
Distributed Component System Based On
Architecture Description: The SOFA Experience

Tomáš Kalibera and Petr Tůma

Charles University
Faculty of Mathematics and Physics,
Department of Software Engineering

Malostranské náměst́ı 25, 118 00 Prague 1,
Czech Republic

kalibera@nenya.ms.mff.cuni.cz petr.tuma@mff.cuni.cz

Abstract. In this paper, the authors share their experience gathered
during the design and implementation of a runtime environment for the
SOFA component system. The authors focus on the issues of mapping
the SOFA component definition language into the C++ language and the
integration of a CORBA middleware into the SOFA component system,
aiming to support transparently distributed applications in a real-life
environment. The experience highlights general problems related to the
type system of architecture description languages and middleware im-
plementations, the mapping of the type system into the implementation
language, and the support for dynamic changes of the application archi-
tecture.

Keywords. Architecture description languages, ADL, component defini-
tion languages, CDL, middleware, CORBA, language mapping, dynamic
architectures.

1 Introduction

The notion of components enjoys significant interest in the software engineering
community. Components are considered to be useful units of code sharing and
reuse, as well as useful building blocks of software architectures. While the former
view is supported by practical component systems [15, 19, 24], the latter view ap-
pears to be lagging behind. The current trend of modeling software architectures
using UML is criticized as being inadequate [8], and while the research in com-
ponent systems based on architecture description languages (ADL component
systems) cites inarguable benefits of such systems [1, 5, 13, 14, 23], the described
projects rarely get past research prototypes.

The discrepancy between the cited benefits of ADL component systems and
the lack of their practical employment leads us to believe that there are unre-
solved issues that prevent this employment. In order to investigate these issues,
we have designed and implemented a runtime environment for the SOFA ADL
component system [21] (SOFA environment).



2

Our chief goal in the design and implementation of the SOFA environment
is to support development of transparently distributed applications. The devel-
opment centers around a hierarchical description of the application architecture.
This description is gradually refined from a coarse granularity level, where com-
ponents correspond to implementation modules, to a fine granularity level, where
components correspond to implementation objects. These components are then
mapped to implementation objects using a standardized language mapping, with
the architecture description defining the interconnection of these objects into
the component application. When the application is run, its components can
be deployed onto several network hosts. The components that share a host are
interconnected through linking and run in one address space. The components
that run on different hosts are interconnected through connectors.

The SOFA environment describes the application architecture using the SOFA
component definition language [10, 21] (SOFA CDL). SOFA CDL is mapped into
C++, which is used to implement the components. The connectors are built us-
ing CORBA [18]. The SOFA environment also allows interfacing the application
with GNOME [26] to provide user interface support. The choice of GNOME as
a representative of a component framework and CORBA as a representative of
an off-the-shelf middleware allows us to evaluate how the SOFA environment
supports real-life applications in a real-life environment.1

The paper continues by a brief introduction of the SOFA component model
and SOFA CDL in Sect. 2. The description of the design and implementation
of the SOFA environment follows in Sect. 3. Our experience with the CDL to
C++ mapping and the integration of CORBA, as well as the ability of the SOFA
environment to support applications, is evaluated and generalized for a broad
class of ADL component systems in Sect. 4. Section 5 relates this paper to other
work in the field of ADL component systems. The paper is concluded in Sect. 6.

2 SOFA Component Model And SOFA CDL

The SOFA component model [21] views an application as a hierarchy of nested
software components. A component is an instance of a component template,
which consists of a component frame and a component architecture. The frame
lists all interfaces that the component requires and provides. The architecture im-
plements the operations of the provided interfaces, relying only on the operations
of the required interfaces. A frame can be implemented by several architectures.

An architecture is either composed or primitive. A composed architecture
defines a composed component as built from subcomponents by listing the frames
of the subcomponents and the ties between the interfaces of the component and
the subcomponents. A primitive architecture defines a primitive component as
implemented in an implementation language outside the scope of the component
model.
1 The SOFA ADL component system also includes a Forte IDE and a Java runtime.

These are outside the scope of this paper.



3

A tie between the interfaces of a component and its subcomponents can be
of three types. Binding denotes connecting a required interface of a subcompo-
nent to a provided interface of a subcomponent. Delegating denotes connecting
a provided interface of a component to a provided interface of its subcompo-
nent. Subsuming denotes connecting a required interface of a subcomponent to
a required interface of its component.

An example of the interface, frame and architecture definitions in SOFA
CDL is in Fig. 1. The example defines a variation of the ubiquitous “Hello
World” application that prints a greeting. The application is an instance of
a component with the ApplicationArch architecture, which implements the
ApplicationFrame frame. The Message subcomponent provides the greeting to
be displayed, the Display subcomponent provides the functionality to display
a message, the HelloWorld subcomponent uses the two other subcomponents
to display the greeting. The application defined by the example will be used in
other examples throughout the paper.

interface MessageIface { string message (); };
interface DisplayIface { void print (in string message); };

frame MessageFrame { provides: MessageIface MessageProv; };
frame DisplayFrame { provides: DisplayIface DisplayProv; };

frame HelloWorldFrame {
requires: MessageIface MessageReq; DisplayIface DisplayReq;
provides: ApplicationIface ApplicationProv;

};

architecture MessageArch implements MessageFrame primitive;
architecture DisplayArch implements DisplayFrame primitive;
architecture HelloWorldArch implements HelloWorldFrame primitive;

architecture ApplicationArch implements ApplicationFrame {
inst MessageFrame Message;
inst DisplayFrame Display;
inst HelloWorldFrame HelloWorld;
bind HelloWorld:MessageReq to Message:MessageProv;
bind HelloWorld:DisplayReq to Display:DisplayProv;
delegate ApplicationProv to HelloWorld:ApplicationProv;

};

Fig. 1. A SOFA CDL definition of an application architecture.

SOFA CDL can also specify semantics of interfaces and frames using behavior
protocols [22] and employ complex connectors [3, 4]. These are outside the scope
of this paper.



4

3 SOFA Environment

The SOFA environment defines and implements a mapping of SOFA CDL into
C++ used to map components to implementation objects, implements a de-
ployment mechanism used to deploy the components onto network hosts and to
interconnect the components, and implements the connector generator used to
produce connectors between components that run on different hosts. These three
parts of the SOFA environment are described in this section.

3.1 Mapping SOFA CDL Into C++

The CDL to C++ mapping is based on the IDL to C++ mapping of CORBA [16].
Similar to CORBA IDL, the type system of SOFA CDL is independent of the
implementation languages of components and has a standardized mapping into
these languages. Making the type system independent on the implementation
language makes it easier to generate connectors and potentially also to support
multiple implementation languages of components.

The mapping of the types that SOFA CDL shares with CORBA IDL follows
the IDL to C++ mapping. The types original to SOFA CDL, namely frames and
architectures, are mapped into the frame and architecture classes that follow the
approach used to map interfaces with attributes.

A frame class has accessor methods for the provided and required interfaces
of the frame, which are represented as protected references to the classes that
map the interfaces. An example of a generated frame class is in Fig. 2. To allow
substitution of components with the same frame but different architectures, the
frame class is a virtual base class that is inherited by architecture classes of the
architectures implementing the frame.

class HelloWorldFrame : virtual public FrameBase {
public:

// Accessor methods generated for provided and required interfaces
inline virtual ApplicationIface ptr ApplicationProv () {

return (ApplicationIface:: duplicate (pApplicationProv)); };
inline virtual void ApplicationProv (const ApplicationIface ptr value) {

pApplicationProv = ApplicationIface:: duplicate (value); };
protected:

ApplicationIface ptr pApplicationProv;
. . .

};

Fig. 2. A generated C++ mapping of HelloWorldFrame.

The implementation of an architecture class differs for composed and primi-
tive architectures. An architecture class of a composed architecture has accessor



5

methods for the subcomponents of the architecture, which are represented as
private references to the frame classes of the frames of the subcomponents. The
architecture class also contains code that allows to set up the ties between inter-
faces as defined by the bind, delegate and subsume clauses in the architecture
definition.

For performance reasons, the code does not interconnect the interfaces of
the composed component with the interfaces of its subcomponents directly. In-
stead, it allows propagating references to the provided interfaces of primitive
components along the ties of the architecture definition by the createBind-
ingsAndDelegates and createSubsumes methods. The required interfaces of
primitive components are thus tied directly to the provided interfaces, with the
composed components whose boundaries the ties cross adding no overhead to
the invocations of methods accessible through these ties.

An example of a generated composed architecture class is on Fig. 3.

class ApplicationArch :
virtual public ApplicationFrame, virtual public ArchitectureBase

{
public:

// Methods generated for setting up the ties between interfaces
virtual void createBindingsAndDelegates () {

iHelloWorld−>MessageReq (iMessage−>MessageProv ());
iHelloWorld−>DisplayReq (iDisplay−>DisplayProv ());
pApplicationProv = iHelloWorld−>ApplicationProv (); };

virtual void createSubsumes () {
iMessage−>createSubsumes ();
iDisplay−>createSubsumes ();
iHelloWorld−>createSubsumes (); };

private:
HelloWorldFrame ptr iHelloWorld;
. . .

};

Fig. 3. A generated C++ mapping of ApplicationArch.

An architecture class of a primitive architecture is a virtual base class that
the implementation of the primitive component inherits from. An example of an
implementation of a primitive component is on Fig. 4. The example uses nested
classes to implement the provided interfaces, and demonstrates how both the
provided and the required interfaces of a frame are accessed by the implemen-
tation of the primitive component.

The frame and architecture classes also inherit from base classes that define
methods for generic access to the provided and required interfaces of the frame
and the subcomponents and the ties of the architecture. These methods are
required by the deployment mechanism.



6

class HelloWorld : public virtual HelloWorldArch {
public:

// Implementation of the ApplicationIface interface
class Application : public virtual ApplicationIface {

public:
Application (HelloWorld *frame) { me = frame; };
// Displaying the greeting using the other subcomponents
virtual Short run (const StringSequence& args) {

char *message = me−>MessageReq()−>message ();
me−>DisplayReq()−>print (message);
return 0;

};
private:

HelloWorld *me;
};
// Initialization of the HelloWorldArch architecture
virtual void initialize () {

HelloWorldArch::initialize ();
ApplicationProv (new Application (this));

};
};

Fig. 4. A C++ implementation of HelloWorldArch.

3.2 Deploying Application Components

The deployment is configured by a deployment descriptor. For each frame, the
deployment descriptor specifies the architecture that the component will use
and the host where the component will run. The deployment is controlled from
a single place and expects each host to run a simple server that allows remote
instantiation of components. The initialization and interconnection methods of
the component are then invoked remotely on the component itself.

The control flow of the deployment mechanism follows the hierarchical ar-
chitecture of the application being deployed. The architecture forms a tree with
each node representing a component. Nodes representing composed components
are parents of nodes representing their subcomponents. Nodes representing prim-
itive components are leaves. The references to provided and required interfaces
are attributes of each node.

At the beginning of the deployment process, the references to provided in-
terfaces are stored in the attributes of nodes representing primitive components.
The references are then propagated toward the root of the tree along the bind
and delegate ties in one tree traversal pass, and toward the leaves of the tree
along the subsume ties in another traversal pass. The process uses the create-
BindingsAndDelegates and createSubsumes methods defined by the language
mapping of the component architectures.



7

typedef sequence<string> StringSequence;
interface ApplicationIface { short run (in StringSequence args); };
frame ApplicationFrame { provides: ApplicationIface ApplicationProv; };

Fig. 5. The application frame.

The deployment expects the application to implement a standardized frame
in Fig. 5. After the application is deployed, the run method of Application-
Iface provided by the application is invoked to launch the application.

3.3 Generating Connectors Using CORBA

Connectors are used to interconnect components that run on different network
hosts by delivering remote method invocations to the components. As the hosts
where components should run are only known at deployment time, the connectors
have to be generated and dynamically loaded at deployment time.

Although the SOFA environment does not place any principal restrictions on
the middleware used to implement connectors, we have focused on connectors
that are generated by off-the-shelf CORBA middleware. The connector generator
is flexible enough to support a number of CORBA middleware implementations.

CORBA middleware generates connectors from a CORBA IDL definition
of the interfaces that the connector delivers invocations to. An IDL compiler
accepts the CORBA IDL definition of an interface as input and generates C++
source code of the stub and skeleton parts of the connector as output. Both
parts need to be compiled, the stub part of the connector is then called by the
components that require the interface, the skeleton part of the connector then
calls the components that provide the interface.

A development environment that includes both an IDL compiler and a C++
compiler is needed to generate a connector. To avoid the need of having this
environment available at deployment time, the SOFA environment pregenerates
a set of connectors for all interfaces of an application.

For each interface, a CORBA IDL file that contains the definition of the
interface and includes the definitions of all types that the interface relies on is
generated by the SOFA environment. The file is compiled by the IDL compiler to
yield the C++ source code of the stub and skeleton parts of the connector. The
SOFA environment also generates C++ source code of the connectors that uses
the code generated by the IDL compiler and interfaces it with the components.
The C++ source code is compiled into a pregenerated connector. At deployment
time, the pregenerated connectors are dynamically linked with the components.

The SOFA environment can be configured at deployment time to use several
middleware implementations. All connectors of a single middleware implemen-
tation are managed by a single connector manager. The task of the connector
manager is to provide access to the listening loop of the middleware and to enable
creation of stub and skeleton parts of a connector in a middleware independent
manner.



8

class ConnectorManager {
public:

virtual ObjectBase ptr loadStubPart (const char *reference) = 0;
virtual char *loadSkeletonPart (ObjectBase ptr servant) = 0;
virtual void startListening () = 0;
virtual void stopListening () = 0;

};

Fig. 6. The connector manager interface.

The interface of the connector manager is in Fig. 6. The loadSkeletonPart
method creates the skeleton part of a connector, returning a stringified refer-
ence of the target interface. The loadStubPart method creates the stub part
of a connector, accepting this stringified reference. The startListening and
stopListening methods control the listening loop of the middleware.

4 Experience in Retrospective

4.1 Shareable Language Mapping

The initially most visible feature of the SOFA environment was the CDL to
C++ mapping, based on the IDL to C++ mapping of CORBA [16]. The CDL
to C++ mapping of the data and interface types, which SOFA CDL shares with
CORBA IDL, is almost as complex as the IDL to C++ mapping of these types.
In addition to the data and interface types, the CDL to C++ mapping also
supports the frame and architecture types. Considering the size of the IDL to
C++ language mapping, over 170 pages of specification at this time, the CDL
to C++ language mapping is obviously far from trivial.

The complexity of the mapping can introduce extra cost in terms of code
size and runtime overhead. In principle, the extra cost of a mapping designed
solely for use by the component code does not have to exceed the extra cost
introduced by other libraries that provide useful types in the C++ environment,
such as STL [11]. The problem particular to the CDL to C++ mapping, and
a language mapping used by any other component system that aspires to em-
ploy off-the-shelf middleware to build connectors, is that the mapping is used
both by the component system and by the middleware. A typical situation in
this case is that the mapping used by the component system is not compatible
with the mapping used by the middleware, prompting the need for deep copy-
ing at best, and deep copying and data conversion at worst, of all data passed
through the middleware. Given the performance of contemporary middleware
implementations [25], the copying and conversion might be acceptable in an ex-
plicitly distributed application that employs the middleware in a few carefully
selected points, but not in a transparently distributed application that relies
on the middleware for interconnecting its components at fine granularity levels,
where components correspond to implementation objects.



9

The problem of compatibility of the language mappings used by the compo-
nent system and the middleware implementations employed to build connectors
can be solved by sharing the mapping among the component system and the
middleware implementations. In most cases, this requires extending the language
mappings of contemporary middleware implementations.

A language mapping of a contemporary middleware implementation is typi-
cally designed to make it possible to write applications that are portable across
middleware implementations. The mapping is defined so that the application
employing the middleware can easily access the mapped types, but it does not
define how the middleware itself accesses the mapped types.

A language mapping that is to be shared among a component system and
middleware implementations has to extend the contemporary mappings by defin-
ing how the middleware itself accesses the mapped types. Such a language map-
ping makes it possible not only to write applications that are portable across
middleware implementations, but also to write middleware implementations that
can share language mappings and thus coexist in a single application without
incurring extra cost in terms of code size and runtime overhead. A step in this
direction are the ORB portability interfaces in the IDL to Java mapping of
CORBA [17].

4.2 Connectors Built Using CORBA

The separation of development and deployment phases of the application lifecy-
cle implies a need to postpone the decision on what connectors to employ from
the development time to the deployment time. This goes contrary to the typ-
ical usage of off-the-shelf middleware, where the connectors are generated and
integrated into the application at the development time.

Although it is theoretically possible to use off-the-shelf middleware to gen-
erate connectors at deployment time, such an approach runs into a number of
practical difficulties. First, it is unusual to require the development system of
the middleware to be available at deployment time. Second, the development
system of the middleware is often interactive and thus hard to integrate into the
component system.

Alternatively, a set of connectors for all interfaces of an application can be
pregenerated at the development time. Only those pregenerated connectors that
are actually employed will be used at the deployment time. Our experience
demonstrates that while feasible, this approach runs against the typical usage of
off-the-shelf middleware, where connectors for multiple interfaces are generated
from a single CORBA IDL file.

When connectors for multiple interfaces are generated from a single CORBA
IDL file, the middleware produces a monolithic module that contains the mar-
shalling code together with the mapping of all types used by the connectors.
When used to generate the connectors for one interface at a time, the middle-
ware produces modules that are largely redundant in mapping of those types
that are shared by the connectors. Even though the redundancy can be removed



10

during function level linking, the time spent generating and compiling redundant
code is prohibitive even for relatively small number of types and interfaces.

To avoid the problems of redundancy when employed in a component sys-
tem, an off-the-shelf middleware should provide features that allow for separated
generation of the marshalling code and the mapping of the types used by the
connectors. Provided that the mapping of the types could be shared among the
component system and the middleware implementations, this would allow for
generating the mapping of the types at development time, and generating the
marshalling code on demand at deployment time.

4.3 ADL Type System Not Suitable

In retrospect, the most constraining decision with respect to the usability of
the component system was basing the SOFA type system on the CORBA type
system. The type system of CORBA is tailored to suit the underlying remote
procedure call mechanism, which is acceptable because a CORBA application
uses IDL interfaces in a few carefully selected points. When carried over to SOFA,
the type system becomes much more restrictive because a SOFA application uses
CDL interfaces for interconnecting its components at fine granularity levels,
where components correspond to implementation objects.

Looking at the differences between the type system of C++, which is nor-
mally used in the environment we consider, and the type system of SOFA, we
can see that C++ relies heavily on reference and pointer types that may not
have a counterpart in the SOFA type system.

Reference and pointer types that are used to pass data by reference, whether
merely for sake of efficiency or to allow modification of the data, have a good
match in the SOFA types used to pass the same data in one of the in, out or
inout directions.

Reference and pointer types that are used to build dynamic data structures
do not have a good match in the SOFA types. Even if the dynamic data structure
happens to match the SOFA sequence or value types, the sharing semantics ap-
plied by C++ will not match the copy semantics applied by SOFA. The sharing
semantics of the reference and pointer types is difficult to mimic in a compo-
nent system that supports transparently distributed applications. When building
dynamic data structures, it is therefore better to employ high level tools such
as containers and iterators rather than low level tools such as references and
pointers.

A component system can provide containers and iterators modeled after
STL [11] or another well tested framework. These can be employed to build
dynamic data structures without having to associate a specific sharing or copy
semantics with the type, which would be difficult to implement when the type
is used both by C++ and by SOFA.

Reference and pointer types that are used to denote objects may appear to
have a good match in the SOFA object reference type. Instances of both types



11

give their holder the ability to invoke methods on an object. Implementation of a
component system that employs this similarity is possible, although not without
difficulties [3]. Reference and pointer types that are used to denote functions
represent a similar case.

4.4 Need Anticipated Dynamic Changes

From the architectural point of view, passing references that denote objects has
the effect of creating new ties between components. Together with the ability to
instantiate components, this provides a mechanism for dynamically changing the
architecture of the application. The mechanism is similar to the one normally
employed by object oriented applications to introduce dynamic changes by cre-
ating and linking objects. This similarity makes it well suited for supporting
anticipated dynamic changes of the architecture of component applications. The
flexibility and ease of use of the mechanism supersedes that of many contempo-
rary component systems with architecture description languages [5, 14].

The downside of the mechanism is that the new connections and components
are not reflected in the architecture description. This makes the architecture
description lose its relevancy to the application architecture it is to describe. This
problem exists in most component systems that employ architecture description
languages, where the architecture description is either static [5, 23], or expressed
in a way that does not lend itself to describing anticipated dynamic changes [2,
12].

Anticipated dynamic changes of the application architecture appear to be of
fundamental importance, much more so than the unanticipated dynamic changes
the software architecture research community focuses on. If the architecture de-
scription is to be used in a component system at fine granularity level, it is nec-
essary to extend the architecture description language to support such changes.
Following the approach suggested for building dynamic data structures, the dy-
namic architectures could be described as dynamic collections of components.

4.5 Legacy Components And Connectors

Integrating the component system with CORBA and GNOME gave rise to the
need of supporting legacy components, especially the components of GNOME
used to build the user interface. Besides running into problems with the type sys-
tem outlined earlier, we also encountered problems related to legacy distribution
mechanisms.

The graphical user environment of GNOME runs on top of the X Window
System [20], which relies on its own distribution mechanism. The legacy com-
ponents of GNOME use X resource identifiers as references. The distribution
mechanism of the X Window System should therefore be regarded a middleware
and X protocol connectors should be introduced to interconnect X components.
This would have the advantage of using the X protocol, which is more efficient
than the protocols of general purpose middleware. More work needs to be done
to design a mechanism for cooperation between multiple types of middleware.



12

5 Related Work

Although a number of ADL component systems exists, most share the basic
architectural concepts related to components and connectors. The component
model of SOFA is no exception, being similar to the component model of Dar-
win [13]. It also fits well into the ACME framework [9] and the xADL toolkit [7],
which provide a basis for sharing and manipulating architectural information.

What distinguishes our work on SOFA from that carried out on other compo-
nent systems is the close integration of our SOFA implementation with CORBA
and GNOME. To our knowledge, few other ADL component systems come close
to this level of implementation. The notable exceptions are the C2 [14] and
Rapide [12] projects, both exerting effort to support real-life applications in
real-life settings. Neither project, however, aims at supporting transparently
distributed applications.

With its design and implementation, the SOFA environment is also close to
component systems that are not based on formal architecture description, such
as Microsoft COM [15] or Sun EJB [24]. Besides the lack of the architecture de-
scription itself, these systems differ from the SOFA environment also by omitting
the explicit specification of interfaces required by components, which is needed
for rigorous assembly of components.

Although also lacking the formal architecture description, more similar to
the SOFA environment is the CORBA Component Model [19], which provides
a definition of components with explicit specification of provided and required
interfaces. We believe that the need for shareable language mapping, identified
in this paper, also concerns the CORBA Component Model.

Also related to our work is the development in middleware implementations,
especially in the area of reflective middleware. Reflective middleware implemen-
tations are generally more modular and thus lend themselves better to integra-
tion with a component system. Reflective middleware can also employ the formal
architecture description for its configuration [6].

6 Conclusion

We have presented the design and implementation of a runtime environment for
the SOFA component system. The implementation is integrated with GNOME
and CORBA as representatives of a contemporary component framework and a
distributed middleware.

The SOFA environment features a CDL to C++ mapping, a deployment
mechanism and a connector generator. The language mapping is easy to use, in-
troduces little overhead per se, and enables component substitution. The deploy-
ment mechanism is configurable and supports both single-host and distributed
deployment transparent to the application. The connector generator produces
connectors independent of the application and can integrate several CORBA
middleware implementations.



13

The SOFA environment meets our goals of supporting real-life applications
in real-life settings, vital to discover the limitations of ADL component systems
with respect to applications. The paper further highlights our findings in this
respect, related to the type system of architecture description languages and
middleware implementations, the mapping of the type system into the imple-
mentation language, and the support for dynamic changes of the application
architecture.

We argue that the type system of the architecture description languages needs
to be enriched to support building of dynamic data structures without having to
resort to the low level tools such as references and pointers, which do not lend
themselves well to transparent distribution.

We point out that the mapping of the type system used by contemporary off-
the-shelf middleware needs to be extended to define those features of the mapped
types that the implementations of the middleware rely upon. This allows sharing
the language mapping among the component system and the middleware imple-
mentations used to build the connectors. For efficiency reasons, the middleware
should generate the marshalling code and the mapping of the types separately.

We also emphasize that the dynamic changes of the application architecture
should be allowed through a mechanism similar to the one normally employed by
applications to introduce dynamism, such as creating and linking objects. The
architecture description languages should reflect this mechanism and provide
support for anticipated dynamic changes.

We believe that our findings are not constrained to the particular design and
implementation of the SOFA environment we have described, but can be gener-
alized to cover the broad class of component systems that employ architecture
description languages or other forms of formal architecture description.

The implementation of the SOFA environment is available for download at
http://nenya.ms.mff.cuni.cz.

Acknowledgments

The authors would like to thank Frantǐsek Plášil, Stanislav Vǐsňovský and Adam
Buble for valuable comments, and all the members of the Distributed Systems
Research Group at Charles University for their work on the SOFA project.

References

1. Allen R. J.: A Formal Approach to Software Architecture, Doctoral thesis at
Carnegie Mellon University, USA, 1997

2. Allen R. J., Douence R., Garlan D.: Specifying and Analyzing Dynamic Software
Architectures, Proceedings of FASE 1998, Portugal, 1998

3. Bálek D.: Connectors in Software Architectures, Doctoral thesis at Charles Uni-
versity, Czech Republic, http://nenya.ms.mff.cuni.cz, 2002

4. Bálek D., Plášil F.: Software Connectors and Their Role in Component Deploy-
ment, Proceedings of DAIS 2001, Poland, 2001



14

5. Bellissard L., Ben Atallah S., Boyer F., Riveill M.: Distributed Application Con-
figuration, Proceedings of ICDCS 1996, Hong Kong, 1996

6. Blair G., Blair L., Issarny V., Tůma P., Zarras A.: The Role of Software Archi-
tecture in Constraining Adaptation in Component-based Middleware Platforms,
Proceedings of Middleware 2000, USA, 2000

7. Dashofy E. M., van der Hoek A., Taylor R. N.: An Infrastructure for the Rapid
Development of XML-based Architecture Description Languages, Proceedings of
ICSE 2002, USA, 2002

8. Garlan D., Kompanek A.: Reconciling the Needs of Architectural Description with
Object-Modeling Notations, Proceedings of UML 2000, United Kingdom, 2000

9. Garlan D., Monroe R., Wile D.: ACME: An Architecture Description Interchange
Language, Proceedings of CASCON 1997, Canada, 1997

10. Hnětynka P., Mencl V.: Managing Evolution of Component Specifications using
a Federation of Repositories, Technical report 2001/2, Department of Software
Engineering, Charles University, Czech Republic, 2001

11. International Organization for Standardization: C++ Programming Language,
ISO/IEC standard 14882, 1998

12. Luckham D. C., Kenney J. J., Augustin L. M., Vera J., Bryan D., Mann W.: Spec-
ification and Analysis of System Architecture Using Rapide, IEEE Transactions
on Software Engineering 21(4), 1995

13. Magee J., Tseng A., Kramer J.: Composing Distributed Objects in CORBA, Pro-
ceedings of ISADS 1997, Germany, 1997

14. Medvidovic N., Taylor R. N., Whitehead E. J.: Formal Modeling of Software Ar-
chitectures at Multiple Levels of Abstraction, Proceedings of CSS 1996, USA, 1996

15. Microsoft: Component Object Model Specification 0.9, http://www.microsoft.com,
1995

16. Object Management Group: C++ Language Mapping Specification, formal/99-07-
41, ftp://ftp.omg.org/pub/docs/formal/99-07-41.pdf, 1999

17. Object Management Group: Java Language Mapping Specification, formal/99-07-
53, ftp://ftp.omg.org/pub/docs/formal/99-07-53.pdf, 1999

18. Object Management Group: Common Object Request Broker: Architecture and
Specification, CORBA 2.6.1, formal/02-05-08,
ftp://ftp.omg.org/pub/docs/formal/02-05-08.pdf, 2002

19. Object Management Group: CORBA Component Model Specification, ptc/01-11-
03, ftp://ftp.omg.org/pub/docs/ptc/01-11-03.pdf, 2001

20. Open Group: X Windows System, http://www.x.org, 2002
21. Plášil F., Bálek D., Janeček R.: SOFA/DCUP: Architecture for Component Trad-

ing and Dynamic Updating, Proceedings of ICCDS 1998, USA, 1998
22. Plášil F., Vǐsňovský S.: Behavior Protocols for Software Components, IEEE Trans-

actions on Software Engineering 28(9), 2002
23. Shaw M., DeLine R., Klein D. V., Ross T. L., Young D. M., Zelesnik G.: Abstrac-

tions for Software Architecture and Tools to Support Them, IEEE Transactions
on Software Engineering 21(4), 1995

24. Sun Microsystems: Enterprise JavaBeans Specification 2.0,
http://www.microsoft.com, 2002

25. Tůma P., Buble A.: Open CORBA Benchmarking, Proceedings of SPECTS 2001,
USA, 2001.

26. GNOME Documentation Project, http://developer.gnome.org/projects/gdp, 2002


