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Abstract. Hat is a programmer’s tool for generating a trace of a com-
putation of a Haskell 98 program and viewing such a trace in various
different ways. Applications include program comprehension and debug-
ging. A new version of Hat uses a stand-alone program transformation to
produce self-tracing Haskell programs. The transformation is small and
works with any Haskell 98 compiler that implements the standard foreign
function interface. We present general techniques for building compiler
independent tools similar to Hat based on program transformation. We
also point out which features of Haskell 98 caused us particular grief.

1 Introduction

Tools such as profilers and tracers are essential for wider adoption of a program-
ming language [8]. For more than 20 years researchers have been proposing ways
to build tracers for lazy higher-order functional languages (see the related work
sections of [3, 4, 10]). However, most of this work has never been widely used, be-
cause it has been done for locally used implementations of local dialect languages.
Haskell1 98 was designed with the explicit goal of solving the language diversity
problem. Hence the remaining question is: Can we build a powerful tracer for
Haskell that does not depend on any specific implementation of Haskell?

Tracing with Hat A tracer gives the programmer access to otherwise invisible
information about a computation. It is a tool for understanding how a program
works and for locating errors in a program. Tracing a computation with Hat
consists of two phases, trace generation and trace viewing:

input output hat-observe

self-tracing
computation

trace hat-trail

hat-detect

First, a transformed version of the program runs. In addition to its normal
input/output behaviour it writes a trace into a file. Second, after the program
has terminated, the programmer studies the trace with a collection of viewing

1 In the following the name Haskell always refers to Haskell 98 as defined by the
Haskell 98 report [5].



tools. The trace as concrete data structure liberates the views from the time
arrow of the computation. The trace and the viewing tools are described in [9].
Here we focus on the trace generation part of Hat.

Trace Generation through Transformation Until recently the production
of the self-tracing executable was integrated into the Haskell compiler nhc982.
We have now separated Hat from its host Haskell compiler. The new program
hat-trans transforms the original Haskell program into a Haskell program that,
when compiled and linked with a library provided with Hat, is self-tracing:

Haskell
source

hat-trans
Haskell
source

Haskell
compiler

self-tracing
executable

Hat library

The separation between Hat and the compiler has the following advantages:

– Hat-trans and the Hat library together capture the essence of tracing.
– The small size of hat-trans and the library minimised the implementation

effort and makes it easy to make experimental changes in the course of
research.

– The future life of Hat is not tied to the future life, that is, continued support,
of a specific compiler.

– Hat can be combined with Haskell compilers that have different characteris-
tics, for example with respect to availability on certain computing platforms,
compilation speed, or optimisation for speed or space.

– Hat is more easily accepted by programmers who wish to continue using a
familiar compiler.

The obvious disadvantage of the new architecture compared to the old one
is that hat-trans has to duplicate some work of a Haskell compiler, for exam-
ple parsing. However, we will show that this duplicate work can be kept to a
minimum and the implementation of nearly all duplicated phases can be shared
between hat-trans and nhc98 without compromises.

In principle, the old nhc98-based implementation already consisted of a sin-
gle transformation phase that was inserted into the front end of the compiler [7].
However, the implementation had several limitations and many small but crucial
modifications had been made in the remainder of the compiler. For the separated
hat-trans we had to develop various techniques to overcome a number of prob-
lems. Here we describe problems and solutions in the hope that the discussion
will be useful for other people who build similar tools. In addition, we also point
out features of Haskell that made our job particularly hard. Our observations
may be taken into consideration in the future development of Haskell or similar
languages.

The new Hat using the compiler-independent program transformation has
been publicly released as Hat 2.0 (http://www.cs.york.ac.uk/fp/hat).
2 http://www.cs.york.ac.uk/fp/nhc98/



2 How Tracing Works

It is not our aim in this paper to define the structure of Hat’s trace, nor to
describe its generation in all details. To get an understanding of what the trace
looks like and how a transformed program generates it during its computation,
let us consider an example.

The Trace of a Reduction Figure 1 shows several intermediate stages of the
trace during the reduction of the term f True, using the definition f x = g x.
Initially (a) there is the representation of the term as one application and two
atom nodes. The first entry of each node points to a representation of the parent,
the creator of the expression. Because our computation starts with f True, the
parent is just a special node Root. In stage (b) the redex f True is “entered”;
the result pointer of the application node changes from a null value to ⊥. In
stage (c) the representation of the reduct has been generated in the trace. The
application node of the redex is the parent of all new nodes of the reduct. Finally
(d) the result pointer of the redex is updated to point to its reduct.

A trace with its parent, subexpression and result pointers is a complex graph
that is traversed by Hat’s viewing tools. The “entered” mark ⊥ is essential
information when a computation aborts with an error. In general, several redexes
may be “entered” at one time, because pattern matching forces the evaluation
of arguments before a reduction can be completed.

Augmented Expressions The central idea for the tracing transformation is
that every expression is augmented with a pointer to its description in the trace.
Thus expression and its description “travel together” throughout the computa-
tion, so that when expressions are plumbed together by application, the corre-
sponding descriptions can also be plumbed together to create the description of
the application.

We transform an expression of type T into an expression of type R T , where

data R a = R a RefExp

A value of RefExp is simply an integer offset of a node in the trace file.

Transformed Program Figure 2 shows the result of transforming our example,
including additional definitions used. We assume f came with type signature
Bool -> Bool. The program has been simplified for explanatory purposes.

In the first argument of f, respectively g, a pointer to its parent is passed. The
original type constructor -> is replaced by the new type constructor Fun. A self-
tracing function needs to take an augmented argument and return an augmented
result. The pointer to the parent of the right-hand side of the function definition,
the redex, also needs to be passed as argument. Hence this definition of Fun.

The tracing combinator ap realises execution and tracing of an application.
The primitive tracing combinators mkAt, mkApp, entRedex and entResult write
to the trace file. They are side-effecting C-functions used via the standard FFI [1].



(a)

0 Root 3 Ap • • • ◦

1 At • f 2 At • True (d)

0 Root 3 Ap • • • •

1 At • f 2 At • True

5 Ap • • • ◦

4 At • g

⇓ ⇑

(b)

0 Root 3 Ap • • • ⊥

1 At • f 2 At • True

⇒

(c)

0 Root 3 Ap • • • ⊥

1 At • f 2 At • True

5 Ap • • • ◦

4 At • g

Fig. 1. Trace generation for a reduction step

f :: RefExp -> Fun Bool Bool

f p = R (Fun (\x r -> ap r (g r) x)) (mkAt p "f")

g p = R (. . .) (mkAt p "g")

newtype Fun a b = Fun (R a -> RefExp -> R b)

ap :: RefExp -> R (Fun a b) -> R a -> R b

ap p (R (Fun f) rf) a@(R _ ra) =

let r = mkAp p rf ra

in R (entRedex r ‘seq‘ case f a r of R y ry -> updResult r ry ‘seq‘ y) r

Fig. 2. Transformed program with additional definitions

case (let p=mkRoot in ap p (f p) (R True (mkAt p "True"))) of R x _ -> x

⇒∗ case (ap • (R (. . .) (mkAt • "f")) (R True (mkAt • "True")) of R x _ -> x

mkRoot

⇒∗ entRedex • ‘seq‘ case ((\x r->ap r (g r) x) (R True •) •) of

R y ry -> updResult • ry ‘seq‘ y

mkAp • • •

mkAt • "f" mkAt • "True" mkRoot
(a)

⇒∗ entRedex 3 ‘seq‘ case ((\x r->ap r (g r) x) (R True 2) 3) of

R y ry -> updResult 3 ry ‘seq‘ y
(b)

⇒∗ case ((\x r->ap r (g r) x) (R True 2) 3) of

R y ry -> updResult 3 ry ‘seq‘ y

⇒∗ case (ap 3 (R (. . .) (mkAt 3 "g")) (R True 2)) of

R y ry -> updResult 3 ry ‘seq‘ y

⇒∗ updResult 3 • ‘seq‘ (entRedex • ‘seq‘ . . .)

mkAp 3 • 2 mkAt 3 "g"(c)

⇒∗ updResult 3 5 ‘seq‘ (entRedex 5 ‘seq‘ . . .)
(d)

⇒∗ entRedex 5 ‘seq‘ . . .

Fig. 3. Evaluation of self-tracing expression



Tracing a Reduction Figure 3 shows the reduction steps of the transformed
program that correspond to the original reduction f True ⇒ g True. The first
line shows the result of transforming f True. The surrounding case and let are
there, because it is the initial expression of the computation. The arrows indicate
sharing of subexpressions, which is essential for tracing to work. Values of RefExp
are the same integers as used in Figure 1. The reduction steps perform the
original reduction and write the trace in parallel. In the sequence of reductions
we can see at (a) how strictness of entRedex forces recording of the redex in
the trace, at (b) the redex is “entered”, at (c) strictness of updResult forces
recording of the reduct, and at (d) the result pointer of the redex is updated.

Properties of the Tracing Scheme Only by bypassing the IO monad the
transformed program can mostly preserve the structure of the original program.
This preservation of structure ensures that the Haskell compiler determines the
evaluation order, not Hat. Otherwise Hat would not be transformation-based but
would need to implement a full Haskell interpreter. Only in few places the order
of evaluation is enforced by seq and the fact that the primitive trace-writing
combinators are strict in all arguments.

To simplify the transformation, RefExp is independent of the type of the
wrapped expression. The correctness of the transformation ensures that the trace
contains only representations of well-typed expressions.

The new function type constructor Fun is defined specially, different from all
other types, because reduction of function applications is the essence of a com-
putation and its trace. The transformation naturally supports arbitrary higher-
order functions.

All meta-information that is needed for the creation of the trace, for example
identifier names and source positions, is made available by the transformation
as literal values. Thus Hat does not require any reflection features in the traced
language.

3 The Hat Library

The Hat library comprises two categories of combinators: primitive combinators
such as entRedex and mkApp1 that write the trace file and high-level combinators
that manipulate augmented expressions. The high-level combinators structure
and simplify the transformation. The transformation only grows a program by
a factor of 5-10. For the development of Hat it is useful that a transformed
program is well readable and most changes to the tracing process only require
changes of the combinator definitions, not the transformation.

Haskell demands numerous combinators to handle all kinds of values and
language constructs, from floating point numbers to named field update. Figure 4
shows an excerpt of the real Hat library. The types RefAtom, RefSrcPos and
RefExp indicate that there are different sorts of trace nodes. The trace contains
references to positions in the original program source. The combinators funn



fun1 :: RefAtom -> RefSrcPos -> RefExp -> (R a -> RefExp -> R z)

-> R (Fun a z)

fun1 var sr p f = R (Fun f) (mkValueUse p sr var)

ap1 :: RefSrcPos -> RefExp -> R (Fun a z) -> R a -> R z

ap1 sr p (R (Fun f) rf) a@(R _ ra) =

let r = mkApp1 p sr rf ra in wrapReduction (f a r) r

fun2 :: RefAtom -> RefSrcPos -> RefExp -> (R a -> R b -> RefExp -> R z)

-> R (Fun a (Fun b z))

fun2 var sr p f = R (Fun (\a r -> R (Fun (f a)) r) (mkValueUse p sr var)

ap2 :: RefSrcPos -> RefExp -> R (Fun a (Fun b z)) -> R a -> R b -> R z

ap2 sr p (R (Fun f) rf) a@(R _ ra) b@(R _ rb) =

let r = mkApp2 p sr rf ra rb

in wrapReduction (pap1 sr p r (f a r) b) r

pap1 :: RefSrcPos -> RefExp -> RefExp -> R (Fun a z) -> R a -> R z

pap1 sr p r wf@(R (Fun f) rf) a = if r == rf then f a r else ap1 sr p wf a

wrapReduction :: R a -> RefExp -> R a

wrapReduction x r =

R (entRedex r ‘seq‘ case x of R y ry -> updResult r ry ‘seq‘ y) r

Fig. 4. Combinators from the Hat library

allow a concise formulation of function definitions of arity n. The combinators
wrapReduction and pap1 are just helper functions.

N-ary Applications The combinator ap2 for an application with two argu-
ments could be defined in terms of ap1, but then two application nodes would be
recorded in the trace. For efficiency we want to record n-ary application nodes
as far as possible. Then we have to handle explicitly partial and oversaturated
applications. The pap1 combinator recognises when its first wrapped argument
is a saturated application by comparing its parent with the parent passed to
the function of the application. The funn are defined so that a partial applica-
tion just returns the passed parent. If the function of ap2 has arity one, then
pap1 uses ap1 to record the application of the intermediate function to the last
argument.

The fact that the function has arity one can only be recognised after recording
the oversaturated application in the trace. Therefore the ap2 combinator does
not record the desired nested two applications with one argument each. Instead
it constructs an application with two arguments whose reduct is an application
with one argument. Because both applications have the same parent, the viewing
tools can recognise applications of this sort in the trace and patch them for
correct presentation to the user.



Often the function in an n-ary application is a variable f that is known to
be of arity n. In that case the construction of Fun values and their subsequent
destruction is unnecessary; the wrapped function can be used directly. A similar
and even simpler optimisation is realised for data constructors; their arity is
always known and they cannot be oversaturated.

Further Optimisations Preceding the transformation, list and string literals
could be desugared into applications of : and []. Such desugaring would however
increase size and compile time of the transformed programs. Instead, special
combinators perform the wrapping of these literals at runtime.

There is still considerable room left for further optimising combinators, which
have not been the main focus in the development of Hat.

4 The Transformation Program Hat-trans

The tracing transformation hat-trans parses a Haskell module, transforms the
abstract syntax tree, and pretty prints the abstract syntax in concrete syntax.
Hat-trans is purely syntax-directed. In particular, hat-trans does not require the
inclusion of a type inference phase which would contradict our aim of avoiding
the duplication of any work that is performed by a Haskell compiler. Figure 5
shows the phases of hat-trans.

Haskell source module

lexer & parser

abstract syntax

interface files of im-
ported modules

import resolver
interface file of this
module

annotated abstract syntax

instance deriver

annotated abstract syntax

transformation

abstract syntax

pretty printer

Haskell source module

Fig. 5. Phases of hat-trans



To enable separate transformation of modules, an interface file is associated
with every module, similar to the usual .hi-file. Haskell already requires for
complete parsing of a module some sort of interface files that contain the user
defined associativities and priorities of imported operators. Hat interface files
also associate various other sorts of information with exported identifiers, such
as arity of a function, the type constructor to which a data constructor belongs,
etc. Hat-trans does not use the .hi-files of its collaborating compiler, because,
first, this would always require the compilation of the original program before
the tracing compilation and, second, every compiler uses a different format for
its .hi-files. Hat-trans also does not generate its interface files in a format used
by any compiler, because .hi-files always contain the type of every exported
variable but Hat does not have these types.

The import resolver uses the import declarations of a module to determine
for each identifier from where it is imported. This phase also finalises the parsing
of operator chains and augments every occurrence of an identifier with the in-
formation which for imported identifiers is obtained from the interface files and
otherwise is obtained syntactically by a traversal of the syntax tree. Whereas
the import resolution phase of the nhc98 compiler qualifies each identifier with
the identifier of the module in which it is defined, hat-trans leaves identifiers
unchanged to ensure that pretty printing will later create a well-formed module.

The instance deriver replaces the deriving clause of a type definition by
instances of the listed standard classes for the defined type. These derived in-
stances need to be transformed (cf. Section 8) and obviously a Haskell compiler
cannot derive instances of the transformed classes. To determine the context of
a derived instance, Haskell requires full type inference of the instance definition.
Because hat-trans does not perform type inference, it settles on generating a
canonical context, that is, for an instance C(Ta1 . . . an) it generates the context
(Ca1, . . . , Can). In principle, if this canonical context is incorrect, the Hat user
has to write the correct instance by hand. But in practice we have not yet come
across this problem.

The implementations of the lexer and parser and of the pretty printer are
reused from nhc98. The import resolver and instance deriver have similarities
to the corresponding phases of nhc98, but had to be implemented specially for
hat-trans.

5 The Transformation

The transformation is implemented through a single traversal of the annotated
abstract syntax tree.

Namespace The transformation leaves class, type, type variable and data con-
structor identifiers unchanged. Only special identifiers such as (,) and : have to
be replaced by new identifiers such as TPrelBase.Tuple2 and TPrelBase.Cons,
qualified to avoid name clashes. Because many new variables are needed in the



transformed program, every variable identifier is prefixed by a single letter. Dif-
ferent letters are used to associate several new identifiers with one original iden-
tifier, for example the definition of rev is transformed into definitions of grev,
hrev and arev. The identifier and filename of a transformed module is prefixed
by the letter “T”, for example “Module.hs” is transformed into “TModule.hs”.
The Hat combinator library is imported qualified as “T” and qualified identifiers
are used to avoid name clashes. As a result the development of Hat profits from
readable transformed programs.

Types Because every expression has to be augmented with a description, in par-
ticular arguments of data constructors, type definitions need to be transformed.
For example:

data Point = P Integer Integer
� data Point = P (T.R Integer) (T.R Integer)

Predefined types such as Char, Integer and Bool can be used unchanged,
because the definition of an enumeration type does not change.

As type definitions are transformed, type signatures require only replacement
of special syntactic forms and additional parent and source position arguments.
For example:

sort :: Ord a => [a] -> [a]
� gsort :: Ord a => T.RefSrcPos -> T.RefExp -> T.R (Fun (List a) (List a))

The transformation has to accept any Haskell program and yield a well-
formed Haskell program. Because partially applied type constructors can occur
in Haskell programs, a transformation for the full language cannot just replace
types of kind *, but has to replace type constructors. On the other hand, Haskell
puts various restrictions on types that occur in certain contexts. For example,
a type occurring in a qualifying context has to be a type variable or a type
variable applied to types; a type in the head of an instance declaration has to
be a type constructor, possibly applied to type variables. So it is important that
the transformation does not change the form of types, in particular it maps type
variables to type variables.

Type Problems In the last example the Ord in the transformed type refers to
a different class than the Ord in the original type. The method definitions in the
instances of Ord have to be transformed for tracing and hence also the class Ord
needs to be transformed to reflect the change in types. Sadly the replacement
of classes by new transformed classes means that the defaulting mechanism of
Haskell cannot resolve ambiguities of numeric expressions in the transformed
program. Defaulting applies only to ambiguous type variables that appear only
as arguments of Prelude classes. Hence Hat requires the user to resolve such
ambiguities. In practice, if an ambiguity error occurs when compiling the trans-
formed program, a good tactic for the user is to add the declaration default ()

to the original program and compile it to obtain a meaningful ambiguity error



message. The ambiguities in the original program can then be resolved by type
signatures or applications of asTypeOf.

The transformation of type definitions cannot preserve the strictness of data
constructors. The transformation

data RealFloat a => Complex a = !a :+ !a
� data RealFloat a => Complex a = !(T.R a) :+ !(T.R a)

would not yield the desired strictness for :+. Ignoring this strictness issue only
yields programs that are possibly less space efficient but it does not introduce
semantic errors. Nonetheless, the transformation can achieve correct strictness
by replacing all use occurrences of :+ by a function that is defined to call :+ but
uses seq to obtain the desired strictness.

Expression and Function Definitions Figures 6 and 7 show the original and
the transformed definition of a list reversal function rev. Most of the original
definition is transformed into the new definition of hrev. The transformation
wraps the patterns with the R data constructor to account for the change in
types. The combinator projection records an indirection node (cf. [6]) and
con2 the application of a constructor to two arguments. The type of hrev still
contains the standard function type constructor instead of the tracing function
type constructor Fun. The function grev is the fully augmented tracing version
of rev. The remaining new variables refer to meta-information about variables
and expressions, for example p3v13 refers to a position in line 3 column 13 of
the original program.

rev :: [a] -> [a] -> [a]

rev [] ys = ys

rev (x:xs) ys = rev xs (x:ys)

Fig. 6. Original definition of list reversal

grev :: T.RefSrcPos -> T.RefExp -> T.R (Fun (List a) (Fun (List a) (List a)))

grev p j = T.fun2 arev p j hrev

hrev :: T.R (List a) -> T.R (List a) -> T.RefExp -> T.R (List a)

hrev (T.R Nil _) fys j = T.projection p3v13 j fys

hrev (T.R (Cons fx fxs) _) fys j =

T.ap2 p4v17 j (grev p4v17 j) fxs (T.con2 p4v26 j Cons aCons fx fys)

arev = T.mkVariable tMain 3 1 3 2 "rev" TPrelBase.False

tMain = T.mkModule "Main" "Reverse.hs" TPrelBase.True

p3v13 = T.mkSrcPos tMain 3 13

p4v17 = T.mkSrcPos tMain 4 17

p4v26 = T.mkSrcPos tMain 4 26

Fig. 7. Transformed definition of list reversal



Tricky Language Constructs Most of Haskell can be handled by a simple,
compositionally defined transformation, but some language constructs describing
a complex control flow require a context-sensitive transformation.

A guard cannot be transformed into another guard. The problem is that the
trace of the reduct must include the history of the computation of all guards
that were evaluated for its selection, including all those guards that failed. Hence
a sequence of guards is transformed into an expression that uses continuation
passing to be able to pass along the trace of all evaluated guards.

The pattern language of Haskell is surprisingly rich and complex. Match-
ing on numeric literals and n + k patterns causes calls to functions such as
fromInteger, == and -. The computation of these functions need to be recorded
in the trace, in particular when matching fails. In general it is not even easy to
move the test from a pattern into a guard, because Haskell specifies a left-to-right
matching of function arguments.

An irrefutable pattern may never be matched within a computation but
all the variables within the pattern may occur in the right hand side of the
equation and need a sensible description in the trace. For variables that are
proper subexpressions of an irrefutable pattern, that is those occurring within the
scope of a ~ or the data constructor of a newtype, the standard transformation
does not yield any description, because the R wrappers are not matched. We do
not present the transformation of arbitrary patterns here, because it is the most
complex part of the transformation.

Preservation of Complexity Currently a transformed program is about 70
times slower with nhc98 and 180 times slower with GHC3 than the original
program. This factor should be improved, but it is vital that it is only a con-
stant factor. We have to pay attention to two main points to ensure that the
transformation preserves the time and space complexity of the original program.

Although by definition Haskell is only a non-strict language, all compilers im-
plement a lazy semantics and thus ensure that function arguments and constants
(CAFs) are only evaluated once with their values being shared by all use con-
texts. To preserve complexity, constants have to remain constants in the trans-
formed program. Hence the definition of a constant is transformed differently
from the definition of a function. The definition of a constant name is trans-
formed into the definition of a function gname and a constant sname. In Haskell
not every variable defined without arguments is a constant; the variable may be
overloaded. Fortunately the monomorphism restriction requires that an explicit
type signature is given for such non-constant variables without arguments. Thus
such cases can be detected without having to perform type inference. For correct
sharing the new constant sname has to be defined in the same scope as in the
original program. Hence every class obtains for every original method name not
just the new method gname, but also a method sname. The latter is only used
in an instance where the method is defined as constant.

3 http://www.haskell.org/ghc/



Figures 6 and 7 demonstrate that a tail recursive definition is transformed
into a non-tail recursive definition. Although the transformation does not pre-
serve tail recursion, the stack usage of the tracing program is still proportional
to the stack usage of the original program. This is, because the ap2 combinator,
which makes the transformed definition non-tail recursive, calls wrapReduction.
That combinator immediately evaluates to an R wrapper whose first argument
is returned after a single reduction step — not full evaluation.

6 Error Handling

Because debugging is the main application of Hat, programs that abort with
an error or are interrupted by Control-C must still record a valid trace. An
error message, a pointer to the trace of the redex that raised the error, and some
buffers internal to Hat need to be written to the trace file before it can be closed.

Catching Errors Because Haskell lacks a general exception handling mecha-
nism, Hat combines several techniques to catch errors:

– To catch failed pattern matching all definitions using pattern matching are
extended by an equation (or case clause) that always matches and then calls
a combinator which finalises the trace.

– The Prelude functions error and undefined are implemented specially, so
that they finalise the trace.

– The C signalling mechanism catches interruption by Control-C and arith-
metic errors.

– The transformed main function uses the Haskell exception mechanism to
catch any IO exceptions.

– There exist variants of the Hat library for nhc98 and GHC that catch all
remaining errors, in particular blackholes and out-of-memory errors. These
variants take advantage of the extended exception handling mechanism of
GHC (which does not catch all errors) and features of the runtime systems.

The Trace Stack The redex that raised an error is the last redex that was
“entered” but whose result has not yet been updated. Most mechanisms for
catching an error do not provide a pointer to the trace of this redex. In these
cases the pointer is obtained from the top of an internal trace stack.

The trace stack contains pointers to the traces of all redexes that have been
“entered” but not yet fully reduced. Instead of writing to the trace, entRedex r

puts r on the trace stack. Later updResult r ry pops this entry from the stack
and updates the result of r in the trace (cf. Section 2). The trace stack shadows
the Haskell runtime stack, that is, the two stacks grow and shrink synchronously.
Besides a successful reduction, an IO exception also causes shrinking of the
runtime stack. To detect the occurrence of a (caught) IO exception, updResult
r ry compares its first argument with the top of the stack and keeps popping
stack elements until the entry for the description r is popped.



The stack not only enables the location of the redex that caused an error, it
also saves the time of marking each “entered” application in the trace file. Only
when an error occurs must all redexes on the stack be marked as “entered” in
the trace file. Because sequential writing of a file is considerably more efficient
than random access, updResult does not perform its update immediately either
but stores it in a buffer. When the buffer is full all updates are performed at
once. On our computers the use of stack and buffer nearly halves the runtime of
the traced program.

7 Connecting to Untraced Code

For some functions a self-tracing version cannot be obtained through transfor-
mation, because no definition in Haskell is available. This is the case for primitive
functions on types that are not defined in Haskell: for example, addition of Ints,
conversion between Ints and Chars, IO operations and operations on IOError.
We need to define self-tracing versions of such functions in terms of the origi-
nal functions instead of by transformation. In other words, we need to lift the
original function to the tracing types with its R-wrapped values.

Calling Primitive Haskell Functions Hat-trans (mis)uses the foreign func-
tion interface notation to mark primitive functions. For example:

foreign import haskell "Char.isUpper" isUpper :: Char -> Bool

� gisUpper :: T.RefSrcPos -> T.RefExp -> T.R (Fun Char Bool)

gisUpper p j = T.ufun1 aisUpper p j hisUpper

hisUpper :: T.R Char -> T.RefExp -> R Bool

hisUpper z1 k = T.fromBool k (Char.isUpper (T.toChar k z1))

aisUpper = T.mkVariable tPrelude 8 3 3 1 "isUpper" Prelude.False

The variant ufun1 of the combinator fun1 ensures that exactly the appli-
cation of the primitive function and its result are recorded in the trace, no
intermediate computation.

Type Conversion Combinators The definition of combinators such as

toChar :: T.RefExp -> T.R Char -> Prelude.Char

fromBool :: T.RefExp -> Prelude.Bool -> T.R Bool

that convert between wrapped and unwrapped types is mostly straightforward.
For a type constructor that takes types as arguments, such as the list type

constructor, the conversion combinator takes additional arguments. The conver-
sion combinators are designed so that they can easily be combined:

toList :: (T.RefExp -> T.R a -> b) -> T.RefExp -> T.R (List a) -> [b]

toString :: T.RefExp -> T.R String -> Prelude.String

toString = toList toChar



Some types have to be handled specially:

– No values can be recorded for abstract types such as IO, IOError or Handle.
Instead of a value only its type is recorded and marked as abstract.

– For primitive higher-order functions such as >>= of the IO monad we also
need combinators that convert functions. When a wrapped higher-order func-
tion calls a traced function, the latter has to be traced and connected to the
trace of the whole computation.
The function type is not only abstract but it is also contravariant in its
first argument. The contravariance shows up in the types of the first argu-
ments of the combinators. Only because toFun needs a RefExp argument,
all unwrapping combinators take a RefExp argument.

toFun :: (T.RefExp -> c -> T.R a) -> (T.RefExp -> T.R b -> d)

-> T.RefExp -> T.R (Fun a b) -> (c -> d)

toFun from to r (T.R (Fun f) _) = to r . f r . from r

fromFun :: (T.RefExp -> T.R a -> b) -> (T.RefExp -> c -> T.R d)

-> T.RefExp -> (b -> c) -> T.R (Fun a d)

fromFun to from r f = T.R (Fun (\x _ -> (from r . f . to r) x))

(T.mkValueUse r T.mkNoSrcPos aFun)

aFun = T.mkAbstract "->"

IO Actions Although a value of type IO is not recorded in the trace, the
output produced by the execution of an IO-action is. Primitive IO functions
such as putChar are wrapped specially, so that their output is recorded and
connected to the trace of the IO expression that produced it.

8 Trusting

Hat allows modules to be marked as trusted. The internal workings of functions
defined in a trusted module are not traced. Thus Hat saves recording time, keeps
the size of the trace smaller and avoids unnecessary details in the viewing tools.
By default the Prelude and the standard libraries are trusted.

No (Un)Wrapping for Trusting The obvious idea is to access untransformed
trusted modules with the wrapping mechanism described in the previous section.
Thus the functions of trusted modules could compute at the original speed and
their source would not even be needed, so that internally they could use exten-
sions of Haskell that are not supported by Hat. However, this method cannot be
used for the following reasons:

– It can increase the time complexity. Regard the list append function ++: In
evaluation ++ traverses its first argument but returns its second argument
as part of the result without traversing it. However, the wrapped version
of ++ has to traverse both arguments to unwrap them and finally traverse
the whole result list to wrap it. Therefore the computation time for xs ++



(xs ++ . . . (xs ++ xs). . .) is linear in the size of the result for the original
version but quadratic for the lifted version. Also the information that part
of the result was not constructed but passed unchanged is lost.

– Overloaded functions cannot be lifted. For example, the function elem uses
the standard Eq class, but its wrapped version gelem has to use the trans-
formed Eq class. No combinator can change the class of a function, because it
cannot access the implicitly passed instance (dictionary). Instances are not
first class citizen in Haskell.

Combinators for Trusting So trusted modules have to be transformed as well.
The same transformation is applied, only different combinators used. The com-
putation of trusted code is not traced, but the combinators have to record in the
trace for each traced application of a trusted function its call, the computations
of any traced functions called by it, and its result.

In our first implementation of trusting, combinators did not record any re-
ductions in trusted code, but all constructions of values. The disadvantage of
this implementation is that not only the result value of a trusted function but
also all intermediate data structures of the trusted computation are recorded.

Our current implementation takes advantage of lazy evaluation to only record
those values constructed in trusted code that are demanded from traced code.
Thus no superfluous values are recorded. However, sadly also values that are first
demanded by trusted code and later demanded by traced code are not recorded
either. It seems impossible to change this behaviour without losing the ability
to record cyclic data structures, for example the result of the standard function
repeat. The limitations of the current implementation of trusting are acceptable
for tracing most programs, but not all.

The result values of trusted functions may contain functions. These functions
are currently only recorded as abstract values, because otherwise they could show
arbitrary large subexpressions of trusted code. The connection between trusting
and abstraction barriers needs to be studied further.

9 Conclusions

We described the design and implementation of Hat’s program transformation
for tracing Haskell programs.

Compiler Independence We have used the new Hat together with both nhc98
and GHC (Hugs4 and hbc5 currently do not support the standard foreign func-
tion interface). Compiling a self-tracing program with both compilers and run-
ning the excecutables does not yield an identical trace file, because side effects
of the trace recording combinators are performed at different times. However,
manual comparison of small traces shows the graph structure of these traces to

4 http://www.haskell.org/hugs/
5 http://www.cs.chalmers.se/~augustss/hbc/hbc.html



be the same. The size of large trace files differs by about 10−6 of their size,
proving that sometimes different structures are recorded. We will have to build
a tool for comparing trace structures to determine the cause of these differences.
Semantic-preserving eager evaluation may cause structural differences, but oth-
erwise the trace structure is fully defined by the program transformation, not
the compiler.

Language The implementation of tracing through program transformation
owes much to the expressibility of Haskell. Higher-order functions and lazy eval-
uation allowed the implementation of a powerful combinator library, describing
the process of tracing succinctly.

Nonetheless we also faced a number of problems with Haskell. The source-
to-source transformation exposed several irregularities and exceptions in the
language design, for example the limited defaulting mechanism and the fact
that class instances are not first class citizens. The limited exception handling
mechanism forced us to have a tiny compiler-specific part in the Hat library.
Finally, the sheer size of Haskell makes life hard for the builder of a tool such
as Hat. Most language constructs can be translated into a core language, but
because traces must refer to the original program, the program transformation
has to handle every construct directly.

Tracing through Program Transformation Considering all the problems
discussed here, is building a tracer based on a compiler-independent program
transformation a good idea?

The Haskell tracing tool Hood [2] consists of a library only. Hence its im-
plementation is much smaller and it can even trace programs that use various
language extensions without having to be extended itself. Hood’s architecture is
actually surprisingly similar to that of Hat: the library corresponds to Hat’s com-
binator library and Hood requires the programmer to annotate their program
with Hood’s combinators and add specific class instances, so that the program
uses the library. Hat’s trace contains far more information than Hood’s and hence
requires a more complex transformation with which the programmer cannot be
burdened.

On the other end of the design space is the algorithmic debugger Freja [3], a
compiler developed specially for the purpose of tracing. Its self-tracing programs
are very fast. However, implementing and maintaining a full Haskell compiler
is a major undertaking. Freja only supports a subset of Haskell and runs only
under Solaris. Modifying an existing compiler is also near to impossible, because
all existing Haskell compilers translate a program into a core language in early
phases, but a trace must refer to all constructs of the original program. The
implementation of a tracing Haskell interpreter would still require more work
than the implementation of hat-trans, and achieving similar or better trace times
would still be hard. Hat-trans reduces the duplication of implementation effort
to a minimum.



Hat is an effective tool for locating errors in programs. We use it to locate
errors in the nhc98 compiler and recently people outside York located subtle bugs
in complex programs with Hat. Nonetheless, there is still considerable potential
for extensions, and we hope that future developments will benefit from Hat’s
modular design and portable implementation.
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