
1

RBAC POLICIES IN XML FOR X.509 BASED
PRIVILEGE MANAGEMENT

D.W.Chadwick, A. Otenko
University of Salford

Abstract: This paper describes a role based access control policy template for use by
privilege management infrastructures where the roles are stored as X.509
Attribute Certificates in an LDAP directory. There is a brief description of the
X.509 privilege management model, and how it can be used to implement
RBAC. Policies that conform to the template are written in XML, and the
template is specified as a DTD. (A future version will specify it as an XML
schema). The policy is designed to be used by the PERMIS API, a Java
specification for an Access Control Decision Function based on the ISO 10181
Access Control Framework and the Open Group’s AZN API.

Key words: X.509, Attribute Certificates, RBAC, LDAP, Role Based Access Controls,
Policy Based Access Controls, XML, DTD

1. RBAC

Role Based Access Controls have generated significant interest in the last
decade, even spawning their own ACM workshop in the mid 90s [ACM].
The main entities in RBAC are the users, the roles and the permissions. A
role can represent a job function, a qualification or expertise. A permission
represents the right to access a target in a particular mode. Roles are
assigned to users in a many to many relationship, and permissions are
granted to roles, again in a many to many relationship. There is thus a level

2 D.W.Chadwick, A. Otenko

of indirection between a user and his access rights. A good description of
RBAC can be found in [Sandhu]. Some of the benefits of RBAC include:
– Ease of understanding. Because a user’s privileges are tied into the role

or roles he is undertaking when making a particular access request,
administrators are better able to think about the privileges needed to fulfil
a role rather than think about the privileges needed by an individual to
perform various tasks.

– Support for the principle of least privilege. Coupled with the above, each
role only needs to be given the minimum number of privileges necessary
for the tasks associated with the role to be carried out.

– Ease of management. People fulfil different roles at different times in
their careers, and roles are continually being occupied by different
personal. However RBAC allocates privileges to roles, and these
privileges change relatively infrequently, since it is immaterial from an
access control perspective who is occupying a role at any given time.
Therefore the main administrative task is simply to allocate and de-
allocate roles to individuals.

– Scalability. In the world of e-commerce there are typically far fewer roles
than participants. Roles might include: cash buyer, seller, administrator,
credit buyer etc, whereas the number of participants in each role can run
into the thousands and in some cases even millions. Since RBAC
allocates privileges to roles, it is much easier to administer the privileges
to a limited number of roles, than in traditional discretionary access
controls, where privileges are allocated to users. It is then a much simpler
task to allocate roles to the large numbers of users.

– Separation of duties. This applies at two levels. Firstly, it is possible to
constrain role allocation so that an individual cannot occupy mutually
exclusive roles e.g. that of corporate buyer and seller. Secondly in RBAC
administration, the person who determines a role’s privileges can be
different to the person who allocates roles to individuals.

– Privilege inheritance. Role hierarchies can be defined, e.g. Director >
Manager > Employee, in which the superior roles inherit the privileges of
the subordinate roles, as well as having their own additional privileges.
Thus least privileges can be allocated to the junior roles, and these will
automatically be inherited by the more senior roles.

– Delegation of duties. A role occupant may delegate his role to another
individual, without needing to have permission to alter the privileges
assigned to that individual. Furthermore, when role hierarchies are
supported, a role holder can delegate just a subordinate role instead of the
entire role.

RBAC POLICIES IN XML FOR X.509 BASED PRIVILEGE
MANAGEMENT

3

2. X.509 BASED PRIVELEGE MANAGEMENT

Edition 4 of X.509 [X509], published by the ITU-T in 2001, is the first
edition to fully standardise the certificates of a Privilege Management
Infrastructure (PMI). Hitherto, earlier versions of X.509 have concentrated
on standardising the certificates of Public Key Infrastructures (PKIs). This
paper assumes the reader is already familiar with the general concepts of
PKIs, and these will not be repeated here. Readers wishing to learn more
about PKIs may consult books such as [Adams][Austin] or [Housley].

The X.509 PMI is to authorisation what its PKI is to authentication.
Consequently there are many similar concepts in PKIs and PMIs. These are
summarised in Table 1 below. Whilst public key certificates are used to
maintain a strong binding between a user’s name and his public key, an
attribute certificate (AC) maintains a strong binding between a user’s name
and one or more privilege attributes. (In this respect a public key certificate
can be seen to be a specialisation of a more general attribute certificate.) The
entity that digitally signs a public key certificate is called a Certification
Authority (CA), whilst the entity that signs an attribute certificate is called
an Attribute Authority (AA). The root of trust of a PKI, is sometimes called
the root CA or trust anchor whilst the root of trust of the PMI is called the
Source of Authority (SOA). CAs may have subordinate CAs which they
trust, and to which they delegate the powers of authentication and
certification. Similarly, SOAs may delegate their powers of authorisation to
subordinate AAs. If a user needs to have his signing key revoked, a CA will
issue a certificate revocation list (CRL). Similarly if a user needs to have his
authorisation permissions revoked, an AA will issue an attribute certificate
revocation list (ACRL). X.509 can be used to implement discretionary
access controls, by storing users’ access rights/permissions in their ACs, and
by allowing users to allocate ACs to each other for the resources that they
control.

Table 1. A Comparison of PKI and PMI Entities
Concept PKI entity PMI Entity
Certificate Public Key Certificate Attribute Certificate
Certificate Issuer Certification Authority (CA) Attribute Authority (AA)
Certificate Receiver Subject Holder
Certificate Binding Subject’s Name to Public

Key
Holder’s Name to one or
more Privilege Attributes

Revocation Certificate Revocation List
(CRL)

Attribute Certificate
Revocation List (ACRL)

Root of Trust Root CA or Trust Anchor Source of Authority (SOA)
Subordinate Authority Subordinate CA Attribute Authority

4 D.W.Chadwick, A. Otenko

3. RBAC USING X.509 ATTRIBUTE CERTIFICATES

X.509 supports RBAC by defining role specification attribute certificates
that hold the permissions granted to each role, and role assignment attribute
certificates that assign various roles to the users. Each role and name
component in X.500 [X501] and LDAP [LDAP] is an attribute type, attribute
value pair. Thus roles and name components are easily interchangeable. In
role specification ACs, the holder is the role, and the privilege attributes are
permissions granted to the role. In role assignment ACs, the holder is the
(name of the) user, and the privilege attributes are the roles assigned to the
user. The user is identified by either his LDAP Distinguished Name [DN] or
his public key certificate (issuer and serial number). Role assignment ACs
may point to their corresponding role specification AC via the role
specification certificate identifier extension.

Hierarchical RBAC allows role specifications to be more compact, since
a superior role does not need to enumerate the privileges it has inherited
from its subordinate roles. X.509 supports hierarchical RBAC by allowing a
role specification attribute certificate to contain both roles and privileges in
the embedded attributes, so that the specified role inherits the privileges of
the embedded role(s).

Delegation is supported through the basic attribute constraints extension.
This extension holds an integer that indicates the depth of delegation that
may take place; zero indicating no delegation, one indicating one level of
delegation, and missing indicating no restrictions on delegation.

4. POLICY BASED PRIVILEGE MANAGEMENT

In policy based RBAC, a policy is defined which states the rules for
assigning roles to users, and permissions to roles. The policy can then be
used to control the accesses to all the targets within the policy domain. We
have specified an API in the Java language, the Permis API [Permis], that
reads in the XML policy, parses it, and then uses it to control access to
targets within the policy domain. The API caller, typically an application
gateway, passes the authenticated name of the user, and this is used to
retrieve the user’s attribute certificates (ACs) from the configured LDAP
directory. Each signed AC is checked against the policy, and non-
conformant ACs are discarded. Valid roles are extracted from the remaining
ACs. The API caller then passes the user’s requested action on his chosen
target, and again this is checked against the policy. The API returns either
granted or denied to the caller. In this way, a single policy can be used to
control access to all the resources in a domain.

RBAC POLICIES IN XML FOR X.509 BASED PRIVILEGE
MANAGEMENT

5

5. THE X.509 PMI RBAC POLICY

We have specified an RBAC policy specifically designed for use with an
X.509 attribute certificate based PMI. The top level X.509 PMI RBAC
Policy is composed of a number of sub-policies as shown in Figure 1 below.
The domain of the PMI Policy is the union of all the domains of the sub-
policies. Each policy is given a unique object identifier (OID) that globally
unambiguously identifies it. This OID is passed to the Permis API by the
caller, in order to guarantee that the correct policy will be used in all the
subsequent access control decisions made by the API implementation. The
policy OID may also optionally be stored in X.509 ACs, so as to limit the
scope of the ACs if desired.

Users Roles Targets/
Actions

___ ____ ___
___ ____ ___
___ ____ ___
___ ____ ___

Subject Role Role Role Target Policy
Policy Assignment Hierarchy Specification Action Policy

+ Policy + Policy Policy
SOA Delegation (Target
Policy Policy Access Policy)

Figure 1. The X.509 PMI RBAC Policy and its Sub-Policies

5.1 Subject Policy

The Subject Policy specifies the domains of users who may be granted
roles within the overall PMI policy. Each domain is specified as an LDAP
subtree, using Include and Exclude statements, with optional layering. The
Include statement specifies the LDAP DN of the root node of a subject
domain. This subtree may be pared in two ways, by using Min and Max
integers to specify which layers of the subtree to include, and by using
Exclude statements to specify which subordinate subtrees to exclude from
the domain. Each excluded subtree may also be layered using Min and Max
integers. The default for Min is zero, meaning the root of the subtree, and the
default for Max is infinity, meaning the leaves of the subtree. Using a null

6 D.W.Chadwick, A. Otenko

LDAP DN in an Include statement specifies the domain of all users in the
world.

As an example, a subject domain could comprise all users in an
organisation, by using an Include LDAP DN of dc=my org, dc=com; or a
particular unit could be excluded by adding an Exclude LDAP DN of
ou=excluded unit, dc=my org, dc=com, or only all organisation units could
be included by using Min of 1 and Max of 1. The example subject policy
below, in XML, has two domains, one for UK companies and one for
Salford City employees, excluding the marketing department.

<SubjectPolicy>
<SubjectDomainSpec ID="UKCompanies">

 <Include LDAPDN="c=gb"/>
</SubjectDomainSpec>

 <SubjectDomainSpec ID="Employees">
<Include LDAPDN="dc=salford,dc=gov,dc=uk"/>
<Exclude LDAPDN=”ou=marketing,dc=salford,dc=gov,dc=uk"/>

 </SubjectDomainSpec>
</SubjectPolicy>

5.2 SOA Policy

The SOA Policy lists the LDAP DNs of the SOAs that are trusted to issue
roles to the subjects specified in the subject policy. These DNs will match
the root issuer names in published ACs. The first name in the list is the
LDAP DN of the policy creator, and this name must always be present.
Subsequent names refer to remote SOAs who are effectively being cross-
certified by the policy creator. Every AC that is to be trusted by this policy
must have been signed by one of the SOAs in this list, or by an AA rightfully
delegated by one of these SOAs.

Many applications will only require the SOA list to comprise the single
name of the policy creator, and all ACs will be issued by the policy creator
or a delegated AA. However, we have already encountered a number of
applications where multiple SOAs and externally allocated ACs are required.
Those applications that do not support externally issued privileges, will
usually incorporate the concept by requiring the policy creator (or his
delegate) to re-issue these privileges to their subjects. But our SOA policy
does not require this to happen.

Applications that we are building that benefit from the support of
externally allocated privileges include electronic tendering and electronic
prescribing. In electronic tendering, the organisation issuing the Request for
Tenders might require that the tenderers be ISO 9000 certified or similar.

RBAC POLICIES IN XML FOR X.509 BASED PRIVILEGE
MANAGEMENT

7

ISO 9000 certificates are typically issued by a standards body (in the case of
the UK this is the British Standards Institute (BSI)). Thus a policy can be
specified that trusts BSI to issue ISO 9000 certificates to organisations. The
certificates can then be electronically issued by BSI in the form of X.509
attribute certificates, and stored in their publicly accessible LDAP directory
server, allowing the tendering application to download them. In electronic
prescribing, GP (general practitioner) roles are allocated to doctors by the
General Medical Council, pharmacist roles are allocated to qualified
pharmacists by the Royal College of Pharmacists, and NoFee Patient roles
are allocated by various government agencies to members of the public
entitled to free prescriptions for one reason or another.

The example SOA policy below allows for two SOAs, the policy creator
and BSI.

<SOAPolicy>
<SOASpec ID="PolicyOwner" LDAPDN="cn=David Hunter,

ou=computing, dc=salford,dc=gov,dc=uk"/>
 <SOASpec ID="BSI" LDAPDN="o=bsi,c=gb"/>

</SOAPolicy>

5.3 Role Hierarchy Policy

The Role Hierarchy Policy defines the role hierarchies that are supported
by this RBAC policy. Each role hierarchy (RoleSpec in the DTD) is a
directed graph, rather than a simple tree, as the former supports multiple
superior roles inheriting the privileges of a common subordinate role. For
example, the Employee role may have superiors of Administrator and
Project Leader, both of whom inherit the privileges given to an employee.
The role hierarchy also supports multiple inheritance whereby a superior role
inherits all the privileges of a set of subordinate roles. For example,
Managing Director may have subordinate roles of General Manager,
Company Secretary and Chief Technical Officer.

Each role is named using an Attribute Type, Attribute Value pair, for
example AT=isoCertification, AV=ISO9000; AT=permisRole, AV=CTO;
AT=healthProfessional, AV=GP. The attribute types will typically be the
LDAP attribute type names (these are a single ASCII string usually starting
with a lower case letter [LDAP]). However, the attribute types in X.509 ACs
are identified using their globally unique object identifiers, so each role
hierarchy (RoleSpec) holds the mapping of the LDAP attribute type name to
its OID.

8 D.W.Chadwick, A. Otenko

Each role hierarchy is specified as a set of Superior-Subordinates
attribute values. (Consequently it is not possible to define a role hierarchy
containing different attribute types.) Each superior role can have multiple
subordinate roles, and each subordinate role may also be a superior. This
allows any arbitrary directed graph to be described (when a directed graph is
described as a tree, some subordinate will occur multiple times in the tree
beneath different superiors). Leaf subordinate roles are specified as superiors
without any subordinates. A set of roles that do not form a hierarchy, but
rather are equal roots of trees comprising single entries, is specified as a set
of Superiors, as in the example below where ISO9000 and ISO17799 are not
hierarchically related. Also in the example below, the permisRole of map
reader is subordinate to the role of architect.

<RoleHierarchyPolicy>
<RoleSpec Type="permisRole" OID="1.2.826.0.1.3344810.1.1.14">

<SupRole Value="Architect">
 <SubRole Value="MapReader"/>

<SupRole Value="MapReaders"/>
</RoleSpec>
<RoleSpec Type="isoCertification" OID="1.2.826.0.1.3344810.1.1.15">

<SupRole Value="ISO9000"/>
<SupRole Value="ISO17799"/>

</RoleSpec>
</RoleHierarchyPolicy>

5.4 Delegation Policy

The Delegation Policy has been taken from the X.509 standard. This
allows the depth of delegation to be specified as an integer. (In X.509, the
integer is specified in the path length constraints field of the basic attribute
constraints extension.) A depth of zero indicates that no delegation is
allowed, a depth of one indicates that the entity assigned a role assignment
attribute certificate may also assign the latter to other entities. If the depth is
missing, infinite delegation is allowed. We have included the delegation
policy as an integral part of the role assignment policy, since delegation is a
function of each role assignment.

5.5 Role Assignment Policy

The Role Assignment Policy specifies which roles can be assigned to
which subjects by which SOAs. For each role assignment, we also specify
whether the assigned roles can be delegated or not (see above), and whether

RBAC POLICIES IN XML FOR X.509 BASED PRIVILEGE
MANAGEMENT

9

there are any time constraints on the assignment. Both subjects and SOAs
are referenced using their IDs from their respective policy definitions. Roles
may be specified as either their type only (implying all values of a particular
type may be assigned), by a specific combination of type and value (meaning
only a single role may be assigned), or by null (meaning any role of any type
from the role hierarchy policy may be assigned).

Policy time constraints, which are optional, over-rule any validity times
in the attribute certificates. Policy time constraints can be specified in either
or both of two ways, absolute and relative.

Absolute time constraints comprise absolute start and end times, with
each time being specified as a date/time integer string in ISO8601 format i.e.
ccyy-mm-ddThh:mm:ss. The actual validity time of an AC is taken to be the
intersection of the policy absolute validity time and the validity time field in
the AC. If the policy start time is missing, the AC is valid from the
beginning of its notBefore validity time. If the policy end time is missing,
the AC is valid up until its notAfter validity time (or until revoked). For
example, a policy absolute start time of 2002-02-01 with an AC notBefore
validity time of 1 Jan 2002, would mean that the AC will not be accepted
during the month of January 2002.

Relative time constraints specify the maximum Age of a certificate and
the Maximum and Minimum life spans, relative to the evaluation time, that
the AC must be valid for, in order for it to be accepted. These relative times
are specified as date/time integer strings of the form +yy-mm-ddThh:mm:ss,
meaning this amount of time from now. Trailing (zero) dates and times can
be omitted i.e. to specify 2 months from now would be +00-02. Whilst Age
goes back in time from now, both Maximum and Minimum go forward in
time from now. For example, if the Age is specified as 02, then an AC that
has a notBefore validity time of more than two years from the evaluation
time will be discarded. If the Maximum time is specified as +00-02, then an
AC that has a notAfter validity time more than two months from the
evaluation time will be discarded. If Minimum time is +00-00-01, then an
AC that has a notAfter validity time less than one day from the evaluation
time will be discarded. If the Age, Maximum and Minimum times are
missing, the AC does not have any policy time constraints imposed on it.

The example role assignment policy below allows three types of AC to
be trusted. The first one is role assignment ACs for tender officers. This role
can only be assigned to employees by the policy owner, and they are not
valid before 5pm on 21st September 2001 (the close of the electronic
tendering process), and delegation of the role is not permitted. The second
one is role assignment ACs for tenderers. The latter must be UK companies,
and the policy owner must make the assignment. They are only valid up to

10 D.W.Chadwick, A. Otenko

5pm on 21st September 2001 (the close of the electronic tendering process).
Delegation of the role is not permitted. The final role assignment is for
ISO9000 certification. The assignment is made by BSI, but only certificates
for UK companies are valid. Furthermore, since companies have to be
annually re-certified, certificates older than one year are not acceptable,
neither are certificates valid for more than one year, or certificates that
expire in less than one day from now. Delegation is not permitted.

<RoleAssignmentPolicy>
<RoleAssignment>

<SubjectDomain ID="Employees"/>
 <Role Type="permisRole" Value="TenderOfficer"/>
 <Delegate Depth="0"/>
 <SOA ID="PolicyOwner"/>
 <Validity>
 <Absolute Start="2001-09-21T17:00:00"/>
 </Validity>
</RoleAssignment>
<RoleAssignment>

<SubjectDomain ID="UKCompanies"/>
 <Role Type="permisRole" Value="Tenderer"/>
 <Delegate Depth="0"/>
 <SOA ID="PolicyOwner"/>
 <Validity>
 <Absolute End="2001-09-21T17:00:00"/>
 </Validity>
</RoleAssignment>
<RoleAssignment>

<SubjectDomain ID="UKCompanies"/>
 <Role Type="isoCertification" Value="ISO9000"/>
 <Delegate Depth="0"/>
 <SOA ID="BSI"/>

<Validity>
 <Age Time="01"/>
 <Maximum Time="01"/>
 <Minimum Time="00-00-01"/>
 </Validity>

</RoleAssignment>
</RoleAssignmentPolicy>

RBAC POLICIES IN XML FOR X.509 BASED PRIVILEGE
MANAGEMENT

11

5.6 Target Policy

The Target Policy specifies the target domains covered by this policy.
Target domains are specified as LDAP subtrees, using Include, Exclude,
Max and Min statements as for subject domains. Include specifies the LDAP
DN of the root node of a domain, and optional Exclude statements specify
subordinate subtrees to be excluded from the domain. Min and Max specify
which layers of the subtree are being targeted. Using a null LDAP DN in an
Include statement specifies the domain of all targets in the world. At least
one domain must be specified, even if it is the whole world. A domain may
optionally be refined by specifying a set of object classes. Only targets with
the full set of object classes are included in the domain. (A null set implies
all targets in the domain are included.) The reason we allow target domains
to be refined using object classes, but do not allow subject domains to be
similarly refined, is that targets are trusted to provide their object classes to
the Permis API, since the API is acting on their behalf. Subjects on the other
hand, are trying to gain access to the targets via the Permis API, are not
trusted to provide their own object class. However, a similar functionality
can be introduced for subjects, by allocating object class bearing attribute
certificates to them, and requiring these object classes (which can be treated
as roles) to be present in the target access policy (see below).

The following example comprises two target domains, the first is all the
printers in the Salford City domain, and the second is the tender store
application at Salford.

<TargetPolicy>
 <TargetDomainSpec ID="Printers">

<Include LDAPDN="dc=salford,dc=gov,dc=uk"/>
<ObjectClass Name="Printers"/>

</TargetDomainSpec>
<TargetDomainSpec ID="TenderStore">

<Include LDAPDN="cn=Tender Store,dc=salford,dc=gov,dc=uk"/>
</TargetDomainSpec>

</TargetPolicy>

5.7 Action Policy

The Action Policy specifies the actions that are supported by this policy.
An action is the smallest granularity of access to a target. Each action has a
name, and zero or more arguments. The policy creator will need to refer to
each target’s Reference Manual for the names of the actions/methods the

12 D.W.Chadwick, A. Otenko

target supports, plus the sequence of arguments that each method requires.
The sequence of the arguments in the Action Policy is very important and
must be the same as those passed by the access enforcement function (AEF)
to the Permis API at run time.

The reason why we separately declare the actions is purely one of policy
specification efficiency. Several targets may support the same action, so the
latter only needs to be specified once in the Action Policy.

The following example lists the actions that can be applied to the Tender
Store application. It supports submission, retrieval and deletion of tender
documents, given the unique number of a particular tender.

<ActionPolicy>
 <Action Args="TenderNo" Name="Write" />
 <Action Args="TenderNo" Name="Read" />
 <Action Args="TenderNo" Name="Delete" />

</ActionPolicy>

5.8 Target Access Policy

The Target Access Policy comprises a set of target access clauses. Each
target access clause grants an initiator with a specified set of roles
permission to carry out the specified actions on the specified list of targets,
but only if the conditions specified by the optional IF clause are true. Note
that the policy implicitly operates the Deny All Unless Explicitly Granted
rule, so that only those permissions in the target access clauses will ever be
granted.

An initiator must possess all of the roles in a target access clause in order
to gain the specific access/privilege. Other RBAC schemes typically assign
actions (privileges) to each role. But we wanted to cater for the case where
an initiator may be required to possess several ACs before any privilege is
granted. Hence the ability to specify a set of roles in a target access clause, if
required.

Each target in the target list can be a target instance (which must be
within a previously specified target domain) or a reference to a previously
specified target domain. Each target has its own list of granted actions.
Actions are referred to by their action name. If no actions are specified then
all actions that the target supports are granted.

The IF clause specifies the conditions which must be satisfied in order for
the actions to be granted. It is an enhanced version of the privilege policy
specified in clause D.2 of Annex D of X.509. A condition comprises:
- a comparison (logical) operator
- the LHS operand(variable), described by its source, name and type, and

RBAC POLICIES IN XML FOR X.509 BASED PRIVILEGE
MANAGEMENT

13

- a series of one or more variables or constant values against which the
LHS operand is to be compared.

The operator is chosen from the following set: PRESENT | EQ | GT | LT |
LE | GE |Subordinate | Substrings | Subset | Superset | NonNullIntersection |
ApproxEQ | and Operator, where Operator is an extensibility mechanism to
allow policy setters to define new operators for their condition statements.
The meaning of any new operator and the number of operands it operates on
is application specific. The Permis API will support the calling of new Java
objects that implement the new operators and their operands.

Two possible sources are currently specified for an operand/variable:
either an argument from the action specified by the initiator, or the
environment. In the former, the variable name is the action’s argument
name, and the variable type is the type of the argument. Examples might be:
for a Read action specified by the initiator, the argument is the filename, and
its type is string; for a tender submission action by an initiator, the argument
is the tender number, and its type is integer. The environment represents the
Contextual ADI in the ISO 10181-3 Access Control Framework.
Environmental variables are application specific, and AEF implementers
specify their names and types, and pass them to the Permis API at
initialisation time. The policy creator will need to refer to the AEF Reference
Manual for a complete list of environmental variables. Examples of
environmental variables are the time of day and the number of previous
accesses. We may add additional operand sources in the future if there is an
identified need for them.

Constants comprise types and values. Typically the LHS variable is
compared against a right hand constant using the specified operator, and the
result is evaluated to true or false. The IF clause also supports complex
boolean logic when individual conditions are combined through the
inclusion of ANDs, ORs and NOTs.

The following example allows tender officers to remove tenders from the
tender store but only between 9am and 5pm, Mon-Fri, June to October 2001.
(Note. The time period is adapted from RFC 3060 [Policy] and may contain any or all of the
following Start, End, MonthsOfYear, DaysOfMonth, DaysOfWeek, TimeOfDay and
LocalOrUTC)

<TargetAccess>
<RoleList>

 <Role Type="permisRole" Value="TenderOfficer"/>
</RoleList>

 <TargetList>
<Target Actions="Delete">

14 D.W.Chadwick, A. Otenko

<TargetDomain ID="TenderStore"/>
 </Target>
 </TargetList>

<IF>
<EQ>

 <Environment Parameter="TimeOfAccess" Type="Time"/>
 <Constant Type="TimePeriod" Value= "DaysOfWeek=0111110

End=2001-10-00 LocalOrUTC=local Start=2001-06-00
TimeOfDay=T090000/T170000"/>

</EQ>
</IF>

</TargetAccess>

6. XML DTD/SCHEMA

Version 7 of the PERMIS X.500 PMI RBAC Policy DTD has been
published at http://www.xml.org, and is also available from our web site at
http://sec.isi.salford.ac.uk/permis/Policy.dtd. The reason why we used a
DTD rather than a schema, is that the XML tools that we were using e.g.
IBM’s Xeena and MS Internet Explorer, support the use of DTDs and not
Schemas. As soon as Schema using tools become readily available we will
produce the XML Schema corresponding to our published DTD.

7. CONCLUSIONS

We have described a comprehensive RBAC policy for use with X.509
attribute certificates. Policies are specified in XML, and the DTD has been
published by xml.org. The X.509 RBAC policy defines the subject and
target domains governed by the policy, the role hierarchies supported by the
policy, which roles may be assigned to which subjects by which trusted
SOAs, and which roles are needed to perform which actions on which targets
under which conditions. We believe the policy is widely applicable to many
different types of application, and we are already using it for electronic
tendering, electronic prescribing, and several database access applications.

REFERENCES

[ACF] ITU-T Rec X.812 (1995) | ISO/IEC 10181-3:1996 “Security Frameworks for
open systems: Access control framework”

RBAC POLICIES IN XML FOR X.509 BASED PRIVILEGE
MANAGEMENT

15

[ACM] ACM Workshop on Role Based Access Control, 1996-2001. See
http://portal.acm.org/portal.cfm for proceedings.
[Adams] Adams, C., Lloyd, S. (1999). “Understanding Public-Key Infrastructure:
Concepts, Standards, and Deployment Considerations”. Macmillan Technical
Publishing, 1999
[Austin] Austin, T. “PKI, A Wiley Tech Brief”, John Wiley and Son, ISBN: 0-471-
35380-9, 2000
[DN] Wahl, M., Kille, S., Howes, T. "Lightweight Directory Access Protocol (v3):
UTF-8 String Representation of Distinguished Names", RFC2253, December 1997.
[Housley] Housley, R., Polk, T. “Planning for PKI: Best Practices Guide for
Deploying Public Key Infrastructure”. John Wiley and Son, ISBN: 0-471-39702-4,
2001
[LDAP] Wahl, M., Howes, T., Kille, S. “Lightweight Directory Access Protocol
(v3)”, RFC 2251, Dec. 1997
[Permis] The latest version of the Permis API can be downloaded from
http://sec.isi.salford.ac.uk/permis
[Policy] B.Moore, E. Ellesson, J. Strassner, A. Westerinen. “Policy Core
Information Model -- Version 1 Specification”. RFC 3060, February 2001.
[Sandhu] Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E. “Role Based
Access Control Models”. IEEE Computer 29, 2 (Feb 1996), p38-43.
[X501] ISO/ITU-T Rec. X.501(1997) The Directory: Models
[X509] ISO/ITU-T Rec. X.509(2001) The Directory: Authentication Framework

ACKNOWLEDGEMENTS

This work has been 50% funded by the EC Information Society Initiative
For Standardization (ISIS) programme, as part of the pan-European PERMIS
project (see http://www.permis.org).

