution with respect to its defined semantics.

4. The process execution support — responsible for dealing with the process

physical execution, framework layer integration, and communication selection

support.

The JACK client must deal only with the second aspect. It directly represents

the specific behaviour related to the user process specification under consideration.

The other aspects are provided by the framework. In order to provide a complete

overview of process execution, in the following subsections the most important of

these aspects are explained.
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4.1.1.1 JACK Process Interface

This part is responsible for dealing with process infrastructure and generic informa-

tion. The JACK client never needs to directly deal with this in code, but should

be aware of this process structure, in order to better use the expressive power of

the framework implementation. In what follows, we mention the main generic as-

pects related to all sort of processes that the framework must deal with, in order to

properly provide an implementation of processes.

• Proper composition with the process network. The process network is the

lower level execution environment responsible for dealing with threads, locks,

and transactions;

• Definition of process information like level, unique name, parentship, upward

searching facilities, and so on;

• Debugging and tracing facilities;

• Supervision operations like immediately available event inspection, and strate-

gies [28, pp. 315] used for external environmental event selection (see Sec-

tion 4.5);

• Process cloning support;

• Event registration for exit, event, and exception occurrence;

The process interface is described by the jack.jacs.japs.csp.CSPProcess

JACK interface.

There is only one implementation of it, called jack.jacs.japs.csp.impl.-

JACKProcess. User processes and CSP operators make use of it to implement the

specific part of the process behaviour. Thus, the process interface is responsible for

concentrating and abstracting the generic aspect of JACK processes for the final

user. The package jack.jacs.japs.csp.tests [38], provides useful examples of

these mentioned functionalities.

4.1.1.2 JACK Process Behaviour Interface

This part is responsible for dealing with process behavioural and domain specific

information. The JACK client directly deals only with this part. Through the use

of the process behaviour interface the user can construct its processes specification.

An example of this feature is shown later in this chapter. In what follows, we

mention the main specific aspects related to process behaviour implementation.

• Process set up procedure, like object instantiation or resource allocation;

68



• Process execution behaviour.

• Inspection of currently immediately available events that can be communicated

by this process.

• Process cleaning-up (or finish) procedure, like signaling, resource deallocation

or event handling.

The process behaviour is described by the jack.jacs.japs.csp.CSPBehaviour

and jack.jacs.japs.csp.CSPExtendedBehaviour JACK interfaces. Every user

process must define its own specific execution and inspection behaviour. Thus, the

CSPBehaviour interface is used to segment the specific from the generic process

execution functionality. User processes are detailed in Section 4.3 after the CSP

operators description.

4.1.1.3 Creating user processes in Java

The user must provide an implementation of one of the behaviour interfaces, in order

to properly define its process in Java. The basic behaviour interface (CSPBehaviour)

has two methods.

The first one, called inspect(), is responsible for dealing with event selection

over the path possibilities. The JACK process execution environment calls this

behaviour method in order to get information about the events that the process can

engage initially (i.e. domain D).

The second method is called execute(); it is responsible for dealing with process

execution related to its expected semantics. Figure 4.2 shows a class code template

of a user process defining a process behaviour. Some details like supervisor environ-

ment, signals, and alphabets are mentioned latter.

There are some Java packages that ought to be imported by the user classes.

The first two of them are related to process service interfaces, process service

implementations, and CSP operators; they are called jack.jacs.japs.csp and

jack.jacs.japs.csp.impl. The last two are related to the JACK type system,

like values, types, and so on. They are called jack.jacs.japs.typesystem and

jack.jacs.japs.typesystem.impl.

These method templates are invoked by JACK, normally through one of the CSP

operators constructs like choice, prefixe, or generalized parallel. Since a process is an

active object, the user must not deal with method calling. Just specific functionality

needs to be provided. The complete internal execution sequence is a topic detailed

in Chapter 6.

The execute() method must implement the process specification under consid-

eration. At instantiation of the process, the constructor must setup all resources,

such as channel inputs/outputs, parameters, and other used processes before the
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package user;

import jack.jacs.japs.csp.*;

import jack.jacs.japs.csp.impl.*;

import jack.jacs.japs.typesystem.*;

import jack.jacs.japs.typesystem.impl.*;

/** User process code class template */

public class MyProcess implements CSPBehaviour {
public MyProcess(Arguments) {

// User specific initialization code, . . .

}

// *********** User defined methods ***********

. . .

// *********** CSPBehvaiour Interface Implementation ***********

public CSPAlphabet inspect() {
/* Returns an alphabet of possible communications.*/

}

public CSPBehaviourSignal execute(CSPSupervisorEnvironment sve) {
//Start the execution of other related processes.

//Returns a signal indicating whether the execution was successful or if some error has occurred.

}
}

Figure 4.2: JACK User Process Class — Java Code Template
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execute() method is called by a composition construct. The arguments of the

constructor of MyProcess specifies the process interface of the user process. The

process interface contains the process name, channel input and output interfaces,

and additional parameters to setup the process. These parameters can be used to

initiate the process state.

Processes must never invoke each other’s methods when they are running; they

must cooperate via one of the available channel interfaces as defined by the process

interface. For instance, if a user process tries to call the execute() method of any of

its related process, an invalid state exception is thrown. A process may invoke only

the CSPProcess.start() method of one of its related composed processes, which

is safe because this process is not yet running (i.e. the process is at the Initialized

state). The CSPProcess.start() method is the only JACK process related method

a user process may invoke inside the execute() method.

The extended behaviour interface provides a set of useful methods that the user

can use to implement special functionality. For instance, the extended interface

provides setUp() and finish() methods that can be used by processes that are

started more than once. The setUp() method is called every time the process is

started (i.e. enters in Initialized state); and the finish() method is called every

time the process terminates, either successfully or due to some execution error (i.e.

enters in Finished state).

4.2 JACK CSP Operators

A user must know how to use some JACK structures, like CSP operators, alphabets

and channels, in order to properly create its processes in Java using JACK. We pro-

vide a description of the most common CSP operators available in the framework.

Together with CSP operators, we mention the structures related to the building

procedure of process specifications. The user needs to directly deal with these struc-

tures. In what follows, we present a list of groups of functionality related to the

structure of CSP operators.

• Auxiliary Functionality Group — describes two important CSP concepts: al-

phabets and channels.

• Primitive Group — describes the standard CSP primitive processes.

• Unary Operators Group — describes the standard CSP unary operators.

• Binary Operators Group — describes the standard CSP binary operators.

• Extended Operators Group — describes extended operators like labelling, re-

naming, and interruption [130, 126].
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• Replicated Operators Group — describes the replicated version of the above

operators. They are commonly used in CSPm based tools like FDR [33] and

ProBE [34].

JACK operators are implemented by the jack.jacs.japs.csp.CSPOperator

interface. It is a direct subinterface of jack.jacs.japs.csp.CSPProcess that pro-

vides a CSPm string representation of any given JACK process. According with the

groups above, there are related CSPOperator subinterfaces for unary (jack.jacs.-

japs.csp.CSPUnaryOperator) and binary (jack.jacs.japs.csp.CSPBinaryOpe-

rator) operators. These interfaces provide access methods to the unary process()

operand, and to the binary left() and right() operands. These access methods

return an instance of a CSPProcess instead of a CSPOperator. This allows the mix

of both CSP operators and user process definitions on the same process tree. The

CSP operators are briefly described in Chapter 2.

4.2.1 Channels

An important design decision for a passive message environment is how to designate

the sources and destinations of messages. All messages in CSP are synchronous, and

processes can never be the direct source or target of a message, in order to avoid

race hazards. The most common synchronous message-based scheme used in such

designs is the one whose channels are used to send and receive messages.

Channels are entities where message synchronization occurs. In other library

implementations of CSP (i.e. JCSP and CTJ), the Channel class is responsible for

the synchronization between partner processes. However, these libraries model a

variant of the occam communication scheme, which states that only two processes

can communicate through a given channel name. Thus, communication is said

to be one-to-one, also called Rendezvous [84, Chapter 10]. In JACK a channel

accepts many-to-many communication, also called Multiway Rendezvous [13, 131].

The channel is just a gateway used by processes to exchange information, either

data or signals.

Depending on the kind of communication in which a process engages, it must

make use of a different JACK channel interface. There are three main basic channel

interfaces enumerated below.

1. jack.jacs.japs.csp.CSPChannelInput — input communications.

2. jack.jacs.japs.csp.CSPChannelOutput — output communications.

3. jack.jacs.japs.csp.CSPChannelSignal — signalling events.

These interfaces directly inherits from a base interface called jack.jacs.japs.-

csp.CSPChannel, which provides generic basic functionality related to channels.
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Every channel must have a jack.jacs.japs.typesystem.CSPType. The channel

only accepts communications of this specified JACK type. In this way, JACK clients

must be aware of some aspects of the JACK type system. If the user does not provide

any channel type, the type java.lang.Object is used by default. An overview of

the JACK type system is given in Section 4.4.

Channel Usage — Java Code Example

Figure 4.3 shows the construction of channels of different types. More examples can

be found in test case classes in package jack.jacs.japs.csp.tests.processes.

The class constructor instantiates three channels called a, b, and c with types

EVENT TYPE, {0 . . . 20}, and java.lang.Object respectively. Users can provide

channel names for any desired purpose; if a name is not given, a default unique

name is assigned. The EVENT TYPE is a special type that represents CSP signals. If

the user does not provide any type to the channel constructor, the default Object

type is used. The constructor also instantiate two prefix processes that shares one of

these recently created channels. The channel attributes of this code example ought

to be used as parameters of process constructs that expects a channel, like prefixes.

Prefix operators are explained in Section 4.2.4.1.

The available implementation of channels implements all channel interfaces, as

shown in Figure 4.4. This means that a channel instance can represent any channel

interface and be passed to processes that expect a specific channel kind. This is an

important feature since channels are the only entities shared among processes. For

instance, the read prefix process fRP expects a CSPChannelInput instance and the

write prefix process fWP expects a CSPChannelOutput instance. Since the Channel

implementation class implements both interfaces, it can be used in both operator

constructors (see Figure 4.4).

4.2.2 Alphabets

The alphabet of a process is the set of all possible communications that it can

perform. It acts as the type of the process [124, pp. 76]. In other words, the

alphabet of a process is the set of actions in which it can engage [84, pp. 22].

Alphabets in JACK are used by the user basically to properly implement the

CSPBehaviour interface inspect() method. It ought also to be used to instantiate

operators that depend on alphabets, like the generalized parallel or hiding operator.

An alphabet is defined by the interface jack.jacs.japs.csp.CSPAlphabet and

implemented by the class jack.jacs.japs.csp.impl.Alphabet.
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/** Dealing with Channels - Simple Example */

public class MyProcess implements CSPBehaviour {
private CSPOperator fRP, fWP;

private CSPChannel fCa, fCb, fCc;

public MyProcess(Arguments) {
// User specific initialization code, . . .

fCb = new Channel(“b”, EVENT TYPE);//Channel used for signals

fCc = new Channel(“c”, new IntType(0,20));//Int range typed channel

fCd = new Channel(“d”);//Object typed channel — this is the default channel type

// c!1→ c?x→ STOP

// Process RP = c?x→ STOP

// Process WP = c!1→ RP

fRP = new ReadPrefix((CSPChannelInput)fCc, new Stop());

fWP = new WritePrefix((CSPChannelOutput)fCc, fRP, new IntValue(1));

}

// *********** CSPBehvaiour Interface Implementation ***********

/** The possible initial communication domain of MyProcess is the same as the fWP process. */

public CSPAlphabet inspect() {
return fWP.behaviour().inspect();

}

/** * The execution of MyProcess just starts the write prefix process and terminates successfully.

* The prefix executes on the calling thread, thus the execution here is serialized.

*/

public CSPBehaviourSignal execute(CSPSupervisorEnvironment sve) {
fWP.start(sve);

return B EXECUTE SUCCESSFULLY;

}

// *********** User defined methods ***********

. . .

}

Figure 4.3: JACK Channel Usage — Java Code Example
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Figure 4.4: JACK Channels Structure
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Alphabet Usage — Java Code Example

Figure 4.5 shows the construction of processes that depend on alphabets. More

examples can be found in test case classes in package jack.jacs.japs.csp.tests.-

processes [38].

The class constructor instantiates an alphabet to be used by a generalized parallel

operator. An alphabet is structured as a set of channel and value pairs. The given

example, shows a generalized parallel that must synchronize in all values of the type

of the given channel; it means that it must synchronize on {c.0, . . . , c.5}. These set

of values can also be represented by {|c|}, indicating the whole type range of the

channel type. This notation comes from FDR [33] and denotes the productions of

a channel (i.e. all possible value that the channel can communicates). When one

adds a channel to an alphabet, it is adding the whole value range of the type of the

channel to the related alphabet.

This code example shows how to create a simple generalized parallel synchro-

nizing on all possible values of the type of the channel c. More detailed examples

about parallel processes and alphabets are given in the next Sections.

4.2.3 Primitive Processes

JACK provides the implementation of standard CSP primitive processes: STOP ,

SKIP , and DIV . The user just needs to instantiate them using a default construc-

tor when necessary. They are respectively represented by the Stop, Skip, and Div

classes localized in the jack.jacs.japs.csp.impl package. An example of their

use is given in Figure 4.6; it comes from a test case class method localized in package

jack.jacs.japs.csp.tests.processes.

This code snippet just creates one instance of each available primitive process

and outputs their correspondent CSPm description on the standard output. That

description is the equivalent FDR CSPm code that this operator represents.

4.2.4 Unary Operators

The operators representations aims at making their use as close as possible, to that

in a CSP specification. In the following paragraphs, the most common CSP unary

operators are presented together with an example that shows their usage.

4.2.4.1 Prefixes

There are three prefix process in JACK: read, write, and event prefix. Each one

representing respectively, input, output, and signalling communication.

The structure of prefixes is very close to the one expected by CSPm users. All

these prefixes must have a channel and process to follow. For instance, the read
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/** Dealing with Channels - Simple Example */

public class MyProcess implements CSPBehaviour {

//Local Declarations and Attributes

private CSPChannel fCc;

private CSPAlphabet fGenParAlpha;

private CSPOperator fRP, fWP, fGP;

public MyProcess(Arguments) {
// User specific initialization code, . . .

fCc = new Channel(“c”, new IntType(0,5));//Int range typed channel

fGenParAlpha = new Alphabet(fCc);//Creates the alphabet {|c|}

// c?x→ STOP [|{|c|}|]c!2→ STOP

// Process RP = c?x→ STOP

// Process WP = c!2→ STOP

// Process GP = RP [|{|c|}|]WP

fRP = new ReadPrefix((CSPChannelInput)fCc, new Stop());

fWP = new WritePrefix((CSPChannelOutput)fCc, new Stop(), new IntValue(2));

fGP = new GeneralizedParallel(fRP, fGenParAlpha, fWP);

}

// *********** CSPBehvaiour Interface Implementation ***********

// The possible initial communication domain of MyProcess is the same as the fGP process.

public CSPAlphabet inspect() {
return fGP.behaviour().inspect();

}

// The execution of MyProcess just starts the parallel process and terminates successfully.

// The parallel operator executes in their own thread of control.

public CSPBehaviourSignal execute(CSPSupervisorEnvironment sve) {
fGP.start(sve);

return B EXECUTE SUCCESSFULLY;

}

// *********** User defined methods ***********

. . .

}

Figure 4.5: JACK Alphabet Usage — Java Code Example
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public void testPrimitiveOperatorConstruction() {
CSPOperator stop = new Stop();

System.out.println(stop.asCSPm());

CSPOperator skip = new Skip();

System.out.println(skip.asCSPm());

CSPOperator div = new Div();

System.out.println(div.asCSPm());

}

Figure 4.6: JACK Primitive Processes — Java Code Example

prefix constructor of CSPm has, as mandatory parameters, a channel for input and

a process to follow that communication. It also has, as an optional parameter, a

boolean guard, and a logical predicate constraint over the type of the channel in-

put. The operator can also be optionally named for recursion definition purposes.

The same occurs for the write and event prefix processes. Some simple examples of

prefixes are also given in Figures 4.3 and 4.5. The read, write, and event prefix pro-

cesses are represented by the ReadPrefix, WritePrefix, and EventPrefix classes

of the jack.jacs.japs.csp.impl package.

The write prefix has an additional “value to write” parameter. An important

note must be mentioned about linking of prefixes. In CSP it is possible to link a

value read by some prefix to be written by another prefix (i.e. c?x→ c!x→ STOP ).

When one likes to make such construction, the user must create a write prefix

without passing the “value to write” parameter, since it is unknown. Then, he must

pass it as the linking write prefix as a parameter of the read prefix operator. This

is shown in the example of Section 4.2.4.4.

4.2.4.2 Hiding

The hiding operator is built in a straightforward way. As with the CSPm operator,

the JACK hiding operator just expects a process to hide an alphabet of communica-

tions. It is represented by the class jack.jacs.japs.csp.impl.Hiding. It expects

a process and an alphabet as mandatory parameters. The operator can be used to

encapsulate some internal set of events that the external environment must neither

view nor interact with.

4.2.4.3 Mu and Recursion

These operators represent a recursive process definition and a recursive call to that

definition. They are represented by the classes Mu and Recursion of the package
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Figure 4.7: Stop-and-Wait Protocol

jack.jacs.japs.csp.impl, respectively. The Mu process expects a process body

as a parameter. The Recursion process expects just the desired name of the Mu

process definition to refer to.

The name of the Mu process must be used by the recursion process in order

to properly link the recursive definition and the recursive call. JACK provides a

dynamic check of Mu/Recursion relationship while in kernel mode, in such a way

to ensure that recursive definitions and recursive calls are always consistent with

each other (i.e. one cannot make a recursive call to an undefined Mu process). The

checking procedure is dynamic because the network cannot infer its structure while

in user mode; only when the network starts running (i.e. enters in kernel mode),

and reaches the Mu definition we can check the consistency of the recursion.

4.2.4.4 Stop-and-Wait Protocol Example

To exemplify the use of the unary operators mentioned in this section, we provide

the implementation of a stop-and-wait protocol specification in CSPm. The stop-

and-wait protocol implements an one-place buffer. It consists of two processes, the

sender process S and the receiver process R: a message is input by S, passed to R

by S, and finally output by R. The protocol is illustrated by Figure 4.7.

Having accepted a message throught in, the sender process S passes the message

to R along the mid channel, and then wait for an acknowledge before accepting the

next message. The receiver process R accepts messages along mid, and sends an

acknowledgement once a message has been output throught out. The channel mid

and the acknowledgement signal event ack are private connections and should have

no participants other than S and R: they are internal events.

The two processes are designed to be combined in parallel; parallel constructs are

binary operators, they are mentioned in next Section. The processes S and R must

wait for synchronization on their in and out channels from the external environment.

This means that they ought to synchronize on these channels with other process that
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channel ack%Event Type signal.

channel in, out, mid: int

% Build a set containing x’ that comes from {0, 1}
T = {x′ |x′ ← {0 . . . 1}}

S = in?x : T → mid!x→ ack → S

R = mid?y → out!y → ack → R

SAWP = S[|{|in, out,mid, ack|}|]R \ ({|mid|} ∪ {ack})

Figure 4.8: Stop-and-Wait Protocol — CSP Specification

perform the physical input and output operations. The specification of the protocol

is given in Figure 4.8; this is taken from [130, Chapter 3]. The Java code that

represents the specification of Figure 4.8 is given below.

package jack.jcase.sawp;

import jack.jacs.japs.csp.*;

import jack.jacs.japs.csp.impl.*;

import jack.jacs.japs.typesystem.*;

import jack.jacs.japs.typesystem.impl.*;

/**

* Process that represents the stop-and-wait protocol of Figure 4.8 in JACK

*

* The CSPEnvironment interface defines some useful variables used in the example like

* the signal B EXECUTE SUCCESSFULL and the DEFAULT SUPERVISOR ENVIRONMENT instance.

*/

public class StopAndWaitProtocol implements CSPBehaviour, CSPEnvironment {
private static final boolean READONLY = true;

private CSPType fChannelType;

private CSPChannel fIn, fOut, fMid, fAck;

private CSPAlphabet fSAWPSynchAlpha, fSAWPHiddenhAlpha;

private Recursion fSr, fRr;

private EventPrefix fEPS, fEPR;

private ReadPrefix fRPS, fRPR;

private WritePrefix fWPS, fWPR;

private CSPOperator fS, fR, fSAWP, fSAWPGP;

public StopAndWaitProtocol() {
fChannelType = new IntType(0, 1);// Int type {0 . . . 1}
fIn = new Channel(“in”, fChannelType);

fOut = new Channel(“out”, fChannelType);//Int range typed channel

fMid = new Channel(“mid”, fChannelType);
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fAck = new Channel(“ack”, EVENT TYPE);//Event typed channel

/* Definition of Process S = in?x : T → mid!x→ ack → S

*

* 1) Links Mu process S with the unwind process name of recursion process Sr.

* 2) Pass the value to write of the write prefix to the read prefix (fRPS);

* when the read prefix executes, it fills in the given value using value

* serialization facility (see Section 4.4).

*/

fSr = new Recursion(“S”);//Creates a recursive call link to a Mu process named “S”.

/* The prefix processes expect a channel and a process to follow.

* The write prefix expects a value to write, but since its value is linked with the value of the read

* prefix, it must inform this to it. To do so, just create a write prefix without an explicity value

* to write, then pass the created write prefix as the linked prefix with the read prefix.

* The read prefix for this case accepts two process parameters, one that is the process that the prefix

* follows, and another that is the write prefix linked with the value read by this read prefix. In our case

* they are the same process.

*/

fEPS = new EventPrefix((CSPChannelSignal)fAck, fSr);

fWPS = new WritePrefix((CSPChannelOutput)fMid, fEPS);

fRPS = new ReadPrefix((CSPChannelInput)fIn, fWPS, fWPS);

fS = new Mu(fRPS, fSr);

/* Definition of Process R = mid?y → out!y → ack → R */

fRr = new Recursion(“R”);

fEPR = new EventPrefix((CSPChannelSignal)fAck, fRr);

fWPR = new WritePrefix((CSPChannelOutput)fOut, fEPR);

fRPR = new ReadPrefix((CSPChannelInput)fMid, fWPR, fWPR);

fR = new Mu(fRPR, fRr);

/* Definition of Process SAWP = S[|{|in, out,mid, ack|}|]R \ {|mid, ack|})
*

* 1) Definition of alphabets

* 2) Linking of already constructed processes

*/

fSAWPSynchAlpha = new Alphabet();//Builds the alphabet: {|in, out,mid, ack|}
fSAWPSynchAlpha.add(new CSPChannel[] { fIn, fOut, fMid, fAck });

fSAWPHiddenhAlpha = new Alphabet();//Builds the alphabet: {|mid, ack|}

fSAWPHiddenhAlpha.add(new CSPChannel[] { fMid, fAck });

fSAWPGP = new GeneralizedParallel(fS, fSAWPSynchAlpha, fR);

81



fSAWP = new Hiding(fSAWPGP, fSAWPHiddenhAlpha);

// *********** CSPBehvaiour Interface Implementation ***********

public CSPAlphabet inspect() {
return fSAWP.behaviour().inspect();

}

public CSPBehaviourSignal execute(CSPSupervisorEnvironment sve) {
fSAWP.start(sve);

return B EXECUTE SUCCESSFULLY;

}

// *********** User defined methods ***********

/**

* Creates a stop-and-wait behaviour, attach it to a process instance and start it using the default JACK

* supervisor environment. Since a JACK process is an active object, after the start() call, the main thread

* finishes its execution, and only the threads related to JACK processes remain active.

*/

public static void main(String[] args) {
CSPBehaviour swpBehaviour = new StopAndWaitProtocol();

CSPProcess SWP = new JACKProcess(swpBehaviour);

SWP.start(DEFAULT SUPERVISOR ENVIRONMENT);

}
}

In this example, we use some structures of the JACK type system (see Sec-

tion 4.4), like values and types.

4.2.5 Binary Operators

In this section, the most common CSP binary operators are presented together with

an extended example of the stop-and-wait protocol.

4.2.5.1 Choice Operators

JACK provides three different choice operators. Each accepts two operand processes

as mandatory arguments. They are implemented in package jack.jacs.japs.csp.-

impl and are summarized below.

1. ExternalChoice (P2Q) — represents choice over a set of events that the user

environment can select. The implementation of this operator is an important

point in the resolution of the backtracking problem mentioned in Section 2.3.2.
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2. InternalChoice (P |̃ |Q) — represents an abstraction over a set of events.

That is, it internalizes the selection of one of its process in order to abstract

the choice decision from the external environment.

3. ConditionalChoice (P <| b >| Q) — represents a choice based on a conditional

boolean guard. It is similar to the if b then P else Q selection constructor

of programming languages. Furthermore, it has a boolean guard defined by a

jack.jacs.japs.csp.CSPGuard interface to represent the boolean query b of

the if operator.

There is another choice operator in CSP not available in JACK; it is called sliding

choice (P ¤ Q). It is omitted since it can be constructed using the other available

choice operators (i.e. P ¤ Q ≡ (P |̃ |STOP )2Q ). Roscoe mentions [124, Chapter

11] that the implementation of the sliding choice operator can be explicitly made

(i.e. without the transformation). JACK allows this explicitly construction through

especialization of the supervisor environment event selection policy. Figure 4.11

presents an example of the choice operators.

4.2.5.2 Parallel Operators

There are four different parallel operators in JACK. They take two operand pro-

cesses as mandatory arguments. The generalized and alphabetized parallel operators

expect the synchronization alphabets as well. They are summarized below.

1. GeneralizedParallel (P [|X|]Q) — represents the parallel composition of

two processes P and Q, synchronizing on the events inside the alphabet X.

This is the most generic parallel operator; all other operators can be defined

in term of this one [124, Chapter 2].

2. AlphabetizedParallel (P [X||Y ]Q) — represents the parallel composition of

P and Q, and establishes the alphabet of events that they are allowed to

communicate. It means that P and Q can only communicates events inside X

and Y alphabets respectively, deadlocking otherwise. They must synchronize

on events inside the alphabet X ∩ Y .

3. Interleaving (P |||Q) — a generalized parallel where the alphabet X is

empty: they never need to synchronize and run completely independent of

each other. This operator can be used to include non-determinism in parallel

systems.

4. SynchronousParallel (P ||Q) — represents a generalized parallel where the

alphabet X is the set of all possible events defined as available for commu-

nication; in CSP this is captured by the Σ alphabet. The operator can be
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described in terms of the generalized parallel as P [|{|Σ|}|]Q. This means that

these processes must synchronize in every communication that they perform.

Definitions like this can be used to implement replication on distributed sys-

tems.

The implementation of the parallel operators is an important point on the resolution

of the multisynchronization problem mentioned in Section 2.3.3.

4.2.5.3 Sequential Composition

The sequential composition P ;Q behaves as P until it terminates successfully (i.e.

performs SKIP ), at which point it passes control toQ. Almost all programming lan-

guages provide a sequential composition operator. We need to be careful, however,

as to what successful termination means. In CSP, a process terminates successfully

if it performs the SKIP primitive process.

Another important note is related to termination and parallel composition. As

mentioned in [130], the treatment of termination is a design decision, and so is

implementation dependent, although parallel compositions are always required to

synchronize on
√

(i.e. SKIP [|X|]P ≡ P ). For instance, Roscoe’s treatment of

termination ensures that, if a process can possibly terminate, then the process itself

can choose to terminate and refuse all subsequent interaction (i.e. it terminates

independently of its external environment). On the other hand, Hoare’s treatment

achieves the same results imposing a restriction requiring that SKIP should never

be offered as an alternative in an external choice (i.e. the process P2SKIP is

denied; in Roscoe’s CSP this process is equivalent to P ¤ SKIP ).

JACK follows the guidelines established in [130] to properly implement termina-

tion. These guidelines are more general and reflect both approaches. They are the

same as Roscoe’s, but with the agreement of the external environment on termina-

tion. This does not mean that the user must decide to terminate when possible, but

that the environment has the ability to either leave the decision to the process, or

open the decision possibility to the user. Actually, the supervisor environment does

not open this possibility to the user, so it implements Roscoe’s version. Neverthe-

less, the generalization of this is straightforward, since the supervisor was designed

with the Schneider’s solution [130, Chapter 3] in mind.

4.2.5.4 Stop-and-Wait Protocol Extended Example

A stop-and-wait protocol, which permits its input to be overwritten once, if it has

not already passed along the mid channel, is specified in Figure 4.9 and illustrated in

Figure 4.10. Figure 4.11 shows the JACK code for this extended version, presenting

the different relevant parts.
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channel ack%Event Type signal.

channel in, out, mid: int

% Build a set containing x’ that comes from {0, 1}
T = {x′ |x′ ← {0 . . . 1}}

S2 = in?x : T → (S22(mid!x→ ack → S2))

R2 = mid?y → out!y → ack → R2

SAWP2 = S2[|{|in, out,mid, ack|}|]R2 \ ({|mid|} ∪ {ack})

Figure 4.9: Stop-and-Wait Protocol Extended — CSP Specification

S2 R2

ack

SAWP2

in out? mid

in

Figure 4.10: Extended Stop-and-Wait Protocol
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After its first input in.x, the process SAWP2 is in the position where a choice

is to be made between an external event in.w and an internal event mid.x; that is

represented in Figure 4.10 as diamond shape. If at this point the environment simply

waits for output to be offered, and offers no further input, then the internal event

must occur, and output is indeed offered. On the other hand, if the environment

offers a second input, then there are two possibilities: the internal event has not yet

occurred, and the second input is accepted; or the choice has already been made in

favour of the internal communication, in which case the second input will be refused.

The environment is unable to prevent this second possibility [130, Chapter 3].

In Figure 4.12, the graph that represents this process network is given.

4.2.6 Extended Operators

JACK provides some extend CSP operators that are very useful. For instance, the

Iteration (P ∗ = P ;P ∗) operator is provided. There are interesting operators not yet

available but considered for future relases like labelling (l : P ), piping (P À Q),

and event renaming (forward f(P ), and backward f−1(P )). Another interesting set

of operators that could be implemented in JACK are the timed CSP operators [130]

and the replicated version of all CSP operators.

4.3 JACK User Processes

We already know how to create user processes, how to use CSP operators, and user

defined behaviour. Now, let us give some details about user processes definition.

In JACK, it is possible to have user defined processes through the implementa-

tion of the CSPBehaviour interface. A user defined process can specify any sort of

behaviour, both using available CSP operators or some other necessary construct

like structured data types.

A JACK user process has the same structure of a CSP operator. The main

difference is the fact the behaviour of CSP operators is the implementation of the

operational semantics [126] of that operator, while the behaviour of user processes

is specific.

JACK already provides a process interface implementation for the generic part

of a process specification, as already mentioned in Section 4.1.1.1. The user must

just provide an implementation of its specific desired behaviour, and submit that

behaviour to the already implemented process interface. Thus, the process interface

deals with structural (generic) properties, and the user behaviour interface deals

with behavioural (specific) properties.
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/** Process that represents in JACK the SAWP protocol of Figure 4.9 */

public class StopAndWaitProtocolV2 implements CSPBehaviour, CSPEnvironment {
public StopAndWaitProtocolV2() {

. . .

/* Definition of Process S2 = in?x→ (S22mid!x→ ack → S2)) */

fS2r = new Recursion(“S2”);

fEPS = new EventPrefix((CSPChannelSignal)fAck, fS2r);

fWPS = new WritePrefix((CSPChannelOutput)fMid, fEPS);

fECS = new ExternalChoice(fS2r, fWPS);

fRPS = new ReadPrefix((CSPChannelInput)fIn, fWPS, fECS);

fS2 = new Mu(fRPS, fS2r);

/* Definition of Process R2 = mid?y → out!y → ack → R2 */

fR2r = new Recursion(“R2”);

fEPR = new EventPrefix((CSPChannelSignal)fAck, fRr);

fWPR = new WritePrefix((CSPChannelOutput)fOut, fEPR);

fRPR = new ReadPrefix((CSPChannelInput)fMid, fWPR, fWPR);

fR2 = new Mu(fRPR, fR2r);

/* Definition of Process SAWP2 = S2[|{|in, out,mid, ack|}|]R2 {|mid, ack|})
*

* 1) Definition of alphabets

* 2) Linking of already constructed processes

*/

//Builds the alphabet: {|in, out,mid, ack|}
fSAWPSynchAlpha = new Alphabet();

fSAWPSynchAlpha.add(new CSPChannel[] { fIn, fOut, fMid, fAck });

//Builds the alphabet: {|mid, ack|}
fSAWPHiddenhAlpha = new Alphabet();

fSAWPHiddenhAlpha.add(new CSPChannel[] { fMid, fAck });

fSAWPGP2 = new GeneralizedParallel(fS2, fSAWPSynchAlpha, fR2);

fSAWP2 = new Hiding(fSAWPGP2, fSAWPHiddenhAlpha);

}

Figure 4.11: Extended Stop-and-Wait Protocol using JACK — Java code
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Figure 4.12: Stop-and-Wait Protocol Extended Version — LTS
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4.3.1 User Process Behaviour

The user process behaviour is defined by the jack.jacs.japs.csp.CSPBehaviour

or jack.jacs.japs.csp.CSPExtendedBehaviour interfaces. The user must imple-

ment one of these interfaces and submit it to the JACK process interface implemen-

tation (jack.jacs.japs.csp.impl.JACKProcess) to run.

Hoare [61, pp. 38] states that, for the implementation of processes, two structures

must be defined.

1. A function f describing the process behaviour for an event selected;

2. A domain D defining the set of events which the process is initially prepared

to engage. For each x ∈ D, f(x) defines the future behaviour of the process if

the first event to be communicated is x.

In this sense, a JACK process must provide this necessary information, in order

to be properly implemented. To do so, a JACK process implementation must be

able to provide an answer to the questions below.

1. What a process wants to communicate immediately (i.e. domain D)?

2. From the available events inside the domain D, what communication was

selected by the external environment (see communication decision functions

in Section 4.5)?

3. What is the behaviour of a process after the selected communication has oc-

curred (i.e. function f)?

Thus, the CSPBehaviour interface is responsible for implementing both functionality

through its methods. The execute() method is directly related to the function f ,

and the inspect() method is directly related to the domain D. The former must

specify the desired conduct of a process execution, and the latter must returns the

alphabet of possible events in which the process is prepared to engage immediately.

These methods execute under the observation of the CSPSupervisorEnviron-

ment, in order to properly implement the multisynchronization and backtracking

protocols mentioned in Sections 2.3.3 and 2.3.2 respectively. This parameter extends

the Hoare’s description of process implementation [61, pp. 38—39], in the sense that

process execution is now controlled by an external supervisor environment. Thus,

processes have a controlled autonomy of their execution thread. For instance, the

CSP operators implementation makes use of these supervision information, in order

to properly implement their semantics. Specialized user processes can also use these

information. For instance to inspect the current execution frame information like

backtrack points, multisynchronization points, hidden points, or recursive definition

points; or to inspect the execution history of the process. For details about the

supervision information see Chapter 6 and [38].
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4.3.2 User Behaviour Interface Definition

User process behaviour can be defined in two ways, as mentioned below.

1. Via interface implementation — the user class implements the jack.jacs.-

japs.csp.CSPBehaviour interface and submits it to the jack.jacs.japs.-

csp.CSPProcess interface implementation to run; the implementation is called

jack.jacs.japs.csp.JACKProcess. Thus, the user behaviour is decoupled

from the JACK process hierarchy.

2. Via class inheritance — the user class extends the CSPProcess interface im-

plementation provided by JACK. Thus, the user behaviour is coupled with the

JACK process hierarchy, and it must not have any other superclass.

These two versions of user behaviour definition is similar to the Java Thread

architecture definition [63, Chapter 2]. Actually, the relationship between the

JACKProcess class and the CSPBehaviour interface is implemented in the same

way as Java Thread class and Runnable interface (i.e. the JACKProcess class im-

plements the CSPBehaviour interface and provides a no-op versions of its methods,

see Figure 5.4 in Section 5.2.2.1).

4.3.3 User Behaviour Definition for Combined Specifica-

tions

Users can implement behaviours that represent combined specifications, like CSP-

OZ [31] or Circus [148, 149]. Doing so, the user may want to interact with the

supervisor environment, in order to properly know what the supervisor wants to

communicate (i.e. which events are actually available). The user ought to know

how to use alphabets and some of the supervisor environment methods, in order

to properly implement this kind of specialized specifications. Some examples of

them can be found under the jack.jcase package. The complete and detailed

documentation of these entities can be found in [38].

An important note must be mentioned about user behaviours that specify com-

bined specifications. If one uses other constructs than the available operators, that

can generate a τ signal, the user must deal with this τ signal at process execution.

That is, the supervisor environment can select the user’s τ action without calling

the user decision function since it is an internal event; thus users must be aware

of any τ signal that it generates outisde the CSP operators domain. This topic is

detailed in [41, 38].
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4.4 JACK Type System Overview

JACK provides a robust type system to implement CSP specifications. An impor-

tant aspect that demands a strong type system is the symbolic approach to deal

with infinite data types. Since we do not make type domain expansion, we must

have some way to infer the type under consideration, in order deal with operations

on it symbolically.

With the type system, the user can define various different entities useful to

describe processes. In what follows, we briefly summarize some of the most impor-

tant aspects of the JACK type system directly related to the basic user point of

view of the framework. For more details and advanced features of the type system,

see [38, 41].

Types — It is possible for the user to define its own data type. The framework

provides ways to define many sort of types. It has multidimentional, ranges,

enumerable, comparable, primitive, and variant types. The type system also

provides a series of useful type related operations, like type structure inspec-

tion, value acceptance (domain) check, prototyped value construction, type

compatibility, event notifications, and so forth. An interesting aspect of type

implementation is the fact that it is the place where the physical symbolic

dealing with CSP values is achieved.

For instance, one can create an infinite range like the natural numbers with

CSPRangeBound lowerB = new IntRangeBound(0, INCLUSIVE);

CSPRangeBound upperB = IntRangeBound.getUnlimitedBound(ISPOSITIVE);

IntType naturals = new IntType(lowerB, upperB); // {0 . . .∞+{

Values — JACK clients need to use values to properly define type constraints, val-

ues to output on write prefixes, or linked values for inputs on read prefixes.

Every value in JACK can infer its type. There are comparable values, related

to comparable types; range bound values, that establish the limits of a range

type; enumerable values, related to finite enumerable types; number values, a

special sort of value that has built-in arithmetic operations that can be used

as a primitive expression language (i.e. integer addition, subtraction, multi-

plication, and division). In the same way as with types, there are some value

operations of interest to the JACK user. For instance, value type inference,

value structure inspection, value alteration, event listening, physical serializa-

tion, and so on. Most parts of the JACK values are inspired on the structure

and architecture of the JValue framework [117, 44, 112, 111].

Value Sets — A value set can be viewed as a type domain restriction through the

use of a logical predicate; currently, only the propositional calculus is available
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(i.e. ¬, ∨, and ∧ logical operators). With the use of value sets, and value

constraints, the implementation of the JACK type system includes a normal

form reduction algorithm of a subset of the predicate calculus. A value set

is composed of two main parts: the type domain under consideration and a

value constraint predicate for that type domain. We can use set operations like

union (∪), intersection (∩), difference (\), generalized union, and generalized

intersection. Other test operations like membership (x ∈ S), subset (⊆),
proper subset (⊂), and equality (=) are also provided. There are many sorts

of value sets, varying from normal finite ones to optimized sorted set infinite

ones.

Value Set Constraints — Value set constraints are predicates over a value set

type domain. With them, it is possible to restrict the value set domain with

some propositional logic predicate, an enumerated set of values, a range, and so

on. The value set constraint classes are responsible for the implementation of

the normal form algorithm of a subset of the predicate calculus; this algorithm

is based on [67, 68, 21], and is detailed in [38, 41]. The constraint also provides

some useful operations like value acceptance check, equality test, and reduction

operation. The JACK client can use these features to implement a complex

data structure of its processes specification.

In Figure 4.13, we show some examples in a Java method that uses some of

the mentioned structures of type system; they come from test case classes in pack-

age jack.jacs.japs.typesystem.tests. The method shows how to create range

bound values and range types, and how to use some of the range type methods.

These methods asserts that one range encloses the others, that some of them over-

laps, and so on.

4.5 JACK Process Subsystem Overview

The JACK process subsystem deals with the non-functional aspects and require-

ments of process execution. These aspects are basically supervised execution and

low-level concurrency support.

Users may never need to deal with such structures directly, but it is interesting

for them to know the roles that these structures play, in order to have a better

understanding of the framework as a whole. Despite this fact, this information is

neither necessary, nor vital to be knowledge by the common user to properly describe

their processes. Advanced users and framework extension developers however, must

completely understand these entities and the protocols interfaces that controls their

interaction between the other main entities already mentioned.

In what follows, we briefly summarize some of the most important elements of

the JACK process system.
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import jack.jacs.japs.typesystem.*;

import jack.jacs.japs.typesystem.impl.*;

/**

* Test range type and range bound value construction and related operations

*/

public void testRangeTypeAndValue() {
boolean READONLY = true;

boolean POSITIVE = true;

boolean INCLUSIVE = true;

/* Comparable values instantiation. Represents the int values 0 and 1.*/

CSPComparableValue v0 = new ComparableValue(new Integer(0), READONLY);

CSPComparableValue v1 = new ComparableValue(new Integer(1), READONLY);

/* Creates a closed range bound value representing the bound of some range, i.e. {0 . . .??}. */
CSPRangeBound rb0 = new RangeBound(v0, INCLUSIVE);

/* Creates a opened range bound value representing the bound of some range, i.e. {?? . . . 1{. */
CSPRangeBound rb1o = new RangeBound(v1, !INCLUSIVE);

/* Creates a unlimited positive int range bound, i.e. {?? . . . infty + { */
CSPRangeBound rbPos = new RangeBound(v0.type(), POSITIVE);

/* Creates the range types {0 . . . infty + {, {0 . . . 1{, and }1 . . .∞+ {*/
CSPRangeType rt0Pos = new RangeType(rb0, rbPos);

CSPRangeType rt01o = new RangeType(rb0, rb1o);

CSPRangeType rt1oPos = new RangeType(rb1o, rbPos);

/* Asserts that the operation returns true.If the operation returns false, the method throws an exception. */

assertTrue(rt0Pos.encloses(rt01o)); // {0 . . . 1{ ⊆ {0 . . .∞+ {
assertTrue(!rt01o.encloses(rt0Pos)); // {0 . . .∞+ { ⊆/ {0 . . . 1{
assertTrue(rt0Pos.overlaps(rt1Pos)); // {0 . . . 1{ ∩ {0 . . .∞+ { 6= ∅
assertTrue(rt0Pos.accept(v1)); // 1 ∈ {0 . . .∞+ {
assertTrue(!rt1oPos.accept(v0)); // 0 ∈/ }1 . . .∞+ {

}

Figure 4.13: JACK Type System — Java Code Example
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Process Supervisor Environment — This environment is responsible for con-

trolling the occurrence and selection of possible communicable events. It is

also responsible for implementing two important aspects of the JACK frame-

work: the ability to deal with multisynchronization and backtrack without

loosing the compositionality property of CSP; and to connect the functional

JACK semantic layer with the non-functional JACK execution layer. The su-

pervisor environment is represented by the jack.jacs.japs.csp.CSPSuper-

visorEnvironment interface and is passed as a parameter of the CSPBehaviour

interface methods. Users that just compose CSP operators may never need to

deal with supervisors directly. On the other hand, advanced users that com-

pose processes in a non-trivial way (i.e. with some data dependent operation

or processes that can deal with internal events like τ), or extension devel-

opers that may provide other CSP operator implementations like Interrupt

(P 4event Q, see [126, 124, 130]), must be aware of the supervisor interface.

Communication Decision Function — A communication decision function is a

strategy [28, pp. 315] used by the supervisor environment to decouple the event

selection functionality. The DEFAULT SUPERVISOR ENVIRONMENT instance pro-

vides a default random decision function that randomically selects events for

the inspected alphabet of initially available events. Users can install different

decision functions on the supervisor environment, in order to take control of

the event selection routine. For instance, one can implement a Java Swing [141]

user interface that selects events pushing buttons available according to the

supervisor inspection. The communication decision function is represented by

the jack.jacs.japs.csp.CSPCommunicationDecisionFunction and defines

only one method called select(), that receives an inspected alphabet and

returns a selected communication. Decision functions and supervisor environ-

ment details are mentioned in Chapter 6 and in the on-line documentation [38].

Process Execution Network — The process execution network is responsible

for providing the non-functional aspects of process execution. The process

network represents the encapsulation of the low-level concurrency world that

needs to deal with threads, synchronization locks, and recovery schemes. The

network acts like the client of the JACK bottom-most low-level execution layer.

Together with the supervisor environment, it represents the link between the

semantic layer and the execution layer (see Figure 5.3 in Section 5.2.2). This

layering scheme of the framework is completely detailed in Chapters 5 and 6.

These entities are mentioned in Chapter 6. For more details and related advanced

features, see [38, 41].
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4.6 Final Considerations

In this chapter, a description of some of the most important JACK usage guide-

lines have been given. We described the structure of processes, the user behaviour

definition, the CSP operators, and the JACK type system. Some simple CSP spec-

ifications and corresponding Java class code examples were given, in order to make

it clear how JACK implements the expected functionalities.

The next two Chapters present the JACK framework architecture and imple-

mentation, respectively.
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Chapter 5

JACK Framework Architecture

This chapter presents the JACK architecture and design rationale. JACK stands

for Java Architecture with CSP Kernel. This framework implements the CSP [124]

process algebra in Java as if the CSP operators were available as part of the language.

The framework aims at making concurrency primitives more abstract and the related

low level functionality to be hidden, in order to avoid the idiosyncratic situations

that users of concurrent programming environments normally face.

In Section 5.1, important framework requirements are discussed. Then in Sec-

tion 5.2, a description of each framework layer is given; that description gives an

overview of the framework infrastructure; details about layer composition are pre-

sented in the next Chapter. After that, in Section 5.3, a general discussion about

design pattern usage and its importance in the framework construction process is

presented. Finally, in Section 5.4, final considerations are given.

5.1 Requirements

As discussed in the last chapter, the existing library solutions for implementing CSP

in Java(CTJ [59] and JCSP [107]) do not attend all our needs. Despite this, the

lack of a framework model and well-defined design patterns make the adaptation and

extension of these libraries very difficult.A detailed study of these library solutions

was carried out [36], but it shows that the libraries were not built to deal with the

kind of problem that JACK aims to solve, nor it is clear how to alter or extend their

functionality to implement most CSP [124] operators, our desired result.

The most complex part of our framework implementation was identified as the

definition of a generic and safe locking and threading scheme to execute processes.

Both in CTJ and JCSP, this is mixed with process semantics, which makes the

understanding of the library internals for extensions very difficult, which in turn

leads to modularity loss.

In order to avoid this problem, the decision to build a new library as a frame-
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work with well-defined layers and problem domains was done as discussed in Sec-

tions 3.1.1 and 3.1.2. Therefore, the selected thread support library must both be

designed as a framework, with design patterns, and explained by a pattern language

in order to achieve these desired goals.

We investigated the framework modeling techniques [133, 113, 90, 22], design

patterns and pattern languages [121, 28, 73, 76, 123, 102, 81, 57, 23]. Our aim is a

reuseable, simple, expressive, and extensible architecture, that supports incremen-

tal development. As already mentioned in Chapter 3, the available implementation

mixes functional (i.e. process semantics) and non-functional (thread scheme) prop-

erties that leads to obscurity and difficulty to understand and extend.

It is imperative to JACK that it offers constructs with high expressive power.

Nevertheless, expressiveness should be achieved with simplicity. For instance, it is

well-known [8] that semaphores can emulate monitors and vice-versa. However, such

emulations are complex. Thus, constructs provided to the programmer should result

from a compromise between expressiveness and simplicity (i.e. easy of use).

JACK must also allow the extension of CSP operators by using traditional reuse

mechanisms of object-oriented programming: class inheritance and object compo-

sition [28]. It must also support incremental development of operators. Moreover,

synchronization leads to a well-known problem with object-oriented frameworks and

synchronization schemes called the inheritance anomaly problem [86, 87]. This oc-

curs most commonly because there is no language support for a kind of lock in-

heritance; this way proper subclass locking becomes obscure or even impossible.

McHale [87] also shows that, even when synchronization code is structurally sepa-

rated from functionality code, if synchronization constructs have a limited expressive

power, not supporting, for instance, the six types of synchronization information enu-

merated by Bloom [9], then it is necessary to use functional code to preserve desired

synchronization information, hence losing the separation between functionality and

synchronization [133]. That vital non-functional problem is delegated to be treated

by a framework called DASCO [133, 132] due to its separation of inheritance for

functionality reuse, and synchronization reuse. DASCO stands for Development of

Distributed Application with Separation and Composition of Concerns.

Our decision to use separation of concerns is motivated by the clearly observed

property of modularity and well-defined dependencies. The separation of concerns

approach states that the framework should be broken into well-defined layers that

must capture a specific concern of the design and functionality. The JACK frame-

work implementation deals with integration of concurrency, synchronization, recov-

ery and processes. It provides an implementation of those concerns and also consider

concern composition. The DASCO implementation provides each concern without

loosing desired object-oriented framework properties like expressiveness, simplicity,

reusability, modularity, and incremental development. DASCO also was designed

as a framework, using a detailed and well-defined set of design patterns, composed
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Figure 5.1: JACK main layers

together using a pattern language [133].

Composed CSP operators are difficult to test, implement, and debug due to the

non-determinism inherent to their execution, or semantic complexities. Incremen-

tal development must allow incremental program construction in such a way that

functionality is developed first and tested in a sequential environment. Object con-

currency, synchronization, and interaction are introduced later. It should be noted

that incremental development assumes the reusability requirement, but the reverse

is not necessarily true.

5.2 Layer Description

In this Section a description of JACK layers is provided. Each layer represents

a piece of functionality that grants service implementation at well-defined points,

in order to allow other layers to use this functionality independently. The layer-

ing strategy is very important to decouple and distribute the complexity of a large

object-oriented system, making each layer to contribute with its partner, as men-

tioned in [28, Chapter 2].

JACK has three main layers that have themselves some sub-layers. Figure 5.1

shows how the main layers are organized.

Execution Layer: JDASCO — Java Development of Distributed Application with
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Separation of Concerns

The bottommost layer is responsible to deal with low-level functionality, and

to provide non-functional features like threads, monitor locks, etc. It is a Java

extended version of DASCO [133, 132].

Semantic Layer: JACS — Java Architecture with CSP Semantics

The semantic layer acts as the user of JDASCO. It provides user processes,

CSP operators, and CSP auxiliary constructors. It is the heart of the JACK

framework, since it provides most of the functionality observed by the final

user (i.e. a JACK client).

User Layer The user layer is open and should be used by the JACK client to

implement its specification or desired functionality. In other words, it is just

a design layer that represents the entry point of the JACK framework, it does

not provide any functionality related to processes, or CSP operators semantics.

Here, we present two examples of possible user layer configurations:

JCAST — Java CSP Abstract Syntax Trees

The AST representation layer acts as a user of JACS. It provides AST

representation of CSP operators. It could be used by a parser to build

an AST that represents a pure CSPm specification in JACK.

JCASE — Java CSP Applications, Samples and Experiments

This layer appears just as a case study of the JACK framework to build

JACK processes from a simple CSP specification example. It also acts as

a user of JACS that builds Java classes from specification source code. A

formal translation from CSP to Java using CTJ [59] is presented in [12].

A similar work for JACK is under consideration as a possible future work.

A detailed description of each layer is given in the next subsections.

5.2.1 Execution Layer — JDASCO

The execution layer is the bottommost layer. It is responsible for dealing with non-

functional properties of processes. This layer provides and combines concurrency

with thread management; synchronization with monitor and locks coordination;

and recovery through commitment, abortion, and preparation operations, and also

a walkable execution history.
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The intention here is to generally describe the configuration options of DASCO

functionality and some minor design details. For full details about DASCO design,

see the main reference [133], or the description of its published design patterns

in [122, 101].

JDASCO is divided in three sub-layers, as shown in Figure 5.3. The bottom layer

is called the concern layer; it provides the concerns under consideration: concurrency,

synchronization, and recovery. The middle layer is called the composition layer; it

provides the combination of those concerns: concurrency with synchronization, syn-

chronization with recovery, concurrency with recovery, and so forth. Finally, there

is a top application layer example, showing how to use the concern combination.

The JDASCO client ought to make use of its composition services filling in all user

dependent roles, and following its strict usage guidelines; these are fully detailed

in [133].

There are initial prototype versions of DASCO [132, 37] that provide all possible

composition of concerns, and application examples. The implementation developed

in JACK considers, and extends only the composition of interest to it: the con-

current synchronized recoverable one. That implementation also restructures the

framework to become role-modeling (i.e. avoid multiple inheritance, creating proto-

col interfaces, etc.), and event-oriented (i.e. make use of event notifications [110] to

allow interactive access to many important points of functionality).

The service offered and the composition alternatives define a number of policies

with configuration possibilities. They must be strictly defined by the application

layer which, in the case of JACK, is one of the semantic sub-layers (JACS.JDASCO,

see Section 6.2.3). The policy selection of each concern and composition must follow

some restrictions and usage guidelines defined in [133] and in Chapter 6.

The main motivation for this kind of service arrangement using separation of

concerns was based on a thorough research in the concurrency development field.

It was found that the main and most complex problem to make a CSP or occam

implementation are both the concurrency and synchronization designs.

Many design patterns [122, 101, 81, 28], algorithms and formal descriptions [52,

6, 3, 129, 88, 58, 83], and semantic descriptions [126, 130, 14, 82] that have been

trying to solve this kind of problem were found. DASCO [133, Chapter 2]1 directly

deals with most important problems related to concurrency and synchronization,

like partitioning of states, history sensitiveness, inheritance anomaly, and so on.

DASCO also deals with another very important aspect for JACK: recovery in the

case of backtrack occurrence (see Section 2.3.2).

Therefore, the use of this framework is adequate. DASCO does not solve all

necessary problems and presents a few minor difficulties for us. Nevertheless, it has

shown to be well-suited as the base of low-level JACK design and implementation

1In Rito Silva PhD thesis Chapter 2, there are detailed description about all these properties.
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Figure 5.2: JDASCO Main Participants

architecture.

Our implementation of DASCO is a role modeling [113, 120] redesign of the

original DASCO framework [133, 132]. The original DASCO was built using C++

and it was translated to Java using role modeling as suggested in the future work

Section of [133]. In this remodeling we introduced some design patterns and pattern

languages, in order to generalize and normalize the original implementation. For

a detailed model of JACK processes see [38]; it provides a Role and UML model

descriptions of the framework, links to related (draft) documents, like the description

of the backtrack and multisynchronization solution, the structure of the process

network graph, tutorials for the framework, and so on.

5.2.1.1 Main Design Patterns Used

The main design patterns used in the JDASCO layer were those defined in [81, 123,

102, 133]. They are called Concurrent Object, Synchronized Object, and Recovery

Object and are related to concurrency, synchronization, and recovery. These pat-

terns have a uniform set of participants: a JDASCO client, a concern mediator, and

a functional object.

The scenario was drawn as a client requesting some service of a functional ob-

ject, as shown in Figure 5.2. That request is intercepted by the concern mediator

responsible to introduce the desired concern service (i.e. Concurrency, Synchroni-

zation, or Recovery) or compositions of it. By composing the pattern entities in

this way, neither the functional object nor the client need to deal with each concern

functionality directly, but just with its own related behaviour and responsabilities.

For instance, there is no thread construction or locking scheme under control of

the functional object. In this sense, the concern mediator abstracts the concern im-

plementation from the JDASCO client. This separation allows the implementation

of the JDASCO client and the functional object to concentrate on their functional

behaviour instead of non-functional responsabilities. However, this does not mean

that the JACK or JDASCO client will never need to deal with threads or locks.

What it does mean is that the user never needs to deal with locking and threading

related to the desired functionality under consideration, in our case, the thread-
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ing and locking schemes of processes implementation (i.e. CSP operators and user

processes).

For instance, patterns like mutex [81], reentrant mutex, conditional variable,

latch, etc, are used to build low-level functionality. Basically, the JDASCO code for

those patterns is inspired on the CPJ (Concurrent Programming in Java) [81, 79]

framework, and ACE (The Adaptative Communication Environment) [138, 128] (see

Section 3.2.4.1) framework source code and available documentation.

The composition and usage guidelines of these patterns were explained and based

on a pattern language defined in [133]. Stepwise implementation and integration of

policies and concerns is proposed, justified, and explained in Chapter 6.

5.2.2 Semantic Layer — JACS

Immediately above the execution layer, there is the semantic layer. Its main objec-

tive is to provide a high-level process representation. It makes use of the services

of the execution layer. The implementation of the semantics of the processes fol-

lows the operational view of them described in [124, 126, 130, 61]. Many other

implementation details are collected from other libraries [107, 59, 32, 18, 16], algo-

rithms [13, 131], CSP related articles [52, 3, 129, 83], and other sources [6, 58, 88],

as already mentioned in Chapter 3.

The process network is part of the semantics layer and it is represented by a LTS

graph marked with some tag interfaces. The complete description of it includes too

low-level details related to JDASCO composition of concerns and JDASCO concern

collaborations. These details about them can only be mentioned after the next

Chapter. They are not mentioned in the dissertation, but can be found in a draft

document in [38, 40] and in JACK JavaDoc on-line documentation in the same

source.

Constructors for types, channels, communication, alphabets, etc, are also pro-

vided (see Chapter 4). With these constructors, building a process that represents

a CSP specification is easy, and results in readable and safe contained code.

Currently, the framework implements the most common operators like prefixes,

choices, recursion, sequential composition, and parallel composition operators. In

Chapter 2 these operators are briefly described, and in Chapter 4 there are many

examples and situations illustrating useful usage guidelines of these operators in

JACK.

Attention should be given to the possibility of user defined process descriptions.

JACK gives the user the ability to compose and define their own processes in what-

ever way they want (i.e. not only using CSP operators). For instance, the user

process can make use of any complex Java data structure. This is important to

implement specifications in integrated languages like CSP-OZ and Circus.

The JACS semantic layer has two sub-layers, as shown in Figure 5.3. The one
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Figure 5.3: JACS and JDASCO sub-layers integration

called JACS.JAPS (process sub-layer) provides the semantic machinery to describe

CSP specifications (i.e. CSP operators and auxiliary constructs) and processes.

JAPS stands for Java Applications for Processes Surveyor. The other layer, called

JACS.JDASCO, links the CSP semantic elements with JDASCO, acting as the

JDASCO application layer; it is called the integration sub-layer.

JAPS is the heart of the framework from the end user point of view. It is

implemented based on role modeling [113] ideas. JAPS is divided into groups of

functionality (i.e. Java packages) as follows:

• JAPS.CSP — represents the CSP operators, alphabet, process supervisor en-

vironment, process network, etc.

It defines the service interfaces, the default implementation of them, and test

case classes.

103



• JAPS.TYPESYSTEM — represents the JACK type system.

It defines interfaces default implementation, and test cases for types, values,

value sets, and so on.

This kind of functionality division, as commented in [117, 119, 118], has shown

to be very useful in the source code organization and class files interdependency

during the compilation procedure.

The following subsections present the representation of the structure of processes,

operators and user defined processes. It shows the class diagrams relating each entity

and some construction details related to the architecture organization.

5.2.2.1 Process Representation

This subsection presents the representation of the already defined process structure

(see 4.1.1). Processes are the main entity in the framework and are provided as

a Java extension package. They represent the infrastructure stream of execution,

so the package acts as an execution environment. To completely define a process,

it must have a companion behaviour (i.e. a specific definition to be plugged inside

a generic execution environment). This way, a CSP operator can be viewed as a

JACK process environment with a behaviour already defined and provided by the

framework.

JACK users that want to describe processes other than CSP operators must

provide a behaviour interface implementation to achieve their needs. The user be-

haviour interface must provide a function f describing the process behaviour and a

domain D defining the set of events which the process is initially prepared to engage.

The definition of the function f can be either a user defined process or a compo-

sition of CSP operators. In Section 4.3, we mentioned that JACK allows its users

to either derive from a JACK process environment directly or to implement a be-

haviour interface and submit it to the default process implementation for execution.

Figure 5.4 shows the relationship between a JACK process, a user defined behaviour,

CSP operators and default process execution environment.

All JACK processes have a behaviour that defines their functionality (function

f and domain D) and a unique name. The behaviour is used to define its specific

functionality. The unique name is used by the process network and supervisor

environment to control the execution status of processes. If the names are not

provided by the user, a default one is given. For details on this modeling scheme,

see the published UML model at [38].

5.2.2.2 CSP Operators Representation

The operator representation aims at making their use as close as possible to that

in a CSP specification. For instance, the read prefix constructor of CSPm has a
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Figure 5.4: JACK Process x Behaviour Relationship

a) ch?x→ STOP

b) N = ch?x : T → P

c) N = b&ch?x : T → P

Figure 5.5: Read Prefix Examples: a) Single, b) Complete, c) Extended

channel for input and a process to follow the channel communication. Optionally

It also has a value set constraint over the type of the channel input. The operator

can also be named for any desired purpose. Another well-known and widely used

extended construction is a guarded prefix. In Figure 5.5, these three forms of the

read prefix operator are presented.

Other operators are implemented as expected: interleaving, external choice, in-

ternal choice, conditional choice, and sequential composition have two argument

processes; generalized parallel has two processes and one synchronization alpha-

bet; and so forth. In Figure 5.6, a brief view the CSP operators dependencies and

relationships is given.

5.2.2.3 User Process Representation

Users can define specialized behaviour to be attached to a process execution envi-

ronment. In doing so, a user can mix canonical CSP specifications (i.e. using CSP

operators, and auxiliary constructors) with any specialized data structure or exe-
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channel a, b

P = a -> (P ||| b -> SKIP)

Figure 5.7: Process dynamic growing CSPm example.

cution behaviour. This kind of specification description was used in other libraries

that implement occam [53], like CTJ [59, 50, 51, 49] and JCSP [107, 145, 144].

Since JACK needs to deal with CSP instead of occam, some complex problems

arose, like backtrack (see Section 2.3.2) and multisynchronization (see Section 2.3.3).

Thus, the user must be careful with the possibility of dynamic growing of the network

while any process is running. Dynamic growing means processes that while running

creates other processes.

This does not mean that the user process cannot grow dynamically. However,

to properly build process networks that grow dynamically, the user must not forget

to alter the domain D to reflect the dynamic growing pattern. It means that this

dynamic growing must be taken into account, in order to correctly represent the

domain D of possible initial events that the process can engage in. Thus, to avoid

confusion in the proper correspondence of both method implementations, this kind

of on-the-fly dynamic growing ought to be avoided.

The user behaviour interface provides a set up routine that can be used to in-

stantiate all necessary processes before it starts running. This method can be used

to create any necessary processes. With the use of this set up feature, it is eas-

ier to correctly implement both the desired process growing pattern and also the

imperative correspondence between behaviour function f and domain D.

For instance, the process shown in Figure 5.7 can grow dynamically by instan-

tiating the unnamed process b → SKIP on the fly as one of the interleaving op-

erators. Examples of such usage can be found in Section 4.2. To avoid this, that

unnamed process should be created before the execution. To do so, the user must

provide a set up routine used for this creation purpose (see Section 4.1.1.2). The

SKIP-termination rule [130] states that: when one side of the interleaving becomes

SKIP, the whole processes could be viewed as the other execution side only (i.e.

P |||SKIP ≡ P ).

In Figure 5.8 a brief view of the user behaviour dependencies diagram are given;

they are detailed in the next Chapter.

5.2.3 User Layer

The user layer is the topmost JACK layer and it acts as a placeholder; it is not

an architectural entity, but just an entry point for the services of the framework

exposed by the JACS semantic layer. It is not part of the functional framework. It

is the entry point for JACK clients to start building their descriptions using JACK.
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Figure 5.8: JACK User Process Behaviour Structure
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JACK provides two examples of user layers; they are summarized below.

JCASE — Describes some simple case studies provided as Java classes that imple-

ments CSPm specifications.

JCAST — Describes an initial version of a CSPm interpreter based on the abstract

syntax tree of CSPm described in [126]. The interpreter and the AST use the

acyclic visitor [123, Chapter 7] design pattern. This opens the possibility of

creating an interpreter for a pure CSPm specification as a final application

for the framework. That specification can be translated directly to JACK

with some possible necessary user interaction, as noted in a similar translation

work [1]. Provided some well-known CSP parser [126, 1, 125] implementation is

available, and given some adjustments to become compatible with the designed

AST, JACK has a semi-complete specification running tool.

As already mentioned, JACK is a process-oriented framework. This means that

it provides process functionality to the final user that uses it for any purpose. The

stated purpose in this view of the framework is to describe some process specifica-

tion, possibly in pure CSPm [33], or in CSP-OZ [31], or even in Circus [148, 149]

specifications. For instance, JACK can be used by the final user to describe CSP

related specifications (i.e. CSPm, CSP-OZ, Circus) written directly as a Java class.

There is a work [12] that provides formal translation rules from CSP-OZ to CTJ.

5.3 Design Patterns Discussion

Some of the most important patterns at the user layer are the abstract syntax tree,

that represents the CSP grammar following Watt guidelines [143, 142] to build in-

terpreters; and the acyclic visitor [123], that makes the AST interpretation modular

and easier to extended. With this modeling scheme, extensions of the grammar

become straightforward. For instance, an extended example with the replicated

version of some CSP operators was provided under the JAPS.CSP sub-layer (i.e.

jack.jacs.japs.csp.replicated Java package).

The JACK framework architecture is based on specific, and well-suited design

patterns, as much as possible. A thorough research was done for each selected

pattern, basically following the guidelines of [121].

The use of design patterns has improved the quality of the final implementation.

Some of the most important properties according to [90] are modularity, robustness,

consistency, reusability, incremental development, simplicity, and so on. Sometimes,

to achieve these properties, the design and code increase in complexity, but it is an

acceptable trade off, since they continue relatively simple.

Generic patterns are implemented as common utilities. For instance, the event

notification pattern [110] is used for detailed announcement of JDASCO execution
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information. Without that resource, debugging and some inter-layer functionality

the framework would be very difficult to implement and control.

Another important generic pattern is an enhanced version of the Double Check

Lock pattern [23], that correctly implements the Singleton pattern [28] on concur-

rent execution environments using thread local storage. A diagnostic logger and a

diagnostic message [102, 117] used for debugging and logging facilities are also pro-

vided. Finally, a set of template collections that extend the Java collections [54, 63]

framework with template class assertions are implemented. These utilities are pro-

vided under the jack.common package. For a detailed description of these common

patterns and utilities, see [38].

5.4 Final Considerations

In this chapter a description of some of the most important JACK architectural

requirements are given. They are the layer and sub-layer descriptions, and the main

design patterns used. The use of design patterns has shown to be very important

in the design and implementation of complex functionality for an object-oriented

framework. The JACK framework as a whole is based on design patterns.

As suggested extension operators, there are the labeling and functional renaming

CSP operators [130]. The most important and expected infrastructure extension is

a functional expression language support to deal with operations against values. For

operator extensions one should also have in mind a probably necessary extension of

the AST representation in the user layer (JCAST) above, since the AST represents

the semantic structure of processes.

The next chapter presents a detailed description of the JACK layers implemen-

tation project.
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Chapter 6

JACK Framework Implementation

This chapter presents the description of each relevant layer characteristic and layer

composition of the JACK framework. The aim of this chapter is to detail each

layer implementation decision and composition structure. In order to make the

description more clear, for each layer entity a stepwise procedure to implement the

ExternalChoice (2 ) CSP operator is shown.

Section 6.1 describes the JDASCO execution layer. Next, in Section 6.2, the

JACS semantic layer and its integration with the JDASCO execution layer are pre-

sented. In Section 6.3, final considerations are given.

6.1 JDASCO — Execution Layer

As already presented in the last Chapter, JDASCO has three main participants (a

JDASCO client, a concern mediator, and a functional object — see Figure 5.2) and

three concerns (concurrency, synchronization, and recovery — see Figure 5.3). The

next subsection presents the main JDASCO participants with some details related to

their roles. After that, for each concern provided by JDASCO, a brief description of

its execution phases available policies and management classes implementation are

shown; for a detailed description of JDASCO separation concerns and composition

of concerns see [43] and [133] for DASCO as well. Finally, a discussion about the

selected JDASCO composition for JACK processes is presented.

The JACK user expected behaviour is to ask for some process to run. The

process expected behaviour is to satisfy the CSP operator semantics or user defined

behaviour.. These two expectancy need to be organized and distributed in the three

main JDASCO roles defined above.

6.1.1 JDASCO Client

The JDASCO client is the entity that request the service under consideration. It

ought not to be aware of any non-functional concern detail like concurrency or
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synchronization. In this sense, it neither has to create, nor to manage an activity

or lock related to the functional object functionality (i.e. CSP operators locks and

threads). However, JACK clients should need to create and manege their own

internal threads and locks. On the other hand, JDASCO abstracts and manages the

concern control related to the functional object from its clients [133], but not the

whole concern model. Thus, abstraction does not mean transparency.

On the other hand, JDASCO covers the concern, but not the concern model.

This means that, at some points, JDASCO clients need to be aware of the concern

model. For instance, the concurrency concern can be used in a synchronous or asyn-

chronous way through the use of the future design pattern [23]. Moreover, it is the

JDASCO client responsibility to correctly interact with futures in the sense of aware-

ness of activity interruption. This breaks the modularity property a little. Another

similar example occurs with the recovery concern, when the compensation operation

policy is used, because the concern mediator must be aware of the functional object

interface. These are topics discussed in following subsections.

The JACK entity that plays the role of a JDASCO client is a process. A process

is a JDASCO client in the sense that is a process that needs to be synchronized,

needs to execute concurrently, and needs to be recovered in some circumstances.

Nevertheless, a process acts as a JDASCO client only when it is an active entity. It

is an active entity when it runs independently (i.e. on its own thread of control) or

when it is the root process. This occurs only for the parallel operator and for any

other operator that has been the root process of the network.

In other words, a JACK client wants to start a process; to do so it need to directly

interact with the them. Nevertheless, any kind of client never need to interact with

JDASCO functional objects, thus a process acts, in this sense, as a special kind of

JDASCO client provinding some way to be started.

Also note that, at some JDASCO points, the JDASCO clients must be aware

of the concern model (these topics are mentioned in the next subsections). This

means, for instance, that the JDASCO client must be aware of the concurrency

model defining if it will be synchronous or asynchronous. Since JACK implements

CSP, it surely has synchronous behaviour. This control must be hidden from the

end JACK user, which again leads the JACK process to become the JDASCO client

in order to properly hide the concern model awareness from end users.

6.1.2 JDASCO Functional Object

The functional object is the service provider under consideration. It ought to be im-

plemented independently from any non-functional requirements, like multi-threading

or synchronization locks. These non-functional requirements are handled and com-

pletely abstracted by the concern mediator. For instance, consider a bounded buffer

with concurrent access, that has three methods: one to remove from the buffer, an-
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other to write to the buffer, and a final one to inspect the content of the buffer head.

It does not have to deal with critical regions in the underlying buffer data struc-

ture, nor it needs to take any recovery procedure if some corruption on the buffer

occurs due to the concurrent access to it. These features ought to be carried out by

the concern mediator, which in turn simplifies the functional object implementation

leaving it to deal only with its functional requirements.

The concern mediator (called Interface in original DASCO) deals with non-

functional requirements of framework execution. It is responsible for providing

these non-functional services to functional objects and hide these same services

from JDASCO clients. In this sense, it is the heart of the JDASCO infrastructure,

providing the implementation of each available concern and their composition.

A JACK process also plays the role of a JDASCO functional object when it is

performing its underlying semantic execution behaviour. This leads us to a very

special case of JDASCO configuration where the functional object and the client is

been implemented by parts of the same object: a JACK process. This organization

is justified by the fact that functional objects expose some methods (functionality)

that need to be mapped to the JDASCO management classes. These objects is

responsible to take care about all concern issues of the functional object. Unfortu-

nately, the behaviour of CSP operator semantics and user processes behaviour are

to describe and control, concurrency, synchronization, and recovery issues. In this

sense, the management classes implement parts of the operator semantics and the

operators accessed by the JDASCO clients, that are by theirselfs other processes.

6.1.3 JDASCO Management Classes

In a detailed level there are, for each concern, three other entities: a first level policy

manager, a second level policy manager, and structural management classes. These

entities are mainly related with the concern mediator, but, at some points, they are

also related to the functional object or the JDASCO client. Figure 6.1 illustrates

this detailed scenario; it is directly related to Figure 5.2 shown in Section 5.2.1. This

relation with boundary entities makes the implementation to loose some modularity,

but this is necessary and it is an acceptable trade-off. We further discuss these

detailed entities latter in this section.

The first level policy manager is responsible for providing concern configurations

of the JDASCO client, concern mediator, and functional object interaction. The

second level policy manager is responsible for taking a fine control over the exe-

cution path. The management classes are responsible for integrating the calling

path between the JDASCO client and the functional object through the concern

mediator. These classes also represent the entities to be implemented by the frame-

work designer to expose the implemented functional object services to JDASCO

clients through the concern mediator. In Section 6.2, these entities and the selected
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Figure 6.1: JDASCO Framework — Main Structure Detailed

configuration policies for integration with the semantic layer are presented.

For each concern, it is necessary to define specialized management classes to

map the implementation of each CSP operator and user process. This leads us to

a class explosion problem inherited from JDASCO. Luckly, since most management

functionality is similar, and there is only one functional object method to be exposed

(i.e. the method that runs a process), we can use inheritance and abstract base

classes to simplify the implementation of the integrarion between JACK.JACS and

JDASCO.

6.1.4 Separation of Concerns

“Separation of concerns is considered a key technique in software engineering. This

technique consists of treating separately different aspects of program construction in

order to control complexity, in accordance with a divide-and-conquer strategy. For

instance, the separation between a program’s functional and non-functional con-

cerns allows the construction of an initial version supporting only its functionality

in terms of expected input and output, and its later enrichment to support other

aspects, such as performance, reliability and computational constraints. Problems

handled by functional and non-functional concerns are specified, respectively, by a

program’s functional and non-functional requirements. The construction of concur-

rent programs is especially complex due mainly to the inherent non-determinism of

their execution, which makes it difficult to repeat test scenarios.” [133, Chapter 1]

JDASCO directly deals with three different concerns: concurrency, synchroni-

zation, and recovery. Each concern is organized as a different design pattern (i.e.

Object Concurrency [133, Chapter 4], Object Synchronization [102, Chapter 8], and
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Object Recovery [123, Chapter 15]) that deals with a specific problem domain.

Both patterns share the same structure detailed in Figure 6.1. They have man-

agement classes used to integrate functional object features with JDASCO concern

mediator, concern phases that separates and establishes the roles that each concern

must play, configuration policies divided in two levels of control for each concern,

and some auxiliary entities used to control the concern execution. It is important

to note that each concern encapsulates the concern policies, but not the concern

model. For instance, JDASCO clients need to be aware of concurrency concern syn-

chronous or asynchronous execution of functional object services, in order to control

when they want to have their activity interrupted or not; this is done through future

objects.

In what follows, we give a brief description of the most relevant topics for each

concern. For a complete description about JDASCO concerns see [43] and [133] for

DASCO.

6.1.4.1 Concurrency Concern

The concurrency concern deals with activity creation, management, and synchronous

or asynchronous communication between them; this guarantees correct concurrent

access to those services. An activity in JDASCO is equivalent to a specialized kind

of Java Thread [4, 54, 63].

The management class related to concurrency concern is a method object. A

method object class implementation contains the client invocation context. This

involves the functional object method to be called (i.e. a functional object instance

and a method of it) and the invocation arguments. For each functional object

exposed method, there is a method object to implement the execution scheme for

that method. The execution arguments must be given during the method object

construction.

This concern has four execution phases: CREATE, EXECUTE, FINISH, and DELETE.

A brief description of each one is given below.

1. {CREATE} — Responsible for instantiating the method object and future in-

stances.

2. EXECUTE — Corresponds to method object execution.

3. {FINISH} — State where the method object notifies the corresponding fu-

ture, if one exists, about method termination and returned values. With this

notification scheme, JDASCO client objects synchronously waiting or asyn-

chronously pooling on futures are notified.

4. {DELETE} — The method object and its underlying invocation context can be

garbage collected.
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The phases between braces indicate that they execute on the same shared syn-

chronization lock session. This guarantees execution safety, minimizes lock acquisi-

tion, and increases execution performance. The EXECUTE phase must not be under

any lock here, since the concurrency concern is related to method execution and

not method synchronization; this execution synchronization is carried out by the

synchronization concern. Therefore, when composing concerns, the synchronization

concern must deals with this.

The concurrency concern configuration first level policies define how the concern

mediator executes the client call and the functional object respective service. There

are concurrency generators for configuring and controlling these policies.. The sec-

ond level policies are captured by future instances, in order to allow JDASCO clients

to control the underlying concurrency model either synchronously or asynchronously.

Below, the description of each kind of concurrent policy follows.

1. First level — Implemented and managed by concurrency generators

NON CONCURRENT — JDASCO client calls are started on the calling activity,

which means serial execution. This policy is implemented by the mediator

by just sequencing the user call to the functional object through the client

thread.

SEQUENTIAL — JDASCO client calls are queued for execution on a single back-

ground activity, leaving the client activity free to proceed. This policy is

implemented by the generator using a separate thread that queues each

client call; in this way, the client thread is free to continue and its request

will be under processing by the background queue thread.

CONCURRENT — For all JDASCO client calls, a separate activity gets created

to run the method. This policy is implemented by the generator that

creates one new thread for each client call. In this way, we get the high-

est concurrency level. Figure 6.2 shows the concurrent generator policy.

This is the selected policy used in JACK because it has better execu-

tion performance and is adequate to implement a concurrent language.

Nevertheless, the NON CONCURRENT policy is used in early stages of the

development process due to its adequacy for debugging purposes.

2. Second level — Implemented and mangaged by future objects

Synchronous — JDASCO client activity is interrupted while the mediator is

running the request. Since CSP is synchronous this is the selected policy

for JACK.

Asynchronous — JDASCO client activity is not interrupted, it ought to

pool the future object in order to inspect request termination. Concern

mediator ought to notify that future about termination.
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JDASCO clients must be aware of the second level policies only; it represents the

concurrency model that the client can follow. It means that the second level policy

configuration will depending on how clients interact with future objects; if they pool

future objects for results, clients are asynchronous, and they are synchronous if wait

on future objects.

6.1.4.2 Synchronization Concern

The synchronization concern deals with locks and execution flow control. The con-

cern mediator adds these non-functional requirements to the service exposed by the

functional object in order to guarantee safety access (i.e. avoid resource sharing

conflicts due to critical regions contention) to those services.

The management classes related to synchronization concern are the synchroni-

zation predicate and the synchronization data. For each functional object exposed

method, there is a synchronization predicate and data pair to implement the syn-

chronization scheme for that method.

A synchronization predicate class represents the information exchanged and the

control of the execution of a JDASCO invocation to a functional object method. The

synchronization data responsibility is to provide and centralize (possibly duplicating,

or referencing) functional object synchronization information, in order to abstract

domain dependent information.

Bloom [9] states that a synchronization scheme ought to provide six types of

synchronization information support: invocation type; invocation state; invocation

arguments; state of pending predicates; state of executing predicates; state of func-

tional object; and invocation history. The synchronization predicate interface pro-

vides the first four information types and synchronization data provides the last

two. For a complete and detailed discussion about this topic see [133, Chapter 2

p.23; and Chapter 5 p.85] and [43].

The synchronization concern has five execution phases: CREATE, PRE-CONTROL,

EXECUTE, POST-CONTROL, and DELETE. A brief description of each one is given be-

low. Figure 6.3 shows synchronization predicate and synchronization data execution

sequence with respect to each synchronization phase.

1. {CREATE} — Phase responsible for creating the synchronization predicate and

initialise the predicate queue, in order to allow a centralized queue of predicates

used for investigation during their execution.

2. {PRE-CONTROL} — Phase responsible for synchronizing a functional object

invocation before its method execution occurs, in order to guarantee safe access

to it. The phase is sub-divided in two parts: the first one inspects if the

functional object state is prepared for synchronization; the second one inspects

if the executing predicate queue is prepared for synchronization.
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3. EXECUTE — Phase responsible for notifying the underlying functional object

method its execution has granted permission and it is allowed to proceed.

4. {POST-CONTROL} — Phase responsible for synchronizing a functional object

invocation after its method execution occurs. It can post the execution, if it

must be delayed due to the need to wait for a synchronization lock; abort it,

if some synchronization error occurs; or leave it to finish successfully.

5. {DELETE} — The synchronization predicate and its underlying invocation are

signalled to be garbage collected.

The synchronization concern first level policies define how the concern mediator

synchronizes the JDASCO client call and the functional object respective service.

The second level policies are captured by how synchronization predicates and syn-

chronization data interacts with the functional object. A brief description of each

kind of synchronization policy follows.

1. First level — Implemented by synchronizers

PESSIMISTIC — Allows synchronization predicate execution only when all

necessary locks were acquired. This policy is best suited for high con-

tention lock environments.

OPTIMISTIC — Always allows execution of synchronization predicate execu-

tion. It aborts if contention for any lock occurs in the middle of the

execution. This policy is better suited for low contention lock environ-

ments.

GENERIC — A mix of the two other policies varying according to the user

circumstances.

2. Second level — Implemented by synchronization predicates and synchroniza-

tion data

Readers/Writers — Synchronizes the JDASCO client request based on the

current state of the running synchronization predicate requests inspected

through the predicate invocation queue.

Producer/Consumer — Synchronizes the JDASCO client request based on

the current state of the functional object synchronization data informa-

tion.

Dynamic Priority — This policy is similar to Readers/Writers, but with

priority information associated with all invocations; it is useful, for in-

stance, to avoid reading starvation.
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History Sensitive — This is a newly created policy to be used by JACS, not

defined in [133]. It is a combination of Readers/Writers with dynamic

priority, and an execution history with the current executing functional

object. The complete finite state machine is stored in order to open the

possibility to inspect the execution state of other concerns, while doing

the synchronization of predicates. Details about this policy can be found

in [38, 40, 43].

These two level policies were created in order to satisfy the already mentioned

six Bloom’s synchronization requirements stated in [9].

6.1.4.3 Recovery Concern

The recovery concern deals with functional object recoverability using transaction

sessions, with commitment and abortion ability; this guarantees recoverable trans-

action support to those services.

The recovery concern has a recoverable object point management class. For all

functional object methods that are exposed, there is a single recoverable object point

that abstracts the whole recovery procedure using one of the second level policies

presented below. A recoverable object point class represents the recovery proce-

dure to be done on the underlying functional object that it handles. This involves

functional object preparation for execution, commitment of execution results, or

abortion on execution failure.

The recovery concern has five phases: CREATE, PREPARE, EXECUTE, FINISH, and

DELETE. A brief description of each one follows.

1. {CREATE} — Phase responsible for creating the recovery object instance.

2. {PREPARE}—Phase responsible for associating a recovery object instance with

a functional object, obtaining the functional object where the invocation must

take place; that is a functional object prepared for recovery.

3. EXECUTE — In this phase the functional object returned by the PREPARE phase

gets executed.

4. {FINISH} — This phase is responsible for either committing or aborting the

invocation execution.

5. {DELETE}— The recovery object instance is signalled to be garbage collected.

The recovery concern first level policies define how the concern mediator recovers

the JDASCO client calls against the functional object respective service. Some

restrictions where applied for recovery policies when composing concerns as defined

in [133, 146]. The second level policies are captured by recoverable object points
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to control how JDASCO clients manages the underlying recovery model. In what

follows, a brief description of each kind of recovery policy is given.

1. First level — Implemented by recoverers

UPDATE IN PLACE — Always has the most recent changes, which makes it

simpler to commit executions. It is complex to abort (from an imple-

mentation perspective) due to recovery operations to be performed after

abortion.

DEFERRED UPDATE — Always reflects a consistent state storing uncommitted

changes, which makes it suitable to abort executions, because it can sim-

ply set the uncommitted object as the current one. It is also suitable to

operation commitment since it simply needs to update the uncommitted

changes.

BACKTRACK — Specialization of DEFERRED UPDATE to deal with backtracking.

It interacts with the supervisor environment to properly implement this

feature [40].

2. Second level — Implemented by recovery object points

Compensating Operations —The functional object must provide methods

that compensate the recovery operations of commitment and abortion;

this can break modularity.

Object Copying —The recovery object point makes a copy of the functional

object at the preparation stage of the recovery procedure.

These recovery policies are directly related to backtrack implementation.

6.1.5 Composition of Concerns

JACK is interested only in the concurrent synchronized recoverable concern compo-

sition, since it is the required composition to use JDASCO for implementing JACK

processes. Thus, this is the only composition implemented. Nevertheless, it is in-

teresting to show which new role each concern composition rises; this is done in

what follows. An initial prototype version of JDASCO implements all composition

possibilities with respective examples of their use [37].

This is the selected composition policy due to the nature and prerequisites of

our framework implementation. The concurrency concern is necessary for dealing

with processes running concurrently, a nature aspect of CSP. The synchronization

concern is necessary for dealing with the multisynchronization problem and to im-

plement the parallel operator. The recovery concern is necessary for dealing with

the backtracking recovery procedure implementation.

122



6.1.5.1 Synchronization and Concurrency

When composing concerns some additional policies and management classes arise.

The composition of synchronization with concurrency adds the necessity of a con-

currency context at the synchronization concern. This context is responsible for

controlling lock management during concurrent accesses of JDASCO activities in

order to avoid busy looping for lock acquisition. The concern activity is suspended

until some other activity wakes it up, due to the relinquish of the shared synchroni-

zation lock at the synchronization POST-CONTROL phase. Depending on the selected

synchronization policy, a different concurrency context policy is automatically se-

lected and used.

When composing concurrency with synchronization, method objects need to no-

tify futures about synchronization execution errors. On the other hand, concurrency

opens the possibility of only creating and associating activities before or after the

synchronization PRE-CONTROL phase lock acquisition, in order to allow better re-

source usage. This is called the association policy. There are two association policies

for concurrency and synchronization: IMMEDIATE and LAZY. They are captured by

the Associator interface at the JDASCO composition sub-layer and are described

below. Figure 6.4 shows the JDASCO composition layer structure.

IMMEDIATE — This policy creates and associates an activity for execution before

the synchronization PRE-CONTROL phase, which can block the activity, wasting

resources in high contention environments. This policy can waste resources,

but it increases concurrency.

LAZY — This policy creates and associates an activity for execution after the syn-

chronization PRE-CONTROL synchronization phase, which can avoid unneces-

sary activity creation and locking acquisition, which saves machine resources.

This policy can save resources, but it decreases concurrency.

The best choice of association policies is determined by the underlying execution

environment pattern. There is a restriction about the LAZY association policy. It

can be used if, and only if, the first level concurrency policy was CONCURRENT.

6.1.5.2 Recovery and Concurrency

The composition of recovery and concurrency adds the necessity of method objects

to allow recoverers to set their underlying functional object before execution at the

recovery PREPARE phase. Thus, a recoverable method object instance must always

be used in JACK.

123



Recoverer

(from recovery)

Synchronizer

(from synchronization)

Generator

(from concurrency)

Client Object
(from jdasco)

CSRInterfaceCompositio
n

associator()
associateInvocation()

invocationLock()

Associator

associate()
execute()

Functional Object

m()

(from jdasco)

SynchronizationD
ata

(from synchronization)

RecoverableMe
thodObject

(from concurrency)

SynchronizationPr
edicate

(from synchronization)

RecoveryObj
ect

(from recovery)

CSRInvocationCompositio
n

setRecoverableObject()
invocationLock()

1..*1..*

Future

(from concurrency)

Invocation composition achieves 
multiple inheritance through 
multiple interface definition 
realization, and multiple 
decoration aggretation of 
interfaces implementation

Figure 6.4: JDASCO Composition Layer Structure

124



6.1.5.3 Synchronization and Recovery

The composition of synchronization and recovery has some restrictions [146] on the

policies adopted. For instance it is not possible to compose synchronized OPTIMISTIC

producer/consumer policies with DEFFERED UPDATE recovery policy. This is a the-

oric restriction mentioned in [133, Chapter 7] and proved in [146]. For a detailed

discussion about this composition details, see [133, Chapter 7].

6.1.5.4 Composition of Concerns Phases

The composition of concerns also composes the phases of each concern. The com-

posed version of phases is divided as follows (a collaborations showing the result of

the concern composition is shown in Figure 6.5):

1. {CREATE} — Composition of the CREATE phase of each concern. This means

that these phases, at the composition layer, occur atomically. It also initialises

composition entities like the Associator and the ConcurrencyContext.

2. {PRE-CONTROL;PREPARE}—Composition of the synchronization PRE-CONTROL

and the recovery PREPARE phases. The functional object preparation for ex-

ecution can only occur when the synchronization lock is acquired and passed

in the PRE-CONTROL guard methods (i.e. require() and preGuard()). When

the PREPARE phase finishes, the lock is relinquished.

3. EXECUTE — Composition of the EXECUTE phase of each concern, which occur

atomically.

4. {POST-CONTROL;FINISH} — Composition of the synchronization POST-CON-

TROL and the recovery FINISH phases. The functional object execution com-

mitment or abortion can only occur when the synchronization lock is acquired

and passed in the POST-CONTROL guard method (i.e. postGuard()).

5. {DELETE} — Atomic composition of the DELETE phase of each concern.

The finite state machine of the concern composition is directly related to each

concern finite state machine. It is available in [38].

6.2 JACS — Semantic Layer

The implementation project of the composition layer of JDASCO and its integration

with the JACPS semantic layer is a significant part of this dissertation work. It

models the processes semantic behaviour to be used by the JACK user layer. In the

following subsections, we have a detailed discussion about how JACS implements

each role stated for the JDASCO integration procedure. As already mentioned in

Section 5.2.2, Figure 6.6 shows the sub-layers related to the following subsections.
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6.2.1 An Example — ExternalChoice Implementation

Now that we have already seen how JDASCO can be configured, let us take a

look at parts of the implementation of one CSP operator, in order to make the

description of the implementation more clear. Some aspects of the implementation,

like backtracking combinatorial choice selection, is hidden here due to its inherited

complexity To understand this topic, more details about JDASCO is necessary; this

is provided in [43]. In what follows, one can identify the stated JDASCO roles played

by the operator and the semantic layer roles mentioned in following subsections.

With JDASCO roles, the execution of any operator or user process is fragmented in

many implementation classes and protocol interfaces.

6.2.1.1 ExternalChoice as JDASCO Client

The ExternalChoice, all other operators, and all user processes have the JDASCO

client implementation abstracted by their base class, the JACKProcess class. The

implementation is provided by the CSPProdcess.start() method. Details about

this topic can be found in Section 6.2.3.5.

6.2.1.2 ExternalChoice as JDASCO Functional Object

The only functional object method exposed is the CSPBehaviour.execute() be-

haviour method. This method defines the behaviour of the process when some

communication has been selected by the supervisor environment. Thus, for each

user process or CSP operator, a specific execute() method implementation must

be provided.

The ExternalChoice operator operational semantics states that it must selects

and starts the appropriated process, according with the environment desired com-

munication. A special procedeure must be carried out when both operands of the

external choice can perform the given desired communication; in this case, an in-

ternal (non-deterministic) selection must be done. In what follows, the code of the

execute() method implementation of the ExternalChoice operator is given.

public class ExternalChoice extends AbstractChoice implements CSPBacktrackable {

. . .

private static final int CHOICE ERROR = 0;

private static final int RIGHT CHOICE = 1;

private static final int LEFT CHOICE = 2;

private static final int NONDETERMINISTIC CHOICE = 3;

private static final int FALSE OPTION = 0;

private static final int TRUE OPTION = 1;

128



private static final int[][] SELECTION MATRIX = {
// Rows=leftContains;Cols=rightContains

// False , True

/*False*/{ CHOICE ERROR, RIGHT CHOICE }, // False

/*True */{ LEFT CHOICE , NONDETERMINISTIC CHOICE }, // True

// False , True

};

public CSPBehaviourSignal execute(CSPSupervisorEnvironment sve) {
CSPProcess l, r;

l = left();

r = right();

CSPCommunication comm = sve.selectedCommunication();

intlContains = (childInspectedAlphabet(l).containsCommunication(comm) ?

TRUE OPTION : FALSE OPTION);

int rContains = (childInspectedAlphabet(r).containsCommunication(comm) ?

TRUE OPTION : FALSE OPTION);

switch (SELECTION MATRIX[lContains][rContains]) {
default:

caseCHOICE ERROR:

return B SUPERVISOR EVENT SELECTION ERROR;

case RIGHT CHOICE:

notifySelect(r);

r.start(sve);

break;

case LEFT CHOICE:

notifySelect(l);

l.start(sve);

break;

case NONDETERMINISTIC CHOICE:

//comm→ P2 comm→ Q ⇒ comm→ (P uQ) by law 2 —step

notifyInternalCommunication();//notify TAU

select().start(sve);//the select method will notify selection...

break;

}
return B EXECUTE SUCCESSFULLY;

}
. . .

}

Initially, it retrieves the left and right side operands, and the environment se-

lected communication. Then, it checks if the selected communication is inside in one

of the retrieved operands; these information was previously stored in a call to method

inspect() by the supervisor environment in the execution process. After that, it

checks the returned value against the selection matrix to infer the proper execu-

tion condition, either a successfull selection, a selection error, or a non-deterministic
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selection. Next, it notifies the process selection, in order to generate the appropri-

ated event, and starts the selected process to run returning the behaviour signal

respectively related to the execution condition.

The code snipet shown above represents the normal execution of the semantics

of an ExternalChoice operator. The backtrack procedure is carried out by layer

integration points at the JDASCO.JACS integration sublayer and it execution and

instantiation are managed by the supervisor environment. These are topics detailed

in [40].

6.2.1.3 ExternalChoice Related JDASCO Management Classes

ExternalChoice Method Object

JDASCO states that, for each functional object exposed method there must have a

respective method object implementation. In this sense, for each execute() method

of each CSP operator and user process, a specific implementation of method object

must be done. Fortunetely, the procedure is very simple and can abstracted to

become generic for all CSP operators and user process.

There is only one method object implementation called JACKProcessRMO. It

receives the execution context and parameter at construction and just call the

execute() method of the process under consideration for it. The result of the

execution call is a behaviour signal. This signal is sent to the TemplateFuture in-

stance held by the method object, in order to inform the JDASCO client about the

execution status, in the case the ExternalChoice operator acting as the JDASCO

client.

ExternalChoice Synchronization Predicate

As occured with the method object, the synchronization predicate for the External-

Choice operator is also abstracted by another JACK class called JACKProcessSP.

This generic predicate controls the execution flow between JACK.JACS process

sub-layer, JACK.JACS integration sub-layer, and JDASCO application layer. The

interaction between the supervisor environment and its pupil process are also man-

aged here. This is the most complex JDASCO generic role played by all JACK

processes.

ExternalChoice Recovery Object

JDASCO states that only one recovery object implementation is necessary for all

functional object managed by it. This is acceptable since it abstracts the recov-

ery protocol and not the physical recovery operation. In this sense, it acts as a
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mediator [28] between the functional object and the recovery concern mediator.

JACK uses the compensation operations second level policy due to its intrinsic

necessity to check the occurrance and perform the backtracking algorithm. Thus,

object copying is not adequate, moreover it is simpler than compensation opera-

tions through Java clonning support. The generic recovery object implementation is

called JACKProcessRO and it interacts directly with the supervisor environment and

the underlying managed process, in order to properly implement the backtracking

algorithm.

6.2.2 JAPS — Processes Sub-Layer

The processes behaviour is modeled by the JAPS process semantics sub-layer. It

implements user processes, CSP operators, and the JACK type system. The pro-

cesses semantics implementation is divided in two parts: the static part, which

provides process execution information, like their possible communication paths;

and the dynamic part, which provides physical execution guidance, like activities

(threads) to be created, locks that need to be acquired, or processes stack to be

recovered (or backtracked). These two parts are treated in JAPS (process sub-

layer), and in JACS.JDASCO (integration sub-layer) respectively (see Figure 6.6).

In this sense, there are two levels of processes execution: one at the JAPS sub-layer,

that prepares the execution environment providing any necessary information (i.e.

processes operands, relationed alphabets, etc.); and another at the JACS.JDASCO

sub-layer, that provides the physical execution of the process network using that

information (i.e. JDASCO management classes).

Processes representation in operating systems [139] executes in two level: user

mode and kernel mode. The JACK processes execution levels can be viewed us-

ing this operating systems process execution analogy. The JAPS process semantics

sub-layer represents the process user mode of execution, and the JACS.JDASCO

integration sub-layer described below represents the process kernel mode of execu-

tion.

An important feature about processes implementation is the way they are sub-

mitted to execute by JDASCO. The JDASCO configuration (i.e. policies and man-

agement classes) for JACK processes expects some awareness about the concurrency

and synchronization models. For instance, the JDASCO client of the concurrency

model must be aware of futures and their possible interruption.

In this sense, it is interesting, though not an obligation, that a JACK process

implementation consider these JDASCO execution and composition requirements.

On the other hand, JACK processes are implemented following Scattergood’s [126,

Chapters 4 and 8], Schneider’s [130, Chapters 1, 2, and 3], and Hoare’s [61, Chap-

ter 1, pp. 38] operational semantics description and guidelines. These guidelines

strongly suggest the use of well-defined semantic entities, in order to properly im-
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plement the compositional behaviour of processes.

Hoare [61, Chapter 1 pp. 38—39] states that to properly implement a pro-

cess just a function f describing the process behaviour, and a domain D defining

the set of events in which the process is initially prepared to engage, are neces-

sary (see Section 4.1.1). The other references establishes two semantic functions

to be defined: one that represents the same domain D mentioned by Hoare, called

initials(), and one that represents a list of CSP operators after the occurrence of

some communication event called after.

Practical experiments has shown that the Hoare’s approach to implement pro-

cesses is more adequate to operationally implement generic processes (i.e. CSP

operator processes and user defined processes) than the initials and after() se-

mantic functions defined by Scattergood [126]. The Scattergood’s approach is more

adequate to operationally implement CSP operators only, since they do not consider

user defined processes in their semantic functions definition.

Despite this fact, the initials() semantic function behaviour is similar to the

CSPBehaviour.inspect() method that represents the Hoare’s domain D. The op-

erational semantic rules described in [130, Chapter 1, 2, and 3] are similar to the

CSPBehaviour.execute() method, that represents the Hoare’s function f . The

CSPBehaviour interface is mentioned in Sections 4.3.1, 4.1.1.2, and 6.2.2.4.

JDASCO needs some guidelines in order to function properly as noted in Sec-

tion 6.1. The function f and the domain D are these guidelines. The possible

different paths returned by domain D act as compensating operations for the re-

covery concern, as execution flow controller for the synchronization concern, and

establish the concurrent behaviour pattern for the concurrency concern.

The implementation of the CSPBehaviour interface for CSP operators are built

following a compositional approach. So, each CSP operator implementation solves

its corresponding semantic role in the execution flow and then forwards the job to

its operands. In this way, all CSP operators are semantically defined. The interface

signature is given in Figure 6.7; its relationship with a process is shown in Figure 5.4.

The relationship of processes and CSP operators is shown in Figure 5.6.

Processes are entities that can run. To run, a process needs an execution en-

vironment and a behaviour pattern. The execution environment can be abstracted

and acts as the static part of the process execution. On the other hand, a behaviour

pattern must be defined for each process specification. In this way, a JACK pro-

cess must have an attached behaviour pattern. Operators are processes with an

already defined and implemented behaviour pattern. User processes, however, are

processes that lacks a predefined behaviour pattern, which means that they need to

be provided by the JACK client when instantiating the JACK process, in order to

completely define the process execution semantics.

With this kind of process modeling, some interesting properties and implementa-

tion benefits arise. Since the execution environment scenario of a process is indepen-
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package jack.jacs.japs.csp;

/**

* This interface represents the user defined behaviour for user processes.

*

* @pattern

* @author Leonardo Freitas ¡ljsf@cin.ufpe.br¿

* @version 0.1 31aug2001

* @since JDK1.2.2

*/

public interface CSPBehaviour extends CSPBehaviourSignalFactory {

public CSPAlphabet inspect();

public CSPBehaviourSignal execute(CSPSupervisorEnvironment superVisor);

}

Figure 6.7: JACK CSPBehaviour Interface Signature

dent of whether it is a user process or a CSP operator, we can generalize this part

of the process execution. On the other hand, the behaviour pattern of processes is

the dynamic part of its implementation: for each kind of process, there is a possible

different execution behaviour to be implemented.

These two parts are reflected by the division of a generic JACK process exe-

cution environment, represented by the JACKProcess class implementation of the

CSPProcess interface (see Section 4.1.1.1); and a specific JACK process behaviour

pattern, represented by some implementation of one of the CSPBehaviour interfaces

(see Sections 4.3.1 and 4.1.1.2). The former is provided as a default environment im-

plementation by the JAPS sub-layer and the latter needs to be defined by the JACK

client defining user processes. The CSP operators behaviour patterns however, have

a default implementation at the JAPS sub-layer. Since there is a separation of ser-

vice interfaces and service implementation, framework extensions or the completely

provision of different implementations is facilitated.

In what follows, we present some of the main JAPS roles to be used by JACK user

layer and the integration with JDASCO. In Figure 6.9, the main interaction between

JACS and JDASCO is shown. The figure shows the JACK synchronization predicate

(JACKProcessSP) been called at the PRE-CONTROL phase. Then, in Figure 6.10, the

default inspection procedure for process communication selection is shown; it occurs

when the supervisor environment calls the inspect() method of the inspection

solver (see Figure 6.11). After that, in Figure 6.8, the relationship between these

integration entities is given in a class diagram.

The relationship between these entities and how they interact with JDASCO

concerns [43] are described in detail in a draft document [40] available at [38]. This
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document explains the meaning and structure of a supervision frame. It is important

to clearly understand JDASCO internals [43] before looking at this reference. Nev-

ertheless, it is the heart of the solution of most important problems like backtracking

(see Section 2.3.2) an multisynchronization (see Section 2.3.3).

6.2.2.1 Process Supervisor Environment — CSPSupervisorEnvironment

Interface

The process supervisor environment performs the role of the JACK client user select-

ing the communication path to be followed. For instance, it represents the human

interaction with a cash machine, which means the user selecting some buttons, in or-

der to properly perform the desired action. The semantics of the involved processes

guarantee the expected machine behaviour, forbidding, for instance, withdrawing

money before login validation. In Figure 6.11, we present parts of the interface

signature of the supervisor environment: in the on-line documentation [38], one can

found the complete interface signature with helpful documentation about each one.

Each process execution must be under control of at least one supervisor environ-

ment. The environment is responsible for controlling vital process execution opera-

tions. These operations were firstly studied in an action semantics [97] description

of the operational semantics of CSPm [35, 82]. They are presented below.

JACK Integration — responsible for integrating the semantic layer of JACK

(JACS) with the execution layer (JDASCO).

The environment fills the gap between these two layers. It holds a reference to

a process network instance, which in turn controls the JDASCO composition

layer through an instance of a concurrency synchronized recoverable composed

concern mediator.

In this way, the supervisor controls the way the semantic layer interacts with

the execution layer. In order to properly integrate these layers, the JDASCO

management classes must be aware of the supervision operations.

Communication Selection — selects the immediate available events to commu-

nicate.

When a process starts running and enters in kernel mode, its execution at

the JDASCO synchronization concern asks the supervisor to determine com-

munications that must be selected for this execution round. The supervisor

then, forwards the selection request inspecting its pupil processes through the

CSPProcess.inspect() method about possible immediate available events to

engage. At this point, some trivial backtracking cases are prematurely avoided,

like prefix guards pre-condition. It must be mentioned that, semantically, pre-

fixes that fail to pass in their guard pre-conditions are “readyless”. Neverthe-

less, operationally, at JDASCO low-level, this situation is treated the same
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CSPCommunicatio
nDecisionFunction

select()

CSPProcessNet
workOptions

getObject()
propertyNames()

save()

CSPProcessNetworkStatus

$ PCREATED : int = 0
$ PREADY : int = 1
$ PSTOPPED : int = 2
$ PRUNNING : int = 3
$ PSKIPPED : int = 4
$ PABORTED : int = 5
$ PDEADLOCKED : int = 6
$ PLIVELOCKED : int = 7
$ PBACKTRACKED : int = 8
$ PERROR : int = 9
$ PDELAY : int = 10
$ PINTERRUPTED : int = 11

CSPSupervisionSignal
$ S_EVENT_SELECTED : int = 1
$ S_NO_EVENTS_AVAILABLE : int = 2
$ S_BARRIER_OK : int = 4
$ S_ERROR : int = 0
$ S_NO_PATHS_AVAILABLE : int = 3
$ S_BARRIER_DELAY : int = 5
$ S_BARRIER_ABORT : int = 6
$ S_BARRIER_ERROR : int = 7
$ S_NO_NEED_TO_BARRIER : int = 8

CSPSupervisorInspection
Solver

inspect()
inspectedAlphabet()

selectedCommunication()
inspectionSolved()

reset()

CSPSupervisionFrame

positionOnStack()
toString()

integrationPoint()
asSynchronizationPoint()

asSequencePoint()
asBacktrackPoint()

asRecursiveDefinitionPoint()
asCommunicationPoint()

asTerminationPoint()
asRecursiveCallPoint()
asDivergencePoint()

asHidingPoint()

CSPProcess

behaviour()
childInspectedAlphabet()

inKernelMode()
supervisor()

start()
join()

started()
running()

uncaughtException()
backtracking()

setAbort()
abortReason()

network()
findInnerMostBacktrackable()

findInnerMostRecursiveDefinition()
findInnerMostHideble()

findInnerMostSequence()
findInnerMostSynchronizeble()

CSPSupervisorEnvironment

network()
decisionFunction()

selectedCommunication()
barrier()
inspect()

notifyBacktrack()
supervisionFrame()
inspectionSolver()

associateIntegrationPoint()
createLayerIntegrationPoint()

CSPProcessNetwork

networkOptions()
isProcessRunning()

associateInvocation()
JACKThreadGroup()

getProcessNetworkStatus()
processExecutionHistory()

Figure 6.8: JACS Integration Entities Structure
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 : 
JACKProcessSP

 : 
CSPSupervisorEnvironment

 : 
CSPSupervisorInspectionSolver

inspect(CSPProcess)

inspect(CSPProcess)

lip = createLayerIntegrationPoint(CSPProcess, selComm)

associateIntegrationPoint(lip, alpha)

selectedCommunication( )

selComm

inspectedAlphabet( )

alpha

[selComm == null, supervisionFrame(process)==null]

[selComm == null, supervisionFrame(process)!=null]

[selComm != null, supervisionFrame(process)==null]

This cases occur when the 
process inspected is the first 
process after a communication 
performance. This happens with 
the root process, the next 
process of a prefix, or the next 
process that is responsible for 
performing a communication 
either internal or external.

This case occurs when the 
supervisor has already decided 
for a communication
through the inspection solver, but 
it does not have a frame for the 
given process (i.e. we must 
inspect processes once per 
communication).
Nevertheless, we can have to 
execute more than one process 
until we get the communication 
point

see "JACK Process Network Representaion" at 
http://www.jackcsp.hpg.com.br/pub for details

Figure 6.9: Interaction between JACS and JDASCO — an Overview
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return appropriate supervision signal : 
SupervisorInspectionSolver  : 

CSPBehaviour

 : 
SupervisorEnvironment

inspect( )

alpha

setInspectedAlphabet(alpha)

removeVisitedCommunicationsFrom(alpha)

treatPossibleDeadlock(CSPProcess)

treatTICK(CSPProcess, CSPAlphabet)

treatTAU(CSPProcess, CSPAlphabet)

others ...

treatCDFSelection(CSPProcess, CSPAlphabet)

setSelectedCommunication(CSPCommunication)

return selComm, inspectedAlpha

The inspection solver treat each 
possible communication case 
creating the appropriated layer 
integration point and 
associating it with the 
inspected process. This creates 
a supervision frame used for 
backtracking and multi- 
synchronization purposes.

createLayerIntegrationPoint(CSPProcess, CSPCommunication)

associateIntegrationPoint(CSPLayerIntegratorPoint, CSPAlphabet)

Figure 6.10: Interaction between JACS and JDASCO — an Overview
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package jack.jacs.japs.csp;

import . . .;

public interface CSPSupervisorEnvironment extends HumanReadable {
// Java related

public String asString();

public boolean equals(Object o);

// Access methods

public long id();

public CSPProcessNetwork network();

public CSPCommunicationDecisionFunction decisionFunction();

public void setDecisionFunction(CSPCommunicationDecisionFunction cdf)

throws NullPointerException;

// Pupil Processes related methods

public void addPupil(CSPProcess process);

public void removePupil(CSPProcess process);

public Iterator pupils();

// Supervision related methods

public boolean communicationSelected();

public CSPCommunication selectedCommunication();

public void setSelectedCommunication(CSPCommunication comm);

public void clearSelectedCommunication();

public CSPAlphabet controllerAlphabet(CSPProcess process);

public CSPSupervisionSignal barrier(boolean preBarrier, CSPProcess process);

public CSPSupervisionSignal inspect(CSPProcess process);

public CSPProcess notifyBacktrack(CSPProcess process);

public void notifyProcessExecutionFinished(CSPProcess process, CSPBehaviourSignal executionSignal);

public void notifyJDASCOConcurrentExecutionFinished(CSPProcess process, CSPBehaviourSignal

executionSignal, ExecutionStatus xStatus);

// Debugging related methods

public void dump() throws IOException;//to STDOUT!

public void dumpTo(Writer w) throws IOException;

// Layer integration methods

public Iterator supervisionHistory(CSPProcess process);

public CSPSupervisionFrame supervisionFrame(CSPProcess process);

public boolean hasSupervisionFrame(CSPProcess process);

public CSPSupervisorInspectionSolver inspectionSolver();

public void associateIntegrationPoint(CSPLayerIntegratorPoint lip, CSPAlphabet normalizedAlpha);

public CSPLayerIntegratorPoint createLayerIntegrationPoint(CSPProcess process,

CSPCommunication selComm);

}

Figure 6.11: JACK CSPSupervisorEnvironment Interface Signature
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way as a “normal” backtracking; they are distinguished only by some internal

signals. For details on backtracking solution and JDASCO low-level signaling

with respect to integration with JACS see [40].

The default supervisor implementation provides a Strategy [28, pp. 315] de-

sign pattern to make the final event selection, in order to increase modularity

and generalize the implementation. The pupil process that has requested

execution permission is inspected and the returned communication alpha-

bet is submitted to a (strategy) communication decision function interface

(CSPCommunicationDecisionFunction). This interface is responsible for se-

lecting a communication from the resultant inspected alphabet (i.e. select an

event from the process inspect()ed alphabet). The default supervisor im-

plementation already provides a default random communication selection. In

this way, if the JACK client needs to deal with a special kind of event selec-

tion it just needs to install a new decision function for the given supervisor

environment.

Backtrack Path Decision — performs the combinatorial choice of possible back-

track paths when a process has been aborted. After that, it can inform its

pupil process about another paths to follow or notify the deadlock situation

to the JDASCO composition layer to take the appropriated recovery decision.

Since the supervisor environment controls the JDASCO composition layer in-

stance, it can inspect the shared process execution history stack, in order to

properly select the possible backtrack paths to follow. This stack is filled at

the recovery concern PREPARE phase. The filling procedure is detailed in [43,

Section 1.3.4] and in Section 6.2.3.3.

The supervisor marks all selected paths in order to properly make the combi-

natorial selection. Depending on the returned result, it informs the JDASCO

composition layer, through a supervision signal, to perform the appropriate

reaction due to a backtrack condition.

Multisynchronization Barrier — funnels the pupil processes involved in a mul-

tisynchronization session into a multiway rendezvous [13, 131].

At the synchronization concern of JDASCO composition layer, the manage-

ment classes that encapsulate a pupil process of a supervisor environment must

inform it about its execution status. With this notification procedure and the

supervisor knowledge of its pupils, it is possible to properly implement the

multiway rendezvous and thus the multisynchronization between JACK pro-

cesses.

The supervised pupil queue is filled just before a JACK process enters in kernel

mode (see Section 6.2.3.5 and [38] for details).
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The JACK client is free to build and provide its own supervisor environment im-

plementation, but we do not recommend this decision unless it was really imperative.

The JACK process subsystem already provides a default supervisor environment im-

plementation, in order to make it easy to use for the JACK client. If one needs to

implement its own supervisor version, be advised about their complexity inherited

from the set of operations that the environment process must properly perform.

Most of these operations results are encapsulated in a CSPSupervisionSignal.

These signals are used at the JDASCO composition layer by the concern manage-

ment classes, in order to take the appropriate decision with respect to the given

signal. The default JACK management classes for both CSP operators and user

defined processes already take care of this signalling protocol, thus the JACK client

ought to never deal with these signals. On the other hand, JACK clients that

provide their own JDASCO management classes versions must be aware of the su-

pervisor signalling protocol, that is completely described in the companion JavaDoc

documentation available in [38] and in [40].

In this way, there is a cooperative relationship between the process supervisor

environment and the JDASCO management classes. Therefore, the supervisor en-

vironment is the ultimate one responsible for integrating the JACS semantic layer

and the JDASCO execution layer.

Special Supervision Discussion

The default process supervisor environment implementation performs all necessary

operations to properly combine JACK layers. Nevertheless, there is a special super-

vision case with respect to the Hide (P \X) CSP operator.

The semantics of this operator specifies that the events under execution that are

inside the hidden alphabet (X) must be hidden, thus the external environment can

never see them. In this sense, operators that are under it in the process network

must be supervised by a special environment that deals with this special hidden

event selection semantics. This is easily done through the use of a decorator [28,

pp. 175] supervisor that controls hidden events only forwarding any other actions

to the default supervisor environment.

Despite this fact, a network can have as many supervisors as necessary. This is

normally restricted to be only a single default supervisor environment with any spe-

cial hide supervisor decorator when that operator appears in the network. However,

processes with multiple supervisors are allowed. For instance, this scheme can be

used for a layered event selection, where each layer provides a default supervisor envi-

ronment implementation with a different communication decision function strategy;

or some more sophisticated schemes with different supervisor implementations.
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package jack.jacs.japs.csp;

import . . .;

public interface CSPProcessNetwork extends HumanReadable {

// Network User Configuration Options

public CSPProcessNetworkOptions networkOptions();

// JDASCO integration

public void interrupt();

public boolean isInterrupted();

public void clearInterrupted();

public boolean tryToInterruptOnDeadlock();

public boolean setTryToInterruptOnDeadlock(boolean value);

public boolean isInitialized();

public boolean isProcessRunning(CSPProcess process);

public boolean isProcessRunning(String processName);

public boolean anyProcessRunning();

public void associateInvocation(CSPProcess userProcess, RecoverableMethodObject rmo,

SynchronizationPredicate sp, RecoveryObject ro, Object userDefined);

public Object networkLock();

public ThreadGroup JACKThreadGroup();

public CSPProcessNetworkStatus getProcessNetworkStatus();

// Environment information - views

public CSPCommunicationEnvironment tracer();

public CSPProcessExecutionHistory processExecutionHistory();

public void setProcessNetworkStatus(CSPProcessNetworkStatus status);

public void removeProcess(CSPProcess process) throws CSPProcessException;

}

Figure 6.12: JACK CSPProcessNetwork Interface Signature

6.2.2.2 Process Network — CSPProcessNetwork Interface

The process network acts as the bridge between the JDASCO composition layer

and the JACS.JDASCO integration sub-layer. It plays the role of the concern me-

diator; or more accurately, it holds and is responsible for controlling a reference of

concurrent synchronized recoverable concern mediator implementation provided by

the JDASCO composition layer. In Figure 6.12, we present the interface signature

of the process network.

The process network can also act as an information center for executing processes.

It does not control processes, they execute under the supervision of the supervisor

environment. During execution, the supervisor environment can request information

to the process network, in order to make the appropriate decision about which
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communication path to follow or which backtrack decision to take, based on the

network information. In this sense, it is an important pool of information. The

network provides information like: execution history, communication traces, current

running processes, aborted processes, committed processes, controlled access to the

underlying JDASCO composition interface for low-level operations, and so forth.

The process network also has a set of configuration properties, called process

network options, that may be set by the JACK client through the process network

options file. These properties are JDASCO policy adjustment parameters, default

CSP operator settings, debugging facilities, and so on.

Each process network can have a different process network configuration option.

Configuration files can also be defined to be loaded by the process network configu-

ration options, which makes the execution environment very flexible. However, both

the process network and the process network configuration options have a default

implementation automatically incorporated by the supervisor environment. In this

way, the JACK client does not need to know nor to deal with these classes. Neverthe-

less, these classes can be instantiated and specialized to be used by JACK processes,

like CSP operators (i.e. the Hiding — P \X — operator) and possible (very spe-

cialized and advanced) user processes. For instance, on the jack.jcase.csp case

studies package (see class GeneralTestCSP.java), one can found a specialized ver-

sion of process network configuration options usage; with this example, the execution

environment shows to be very productive and flexible.

6.2.2.3 Process — CSPProcess Interface

The available implementation of the CSPProcess interface is the basic class called

JACKProcess. An already noted important feature (see Section 4.1), is the ability

of the JACK client to build its own processes via inheritance, deriving their classes

from the JACKProcess class; or via decoration [28, pp. 175], implementing the

behaviour pattern interface and submitting this interface to a JACKProcess class

instance to run. This goal is achieved using the same implementation pattern of the

Java Thread class and Runnable interface [63, Chapter 1]. Figure 6.13 shows some

parts of the CSPProcess interface signature.

JACK processes already implement the behaviour pattern interface (CSPBehav-

iour) providing a no-op implementation (see Figure 5.4), and also has a behaviour

pattern mandatory attribute given at process construction. With this, if the user

decides for the inheritance approach, he just needs to override the behaviour pattern

no-op methods, which is natural. If the user decides for the decoration approach, he

just needs to implement the behaviour pattern interface methods and submit this

implementation as the behaviour pattern mandatory parameter of the JACKProcess

instance, which is again natural. These two approaches can be found on case studies

in packages jack.jcase.csp and jack.jcase.sawp.
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public interface CSPProcess extends HumanReadable, Cloneable, Comparable {
// Process Graph/Representation related methods

public long level();

public CSPProcess parent();

public CSPBehaviour behaviour();

public Iterator children(boolean recursive);

public CSPAlphabet childInspectedAlphabet(CSPProcess child);

public void setChildInspectedAlphabet(CSPProcess child, CSPAlphabet alpha);

public boolean hasChild(CSPProcess child, boolean recursive);

public boolean hasChildren();

// Process state methods (see Figure 4.1)

public boolean inKernelMode();

public boolean started();

public boolean running();

public boolean finished();

public boolean deadlocked();

public boolean isAnActiveObject();

public boolean aborted();

public boolean backtracking();

// Process Supervision related methods

public CSPProcessNetwork network();

public CSPSupervisorEnvironment supervisor();

public Reason abortReason();

public void setAbort(Reason reason);

public void uncaughtException(Thread t, Throwable e);

// Methods that the user ought to call

public void start(CSPSupervisorEnvironment sve) throws IllegalProcessStateException;

public void join();

// Process Network graph searching facilities

public CSPProcess findInnerMostBacktrackable();

public CSPProcess findInnerMostRecursiveDefinition();

public CSPProcess findInnerMostHideble(CSPCommunication forComm);

public CSPProcess findInnerMostSequence(CSPCommunication seqOn);

public CSPProcess findInnerMostSynchronizeble(CSPCommunication forComm);

// Denotational Semantics Information that might be calculated

public List after(CSPCommunication comm);

public CSPTraces tracesModel();

public CSPFailures failuresModel();

public CSPDivergencies divergenciesModel();

public CSPFailuresDivergencies failuresDivergenciesModel();

}

Figure 6.13: JACK CSPProcess Interface Signature
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The process interface also provides some useful operations to be used by JACK

clients. Some of them are briefly described below.

Cloning Support — Processes that were not running can be cloned. The cloning

procedure is deep in the process network graph; that is, process children are

also cloned, in order to properly represent the links between processes in the

cloned graph. More details about process network graph and cloning behaviour

can be found in [40].

Low-level Tracing — Low-level tracing is a special implementation of the diag-

nostic logger [123, Chapter 16] pattern language. It allows users to track all

kinds of process signals, from CSP event communications to supervisor signals

or hidden events.

Searching Support — A process network can be searched either upward or down-

ward with some filtering or configuration options.

For a complete list, see the CSPProcess interface companion JavaDoc [38].

Users can define their own CSPProcess implementation, but they ought to not

do so. This might be done only in the case of a major implementation improve-

ment, since the process implementation must deal with many pieces of functionality

like JDASCO integration, supervision relationship, etc. For instance, a distributed

version of processes execution implementation can be provided as a possible future

work.

6.2.2.4 Process Behaviour Pattern — CSPBehaviour Interfaces

The normal behaviour pattern interface of processes has two methods to be imple-

mented, they are shown in Figure 6.7; they are described below.

CSPAlphabet inspect()

This method represents the domain D of possible immediately initial events to

engage, mentioned by Hoare in [61, pp. 38]. Users that just make a composi-

tion of CSP operators as their own process behaviour pattern can easily define

this method calling the related operators respective inspect() methods and

use the CSPAlphabet set operations to properly combine the results. If one

needs to represent specialized processes, a CSPAlphabet domain (D) must be

properly built in order to correctly implement the intended semantics. For in-

stance, at an early stage of the development, we build alphabets that represent

some process network immediately available events on-the-fly to test JDASCO

integration without using semantically defined operators. This allows the in-

cremental development (see Section 5.1) of processes. Some examples of the

method usage are given in Chapter 4 and [41, 38].
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CSPBehaviourSignal execute(CSPSupervisorEnvironment superVisor)

The method represents the function f that describes the process behaviour,

mentioned by Hoare in [61, pp. 38]. For instance, a user can make a switch()

over some condition and follow a specific path according to that condition; or

he can provide a specialized routine that uses some complex data structure

that represents the process intended semantics.

The process related to this behaviour is under the given supervisor param-

eter. This parameter is needed in order to decouple the behaviour imple-

mentation about the awareness of a supervisor instance. If the JACK client

inherits its implementation class from JACKProcess to override this method,

the given superVisor argument must be equal to the one returned by the

CSPProcess.superVisor() method.

The JACK client must be aware that this method must conform with the

returned alphabet of the inspect() method, in order to allow the supervisor

to proper decide the correct paths to follow. If a user provides an execute()

method implementation that is not uniform (i.e. the function f must executes

only under the domain D) with respect to an inspect() call, the final process

behaviour is unpredictable.

The method must return a signal informing how does its execution occurred.

Currently, there are six possible signals. This set of signals can grow as neces-

sary but the first two are the most common and the only ones that the JACK

client must be aware of. The behaviour signal can have an attached Reason

object. JDASCO composition layer uses this signalling protocol in order to

properly inform the process supervisor about the process execution status.

These behaviour signals are briefly explained below. For more details about

behaviour signalling protocol, see companion JavaDoc [38].

1. B EXECUTE SUCCESSFULLY — JACK clients must return this signal when

its execution has finished successfully. For instance, all CSP operators be-

haviour implementation returns this signal when their execution finishes

successfully.

2. B EXECUTION ERROR — JACK clients must return this signal when its

behaviour execution has finished unsuccessfully. They should normally

attach a Reason object defining the reason of the error. For instance, all

CSP operators behaviour implementation returns this signal when their

execution were aborted due to some Reason.

3. B SUPERVISOR EVENT SELECTION ERROR — JACK clients ought to return

this signal if the supervisor has selected an invalid event. It may occur

only if the inspect() method implementation was not properly defined
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package jack.jacs.japs.csp;

public interface CSPExtendedBehaviour extends CSPBehaviour {

public void setUp(CSPSupervisorEnvironment sve);

public void finish(CSPSupervisorEnvironment sve, CSPBehaviourSignal signal);

}

Figure 6.14: JACK CSPExtendedBehaviour Interface Signature

or if the communication decision function strategy used by the supervisor

was selecting an invalid event (i.e. an event outside the selection domain).

For instance, the CSP ExternalChoice (2) operator returns this signal

if the desiredCommunication() of the supervisor was neither on its left

nor on its right side communication alphabets.

4. B IO ERROR — JACK clients ought to return this signal when its be-

haviour execution has performed some I/O error. I/O in this context

means either a channel data link or value serializer I/O errors (see Chap-

ter 4 for details about data links and serializers). Currently, only CSP

prefix operators returns this signal.

5. B BACKTRACKING — JACK clients ought to never need to return this sig-

nal, unless it is defining a very specialized user process that needs back-

tracking. Users must be aware of the backtracking algorithm implemented

by the given supervisor environment in order to properly uses this signal.

Currently only CSP operators that deals with backtrack return it. This

is an advanced topic related to supervision of processes; it is mentioned

in [40].

6. B NOT YET EXECUTED— Represents a no-op signal. It acts like a unknown

initial value. The JDSACO method object starts its underlying behaviour

with this value. Currently any JACK process returns it.

The framework provides more specialized extended behaviour interfaces. For

instance, there is the CSPComparableBehaviour interface, that can be used to com-

pare different process behaviours following some user defined comparison pattern;

or the CSPExtendedBehaviour interface, that can be used to “listen” process com-

munications during its execution, which can be very useful for debugging purposes

or for visual tools development. The extended behaviour pattern interface signature

is given in Figure 6.14, and its main methods are described below.

void setUp(CSPSupervisorEnvironment sve)
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This method gets called by the CSPProcess implementation just before the

process enters in kernel mode. It is called every time a process is started. This

is a topic detailed in Section 6.2.3.5.

This set up procedure is interesting in order to avoid the dynamic process

growing problem mentioned in Section 5.2.2.3. Therefore, all processes in-

volved in a running session should be known before they start running. This

method sounds reasonable, in order to force the user process implementor to

do not make mistakes creating unnecessary or undesired processes during the

process execution in kernel mode at the behaviour execute() method, which

can make the implementation of inspect() more complex or probably wrong.

finish(CSPSupervisorEnvironment sve, CSPBehaviourSignal signal)

This method gets called by the CSPProcess implementation just after the

process has finished and before it leaves from kernel mode. This is a topic

detailed in Section 6.2.3.5.

This finish procedure can be used by a user process that needs to take some

clean up action or an action based on the returned behaviour signal and Reason

object. For instance, the prefix implementations use this method in order to

execute or not their following processes according to the given behaviour signal

(i.e. the prefix process is started if, and only if, the event communication has

been successfully performed).

For more details on behaviour patterns, see Sections 4.1 and 4.3, and companion

JavaDoc [38].

6.2.3 JACS.JDASCO — Integration Sub-Layer

The integration of semantic processes (JAPS process sub-layer) and JDASCO is done

at the JACS.JDASCO sub-layer represented by the jack.jacs.jdasco Java pack-

age. It acts as the JDASCO application layer, implementing all necessary JDASCO

management classes like synchronization predicates, method objects, and recovery

object points. Figure 6.6 shows a view of the JACK layers.

This section defines, for each JDASCO role, a corresponding JACS.JDASCO

participant. As stated in Section 6.1, JDASCO has three main entities: a JDASCO

client requesting for a service; a concern mediator coordinating concern addition and

combination; and a functional object providing the requested service. In this sense,

the service that a JACS functional object must provide is the execution facility for

processes. A JACK client desires that a process runs, according to its needs.

The JDASCO functional object is represented by CSP operators and user pro-

cesses, since they define the desired execution behaviour to be exposed for JDASCO

clients. A JACK process (represented by the CSPProcess) in this view, acts as the
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service provider. In this sense, it needs to expose some functionality to the JDASCO

client be able to make the service request. The only service of some JDASCO client

interest is the ability to make process definitions to execute. This is achieved by

the execute() method of the behaviour pattern interface. Therefore, the exposed

JDASCO functional object functionality is the execute() method, which runs the

implemented process semantics.

The JDASCO client is also represented by a JACK process (CSPProcess inter-

face). It asks the concern mediator (CSPProcessNetwork) to submit a process spec-

ification to run at JDASCO, which means that JDASCO must call the execute()

method of the behaviour pattern interface at the appropriate time (EXECUTE phase

of concurrency concern). In this way, a JACK process is the actor which requests

the service or provides the service, it depends on the calling context.

Therefore, there is a very special situation of the configuration of JDASCO roles,

in order to properly implement JACK processes. A JACK process acts both as a

JDASCO client and as a JDASCO functional object, depending on the execution

context. After a thorough observation of JDASCO code, original DASCO author,

and valuable discussions with the pattern community and research fellows, the de-

cision to make the JACK process to plays the role of the JDASCO client and the

JDASCO functional object, sounds reasonable due to the intrinsic compositional

property of CSP processes. This decision needs some more clarifications.

There is an execute() behavioural operation defined at the behaviour pattern

interface for both user process and CSP operators. If a JACK process plays only the

JDASCO functional object role, JDASCO clients will need to know which execute()

method to call (i.e. make some operator or process type cast in order to correctly

infer the appropriated method to call). Doing so, the framework will not execute

the operator semantics naturally, since the operators will be passive not knowing

how to proceed, contrasting the idea of an active object[81, pp. 367] mentioned in

Section 4.1.

This passive behaviour is not the case of a CSP framework, since a CSP process

must act as an active object [81, pp.367], in the sense that it knows by itself, which

operation to proceed (i.e. which process execute() method to call). Therefore, the

JACK process also acts as a JDASCO client because it knows which execute()

method it must calls due to its semantics knowledgement.

In this way, the JACK client interacts with a JDASCO client that is always a

process. This means that a JACK client never interacts with JDASCO (as shown

in Figure 6.6), which sounds very reasonable in the sense of organization of layer

service providing. Despite this fact, the JACK client (at the level of the JACK user

layer) also wants to run a process. In order to achieve this goal, a JACK process

must expose a uniform way of process execution.

This goal is achieved through the CSPProcess interface start() method. That

method is slightly different from the CSPBehaviour interface execute() method, in
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the sense that it performs necessary internal tasks to properly start JDASCO and

executes the root process semantics. For instance, the generalized parallel operator,

override the default implementation of the JACKProcess.start() method in order

to correctly implement its concurrent expected behaviour, that is two concurrent

threads running each operand process at the same time synchronizing on the oper-

ator alphabet. Despite this, the start() method also provides a way allow JACK

clients to inform the process supervisor environment under consideration for this

process execution session.

As already mentioned, the JDASCO concern mediator is managed by the pro-

cess network (CSPProcessNetwork interface). This means that the process network

implementation holds a JDASCO composition layer concern mediator instance ref-

erence. The network uses that reference to submit the JDASCO client calls to

JDASCO composition layer for execution, through the associateInvocation()

method (see Figure 6.12). In this sense, the process network acts as a decorator [28,

pp. 175] of the JDASCO concern mediator. Therefore, every JACK process, acting

as a JDASCO client, must request the process network to submit their request to

JDASCO functional object, which in the case is another or possible the same JACK

process. Another interesting detail, is that the supervisor environment is responsible

for holding the instance of a process network, this way a JACK process has only

access to the process network after it has been started and is in kernel mode.

This seems very reasonable since the process network needs to be aware of all

information related to process execution in order to properly achieve its goal, that

is to provide an information gathering service to all JACK processes. With this

detailed composition control of the process supervisor environment, the process net-

work, and JACK processes at JAPS process sub-layer; and execution control at

JACS.JDASCO integration sub-layer, the process network can clearly behave as the

mediator of process execution submission.

After this exposition of the main JDASCO participants, there is the need to

clarify some of the selected policies and management classes used for the integration

of JACS.JDASCO sub-layer with JDASCO. For each JDASCO concern, a detailed

explanation of each entity are provided below in next Sections.

6.2.3.1 Concurrency Concern Integration

The concurrency concern has one entity that must be defined for each JACK process,

that is a method object. Since processes need to deal with backtrack, the framework

must use a composed version of method objects that deals with recovery, called

recoverable method object and represented in JDASCO as the RecoverableMeth-

odObject interface. This special kind of method object is a direct extension interface

of the original MethodObject interface and it is signaled by the recovery concern

PREPARE phase in order to adjust the underlying functional object, that the method
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object interacts with. The recoverer first level recovery policy manager returns a

prepared for recovery version of the functional object, which means a functional

object decorated at the process execution stack, to be used as the current functional

object of the considered recoverable method object instance. This task is necessary

in order to properly make the composition of recovery and concurrency concerns [133,

Chapter 7].

There is only one kind of method object, since there is only one functional object

method to expose, that is the execute() method of the behaviour pattern inter-

face. Meanwhile, for each submitted JACK process, the framework must provide

an instance of this method object. Fortunately, this task is simply achieved by the

JACKProcess implementation class for all sort of processes, since all of them need

to have a CSPBehaviour interface instance for the method object be able to call its

execute() method. An implementation guided this way, gives a very dynamic ex-

ecution environment. For instance, if some operator semantics changes, or by some

reason its semantics needs to change, the changing process becomes easier and well-

localized. One just needs to alter the execute() method of the behaviour interface

and reuse the whole already provided generic infrastructure.

Concurrency Policies Configuration

The first level policy manager is called the concurrency generator; it is represented

by the JDASCO Generator interface. The selected policy for JACK process execu-

tion is the CONCURRENT one, due to its adequacy related to the CSP semantics. They

execute independently of each other following restrictions guided by their execution

semantics and supervisor environment.

The second level policy manager is coordinated by future instances; they are

represented by the Future and TemplateFuture interfaces. An important aspect

of futures is their use for the synchronous execution of CSP operators. Since a

JACK process acts both as a JDASCO client and as a functional object, the JACK

client needs not to deal with futures directly, and so the modularity problem of

the JDASCO concurrency concern [133, Chapter 4] is completely hidden (see [43,

Section 1.1] for some detailed discussion about this problem).

In this sense, the proper use of futures is the responsibility of the JDASCO client,

in our case a JACK process. This JDASCO client synchronization is mentioned in

Section 6.2.3.5.

The process network configuration options holds the policies selection for each

concern. Specialized users or extension developers, can make use of them to tempo-

rally change the expected configurable concern policy in order achieve some specific

goal, like incremental development. For instance, during the initial development

process of JACK integration sub-layer, we use the NONCONCURRENT policy (as sug-

gested in [133, Chapter 8]) in order to debug the JDASCO composition of concerns
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with respect to JACK processes management class implementation.

JACK Process Method Object Implementation

Method objects have two important jobs:

1. The execution of the concurrent part of the processes operational semantics.

2. To inform the process network through future notifications with success or

failure, depending on the synchronization concern execution status, that the

process execution has finished. At this point, the JDASCO client activity can

be resumed to proceed its execution.

The recovery concern also takes advantage of this notification scheme, since it

can prematurely abort unsuccessfully executed method objects.

The first job corresponds to a direct call to the execute() method of the

CSPBehaviour interface. It represents the behaviour pattern of the process received

at the method object construction. The second job is achieved in two steps:

1. After the return of the CSPBehaviour.execute() method call, the future is

notified about the process execution status at the MethodObject.execute()

method. This returned value is represented by a CSPBehaviourSignal in-

stance and it acts as the method object (process execution) returned value.

The available behaviour signals mentioned in Section 6.2.2.4.

Since the process method object has a return value, we need to use a spe-

cial kind of future to hold that value, it is called a template future and it

is represented by the JDACO TemplateFuture interface. This is a minor

JDASCO detail, for more information about different available futures, see

TemplateFuture and CSPFutureImpl JavaDoc [38].

2. Following the collaborations of concurrency concern mentioned in [43, Sec-

tion 1.1.2, Figure 2], the MethodObject.finish() method gets called. This

method implementation notifies the process supervisor environment that its

pupil has finished its execution.

Currently, JACK provides only one method object implementation called JACK-

ProcessRMO. Despite this, a specialized user processes that wants to implement

its own method object version must implement the RecoverableMethodObject

JDASCO interface.
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6.2.3.2 Synchronization Concern Integration

The synchronization concern has two synchronization entities to define1 for each ex-

posed functional object method, that is a synchronization predicate and a synchro-

nization data. Each JACK process defines its synchronization predicate to control

the execution flow of its semantics. Every process also has a specific synchroniza-

tion data to register, inspect, and deal with synchronization information, in order

to properly follow the JDASCO rule for not breaking modularity due to direct ac-

cess of functional object information. Therefore, for each JACK process there is

a synchronization predicate and a synchronization data implementation class pair

to respectively control execution flow and store synchronization information. Since

there is only one method to expose, there is only one pair for each CSP operator.

Due to some complexities inside the synchronization finite state machine when

combined with other concerns, an extended version of the synchronization predicate

and synchronization data interfaces are used. These extended versions are necessary

in order to properly implement the history sensitive synchronization second level

policy mentioned in [43, Section 1.2]. They are represented by the HistorySyn-

chronizationPredicate and HistorySynchronizationData interfaces.

Each JACK process should specialize a synchronization predicate and synchro-

nization data instances according to its needs. For each submitted JACK process,

the framework must provide an instance of these interfaces. This task is generically

achieved by the JACKProcess implementation class for user processes and special-

ized by each CSP operator implementation. Again, implementing processes this

way we achieve a very dynamic synchronization environment. User defined pro-

cesses can trust the already generically defined synchronization predicate and data

pair, so JACK users never need to deal with JDASCO predicates unless some very

specialized or advanced control was necessary. On the other hand, each CSP op-

erator ought to define its own synchronization semantics. For instance, the STOP

operator must deadlock and the generalized parallel operator must synchronize on

its synchronization alphabet.

Synchronization Policies Configuration

The first level policy manager is called the synchronizer; it is represented by the

JDASCO Synchronizer interface. It is configured at the level of the process net-

work. The policy selected to be used by JACK processes is the GENERIC one, since

some operators need to use the PESSIMISTIC policy (i.e. prefixes) and some of them

need to be OPTIMISTIC policy (i.e. generalized parallel), depending on the execu-

tion context. Although some operators like the generalized parallel could either be

PESSIMISTIC waiting for some execution condition at the PRE-CONTROL synchroni-

1More details on this topic can be found in [43].
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zation phase or be OPTIMISTIC aborting some operand due to a backtrack situation

that has occurred at the POST-CONTROL synchronization phase, or due to a deadlock

that has been reached.

The second level policy is configured at the level of synchronization predicates

and synchronization data pair. The second level synchronization policy selected

to be used by JACK was an extended combination of the dynamic priority read-

ers/writers and the producer/consumer enriched with history sensitive synchroni-

zation predicate information. The readers/writers policy is applied to situations

where the operator needs to inspect other executing operators, like with the gener-

alized parallel. The priorities are necessary in order to avoid reading starvation of

reading prefixes, (see details about predicate priorities in [133, Chapter 5]). The pro-

ducer/consumer policy is applied to situations where the operator needs to inspect

the state of other operators, like occur between prefixes and generalized parallel.

The history sensitiveness is important in order to correctly inform the supervisor

environment about the possible backtrack paths. This is an extended policy not

found in original DASCO.

JACK Process Synchronization Data Implementation

The defined synchronization data is responsible for dealing with synchronization

information about the functional object during its execution. There is a generically

defined synchronization data used for all sort of JACK processes called JACKPro-

cessSD. For user defined processes it acts as a default implementation. It provides

default support for history sensitiveness, in order to proper implement the selected

second level policy. This way, the synchronization data follows the Bloom’s [9] rules

referenced in [43, Section 1.2].

For each CSP operator there is a different specialized implementation of the

synchronization data. This is needed in order to properly know the execution sit-

uation and information of each operator independently. For instance, the prefix

synchronization data must have access to the prefix operator guard, channel inter-

face, and value set constraint for read prefixes, or a copy of the value to be written

by write prefixes. For details about JACK CSP operators, values, and value sets,

see Chapter 4 and [38].

An important fact must be observed about a process that enters in kernel mode of

execution at JDASCO, a topic mentioned in Section 6.2.2. All read/write structures

must be copied or sealed (see Section 4.4 for a explanation of these concepts) before

enter in kernel mode (i.e. be submitted for execution at JDASCO), in order to avoid

side effects execution during physical execution. For instance, when a write prefix

enters in kernel mode its value to be written is copied. Any change on that value

after this submission will be observed only in the next execution of the write prefix,

if one occurs at all.
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A specialized user process that wants to implement its own synchronization data

version must be aware of this fact. They also ought to inherit from the synchro-

nization data base class (JACKProcessSD), in order to properly inherit the history

sensitive implementation mechanism.

JACK Process Synchronization Predicate Implementation

Synchronization predicates are responsible for dealing with synchronization control

of functional object execution control flow. In this sense, each JACK process has a

synchronization predicate to implement its dynamic semantics specifying when, how,

and why some process can or cannot proceed with its execution. There is a gener-

ically defined synchronization predicate used for all sort of JACK processes called

JACKProcessSP, also used as default by user processes. It provides default support

for dynamic priorities, in order to proper implement the selected second level policy

and properly linking with the process supervisor environment. As occurred with the

synchronization data, the synchronization predicate follows the Bloom’s [9] rules.

The linking with the process supervisor environment is very important, in order

to properly implement and inform the process network which operand can or cannot

follow, based on the underlying supervision information (i.e. already visited back-

tracked paths). This path selection is based on the inspection of possible events that

the pupil processes can engage immediately (i.e. the resultant alphabet of a call to

the CSPBahaviour interface inspect() method). This alphabet of possible immedi-

ately available events is used by the supervisor to guide the possible backtrack paths

and is called its desired communication alphabet. The recovery concern also have a

role about backtracking possibilities or deadlock situations for abortion, due to syn-

chronization errors, as expected when composing synchronization with recovery [133,

Chapter 7]. The supervisor is also responsible for signalling the synchronization con-

cern through the synchronization predicate using a CSPSupervisorSignal instance,

that the correspondent executing concurrency concern recoverable method object in-

stance needs to finish its execution. The method object in turn, notifies the calling

JDASCO client activity.

For each CSP operator there is a different specialized version of predicates that

must implement the correspondent operational rule of each operator for synchroni-

zation. JACK documentation provides a brief tabular description of some opera-

tors [38]. For instance, prefix predicates need to check the guard condition before

execution. Read prefixes must also check their value set constraint with respect to

possible constrained values written by related write prefixes (i.e. prefixes sharing

the same channel). This minimizes the possible backtrack cases, since it avoids data

dependency executions (without expansion) that will deadlock due to some value

set restriction.

A specialized user process that wants to implements its own synchronization
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predicate version must inherits from the synchronization predicate base class (JACK-

ProcessSP), in order to properly inherit the linking with the supervisor environment.

6.2.3.3 Recovery Concern Integration

The recovery concern has only one entity to be defined. It makes the backtrack

process operational. As expected by the JDASCO definition for recovery, there is

only one class to be implemented for all JACK processes. It never needs to be ex-

tended or implemented by any derived class. This is in contrast with other concerns

in which, for each operator, there is the need to define a different implementation

entity.

The recovery object point defined keeps a shared process execution history stack

represented by the CSPProcessExecutionHistory interface. There is only one in-

stance of this interface shared among all recovery object point instances and it is

controlled by the process network.

The process execution history stack is adjusted at the recovery PREPARE phase.

When the execution finishes, it can either commit or abort. If it commits, the

committed process is removed from the stack; if it aborts, the aborted process

remains inside the process execution stack. In both cases, the process network is

indirectly notified by the recovery object point, since they share the same stack

instance. There is no safety penalty with the use of a shared instance, since the

execution phases where the stack can be altered already execute under a safe region.

For instance, the process execution history stack information and the notifica-

tion procedure can be used by the generalized parallel on concurrent concern at the

FINISH recovery phase. With this, the operational part of the backtrack solution

procedure, like process path searching, can be achieved inspecting the process stack

stored in the process network. This search procedure could define which path to

visit based on not yet visited paths and already visited backtracked ones with re-

spect to the supervisor desired communication alphabet. To carry out the search,

the supervisor of the process under consideration uses the CSPBehaviour interface

inspect() method that represents the Hoare’s domain D of possible initial events.

In this way, the supervisor can decide which paths can be followed. If there is no

more paths to follow, a deadlock situation is detected. A combinatorial search of all

possible paths must be done, in order to correctly detect the deadlock, considering

any possible backtrack path.

Recovery Policies Configuration

The first level policy manager is called the recoverer; it is represented by the

JDASCO Recoverer interface. The adopted policy in JACK is the DEFERRED--

UPDATE one, since it is simple to confirm (commit), and also simple to abort; both
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operations are very important to JACK. The abortion simplicity is the most impor-

tant aspect, since it is directly related to backtrack.

The second level policy adopted is the history sensitive compensation operations,

an optional not available in original DASCO. DASCO warns that the compensation

operations choice, instead of object copying, makes the functional object and the

recovery concern mediator to loose modularity. This occurs since the recovery medi-

ator needs to rely on the exposed functional object interface. Nevertheless, this new

special kind of compensation operations does not rely on functional object exposed

methods, but it does rely on a shared process execution history stack.

Some discussion is needed at this point. The other policy available is object

copying, which can be easily achieved in Java, due to its built-in cloning support for

object instances. However, because of the compositional property of processes, the

whole (deep) copy procedure has a heavy resource cost when the network becomes

big. The interface definition of JACK processes combined with this shared stack

instance, can directly be used as compensating operations. In this way, modularity

is not lost, since process interfaces do not get directly (i.e. there is no need to call

one of its interface methods) involved on the compensation procedure.

JACK Process Recoverable Object Implementation

As already mentioned, only one recoverable object implementation is necessary for

all sort of JACK processes, that is, a generically defined backtrackable recoverable

object called JACKProcessRO. For each JDASCO session (i.e. a JACK process execu-

tion submission), a new instance of it gets instantiated in order to properly manage

the shared process execution history stack. In this way, the whole backtrack proce-

dure is facilitated, since the process supervisor environment needs only to inspect

that stack.

A specialized user process that wants to implement its own recoverable object

version must inherits from the recoverable object base class (JACKProcessRO), in

order to properly inherit the link with the mentioned shared stack.

6.2.3.4 Composition of Concerns Integration

The composition of concerns represents the intermediate layer of JDASCO (see

Figure 6.6). It composes the concerns of the concern layer in order to allow JDASCO

application layer to use them. In original DASCO this composition is done using

multiple inheritance. Recent framework modeling techniques [113, Chapter 4] state

that multiple inheritance must be avoided.

When composing (or integrating) frameworks, we have to be very careful to

avoid problematic situations for the future. The DASCO implementation decision

to use multiple inheritance is inadequate for a general purpose framework. The given

156



implementation acts as an example and not as a real world implementation. In this

sense, a different approach to compose the concern frameworks is adopted. The

adopted solution follows the role modeling of JDASCO: the use of Java interfaces

to represent concern protocols (role types of each concern) [113, Chapter 5 Session

5.4.3]. At the composition layer, a single class implements all the necessary concern

interfaces and makes use of their services by aggregation, constituting a special kind

of decoration. This means that the composition implementation class has as one of

its attributes a concrete instance of each concern interface provided by the specific

concern layer. In this sense, the implementing class acts as an adapter [28, pp. 139]

pattern that composes multiple concerns.

Composition of Concerns Selection

The composition of concerns used is the concurrent synchronized recoverable one.

This does not add any implementation class to be defined, but just some policy

adjustment and configuration requirements. The decision for this composition was

made based on implementation requirements discussed in this Chapter.

The concurrency concern deals with activities creation, coordination, and man-

agement. For instance, they are used when a JACK process enters in kernel mode

for physical execution.

The synchronization concern deals with execution control flow of JACK processes

semantic implementation through lock monitoring and administration. For instance,

the prefix needs to wait for synchronization when it was inside a synchronization

alphabet of a parent generalized parallel; that parent must notify the shared process

supervisor environment about this fact. In this way, the supervisor environment

can notify the prefix that it can follow, through predicate queue inspection. Thus,

the generalized parallel synchronization predicate is using the reader/writers second

level synchronization policy.

The recovery concern deals with JACK processes recovery due to possible back-

track situations. For instance, when an external choice notifies its supervisor about

possible selectable paths, the supervisor then choose one of the paths based on some

selection decision function. If the selected path leads the process to a deadlock sit-

uation, an alternative path must be tried until all possible paths had been visited.

Policy Configurations when Composing Concerns

Some attention must be given to the consequences of composing these concerns.

The composition of concurrency and synchronization adds the activity association

decision with synchronization predicates to be done before or after the lock acquisi-

tion. The selected composition layer association policy is the IMMEDIATE association,

which associates an activity independently of any lock, in order to increase concur-
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rency between JACK processes with a possible resource waste penalty. The other

possibility, the LAZY association policy, may not be efficiently used, since it needs

all locks to be acquired before activity creation. Due to the compositional property

of CSP processes lock acquisition may be scattered.

The composition of synchronization and recovery concerns has some restric-

tions, like composing OPTIMISTIC producer/consumer synchronization policies with

DEFFERED-UPDATE recovery policy [133, Chapter 7]. This restriction does not bring

any problem, since the OPTIMISTIC synchronization policy, when used as a GENERIC

synchronization first level policy, is composed with the readers/writers second level

synchronization policy. Since it does not inspect the functional object state, it does

not break the restriction of composing synchronization with recovery [146, 133].

The composition of concurrency and recovery concerns has neither restrictions

nor decisions to be made. The only detail that is important to mention is the fact

that the recovery PREPARE phase defines the functional object that participates on

the concurrency EXECUTE phase. This set up procedure is carried out through the

recoverable method object extended interface that allows this kind of notification.

With this, the recovery process has the control of the boundaries of the JDASCO

execution (see Figure 6.5). The functional object that runs is defined at the begin-

ning of the recovery PREPARE phase and the committed or aborted functional object

is defined at the end of the recovery FINISH phase. This means that the process

execution history stack can be used at those points in order to properly define which

process to run, that in turns perform a very smoothly backtrack procedure. In this

way, the complete execution path for composition semantic behaviour definition was

described.

6.2.3.5 JACK Process Acting as a JDASCO Client

Previous sections explain how JACK processes are configured to be integrated to

use JDASCO services. Thus, we have shown how to integrate a JACK process with

JDASCO when it plays the role of a functional object. This section provides the

same integration procedure, but with a JACK process acting as a JDASCO client.

In contrast with functional object integration, there are no stated rules or guide-

lines to be used for JDASCO client specification. The only additional information

available is the need of the JDASCO client to be aware of the concern models, a

topic already mentioned. Thus, for each concern, a JDASCO client must be aware

of the following.

• Future object synchronization at the concurrency concern.

• Possible synchronization execution status errors at the synchronization con-

cern.
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• JDASCO clients can explicitly interact with RecoveryMediator interface com-

mitment and abortion procedures at the recovery concern.

JACK must take care about the first two topics, since it does not make use of the

last one. In this way, a JACK process acting as a JDASCO client must interacts with

futures instances, in order to properly observes and notifies the JACK client about

any process execution problem. With respect to the concurrency concern, a JACK

process must wait (block) on the available future, in order to properly implement

the synchronous second level concurrent policy selected; it can also inspect the

future for the resultant CSPBehaviourSignal of the process execution signalled by

the recoverable method object. With respect to the synchronization concern, a

JACK process can inspect the future for occurrence of any synchronization error or

premature abortion through the Future interface isError() method. For instance,

the abortion signal must be informed to the process supervisor environment under

consideration, in order to allow it to proper proceed with the backtrack protocol.

JDACO Client Implementation Details

A JACK process acting as a JDACO client provides to its own clients (a JACK

client) the start() method to allow them to interact with the framework. This

method is the single point where a JACK client instructs the whole JACK frame-

work to starts its execution. The JACK CSPProcess interface start() method is

divided in three parts: notification that the start procedure has beginning and has

finished following the before/after [81, Chapter 2] pattern, and the proper process

execution handled by the protected JACKProcess class doStart() method. For

instance, the process before start action broadcasts to all its children processes the

supervisor environment to be used for this execution session. Thread creation at

this point does not break the JDASCO rule that a JDASCO client never need to

create threads. This thread instantiation abstraction is related only to access to

exposed functional object methods and not related to JDASCO client activities.

As already mentioned in Section 3.2.2, a CSP process is an active object with

a private thread of control. A process is an active object when it runs under an

independent thread of control and has not yet been returned (i.e. successfully ter-

minated). A process is a passive object when it runs under the thread of control

of its caller. Therefore, a JACK process can be either in a passive or in an active

state (see CSPProcess interface isAnActiveObject() method documentation [38]).

Only root processes and processes created by the parallel operators act as an active

object (i.e. create and manage threads). This means that the JACK client thread

is always free to proceed its execution.

Since a JACKProcess class can act as a running thread under some circumstances,

it implements the java.lang.Runnable interface. The implementation of the run()
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method of that interface is used for either situation where a process can be a passive

or an active object, which elegantly generalizes the final implementation. Controlling

flags ensure that this public method can never be called directly by JACK clients

or any other class.

Each JACK process must know which JDASCO management class to create for

each JDASCO concern. As already mentioned, a default implementation of them

are given for all processes (specially user defined ones). A specific implementation is

provided for CSP operators when necessary. This instantiation selection is carried

out by JACKProcess class using the factory method [28, pp. 107] design pattern.

JACKProcess run() Method Implementation

The run() method implementation is the heart of the process execution. It is

partitioned in three specific parts. They are explained below.

1. Process behaviour setup — simple step responsible for CSPBehaviour pro-

per initialization of process (see Section 6.2.2.4 for a discussion about this

topic).

2. Process behaviour execution — step responsible for starting the kernel

mode of process execution (i.e. submit the process to execute at JDASCO).

This is the most important part of the process execution procedure. At this

point, the factory methods used to instantiate the JDASCO management

classes of each concern gets called, in order to dynamically configure each

JDASCO concern according to the appropriated CSP operator or user process

semantics. A process enters in kernel mode when it request the process net-

work to associate the recently created management classes with the JDASCO

composition layer through a composition Associator interface.

This step also uses the before/after pattern in order to allow CSP operators or

specialized user processes to interfere at these specific execution points. For

instance, the read and write prefixes CSP operators uses the before execute

action to seal their underlying value set constraint and value to be written, in

order to avoid side effects during kernel mode execution, as mentioned in Sec-

tion 6.2.3.2. This is simply achieved through the use of the event notifications

available at the level of the JACK type system. These events are mentioned

in Chapter 4.

3. Process behaviour clean up — step responsible for cleaning up the process

execution and restore it to user mode again, removing the finished process

from the process network process queue.
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This is also an important step in the process execution protocol. It is re-

sponsible for ensuring the expected synchronous behaviour of the concurrency

concern (i.e. blocking on the currently executing future instance).

Furthermore, it notifies the behaviour that execution has finished through the

CSPBehaviour.finish() method. This is very important because it informs

CSP operators about possible execution synchronization errors (Future.is-

Error()) and the returned process execution signal (CSPBehaviourSignal),

when the kernel mode is just finishing. The operators in turn, use this no-

tification information to take the appropriated execution decision related to

its operational semantics. For instance, the prefixes operators must start the

execution of its related process P only if its communication has finished suc-

cessfully.

This step also implements the before/after pattern. For instance, the default

process implementation uses the after clean up action to clear the supervisor

environment reference of its children, indicating that the process has leave the

kernel mode. Another example, is the read and write prefixes CSP operators

that use the same action to restore the original states of their underlying data

structures altered on the before run action of the same session.

An important detail should be noted about the nature of these mentioned be-

fore/after actions (i.e. before/after start, execute, and clean up). Since the JACK

processes can run either as a passive or as an active object, these methods might be

called under different execution threads. In the following, we present the possible

execution contexts of each action.

Before/After start — always executes under the calling thread context. This can

either be the JACK client thread starting the root process or some other active

object process been started.

Before/After execute or clean up — executes under the calling thread context,

when the process acts as a passive object. On the other hand, it executes under

the newly created process thread, when the process acts as an active object.

This completes the description of the JACK process acting as a JDASCO client.

6.3 Final Considerations

In this chapter, we present a detailed description of each layer role and the integra-

tion between them. It is important to note how these roles communicate with each

other to make a complete view of the whole framework model. For a more detailed

description of the JACK framework see [38].
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JACK documents in [38], test case classes (see packages under jack.jcase), and

Chapter 4 provide examples and usage guidelines of JACK. With these information,

JACK clients can clearly observe how to use the framework to implement their

process specifications using JACK framework as a Java extension package.

In the next Chapter, we present the dissertation conclusion and some important

improvements and future work for next JACK releases.
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Chapter 7

Conclusion

The JACK framework implements an environment that can represent concurrent

languages. It instantiates this environment implementing a new version of the

CSP [124] process algebra. The implementation is built using separation of con-

cerns in a way that is highly beneficial to class-based design of frameworks. This

work empathizes the use of design patterns and pattern languages to properly build

frameworks, achieve desired software engineering properties and software quality

requirements (see Section 1.3).

The user of the JACK framework is able to:

• Describe its process specification in Java, either in CSPm [33] or in a combined

algebra one, like in CSP-OZ [31] or in Circus [148, 149].

• Represent infinite data types without starvation of the process network execu-

tion, since the framework provides a symbolic approach for dealing with this

sort of types. This is in contrast with the expansion approach used by tools

like ProBE [34] and FDR [33].

The extension developer and the user of the JACK framework is benefited by:

• Expressive documentation of the whole framework, modeling decisions, and

implementation details.

• The use of design patterns makes it easier to be extended, since it shares the

same idiom with other framework developers, an inherited benefit of the use

of design patterns.

The JACK framework combines the strengths of role modeling and design pat-

terns with those of class-based and layered modeling while leaving out their weak-

nesses. This increases the framework robustness. Another major aspect is the

possibility to directly use the framework as the heart of a set of import tools to be

used in the formal methods field, like formal translation tools. For instance, the
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same work done to translate a CSP-OZ specification to Java using CTJ [12] can be

done to translate Circus to Java using JACK.

In Chapter 3, we state some goals and objectives that a framework may have,

and what we expect that JACK ought to provide. Here, we provide a link between

the established and achieved goals.

1. Design Patterns — JACK is designed, implemented and documented using

design patterns and pattern languages. Since JACK follows strictly the ap-

plicability of adequate design patterns and pattern languages to solve each

problem domain, it avoids obscure problems in the rail road of the design

of concurrent frameworks, as observed in [36] and in comparison with other

related libraries (see Section 3.6). With the use of design patterns, desired

software engineering properties like expressive power, reusability, extensibil-

ity, modularity, etc, are achieved.

2. Framework Modeling — JACK follows up-to-date framework modeling tech-

niques, like Role Modelling [113], and UML [56, 74]. In this sense, it is prepared

for both extension (i.e. white-box framework reuse) and user needs for defining

its specifications (i.e. black-box framework reuse).

3. Processes Support — JACK provides processes (i.e. CSP operators and user

defined processes) embedded in the Java Language constructors as an exten-

sion package. Even more, the framework provides a set of constructs that

allow the framework to be generalized to become an environment for the im-

plementation of concurrent language. This can be useful for instance, to teach

and study the physical execution of a formal process algebra (i.e the frame-

work acting as an animation tool), that reflects the semantics of the language

constructs.

4. CSP [124] Operators Implementation — JACK provides the most important

CSP operators.

Since JACK support both user processes and CSP operators, it also allows the

user to describe combined algebras like CSP-OZ and Circus directly, which makes

the framework to be used as a tool in the formal methods field.

7.1 Contributions and Results

We have presented an approach to implement process algebra [124, 61, 130, 126] with

separation and composition of concerns, integrating concurrent and object-oriented

programming [133]; framework role modeling [113, 22]; design pattern and pattern

languages [28, 76, 123, 102, 81, 121, 23]. In contrast with other available similar
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libraries [107, 59], JACK is modeled using object-oriented framework techniques,

which leads to a more robust, adaptative, and appropriated for evolution (white-box

framework) [113]. The proposed approach for JACK has generic features which allow

its use in contexts other than CSP. In other words, JACK is a generic framework

for describing process algebras that is specialized for CSP. In this sense, CSP can

be regarded as a huge case study.

The implementation consider the most recent version of CSP [124, 126, 130] and

has been carried out in Java. The user of the JACK framework can also indepen-

dently build its own user defined processes, which introduces a sharp raise on the

expressive power of the framework, because it opens the possibility to the JACK

client to use the framework to implement combined specifications [62], like CSP-

OZ [31] and Circus [148, 149]. In this direction, there is a work that provides formal

translation rules from CSP-OZ to CTJ [59]. Another possible work is to do the same

formal translation rules, but from Circus specifications to JACK.

An important aspect to single out is our strategy to solve two important aspects

of an implementation of CSP: multisynchronization (see Section 2.3.3) and back-

track (see Section 2.3.2). The former is directly related to the new version of the

parallel operator of CSP (i.e. generalized parallel), that accepts synchronization on

more than a pair of processes. The latter is directly related to the data dependent

execution conditions that cannot be inferred without expansion.

Our work serves also as a realistic use of the DASCO framework described

in [133], which validates the results mentioned there and realizes some of the men-

tioned future work, like remodeling DASCO to use framework role modeling [113].

The solution using this framework has shown to be a very attractive solution for

complex concurrent systems. It is neither easy nor complete, but after a thorough

research on the concurrency field, it shows to be adequate for our purposes.

An implementation of a symbolic approach to execute processes without expan-

sion, which leads the specification to be able to deal with infinite data types. This

is a contribution when contrasted with tools like FDR [33] which cannot deal with

infinite data types because it uses an expansion strategy to analyse processes. For

a physical implementation of CSP it is important to accept infinite data types like

Object and numeric types like integer.

This approach is achieved through the implementation of a robust type system

that allows users to define many sort of types, values, sets and logical predicates.

JACK provides a normal form reduction algorithm of a subset of the predicate

calculus based on [68, 67, 21, 66, 69], in order to provide the symbolic approach to

deal with infinite data types.

Due to the layering organization of the framework, important software engi-

neering aspects like incremental development, composition of concerns, modularity,

expressiveness, abstraction, anticipation of changes, and so on, are achieved (see

Section 1.3). JACK provides implementation of well-known design patterns in Java.
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Some of them are mentioned below.

1. Variants of concurrent design patterns defined in [81, 128, 138] like: Latch,

Mutex, and ReentrantMutext.

2. The robust and powerful Event Notification [110] design pattern used in all

layers of the framework for many different notification purposes.

3. Acyclic Visitor [123] for the implementation of an initial version of a interpreter

for JACK (see JCAST layer at Chapter 5).

4. Diagnostic Context Logging [123] for debugging and logging purposes.

5. Double Checking Locking [23] with Thread Local Storage support. This new

version of the pattern is better suited for concurrent environments [140], and

so on.

The framework also defines and implements new design patterns. Some of them

are enumerated below.

1. Flyweight Constant/Factory — Allows one to define enumerated constants in

Java with support for methods like equals() or toString().

2. Benchmarker — Perform single benchmarking facility; it is very useful to debug

and test code efficiency.

3. Extended Iterator [28, pp. 257] — Provides a set of new Iterator with extended

functionality like: controlled modification support of the underlying collection,

read-only iterators, string representation of them, etc.

4. Template Collection — Decorates [28] all available Java collections to behave

like template classes (i.e. classes with template types).

Documentation of the object-oriented framework following up-to-date modeling

and documentation techniques [113, 116, 115] (see Chapters 5 and 6), is provided.

Solutions are described as design and composition of patterns, using only basic

concepts from the object-oriented paradigm. JACK provides a site with on-line

JavaDoc documentation following well-defined guidelines [38], a Rose [135] UML [74,

56, 109] model with many illustrative diagrams (i.e. finite state machines, sequence

diagrams, collaboration, etc.), draft versions of users and developers guides [41, 42],

and some role modeling [113] artifacts.

The framework also defines of test cases following the guidelines stated in [48, 47]

and the use of a tool [105] for software metrics and testing analysis. These test

cases helped us to properly maintain the code accurate while it evolves. This is a

very important aspect of the framework implementation due to the compositional

property of CSP, that changes in one place affects many other places.
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7.2 Future Work

There are some areas we envision as object of future work following the results

achieved in this dissertation. These are related to architectural improvements, CSP

extensions, tests, tool support, and documentation.

7.2.1 Architectural Improvements

After some tests and analysis of the JACK code, we identified possibilities for im-

provements of some architectural aspects. They are mentioned below.

• JACK Type System

1. Multidimentional types must be normalized. Actually, we accept only

a limited set of multidimentional types. This set is sufficiently expres-

sive but it lacks the possibility to describe recursive multidimentional

types. For details on types related to this topic, see jack.jacs.japs-

.typesystem.CSPType interface companion JavaDoc in [38].

2. The normal form reduction algoritjm, used to implement the symbolic

approach to deal with infinite data types, ought to support the predicate

calculus predicates with ∀ and ∃ quantifiers.

3. The type system should be extended to fully implement the Type Ob-

ject [123, pp. 47—65] design pattern. The pattern itself is quite complex,

but its applicability and companion positive consequences sounds to be

very relevant to our work. It will be necessary to adapt the pattern for

our scope. Actually, the type system is a partial implementation of this

pattern based on the already available implementation of it coming from

the JValue framework [117, 112, 111, 44].

4. Implementation of other versions of value serializers [123, Chapter 17

pp.293] and data links like TCP/IP, or Swing [141] ones, as found in

other related libraries [107, 59] should be considered.

• JDASCO Execution Layer

1. JACK defines some new concern policies for JDASCO not available in the

original work of DASCO [133]. They are mentioned in Chapter 6. These

new policies extends JDASCO to be more modular. Some of the extended

policies were not used due to time and space limits. Nevertheless, it can

be an interesting work to better explore these policies like the history

sensitive synchronization and recovery policies.

2. Normalization of the exception handling of the whole layer, to avoid ex-

tensibility penalties for future extension on layer integration.
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• JACS Semantic Layer

1. Definition of other CSPProcess interface implementations. This might

be done in the case of a distributed version of processes execution, using.

for instance, Java RMI [63], CORBA or DCOM [26]. Actually, JACK

does not support a distributed version of a process network.

• Layer Integration — Generalization of the layer integration packages.

As already mentioned in this Chapter, we observe that JACK can be used to

implement any process algebra, just configuring its policies and adopting some

minor points.

Nevertheless, the original motivation of the framework is to build a CSP [124]

implementation in Java. Therefore, JACK, at few layer integration points,

is specialized for dealing with CSP (i.e. recursion, fixed points, sequential

composition, hiding, and so on). It sounds to be interesting and easy to

generalize this to capture more abstract aspects of process algebras.

The mentioned improvements do not cause any direct penalty, except for the

exception handling organization between layers. Therefore, this may be the first

improvement to be achieved in order to allow full extensibility between the execution

and the semantic layers.

7.2.2 CSP Extensions

Here, we present some interesting improvements to be done in the framework directly

related to the implementation technique, or to possible new interesting operators

and features.

• Coding Techniques

1. Primitive processes can be implemented using the flyweight [28, pp. 195]

pattern to avoid unnecessary explicitly multiple instances.

2. The user behaviour interface (CSPBehaviour) execute() method may

allow user defined parameters.

• The following extended operators and constructs (see [124, 130]) had not been

implemented.

1. Labelling — l : P .

2. Interrupt — P 4e Q and P 4Q.

3. Piping — P À Q.
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4. Event Renaming — f(P ), and f−1(P ).

5. Multidimentional prefixes — c?x!y?z → P .

6. Replicated versions of CSP operators.

7. Mutual recursive equations.

8. Recursive equations with parameters.

9. Timed CSP operators described in [130, Chapter 9—13].

Some of them can be implemented straightforward with the available con-

structs, like Interrupt, recursive equations with parameters, and replicated

versions. Operators related to reanaming like event renaming, labelling, and

piping, should be more difficult to implement, since one needs to define ex-

tended versions of the supervisor environment, like hiding and parallel oper-

ators do. We believe that JACK can be extended to implement timed CSP

operators, but this should be considered a major improvement of the frame-

work.

• Extended Features

1. Functional expression language as an extension of the JACK type system.

With this extended feature the user will be able to describe expressions

in its specifications like in value set predicates of type constraints of read

prefix, or in the “value to write” of the write prefix.

2. Implementation of a Z [137] toolkit based on already available implemen-

tations, like Jakarta Commons project [71]. With the functional expres-

sion language and the Z toolkit, it becomes more attractive and easier

for the user to express specifications in combined algebras, like CSP-OZ

and Circus.

3. Finishing the implementation of the JCAST user layer. This layer, as

mentioned in Chapter 5, is responsible to represent a CSPm specification

as an abstract syntax tree following the guidelines stated in [143]. This

layer implementation combined with available CSPm parsers [126, 1],

would make it possible to interpret a CSPm code and formally translate

it directly to JACK. This topic is very interesting in the way to build a

translation tool using formal translation rules and JACK. This is men-

tioned below in the Tools section.

7.2.3 Tests

JACK already uses a test framework called JUnit [47]. Despite this, no considerable

performance tests has been developed for JACK. To achieve this goal, other tools
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like JUnitPerf, JDepend, and JMeter can be used (see JUnit site for references of

these tools [47]).

On the other hand, there are other kind of tests related to software metrics

that can also be done for JACK using tools like Parasoft JTest [105]. An initial

version of the framework uses some of the results of this tool to normalize the

library code and create our own set of code conventions based on these results and

other sources [114, 80, 91].

Nevertheless, to use JACK in a production environment for industrial scale spec-

ifications, a more accurate performance metric analysis must be done. Some perfor-

mance and bottleneck analysis techniques [70] can be used to increase the power of

the framework, raising its execution performance.

7.2.4 Tools

As already mentioned, JACK is a process-oriented framework. This means that it

provides process functionality to the framework client that can uses it for any desired

purpose. In principle, it should be is possible to use JACK to describe some process

specification, possibly in pure CSPm [33], in CSP-OZ [31], or in Circus [148, 149].

In this way, an interesting set of tools can be built using JACK, in order to

provide tool support for analysis and execution of specifications. In what follows,

we mention some of them.

• Formal Translation — There is a work [12] that provides formal translation

rules from CSP-OZ to CTJ [59]. Another possible work is to do the same

formal translation rules, but from Circus specifications to JACK. This work is

under development and should appear in the near future.

In [1], a tool that translates CSP-OZ specifications to FDR CSPm input follow-

ing the guidelines in [100] is presented. An extension of this tool to translate

CSPm or CSP-OZ specifications directly to JACK could be considered.

• Model Checking — There is a working plan under consideration to check the

feasibility of using JACK to build a model checker for Circus.

This close relation with tools is an important contribution of the JACK frame-

work to the formal methods field, since it is impossible to have a productive appli-

cation of a formal approach without tool support.

7.2.5 Documentation

As already mentioned in Chapter 3, the better documented a framework is, the more

efficient and practical it becomes. In this way, we identify some points that might

be documented in more detailed. This documentation vary from code and design
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documentation to formalization of some JACK subsystems. They are mentioned

below.

• Formalization

1. Z [137] description of the JACK data type system and its operations to

allow us to prove some implementation properties.

2. Operational semantics [108] laws describing the backtrack and multisyn-

chronization algorithm.

3. Formal description of the finite state machine that controls the supervi-

sion and behaviour signalling protocol, with respect to JDASCO expected

roles.

4. Finite state machine of the normal form algorithm of the subset of the

predicate calculus used.

5. Definition of all role models of JDASCO and JACS following the syntax

available in [113]. Actually, only the JDASCO concurrent concern has

this description.

6. Extension of the already available [82, 35] Action Semantics [97] descrip-

tion of an execution environment for CSP that deals with backtrack and

multisynchronization.

7. Description of the annotated labelling transition system, that represents

the static aspects of the processes network; and the supervised process ex-

ecution frame stack, that represents the dynamic aspects of the processes

network.

• Design Patterns

1. Documentation of the newly created design patterns following the guide-

lines stated in [28, 81, 133, 19], depending on the kind of the pattern.

2. Generalization of some implementation classes to become design patterns.

For instance, the process network configuration options implementation

can be abstracted to become a generic service or package configurator.

• Tutorials

1. Finish the draft version of the JACK Tutorials [41, 42].

2. Create a framework user manual.

3. JACK code and JavaDoc conventions.

A JavaDoc Doclet [92] extension to capture the new JavaDoc tags created for

documenting the JACK framework is described in [38], for any target documentation

format (i.e. HTML) is also an interesting work for the future.
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Appendix A

JACK Links — Additional

Material

This appendix provides pointers to information referred to JACK. In what follows,

some of the most important references related to this JACK release are given.

• JACK Home Page — www.jackcsp.hpg.com.br

• JACK UML Model — www.jackcsp.hpg.com.br/model

• JACK Support E-Mail — jackcsp@ieg.com.br

• JACK News Groups — jackcsp@yahoogroups.com

• JACK Additional Documents — www.jackcsp.hpg.com.br/pub

– JDSACO Detailed Description

– JACS.JDASCO Integration: Supervision, Backtracking and Multisyn-

chronization (Draft Version)

– JACK Tutorial 1: Users Guide (Draft Version)

– JACK Tutorial 2: Developers Guide (Draft Version)
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