
Prioritised dynamic communicating and
mobile processes

F.R.M. Barnes and P.H. Welch

Abstract: Continuing research on language design, compilation and kernel support for highly
dynamic concurrent reactive systems is reported. The work extends the occam multiprocessing
language, which is both sufficiently small to allow for easy experimentation and sufficiently
powerful to yield results that are directly applicable to a wide range of industrial and commercial
practice. Classical occam was designed for embedded systems and enforced a number of
constraints, such as statically predetermined memory allocation and concurrency limits, that
were relevant to that generation of application and hardware technology. This work removes most
of these constraints and introduces a number of new facilities: explicit channel ends, channel
bundles, mobile ends of channels and bundles, dynamic process creation, the extended rendezvous
and process priorities. These significantly broaden occam’s field of application and raise the level
of concurrent system design directly supported. Concurrency overheads have been driven ever
downwards, for example synchronising channel communication is now around 100 nanoseconds
on an 800 MHz P3, and most operations have unit time cost. Finally, a proposal for secure mobile
processes is made.

1 Background

Classical occamTM [1] is a concurrent programming
language, based on the CSP process algebra [2–4]. It was
originally designed for programming and reasoning about
embedded systems, in particular, those using the Inmos
transputer [5–7]. Safety aspects of those applications
required occam programs to have statically determinable
memory requirements. The transputer directly supported
two levels of priority scheduling. If further levels were
needed, they had to be programmed at the user level. Its
process management and communication capabilities were
so fast that the overheads this introduced were negligible –
but having to worry about them at all was a distraction to
the application designer. Nowadays, real-time program-
mers expect many more than two levels of priority and
these are usually offered, although with somewhat impre-
cise semantics and levels of guarantee.

On modern commodity computing platforms such as
specialised servers or general purpose workstations,
programmers expect to have some mechanism for dynamic
memory management, so that systems can allocate those
resources in response to events happening at run-time. For
languages such as Java [8], this happens fairly automati-
cally; the programmer only needs to worry about creating
new data or code structures within a program. Concurrent
with user code execution, the garbage collector [9] clears
away unused structures periodically to free-up memory. A
negative side to this, however, is a loss of guaranteed
timing behaviour when the garbage collector strikes,

which is serious for real-time applications. At a slightly
lower level, languages such as C [10, 11] and Cþþ [12]
provide dynamic allocation, but leave its de-allocation to
the mercy of the programmer, whose commonly incorrect
usage leads to subtle but eventually catastrophic run-time
errors. In all cases, dynamic memory management is
ultimately performed by the operating system (the ‘brk’
system-call on UNIX for example).

In light of this, classical occam appears restricted in
terms of dynamic and real-time capability. Yet occam
remains highly desirable for its simplicity (through
concurrency), safety (enforced zero-aliasing and race-
hazard-free code), and run-time performance, with
context-switch overheads in the order of tens of nanose-
conds. The KRoC [13] project, alongside others, is
largely responsible for the continued interest and devel-
opment in the occam language, since the transputer
production line stopped. KRoC (the Kent retargettable
occam compiler) comprises a number separate programs
which generate native-platform binaries from occam
sources. KRoC ports exist for a wide range of architec-
tures, developed under the EPSRC-funded ‘occam For
All’ project [14] which finished in May 1997. The work
described here concentrates on the KRoC=Linux [15]
port, primarily for the Intel i386 architecture, which has
been developed since that time.

2 Overview and motivation

This paper describes four main extensions to the
occam=CSP programming language: channel bundles
(with mobile ends), dynamic process creation, an extended
rendezvous and process priorities. The dynamic memory
mechanisms, needed for mobile channels and dynamic
process creation, also allow the introduction of recursive
processes and run-time sized PAR process replication. The
last-mentioned requires no significant language change and
is described in a related paper [16] along with the tidying-

IEE, 2003

IEE Proceedings online no. 20030182

DOI: 10.1049/ip-sen:20030182

Paper received 10 June 2002

The authors are with the Computing Laboratory, University of Kent,
Canterbury, Kent, CT2 7NF, UK

IEE Proc.-Softw., Vol. 150, No. 2, April 2003 121

up of a number of additional items from the original
occam language. Note that these dynamic extensions are
introduced with full maintenance of alias checking, zero
race-hazard guarantees and the absence of both garbage
collection and memory leaks. Finally, we also make a
proposal for secure mobile processes (Section 9).

2.1 Fixed process networks

The traditional method of constructing occam programs
follows a simple process oriented design pattern. This
means (layered) networks of independent active processes
that communicate and=or synchronise through the primi-
tives available. In the KRoC [13] implementation of
occam, those primitives are (CSP) channel communica-
tions and implicit barriers (at the ends of PAR constructs)
plus some non-compiler based synchronisations (sema-
phores, barriers, buckets and resources), as described in
[17]. These capabilities let us construct networks of fixed
size and topology, which is indeed sufficient for the design
and implementation of a wide range of system. However,
we now want to be able to create and network processes
dynamically.

2.2 Fixed process workspace and mobiles

Classical occam also lacks language constructs for pointer
assignment and communication. A major reason for this
was to control aliasing, which is easily introduced by the
copying of pointers, and without whose rigorous policing,
concurrent systems would die from race hazards. However,
that omission has memory and run-time implications, since
data must be copied rather than just references.

The introduction of mobile data-types to occam [18, 19]
provides a safe non-aliasing movement semantics imple-
mented using pointer manipulation, as well as the ability to
create run-time sized mobile arrays. Parallel race hazards
are not introduced since the sending process loses the
reference pointer, i.e. no alias is made to the mobile data.
Further, because the compiler always knows when data
becomes inaccessible, code is automatically generated to
recover its memory. This takes a very short and unit time,
so real-time response remains calculable despite the
dynamic allocation of all mobile structures.

2.3 Dynamic bundles of channels

Channel types (first proposed for the unimplemented
occam3 [20] language) provide a method of grouping
together a ‘bundle’ of related channels within a single
structure – for example, a pair of opposing direction
channels supporting a client=server interaction. Our chan-
nel types modify this idea: their variables reference only
one of the ends of the bundle and those ends are mobile. To
distinguish between the two different ends, a channel
direction specifier (‘?’ or ‘!’, described in Section 3) is
added to the type when declaring the channel end.

These channel ends are similar in idea to Icarus’ ports
[21, 22], except that we allow an arbitrary number of
channels within a single type. The channel types added
to occam are treated as first-class citizens in the type
system (like any mobile type), allowing channel bundle
ends to be declared and subsequently communicated to
other processes. Assignment and parameter passing are
handled in a similar (mobile) way. Channel ends (either
side) may also be SHAREd (another occam3 idea) by many
processes, with safe access enforced by the language
design.

Section 4 describes the syntax and semantics of
channel types in occam, within the framework of
KRoC=Linux [15].

2.4 Dynamic process creation

Standard occam only allows the creation of new processes
inside a PAR construct, and forces them to synchronise at
the end of the PAR on a barrier. Restrictions also apply to
the replicated PAR, whose replicator count must be a
compiler-known constant expression. An earlier paper
[16] describes an extension for handling run-time-count
replicated PARs. Further information can be found in [23].
This greatly enhances the expressiveness of a replicated
PAR, although it makes more difficult the compiler’s task of
parallel usage checking within the replicated process.

We introduce a new mechanism for process creation, the
FORK, which dynamically creates a PROC instance and runs
it parallel to the invoking process. Locally, FORK behaves
as Skip (a do-nothing process), with some minor excep-
tions. Termination of a FORKed process is controlled by a
FORKING block. Before a FORKING block can finish, it
must wait for any unfinished FORKed processes to termi-
nate. A FORKed process may finish early however, allowing
dynamically allocated resources to be reused immediately.

Section 6 describes the syntax and semantics of the
FORK. A typical application for FORKs is in internet
servers, where it is highly desirable to be able to spawn a
new process for handling an incoming connection. An
experimental version of the occam web-server [24] is
under construction, using FORKs and channel-types.

With dynamic process creation, dynamic channel (or
bundle) creation and the mobility of channel ends, we now
have the technology for the dynamic construction of
process networks of arbitrary scale and topology. Of
course, care will still be needed.

2.5 Extended rendezvous

Simple channel communication in occam is described,
following CSP, by processes participating in an event
(the channel). The outputting process readies the data
then synchronises on the channel. The inputting process
synchronises on the channel and then takes the data. The
point at which both processes synchronise is viewed as an
instantaneous action where the data (or rights to the data)
are copied. Both inputting and outputting processes then
resume execution.

Sometimes it is desirable to have the inputting process
perform some action on the received data, before the
outputting process resumes execution. Currently, the only
way to do this is to alter the inputting and outputting
processes so that they perform an additional synchronisa-
tion at the required point. However, doing this is intrusive
to the outputting process (which doesn’t need to know such
details about the inputting process), and there is every
possibility that a misplacement of the second synchronisa-
tion on either side will cause deadlock.

The extended rendezvous offers a nice solution to this
problem, since it requires no modification of any output-
ting process and provides a safe (compiler checked) syntax
and semantics for the inputting process. Section 5
describes this in detail.

2.6 Process priorities

Process priority has always been necessary for the efficient
scheduling of processes sharing the same processor and for
computing worst-case response times in real-time applica-

122 IEE Proc.-Softw., Vol. 150, No. 2, April 2003

tions. Strictly speaking, only two priorities are ever needed,
but only if the application engineer is prepared to do
additional scheduling operations on top of them. We have
built in (as an option) 32 levels of priority to simplify this
task, more levels could easily be added if necessary.
Currently, priorities have not been burnt into the language
but are available through a library of compiler built-in
PROCs, plus significant changes in the run-time system
(which have raised synchronisation overheads only margin-
ally – still only tens of nanoseconds). This form of priority
was first investigated in [25]. Section 8 describes our
implementation of priority.

3 Channel direction specifiers

The occam programming language encourages program-
mers to build applications as layered networks of
active=reactive processes (components), synchronising
and communicating through channels. Classical occam
channels provide point-to-point, synchronised, unbuffered
communication between processes. Conceptually, a chan-
nel has two ends: the input end and the output end. Fig. 1
shows an example component, a running-sum integrator,
as seen by processes outside of it. The implementation is
hidden and is not the concern of the surrounding network,
providing all implementations behave in a consistent
manner (in their pattern of use of external channels and
the functions they compute).

An occam process sees only one end of any channel
parameter it is given (either for input or output). That
direction is specified using a channel direction specifier
(‘?’ for input or ‘!’ for output), along with the structure of
the messages carried, in the case of Fig. 1, simple INTs.
The directions are specified from the point of view of the
process.

Classical occam did not have these direction specifiers.
Their introduction enables much more accurate error
messages to be reported by the compiler on silly mistakes.

Any implementation of ‘integrate’ must use its para-
meterised channels in the direction specified. For example,
here is a serial implementation:

PROC integrate (CHAN INT in?, out!)

INITIAL INT total IS 0:

WHILE TRUE

INT x:

SEQ

in ? x - - input

total :¼ total þ x

out ! total - - output

:

The compiler checks that the usage of the channel
parameters (‘in’ and ‘out’) conforms.

A parallel implementation, as shown in Fig. 2 [Note 1],
simply plugs its given channel ends into the relevant
internal subcomponents. The subcomponents in Fig. 2
are very simple processes that cycle indefinitely, retaining
no state between cycles. The adder component (‘plus’)
waits for a number on each input and outputs their sum.
The triangular process (‘delta’) waits for a number and
outputs, in parallel, on its two output channels. The third
process (‘prefix(0)’) initially outputs a zero; then it
simply copies input numbers to its output channel. The
code for this parallel implementation is:

PROC integrate (CHAN INT in?, out!)

CHAN INT a, b, c:

PAR

plus (in?, c?, a!)

delta (a?, b!, out!)

prefix (0, b?, c!)

:

The correct ends of any locally declared channels must be
used when wiring things up.

The above code contains all the information necessary to
draw the diagram in Fig. 2. The compiler will check that,
for example, the delta process expects a channel input
end for its first parameter and channel output ends for its
second and third.

4 Mobile channel types

Here is an example of a channel bundle type:

CHAN TYPE BUF.MGR

MOBILE RECORD

CHAN INT req?: - - integer

CHAN MOBILE []BYTE buf!: - - dynamic array

CHAN MOBILE []BYTE ret?: - - dynamic array

:

This declares a mobile channel type called ‘BUF.MGR’.
Being a channel type, the fields inside the RECORD struc-
ture are only permitted to be channels (or arrays of
channels). Data fields are not allowed.

‘BUF.MGR’ contains three channels. ‘req’ is used by a
client to request a buffer of some size. The buffer is
acquired from the ‘buf’ channel. Once the client is done
with the buffer, it sends it back to the server using the
‘ret’ channel. The channel direction specifiers specify
server-relative directions. The server side can only use
‘req’ and ‘ret’ for input and ‘buf’ for output. In contrast,
the client side can only use ‘req’ and ‘ret’ for output

Fig. 1 occam running-sum integrator

Fig. 2 occam running-sum integrator showing internal
processes

Note 1: Strictly this parallel implementation of ‘integrate’ is not
equivalent to the serial version. The difference concerns the buffering
capacity of each implementation: 1 for the serial version and 2 for the
parallel version. The serial version pipelined with a trivial one-place buffer
process is, however, semantically the same as the parallel version.

IEE Proc.-Softw., Vol. 150, No. 2, April 2003 123

and ‘buf’ for input. This behaviour is enforced by the
compiler, as is the placement of direction specifiers on the
fields within the channel-structure.

We use the words ‘client’ and ‘server’ here to mean a
particular end of the channel bundle. Whether the applica-
tion chooses to use them as such is entirely up to itself. We
would prefer, however, that they were used according to a
well-understood usage pattern, such as client–server,
IO-SEQ or IO-PAR [26].

4.1 Variables and allocation

Channel type variables come in two forms, a server-end
and a client-end. For example:

BUF.MGR? buf.svr: - - server-end variable

BUF.MGR! buf.cli: - - client-end variable

A direction specifier is used on the type to indicate either a
server (‘buf.svr’) or a client variable (‘buf.cli’). Once
declared, they are undefined until they are either allocated or
used as a target of assignment or input. These are mobile
variables and have the same underlying semantics as the
mobile data-types described in [19]. They are allocated in
pairs at run-time:

buf.cli, buf.svr :¼ MOBILE BUF.MGR

This operation dynamically allocates the channel-structure
record and assigns it to both target variables. Their use in
assignment and communication is strictly controlled by the
rules for ordinary MOBILE variables, i.e. a movement
semantics: the source variable loses it (becoming
undefined). The compiler is not fussy about the order in
which the client and server variables appear on the left-
hand side, but does check to ensure that one is a client and
the other is a server. This allocation syntax is similar to
general dynamic mobile allocation [19], except that in this
case there is no array dimension to be specified and there
are two results from the allocation instead of one.

The variables ‘buf.svr’ and ‘buf.cli’ can be used in
two ways: either as themselves in communication, assign-
ment, parameter passing and abbreviations, or with
subscripts to access individual channel fields.

4.2 Using channel types

For the most part, channel type variables can be treated like
ordinary mobile variables. Once allocated, this means that
moving one of the channel-bundle ends around the network
stretches the channels within it. The behaviour is concep-
tually like the similar mechanism in Icarus [21, 27], but our
implementation differs significantly.

Fig. 3 shows a simple occam program which allocates a
mobile channel-bundle (in ‘generator’), then communi-
cates its ends to other (the ‘server’ and ‘client’)
processes. Those processes then use the channels
contained within the bundle to communicate directly
with each other. The same BUF.MGR type described at the
start of Section 4 is used.

Fig. 4 shows the state of things after the ‘generator’
process has allocated the channels, but before it has
communicated them.

The ‘generator’ process then moves the server-end to
the ‘server’ process. This has the effect of pulling
the channels ‘over’ the network, as shown in Fig. 5. The
client-end is then moved to the ‘client’ process and the
‘generator’ process terminates. The two processes
(‘server’ and ‘client’) then proceed to communicate

PROC server (CHAN BUF.MGR? in?)

BUF.MGR? sv:

SEQ

in ? sv - - get server-end

INT s:

MOBILE []BYTE b:

SEQ

sv[req] ? s - - get size

b :¼ MOBILE [s] BYTE - - allocate buffer

sv[buf] ! b - - move buffer out

sv[ret] ? b - - take buffer back

:

PROC client (CHAN BUF.MGR! in?)

BUF.MGR! cv:

SEQ

in ? cv - - get client-end

MOBILE []BYTE b:

SEQ

cv[req] ! 1518 - - send desired size

cv[buf] ? b - - get buffer

... use ‘b’

cv[ret] ! b - - move buffer back

:

PROC generator (CHAN BUF.MGR? s.out!,

CHAN BUF.MGR! c.out!)

BUF.MGR? buf.svr:

BUF.MGR! buf.cli:

SEQ

- - allocate mobile channel structure

buf.cli, buf.svr :¼ MOBILE BUF.MGR

s.out ! buf.svr - - move server-end

c.out ! buf.cli - - move client-end

:

CHAN BUF.MGR? svr.chan:

CHAN BUF.MGR! cli.chan:

PAR

generator (svr.chan!, cli.chan!)

server (svr.chan?)

client (cli.chan?)

Fig. 3 Simple mobile channel type demonstration program

Fig. 4 Process states after channel allocation

124 IEE Proc.-Softw., Vol. 150, No. 2, April 2003

over the channels connecting them. This final network
configuration is shown in Fig. 6.

This example is not particularly exciting, but demon-
strates how channel-types can be used. The main point is
that a process having one end of a channel (or channel
bundle) does not need to know where the remote end is.
Indeed, one of the general points of occam=CSP is that we
should not need to know where channels are connected,
only what protocols and usage patterns they have [Note 2].
This is what gives us a compositional semantics for occam
concurrency and scalable complexity.

4.3 Shared channel-types

The channel-types presented so far provide a general
mechanism for moving channels around networks, neatly
grouped according to function. A common thing we want
to do with channels is to share them. Sharing of channels
(and any other variable, parameter or abbreviation) is
currently performed using a compiler directive to turn-off
usage checking and a (user-defined) SEMAPHORE [17, 29]

type to provide mutual exclusion. We would clearly wish to
avoid this approach, since it removes any opportunity for
the compiler to check affected code for aliasing and
parallel usage.

We solve this problem, for channel types at least, by
allowing the declaration of SHAREd channel type variables
and subsequently enforcing their safe use. Either the client
or server ends may be shared, or both, providing the full set
of one-to-one, any-to-one, one-to-any and any-to-any
channel arrangements (similar to those in JCSP [30]).
For example, an any-to-one channel type pair can be
created with:

SHARED BUF.MGR! s.cli:

BUF.MGR? u.svr:

SEQ

s.cli, u.svr :¼ MOBILE BUF.MGR

... use ‘s.cli’ and ‘u.svr’

The ‘SHAREd’ attribute changes the nature of the variable,
such that it is only assignable or communicable with other
shared channel-types of the same CHAN TYPE and endia-
nism. This prevents the accidental mix-up of shared and
nonshared channel-types, which would be disastrous.

Before the channels inside a shared channel-structure
may be used, the whole channel-structure (or rather the
relevant channel type end of it), must be CLAIMed. This
follows a style similar to that presented in occam3 [20],
although what we are CLAIMing is a little different.

For example, a new ‘client’ which operates on client-
shared channel-types might look like:

PROC client.2 (SHARED BUF.MGR! cv)

MOBILE []BYTE b:

CLAIM cv - - claim it

SEQ

cv[req] ! 1518 - - send desired buffer size

cv[buf] ? b - - get buffer

... use ‘b’

cv[ret] ! b - - move buffer back

:

While this process is in the body of the CLAIM, other
clients are blocked from using the channel-structure (‘cv’).
The same applies to shared server-ends too.

The usage rules for CLAIM differ slightly depending on
whether the CLAIMed channel-structure is a server or client
end. Once it has claimed the shared client end of a channel
type, a process may only communicate on the channels
within a CLAIMed structure and must not CLAIM anything
else. Assignment, function-calls and timeouts are still
permitted, as are PROC calls (on the condition that any
channels used are part of the CLAIMed structure).

The rules for the server CLAIM are slightly different.
Once a process CLAIMs a shared server end it must not
make any nested CLAIMs on other (shared) server ends. It
may however CLAIM client-shared ends and act as a client
to other servers. Usage of other channels within the body
of a server CLAIM is unrestricted. The issue of cyclic
deadlock exists here, when a loop of client-server
relationships form, but this can be avoided by careful
design [26].

In the case of long-running transactions, an any-to-any
channel becomes less useful, since both the client and
server must remain in the CLAIM for the duration of the
transaction, preventing other clients and servers interact-
ing. However, what we can do is create another any-to-any
channel type, which only communicates the one-to-one

Fig. 6 Final process states after moving client-end

Fig. 5 Process states after moving server-end

Note 2: However, there are dangers in allowing network topologies to be set
up dynamically [28], particularly in regards to deadlock=livelock analysis.
We must therefore take care to constrain the networks we can now construct
dynamically to those we can analyse.

IEE Proc.-Softw., Vol. 150, No. 2, April 2003 125

channel types for each client=server pair to use privately.
For example:

CHAN TYPE C.BUF.MGR

MOBILE RECORD

CHAN BUF.MGR? svr?:

:

This allows an any-to-any channel carrying BUF.MGR?s to
be created. When a client process wishes to engage in a
transaction with a server process, it can dynamically create
the BUF.MGR channels, communicate the server-end and
use the client-end locally. The ‘client’ process in this
case could be written as:

PROC client.3 (SHARED C.BUF.MGR! c.cv)

BUF.MGR! cv:

BUF.MGR? sv:

SEQ

- - allocate channels

cv, sv :¼ MOBILE BUF.MGR

- - claim connection to (any) server

CLAIM c.cv

c.cv[svr] ! sv - - move out server end

MOBILE []BYTE b:

SEQ

cv[req] ! 1518 - - send desired buffer size

cv[buf] ? b - - get buffer

... use ‘b’

cv[ret] ! b - - move buffer back

:

The corresponding server process simply inputs the
server-end manufactured in the client then uses that for
communication:

PROC server.3 (SHARED C.BUF.MGR? c.sv)

BUF.MGR? sv:

SEQ

- - claim connection from (any) client

CLAIM c.sv

c.sv[svr] ? sv - - move in server end

MOBILE []BYTE b:

INT s:

SEQ

sv[req] ? s - - input size

b :¼ MOBILE [s]BYTE - - allocate buffer

sv[buf] ! b - - move to client

sv[ret] ? b - - take back

:

The network connecting these together is:

SHARED C.BUF.MGR! cli.c:

SHARED C.BUF.MGR? svr.c:

SEQ

- - allocate channels

cli.c, svr.c :¼ MOBILE C.BUF.MGR

PAR i ¼ 0 FOR 4 - - 4 clients and 4 servers

PAR

client.3 (cli.c)

server.3 (svr.c)

This example creates a network in which four client
processes and four server processes are plugged into a
both ends shared channel-structure (of type ‘C.BUF.MGR’).
In a boom, clients will be queuing to get on to the shared

channel to find a server. In a recession, servers will queue
to find a client. Clients and servers use separate queues.

In a more realistic example, each client and each server
would be making many transactions – i.e. looping. Instead
of having to allocate a new BUF.MGR bundle of channels
each time, a client could reuse the same bundle. To do that,
the server would have to return the BUF.MGR server-end it
was using. For that to be possible, BUF.MGR would need to
be extended with an extra channel on which it could
transport its own server-end:

RECURSIVE CHAN TYPE BUF.MGR.2

MOBILE RECORD

CHAN INT req?: -- integer

CHAN MOBILE []BYTE buf!: -- dynamic array

CHAN MOBILE []BYTE ret?: -- dynamic array

CHAN BUF.MGR.2? finish!: -- own server end

:

The channel type needs to be declared recursive because of
the usual name scoping rules in occam – otherwise, the
name of an item being declared does not become useable
until after the declaration. To return the server-end down
itself, server.3 need only say:

sv[finish] ! sv

After which, of course, its variable sv is undefined (but
available for re-assignment from the c.sv[svr] channel).
To retrieve that server-end, client.3 must execute:

cv[finish] ? sv

4.4 Non-dynamic non-mobile channel-types

In a less dynamic environment, such as an embedded
system, real dynamic memory may be scarce or not avail-
able. Having the benefits of channel types is still desirable
though. There are two solutions to this. The first is to restrict
the size of the dynamic memory pool, making the ‘MOBILE’
allocation operator a possible descheduling point (although
this is currently unimplemented). The second is to make
the type non-mobile, which causes it to be allocated
statically in the local workspace of a process. The second
option is examined here.

Making the channel type non-mobile means that we can
no longer move it around, which rules out communication
and assignment. Because of this, a single name can refer
permanently to both ends of the channel. The type and
variable declarations are:

CHAN TYPE FOO

RECORD

CHAN INT req ? :

CHAN BYTE resp!:

:

FOO c:

Because no direction is specified on the type of ‘c’, it must
be added whenever ‘c’ is subsequently referenced (just as
for normal channels). Channel type parameters still carry
the direction in the type since they can only ever refer to
one end. For example:

PROC foo.svr (FOO? link)

INT x:

SEQ

link[req] ? x

...

out.string (.., 0, link[resp]!)

:

126 IEE Proc.-Softw., Vol. 150, No. 2, April 2003

... other process declarations

FOO c:

PAR

foo.svr (c?)

... rest of the network

When using a channel field directly for communication, no
direction specifier is needed since the channel-direction is
specified in the channel-structure (plus it doesn’t fit into the
language syntax for communication). The direction should
still be specified when the channel is used as a parameter,
however, as shown in the preceeding example.

5 The extended rendezvous

The extended rendezvous is a mechanism for allowing the
inputting process of a communication to execute a process
with the communicated data, while the outputting process
remains suspended. A new extended-input process imple-
ments this. It is syntactically similar to an ordinary input,
but with ‘??’ instead of ‘?’. However, it is followed by a
compulsory indented process (the extended-rendezvous),
which is executed while the outputting process remains
blocked. Anything may be done during extended rendez-
vous except, of course, trying to communicate with the
blocked outputter.

One application is to tap a channel in a way that does not
affect the synchronisation between the processes either
side. This is useful when we wish to ‘inspect’ the data
flowing round a process network. Channels connecting
existing processes can be ‘tapped’ without changing the
semantics of that process network (assuming that the
processes monitoring the tapped output channels guarantee
always to take it).

Fig. 7 shows how to inspect communication internal to
the ‘squares’ process pipeline of [31]. Here is the code
for the ‘tap’ process, assuming INT dataflow:

PROC tap (CHAN INT in?, out!, tap!)

WHILE TRUE

INT x:

SEQ

in ?? x

out ! x

tap ! x

:

5.1 Semantics

The semantics of the extended rendezvous are quite
simple. Consider the following input and output processes
running in parallel:

c ! 42 c ?? b

... extended rendezvous (no c?)

This has the same semantics as the following pair of
processes:

SEQ SEQ

c ! 42 c ? b

c.ack ? any ... extended rendezvous (no c?)

c.ack ! TRUE

where ‘c.ack’ is an extra CHAN BOOL on which the
processes synchronise. The implementation is quite differ-
ent [32], but the semantics remain as presented here.

5.2 ALTs and CASE inputs

An extended rendezvous may be used as a guard in an ALT:

ALT

c ?? x

... extended rendezvous (no c?)

... guarded process (optional)

d ? y

... guarded process

If the first guard is chosen, the outputting process is
rescheduled after the extended rendezvous. The guarded
process (at the same level of indentation as the extended
rendezvous process) is then executed. Often there is nothing
left to do after the rendezvous process. Instead of writing
SKIP, the guarded process may in this case be omitted.

A similar construction is needed when using variant
(CASE) protocols:

PROTOCOL CONTROL

CASE

data; INT

stop

:

...

in ?? CASE

INT x:

data; x

... extended rendezvous (no in?)

... case process (optional)

stop

... extended rendezvous (no in?)

... case process (optional)

In both tag cases, the second indented process is executed
after the outputting process has resumed. This second
process is always optional and if not present is assumed
to be Skip.

5.3 Usage restrictions

There is only one usage restriction on extended-input: the
channel undergoing the extended input may not be used in
the extended-process. Any attempt to use the channel
involved would immediately deadlock, since the process
on the other end of the channel is suspended. This restric-
tion is enforced by the compiler.

Fig. 7 Tapped ‘squares’ process pipeline

IEE Proc.-Softw., Vol. 150, No. 2, April 2003 127

5.4 Efficiency and other uses

The extended rendezvous is implemented in such a way that
it does not impact, in any way, the performance of ordinary
(i.e. nonextended) communications. This is achieved by
masquerading the process performing the extended-input
as an ALTer, whether part of an ALT construct or not. This
avoids any modifications to the implementation of channel
output instructions due to the way ALTing processes are
handled at run-time. A full description of the implementa-
tion for the extended rendezvous can be found in [32].

One particular, though not initially conceived, use of the
extended rendezvous is in the correct handling of the stop
error mode. By default, KRoC compiles occam programs
in halt error mode i.e. when a process causes a run-time
error, the whole (occam) system is killed (additionally
reporting the location of the error [33]). In stop error
mode, run-time errors made by an occam process simply
cause that process to stop running, without affecting the
operation of other occam processes; the error is thus
contained. Of course, without specific application-level
protection to guard against committed interaction with
potentially stopped processes, run-time errors – even
though localised – will eventually lead to deadlock.

There is a long-standing problem associated with stop
error mode however, concerned with variant (CASE)
protocol handling particularly those protocols containing
data-less tags. The implementation of variant protocols is
trivial: the tag names are enumerated by the compiler and
communicated as BYTEs. The variant (or single-tag) input
process inputs the BYTE, then performs a CASE selection
on the tag. If the outputting process sends a tag value
which the inputting process does not handle, a run-time
error is generated by the inputting process (the implicit
STOP for unhandled CASEs). If the output consists only of
the tag, without any data, this is communicated and the
outputting process continues – under the false impression
that the communication has succeeded.

The extended rendezvous now provides a simple solution
to this problem. If an inputting process does not handle all
data-less variants in a CASE protocol, the initial BYTE input
for the tag is performed as an extended input. The inputting
process then performs the CASE selection on the inputted
tag, only allowing the outputting process to continue after a
selection has been successfully made. In the cases of
unhandled tags, this will leave the output process blocked,
while the inputting process generates a run-time error and,
in stop error mode, simply stops. Thus, we now correctly
implement, for example, the CSP equation:

ððc!apple k c?bananaÞ n fcgÞ ¼ STOP

6 Dynamic process creation (the FORK)

The FORK is a way of launching a dynamic process which
runs parallel to the dispatching process. The early ideas
about FORK were to allow an arbitrary process to be
spawned (that process being indented under the FORK).
This was causing too many headaches in the implementa-
tion however, so a more restricted approach has been taken
for now: the parallel creation of a PROC instance. This
provides a nice way of giving the launched process an
initial state: its parameters. The more general FORK would
need to provide a way of handling scoping and parallel
usage for free variables in the FORKed process. Controlling
this through the parameters of a PROC is much simpler.

The lifetime of a FORKed PROC and its dispatching process
are controlled through a special FORKING process constructor.
This acts as a barrier which ensures any FORKed processes

are complete before leaving the FORKING block. For example,
here is part of much simplified code from a dynamic version
of the occam web-server [24]:

PROC fe.proc (VAL INT n, D.CONN conn,

SHARED C.CONN! to.sw)

...

:

PROC fe.farm (CHAN D.CONN in?,

SHARED C.CONN! to.sw)

D.CONN local:

FORKING

INITIAL INT c IS 0:

WHILE TRUE

SEQ

in ? local

FORK fe.proc (c, local, to.sw)

c :¼ c þ 1

:

The ‘fe.farm’ process sits in a loop accepting D.CONN’s
(connection in the web-server) from its ‘in’ channel. For
each D.CONN received, an instance of ‘fe.process’ is
created. These processes are actually pooled for recycling,
see [16] for details.

The need for the ‘FORKING’ block may not seem
immediately obvious, here less so than in other cases, but
the implementation requires it. A more obvious case is
where we share data with FORKed processes using the
‘#PRAGMA SHARED name’ compiler directive (to turn off
usage and alias checking). In these cases we must guaran-
tee (completely) that shared variables remain in scope for
the whole lifetime of any FORKed process.

6.1 Semantics of FORK parameters

Unlike nonFORKed PROCs, whose parameters follow a
renaming semantics, the parameters in a FORKed PROC

have to follow a channel communication semantics. This
has different semantic effects to an ordinary PROC call. We
allow only the following types of parameters:

	 VAL data-types: these are copied into the FORKed
process, regardless of size. This differs from traditional
VAL parameter passing, which will abbreviate (rename)
items larger than four bytes (one word).

	 MOBILE data-types and MOBILE channel type-ends:
these are moved into the FORKed process – i.e. the FORKING
process loses them. If the FORKING process does not want
to lose them, it must pass a CLONEd argument. (For channel-
types, only explicitly SHARED ends may be CLONEd.)

	 Reference parameters: which have been explicitly
shared (with a compiler #PRAGMA) and which are declared
outside the FORKING block. This ensures that they remain
in scope for the lifetime of a FORKed PROC. Variables
declared within the FORKING block may not be passed by
reference.

The copying of VAL data-types is required, as we wish to
allow the code on the left (below):

FORKING INT x:

INT x: SEQ

SEQ x :¼ 42

x :¼ 42 PAR

FORK P (x) P (x) - - VAL param

x :¼ x þ 1 SEQ

Q (x) x :¼ x þ 1

Q (x)

128 IEE Proc.-Softw., Vol. 150, No. 2, April 2003

The left column code (above) is not equivalent to the right
column code (which is, of course, illegal since ‘x’ is both
read and assigned in parallel). The FORKING block is in
fact equivalent to the following process sub-network:

CHAN INT c:

PAR

INT x:

SEQ

x :¼ 42

c ! x

x :¼ x þ 1

Q (x)

INT x:

SEQ

c ? x

P (x)

Semantically, there is no difference between parameter
passing VALs by communication (as we have done here),
and parameter passing using INITIAL formals. INITIAL
formal parameters [20, 34] should be used, but these are
not currently supported by the compiler.

Some more interesting FORKs (i.e. with a loop), can also
be expressed in our extended occam. For example, the
following two (columns of) processes are equivalent:

FORKING RECURSIVE PROC dispatch

WHILE TRUE (CHAN BOOL c?)

SEQ SEQ

P () BOOL any:

FORK foo (4, 99) c ? any

Q () PAR

foo (4, 99)

dispatch (c?)

:

CHAN BOOL c:

PAR

dispatch (c?)

WHILE TRUE

SEQ

P ()

c ! TRUE

Q ()

6.2 Dynamic process farms

One application of FORK is for the dynamic creation and
control of process farms. Fig. 8 shows the process network
for a worker-farm, with a pool.manager to control the
number of FORKed processes running.

The ‘farmer’ generates work packets (maybe by receiv-
ing them from an external source, not shown) and distri-
butes them to a pool of ‘worker’s. The system arranges for
a minimum (‘min.idle’) number of ‘worker’ processes
to always be available for processing new jobs. New
‘worker’s are started by the ‘pool.manager’ process,
which maintains a count of the number of idle processes,
FORKing more at the start of the loop if needed (which
will always be the case the first time round, providing that
‘min.idle’ is greater than zero). In this code, the number
of worker processes will only ever increase (to suit
demand).

The channel type based code which implements these
processes is as follows:

CHAN TYPE WORK.IN - - server view (farmer)

MOBILE RECORD

CHAN BOOL request?:

CHAN MOBILE []BYTE work.packet!:

:

CHAN TYPE WORK.OUT - - server view (harvester)

MOBILE RECORD

CHAN MOBILE []BYTE result?:

:

CHAN TYPE SIGNAL - - server view (pool.manager)

MOBILE RECORD

CHAN INT idle.count?: - - busy (
1) or idle (þ1)

:

PROC worker (SHARED WORK.IN! in,

SHARED WORK.OUT! out,

SHARED SIGNAL! signal)

WHILE TRUE

MOBILE []BYTE job:

SEQ

CLAIM in

SEQ

in[request] ! TRUE

in[work.packet] ? job

- - tell manager we’re working

CLAIM signal

signal[idle.count] !
1

... do work on ‘job’ (communicates on ‘out’)

- - tell manager we’re done

CLAIM signal

signal[idle.count] ! þ1

:

PROC harvester (WORK.OUT? from.workers)

WHILE TRUE

MOBILE []BYTE result:

SEQ

from.workers[result] ? result

... consume result

:

PROC farmer (WORK.IN? to.workers)

WHILE TRUE

MOBILE []BYTE work:

SEQ

... manufacture work

BOOL any:

to.workers[request] ? any

to.workers[work.packet] ! work

:Fig. 8 Forked worker-farm process network

IEE Proc.-Softw., Vol. 150, No. 2, April 2003 129

PROC pool.manager (VAL INT min.idle,

SHARED WORK.IN! work.to.workers,

SHARED WORK.OUT! work.from.workers)

SHARED SIGNAL! signal.cli:

SIGNAL? signal.svr:

SEQ

signal.cli, signal.svr :¼ MOBILE SIGNAL

FORKING

INITIAL INT n.idle IS 0:

WHILE TRUE

SEQ

IF

n.idle < min.idle

SEQ

SEQ i ¼ 0 FOR min.idle - n.idle

FORK worker (work.to.workers,

work.from.workers,

signal.cli)

n.idle :¼ min.idle

TRUE

SKIP

INT n:

SEQ

signal.svr[idle.count] ? n

- - n is busy (
1) or idle (þ1)

n.idle :¼ n.idle þ n

:

The code which sets this network up is as follows:

VAL INT min.idle IS ...:

SHARED WORK.IN! i.cli:

WORK.IN? i.svr:

SHARED WORK.OUT! o.cli:

WORK.OUT? o.svr:

SEQ

i.cli, i.svr :¼ MOBILE WORK.IN

o.cli, o.svr :¼ MOBILE WORK.OUT

PAR

farmer (i.svr)

pool.manager (min.idle, i.cli, o.cli)

harvester (o.svr)

Adding functionality to shut-down worker processes and to
limit the number idle to some maximum is trivial and is left
as an exercise for the reader.

Note that the MOBILE BYTE[] arrays are communicated
efficiently by reference and that no aliasing dangers (e.g.
through parallel reference) are possible. No memory leaks
occur as the space for such arrays is automatically recycled
when the variables go out of scope or are overwritten.

7 Extended rendezvous and channel-types

Fig. 9 shows a multiple client–server network that uses
a shared any-to-any channel to enable a client and server
to find each other. Here is example network code for
this:

CHAN TYPE APP.LINK - - client=server channel type

MOBILE RECORD

CHAN INT next.event?:

CHAN MOBILE []BYTE event.data!:

:

... client and server PROC definitions

- - shared (at both ends) channel declaration

SHARED CHAN APP.LINK? link:

PAR

PAR i ¼ 0 FOR num.clients

client (link!) - - start a client

PAR i ¼ 0 FOR num.servers

server (link?) - - start a server

A client seeking a server makes a shared mobile channel-
structure (APP.LINK) and outputs the server-end of this (of
type ‘APP.LINK?’) towards the set of servers hopefully
waiting on the shared channel:

PROC client (SHARED CHAN APP.LINK? out!)

WHILE TRUE

APP.LINK? l.svr: - - server-end

APP.LINK! l.cli: - - client-end

SEQ

- - create one-to-one mobile

- - channel-structure

l.cli, l.svr :¼ MOBILE APP.LINK

CLAIM out

- - communicate server-end (and lose it)

out ! l.svr

... use ‘l.cli’ to communicate with server

:

Here is an outline for one of the servers:

PROC server (SHARED CHAN APP.LINK? in?)

WHILE TRUE

APP.LINK? svr: - - server-end

SEQ

CLAIM in

in ? svr - - get server-end from a client

... use ‘svr’ to communicate with client

:

Fig. 10 shows the network after a client and server have
communicated, now connected (directly) by a private one-
to-one channel-structure of type APP.LINK.

Fig. 9 Multiple client–server network

Fig. 10 Multiple client-server network with connected client
and server

130 IEE Proc.-Softw., Vol. 150, No. 2, April 2003

Using the extended rendezvous with channel-types opens
up some interesting possibilities. Fig. 11 shows a multiple
client–server network with a tap process. Clients and
servers still see shared channel-ends plugged into them,
carrying the same server-end channel structures as before.
This version of ‘tap’ is special in that it intercepts and
keeps the channel-end being passed, creates a new channel
structure (of the appropriate type) and communicates the
new server end to the original destination. This code uses
any-to-one and one-to-any channels. Since the tap process
in this example does not interfere with the synchronisation
between the clients and servers, they (clients and servers)
can only see the link as an any-to-any channel: they cannot
detect the tap! Note that no change has been made to the
client and server processes.

The ‘tap’ process here (for the ‘APP.LINK’ channel
type) is:

PROC tap (CHAN APP.LINK? in?, out!,

SHARED LOG! to.log)

FORKING

WHILE TRUE

APP.LINK? c.svr, l.svr:

APP.LINK! l.cli:

SEQ

l.cli, l.svr :¼ MOBILE APP.LINK

in ?? c.svr

out ! l.svr

FORK link.tap (c.svr, l.cli, to.log)

:

The ‘tap’ process FORKs ‘link.tap’ each time a client
communicates a server-end to one of the servers. Note the
use of the extended rendezvous to prevent the client being
aware that its output line is being tapped. Fig. 12 shows the
network after a client has communicated with a server.

The FORKed ‘link.tap’ process connects the two
processes, and can be implemented so that its presence is
also undetectable to the client and server processes

connected either side. Fig. 12 also shows a ‘logger’
process, to which the FORKed ‘link.tap’ processes
report. A simple form of the ‘link.tap’ process could be:

PROC link.tap (APP.LINK? from.cli, APP.LINK! to.svr,

SHARED LOG! to.log)

PAR

WHILE TRUE

INT e:

from.cli[next.event] ?? e

to.svr[next.event] ! e

CLAIM to.log

... report event on ‘to.log’

WHILE TRUE

MOBILE []BYTE b:

to.svr[event.data] ?? b

from.cli[event.data] ! b

CLAIM to.log

... report event on ‘to.log’

:

PAR is used here to handle both channels in the channel
type independently. This is also non-terminating, which in
a real-life situation is probably undesirable. For real-life
protocols, the point at which the client and server
processes either side ‘let go’ of the channels should be
deducible from the data communicated. Sometimes the
usage pattern may be that the channels only ever get
used once, in which case the ‘WHILE TRUE’s can be
reduced to ‘SEQ’. ALTing implementations are also
perfectly valid and probably desirable when we wish to
arrange termination by inspection of the data.

The ‘link.tap’ need not be so simple however. It
might be the case that the clients and servers reside on
different machines, with functionally dummy ‘server’
and ‘client’ processes at either end, incorporating the
‘tap’ and necessary network infrastructure. In this case,
communication of the channel-end would result in a
network-aware process being created on either side to
handle communication. To create the remote network-
handling channel (and possibly the whole remote ‘server’
as well), some form of networking infrastructure needs to
be available. As long as the network-handling processes
synchronise properly over the network, the ‘client’ and
‘server’ at either side will see the link as synchronous and
will be unaware of the networking. Fig. 13 shows what
such a network might look like.

Since the extended rendezvous can be used to intercept
channels, without requiring modifications in the (originally)
connected processes, this provides a simple method for
distributing existing occam programs amongst nodes on a
network. The only modifications required would be in the
code which sets up the process network, which could
be reduced to just a single ‘#USE’ compiler directive.
The USEd code would implement the network-aware
versions of existing processes, de-scoping the original
local versions. This works equally well for code with and
without channel-types.

Building the infrastructure to support such a distributed
system is not the direct concern of this work, which merely
provides a new way of doing it, hopefully much simpler,
more secure and more efficient than was previously
possible. Vella [35] provides a lot of insight into building
such systems. The work there was done on the Sparc
version of KRoC, in the assembler kernel. For the
Linux=i386 version of KRoC, we can use the occam
socket library [36] to implement the networking, as has
been done by Goodacre [37] in a student project and by
Schweigler [38] in his MSc thesis. A similar functionalityFig. 12 Multiple client–server network after forking ‘link.tap’

Fig. 11 Multiple client–server network with ‘tap’ process

IEE Proc.-Softw., Vol. 150, No. 2, April 2003 131

also exists in JCSP [30, 39, 40], which additionally allows
the migration of processes (Section 9).

8 Process priority

A major requirement of real-time control applications is a
set of cyclic processes, one for each control-law, managed
so that each process completes each cycle within a fixed
time. The rate at which each process cycles will be constant,
but will generally be different for different processes.

Transputer hardware [6, 41] supported two levels of
priority, low and high, with fast pre-emptive scheduling.
The original KRoC [13] only supported a single level of
priority, quietly implementing ‘PRI PAR’ as just ‘PAR’.
Without additional programming (at the application level)
to construct more priorities [42, 43], this is not sufficient to
manage securely more than one such ‘control-law’ per
occam program, even at very low processor loadings.
Efficient classical solutions (e.g. rate-monotonic or dead-
line scheduling [44]) require multiple and time-varying
priorities. KRoC now provides 32 levels of priority.

Even so, for KRoC running on top of Linux or Solaris,
we are at the mercy of the host operating-system and the
way in which it performs scheduling between OS
processes. There are ways of forcing run-to-completion
behaviour for OS processes (FIFO-scheduling), but at the
expense of other OS processes (including interrupt hand-
lers) and the requirement for superuser privileges. We are
investigating Raw Metal occam operating environments
(RMoX) in which occam systems run without any OS
support and overheads, and for which all scheduling is
under the total control of the KRoC kernel.

Standard CSP [3] does not include a treatment of process
priority, and omits PRI ALT, which has always existed in
occam. Even the denotational semantics for occam [45, 46]
expressly omit any treatment of priority. CSPP [47, 48]
addresses this deficiency by providing a well-defined seman-
tics for PRI PAR and occam priority issues in general.

8.1 API for priorities

Rather than implement priority in terms of PRI PAR, we
have gone for a more general – but lower level – approach.
The current implementation supports 32 distinct levels of

priority, 0 being the highest and 31 being the lowest. The
number of priority levels is limited to be efficient in the
implementation, but is extensible with only a marginal
increase in overheads.

To inspect or change its own priority, a process may use
the following compiler built-ins:

INT FUNCTION GETPRI ()

PROC SETPRI (VAL INT p)

PROC INCPRI ()

PROC DECPRI ()

The use of ‘SETPRI’=‘INCPRI’=‘DECPRI’ within a
FUNCTION body is not allowed, to prevent nondeterminism
in the resulting priority when evaluating expressions.
‘GETPRI’ is wholly nonside-effecting, so can be used
safely in expressions. The run-time implementation quietly
ignores out-of-range values, mapping them to the lowest
and highest priorities as appropriate. ‘INCPRI’ is really a
shorthand way of writing:

SETPRI (GETPRI () 7 1)

and similarly for ‘DECPRI’, which is

SETPRI (GETPRI () þ 1)

A process may change its own priority arbitrarily but it
cannot change the priority of any other process. Changing
from a low to a high priority (decreasing priority level ‘p’)
will generally always succeed immediately, although there
is a small possibility of descheduling. A change from a
high to a low priority (increasing priority level ‘p’) will
result in a reschedule if another process is waiting at the
target priority level or higher.

Even if priority is not used directly, its provision causes
a slight increase in run-time overheads. Most of all, this is
due to the need to save and restore a process’s priority
when rescheduling. Table 1 shows the results for the
‘commstime’ benchmark, whose process network is
shown in Fig. 14.

Table 1: Results for ‘commstime’ benchmark on 800 MHz
Pentium-3, values in nanoseconds

Translator Channel
cost (INT comm.)

Process
start=stop cost

tranpc (old KRoC) 233 196

tranx86 112 52
tranx86 (inlining) 52 28

tranx86 (priority) 120 108
tranx86 (priþ inline) 77 79

tranx86 (priþ
P) 119 116
tranx86

(priþ inlineþ
P)
75 67

Fig. 14 Process network for ‘commstime’ benchmark

Fig. 13 Remotely connected client–server network after commu-
nication and creation of link processes

132 IEE Proc.-Softw., Vol. 150, No. 2, April 2003

8.2 Benchmarking priority handling

Fig. 15 shows the process network and code for a simple
priority benchmark program. The benchmark is comprised
of three processes, two interleaving producers and a
consumer. The consumer is run at the lowest priority
level (31) while the producers alternate between priority
levels 1 through 4. The arrangement of priority and
communication in this program forces the scheduling to
happen in a deterministic way, although in general one
cannot use priority to guarantee determinism.

Both the A and B processes sit in loops changing priority
and communicating with the C process. At the point where
the loops start, A and B are blocked in channels ‘c’ and ‘d’
at priorities 1 and 2, respectively. Process C at priority
level 31 is the only runnable process, which starts by
communicating on ‘c’, thereby waking up A, which gets
rescheduled immediately because it is of a higher priority.

Fig. 16 shows the execution trace of the benchmark,
indicating the timed (and looping) section. The priority
overheads are calculated by subtracting the time required
for a priority-free version of the loops from the prioritised
version. There are a total of eight context switches here,
four for rescheduling when a process blocks in a channel
(A and B processes), and four for rescheduling a higher-
priority process with which process C communicates.
There are also other overheads associated with changing
priority, since the current run-queue must be saved and a
new one loaded. The nonprioritised version of the loops
use an average of eight context switches, the exact number
depends on the scheduling order of processes. It is also
sensitive to the policy of rescheduling blocked processes,
i.e. whether we continue running, it continues running, or
neither continue running.

The priority overhead for this benchmark loop is 752 ns,
measured on an 800 MHz Pentium 3. Interestingly, with the
‘-p’ flag (check sync flags and timer on backward jumps),
the overhead is reduced to 728 ns, again attributed to cache
effects. Overall, the run-queue is changed 12 times in the
prioritised version, giving an average overhead of 63 ns for
a priority-level change (around 50 machine cycles).

9 Mobile process types

Mobile processes exist in many other technologies (such as
applets, agents and distributed operating systems). occam
offers the prospect of supporting this with much higher
security and lower overheads.

This is an initial proposal for mobile processes in
occam – at the time of writing, nothing in this Section has
been fully implemented. They will have application both
for internal concurrency and for distributed systems.

Mobile process types for occam follow naturally from
the other mobile mechanisms for data [18, 19] and chan-
nels (Section 4). Mobilising processes presents new chal-
lenges since processes are active components, whereas data
and channels are passive.

The method for mobile processes presented here intro-
duces the concept of a process type to occam. This is
effectively a type signature for a PROC – for example:

PROC TYPE IO.KILL (CHAN INT in?, out!, kill?):

declares a process type called ‘IO.KILL’, that defines an
interface with three channels, two for input and one for
output, all carrying simple INTs.

Process types such as this are used in two places in our
proposal for occam. First within the definition of a mobile
process (Section 9.1), where an implementation is specified
for a particular process type. Secondly, for declaring
mobile process variables (Section 9.2) which, after initi-
alisation, can be activated using an interface defined by one
of the process types it implements.

Fig. 16 Execution trace for priority benchmark program

Fig. 15 Priority benchmark process network showing loop
body code

IEE Proc.-Softw., Vol. 150, No. 2, April 2003 133

9.1 Mobile processes

Mobile processes are active entities that combine some
data (their state) with code to initialise and operate on that
data. The state of a mobile process consists of standard
occam declarations.

State initialisation is defined through PROC-style con-
structors with arbitrary signatures. The code for mobile
process activation is also implemented in a PROC-style
manner, using named process types.

The following code shows an example mobile process
declaration, for a serial running-sum integrator, that offers
an interface of type ‘IO.KILL’ (above):

MOBILE PROC integrate.kill

INT total: - - private data

CONSTRUCT ()

total :¼ 0

CONSTRUCT (VAL INT i)

total :¼ i

IMPLEMENTS IO.KILL (CHAN INT in?, out!,

CHAN INT kill?)

INITIAL BOOL running IS TRUE:

WHILE running

PRI ALT

INT any:

kill ? any

running :¼ FALSE

INT v:

in ? v

SEQ

total :¼ total þ v

out ! total

:

This declares a mobile process called ‘integrate.kill’,
whose state consists of the single variable ‘total’. Two
state initialisation (‘CONSTRUCT’) processes are provided,
one which takes no arguments (initialising the total to
zero), and one which takes a single INT argument which is
assigned to the total. The main body of code is introduced
with ‘IMPLEMENTS IO.KILL (...)’, which provides the
three-channel ‘IO.KILL’ interface. A mobile process may
implement multiple interfaces, but they must all be
different.

9.2 Process variables

Mobile process variables provide the basic mechanism for
using process types, allowing a mobile process to be
created, then subsequently used (activated), assigned or
communicated (but only when not active). These opera-
tions are based on the variable’s process type, they are
independent of the particular mobile process (‘MOBILE
PROC’) providing the implementation.

The initialisation of mobile process variables, through
the name of a mobile-process, follows a similar style to
other dynamic mobile initialisers (such as for mobile
channel-types). For example, a simple declaration and
initialisation using the earlier ‘IO.KILL’ type and
‘integrate.kill’ mobile process, is:

IO.KILL x:

SEQ

x :¼ MOBILE integrate.kill ()

... process using ‘x’

Initially, the variable ‘x’ is undefined and treated by the
compiler as such. The initialisation is performed via an
assignment, which dynamically allocates an instance of
‘integrate.kill’, initialised using its zero-argument
CONSTRUCT block. The compiler checks that
‘integrate.kill’ does indeed implement ‘IO.KILL’.

Once initialised (defined), a mobile process variable may
either be communicated or assigned, or activated using the
interface specified by the type. The syntax for activating a
process variable is the same as that used for instancing
standard PROCs—except the name referred to is a mobile
process variable and not a PROC definition.

9.3 Communication of mobile processes

Fig. 17 shows two processes that communicate mobile
processes (of type ‘IO.KILL’). The following code shows
their implementations:

PROC proc.A (CHAN IO.KILL p.out!)

IO.KILL x:

SEQ

- - ‘x’ is not yet defined

x :¼ MOBILE integrate.kill (42)

- - ‘x’ is now defined

p.out ! x

- - ‘x’ is now undefined

:

PROC proc.B (CHAN IO.KILL p.in?, p.out!,

CHAN INT in?, out!, kill?)

IO.KILL y:

SEQ

- - ‘y’ is not yet defined

p.in ? y

- - ‘y’ is now defined

y (in?, out!, kill?) - - activation

- - ‘y’ is still defined

p.out ! y

- - ‘y’ is now undefined

:

Fig. 18 shows part of a mobile process network. It contains
communicating instances of ‘proc.A’ and ‘proc.B’. An
‘integrate.kill’ mobile process is constructed in
‘proc.A’ and passed on to ‘proc.B’, where it is plugged
into locally provided channels and activated. When that

Fig. 17 Mobile process communicating processes

Fig. 18 Mobile process network

134 IEE Proc.-Softw., Vol. 150, No. 2, April 2003

activation terminates, it moves on again—taking its state
(its running ‘total’) with it.

Although this example is simple, the process commu-
nication mechanism it demonstrates is powerful. A mobile
process can be communicated and activated without limita-
tion, accumulating and disseminating information at each
port of call. Here is the code for Fig. 18:

CHAN IO.KILL c, d:

CHAN INT in, out, kill:

... other channels

PAR

proc.A (c!)

proc.B (c?, d!, in?, out!, kill?)

... other processes

Note that whilst a mobile process is active (e.g. ‘y’ in
‘proc.B’), it cannot be assigned or communicated. This is
enforced by occam’s normal usage=aliasing rules.

Unlike dynamic process mechanisms in other languages
(the ‘CSProcess’ within JCSP for example), occam’s
mobile processes do not have a reference to themselves
(Java’s ‘this’ reference in JCSP). This prevents a
process from being able to communicate itself down a
channel which, although an interesting idea, we propose to
ban. Parallel usage and aliasing checks will forbid any such
attempts (that could be made by passing a process-variable
as a parameter to its own instance).

9.4 Assignment of mobile processes

Assignment of mobile processes follows naturally from
communication, such that the process moves from the
source variable to the destination variable. For example:

IO.KILL x, y:

SEQ

x :¼ MOBILE integrate.kill ()

y :¼ x

y (in?, out!, kill?)

After the assignment ‘y :¼ x’, x is undefined and any
attempt to use it will result in a compiler error. In less
obvious circumstances, the compiler generates run-time
checks to ensure that ‘x’ is defined before its value is
assigned to ‘y’, those checks having a negligible overhead.

In a similar way to mobile data-types [19], the ‘CLONE’
operator may be used to generate a copy of the mobile,
leaving its operand (the mobile process being CLONEd)
defined. For example:

IO.KILL x, y:

SEQ

x :¼ MOBILE integrate.kill ()

y :¼ CLONE x

CHAN INT d:

PAR

x (in?, d!, kill.a?)

y (d?, out!, kill.b?)

This code implements a double integrator. The implemen-
tation of CLONE for ‘integrate.kill’ is trivial: it
involves allocating workspace (a very small unit-time
cost) for the new process and copying only the state (in
this case, the single ‘INT total’) from the old process.

For processes with a more complicated state, such as one
containing other mobile variables, the CLONE must perform
a deep-copy to prevent aliasing, handled by CLONEing each
mobile variable in the state. The one case for which this is
invalid is when an unshared channel-bundle end (Section
4) is part of the state. To avoid the problem, we also

propose to ban the use of unshared mobile channel bundles
in the state of a mobile process; this can be easily checked
by the compiler. Shared channel bundles are perfectly
acceptable however.

10 Conclusions and future work

At the time of writing, the extensions presented here
(except Section 9) are almost ready for release. There
are one or two things which are currently unhandled by
the compiler, but these will be finished off in version 1.3.3
of KRoC=Linux [15]. A new experimental occam web-
server (which uses FORKs and channel-types) is currently
running live at [24] and successfully serving pages.

It is also hoped that improvement in the translator’s
handling of priority will yield better benchmark times
for ‘commstime’ (part of the KRoC release), results for
which are shown in Table 1. This is especially true for
inlining, where the presence of priority often disables
inline translations for some instructions.

It has been pointed out that allowing run-time failures
(with OS-grade loadable occam processes [49]) presents
the possibility of dynamic memory being ‘lost’ (inside the
terminated process or processes). Although it is not
currently implemented, it is possible to recover the
memory. The solution is also required for correct
loading=saving of these loadable occam processes,
although the current (somewhat naı̈ve) implementation of
this works. The required addition is in theory quite simple:
generate in-line tables of workspace offsets for channels
and dynamic-pointers. This will allow the run-time system
to free dynamic memory used by an evicted process. It is
hoped to implement this in the near future. Without it,
saving and restoring loadable processes has the potential to
go wrong.

Another aspect of dynamic occam proposed here are the
mobile process (or agents) extensions (Section 9). The
question of run-time failure also needs to be addressed for
these mobile processes.

However, we have positive answers to general security
issues related to incoming mobile processes especially
those downloaded from networked channels. Access to
resources in occam is always abstracted through explicit
plumbing, such as a channel bundle. If we don’t want a
downloaded mobile to access the file-system (for example),
we simply don’t plug the necessary channels into its
activation, and it can’t find them itself.

Finally, as mentioned at the start of Section 8, we are
investigating Raw Metal occam operating environments
(RMoX) in which occam systems run without any OS
support and overheads, and for which all scheduling is
under the total control of the KRoC kernel. We are currently
using the Flux OSKit [50] to provide the boot mechanism
and access to a flat (physical) memory space, beyond that
very little else of the OSKit is used. This work-in-progress,
is being done in collaboration with Brian Vinter from the
University of Southern Denmark, and aided by several
final-year and MSc students at UKC. This currently utilises
many of the extensions presented here, with the exception
of the mobile processes described in Section 9.

11 Acknowledgments

The authors would like to thank EPSRC for funding this
work in the form of a research studentship, and the
anonymous reviewers who provided useful and detailed
feedback on an earlier revision of this work. Also many

IEE Proc.-Softw., Vol. 150, No. 2, April 2003 135

thanks to the people who have been patient with the various
new features of KRoC=Linux, submitting valuable bug
reports and providing useful thoughts, in particular:
David Wood, Christian Jacobsen, Mario Schweigler,
Adam Sampson, Adrian Lawrence and Hiroshi Nakahara.

The proposal for mobile processes strongly follows
ideas first spelt out by Tom Locke [28].

12 References

1 INMOS LIMITED: ‘Occam 2.1 reference manual’. Tech. rep., May
1995. Available at: http://www.wotug.org/occam

2 HOARE, C.A.R.: ‘Communicating sequential processes’, Commun.
ACM 21, 1978, 8, pp. 666–677

3 HOARE, C.A.R.: ‘Communicating sequential processes’ (Prentice-Hall,
London, 1985)

4 ROSCOE, A.W.: ‘The theory and practice of concurrency’ (Prentice
Hall, London, 1997)

5 HOMEWOOD, M., MAY, D., SHEPHERD, D., and SHEPHERD, R.:
‘The IMS T800 transputer’, IEEE Micro, 1987, pp. 10–26

6 MAY, M.D., THOMPSON, P.W., and WELCH, P.H.: ‘Networks, routers
and transputers’ (IOS Press, Amsterdam, 1993)

7 INMOS LIMITED: ‘The T9000 transputer hardware reference manual’.
SGS-Thomson Microelectronics, 1993

8 JOY, B., GOSLING, J., and STEELE, G.: ‘The Java language specifica-
tion’ (Addison-Wesley, Reading, MA, 1996)

9 JONES, R., and LINS, R.: ‘Garbage collection: Algorithms for automatic
dynamic memory management’ (Wiley, New York, 1996, reprint 1997)

10 KERNIGHAN, B.W., and RITCHIE, D.M.: ‘The C progamming
language’, (Prentice Hall, Englewood Cliffs, 1978, 1st edn.)

11 AMERICAN NATIONAL STANDARDS INSTITUTE: ‘Programming
languages—C, 1999’. 1999, ISO=IEC 9899:1999

12 STROUSTRUP, B.: ‘The Cþþ programming language’ (Addison-
Wesley, Reading, MA, 1997, edn.)

13 WELCH, P.H., and WOOD, D.C.: ‘The Kent retargetable occam
compiler’. Proceedings of WoTUG 19 Parallel processing develop-
ments, in O’NEILL, B. (Ed.): ‘Concurrent systems engineering’
(IOS Press), Amsterdam, March 1996, Vol. 47, pp. 143–166

14 OFA PROJECT: ‘Occam For All: Case for support, Feb.1995,
Available online at: http://wotug.ukc.ac.uk/parallel/occam/projects/
occam-for-all/ accessed December 2002

15 WELCH, P.H., MOORES, J., BARNES, F.R.M., and WOOD, D.C.: ‘The
KRoC Home Page’. 2000, Available at: http://www.cs.ukc.ac.uk/
projects/ofa/kroc/ accessed December 2002

16 BARNES, F.R.M., and WELCH, P.H.: ‘Prioritised dynamic commu-
nicating processes: Part II’. Proceedings of WoTUG 25 Communicating
process architectures, in PASCOE, J., WELCH, P., LOADER, R., and
SUNDERAM, V. (Eds.): ‘Concurrent systems engineering’ (IOS Press),
Amsterdam, September 2002, pp. 353–370

17 WELCH, P.H., and WOOD, D.C.: ‘Higher levels of process synchroni-
sation’. Proceedings of WoTUG 20 Parallel programming and Java, in
BAKKERS, A. (Ed.): ‘Concurrent systems engineering’ (IOS Press),
Amsterdam, The Netherlands, April 1997, pp. 104–129

18 BARNES, F.R.M., and WELCH, P.H.: ‘Mobile data types for commu-
nicating processes’. Proceedings of the 2001 international conference on
Parallel and distributed processing techniques and applications
(PDPTA’2001), (CSREA press), June 2001, Vol. 1, pp. 20–26

19 BARNES, F.R.M., and WELCH, P.H.: ‘Mobile data, dynamic allocation
and zero aliasing: an occam experiment’. Proceedings of WoTUG 24,
Communicating process architectures, in CHALMERS, A.,
MIRMEHDI, M., and MULLER, H. (Eds.): ‘Concurrent systems
engineering’ (IOS Press), Amsterdam, September 2001, Vol. 59,
pp. 243–264

20 BARRETT, G.: ‘Occam 3 reference manual’. Tech. Rpt., Inmos Limited,
Mar. 1992, (http://wotug.ukc.ac.uk/parallel/occam/documentation)
accessed December 2002

21 MULLER, H.L., and MAY, D.: ‘A simple protocol to communicate
channels over channels’. EUROPAR ’98 Parallel Processing, LNCS
1470, September1998, Southampton, UK, Springer Verlag, pp. 591–600

22 MAY, D., and MULLER, H.: ‘Copying, moving and borrowing seman-
tics’. Proceedings of WoTUG 14 Communicating process architectures,
in CHALMERS, A., MIRMEHDI, M., and MULLER, H. (Eds.):
‘Concurrent systems engineering’ (IOS Press), Amsterdam, September
2001, Vol. 59, pp. 15–26

23 BARNES, F.R.M.: ‘Various extensions to the occam compiler’. 2001,
(http://www.cs.ukc.ac.uk/projects/ofa/kroc/occ21-extensions.html) ac-
cessed December 2002

24 BARNES, F.R.M.: ‘The occam Web-Server Home Page’. 2000, (http://
wotug.ukc.ac.uk/ocweb/.) accessed December 2002

25 PLOEG, E., SUNTER, J.P.E., BAKKERS, A.W.P., and ROEBBERS,
H.W.: ‘Dedicated multipriority scheduling’. Proceedings of WoTUG-17:
Progress in transputer and occam research, in MILES, R., and
CHALMERS, A. (Eds.): ‘Transputer and occam engineering’ (IOS
Press), The Netherlands, April 1994, Vol. 38, pp. 18–31

26 WELCH, P.H., JUSTO, G.R.R., and WILLCOCK, C.J.: ‘Higher-level
paradigms for deadlock-free high-performance systems’. Transputer
applications and systems’93 in GREBE, R., HEKTOR, J.,
HILTON, S., JANE, M., and WELCH, P. (Eds.): ‘Proceedings of the

1993 World Transputer Congress’ (IOS Press, Netherlands), Aachen,
Germany, September 1993, Vol. 2, pp. 981–1004, (http://www.cs.ukc.
ac.uk/pubs/1993/279)

27 MAY, D., and MULLER, H.L.: ‘Using channels for multimedia commu-
nication’. Tech. Rpt., Department of Computer Science, University of
Bristol, Feb. 1998

28 LOCKE, T.S.: ‘Towards a viable alternative to OO – extending the
occam=CSP programming model’. Proceedings of WoTUG 24
Communicating process architectures, in CHALMERS, A.,
MIRMEHDI, M., and MULLER, H. (Eds.): ‘Concurrent systems
engineering’ (IOS Press), Amsterdam, Sept. 2001, Vol. 59, pp. 329–349

29 WOOD, D.C., and MOORES, J.: ‘User-defined data types and operators
in occam’. Proceedings of WoTUG 22 Architectures, languages and
techniques for concurrent systems, in COOK, B. (Ed.): ‘Concurrent
systems engineering’ (IOS Press), Amsterdam, April 1999, Vol. 57,
pp. 121–146

30 WELCH, P.H.: ‘Process oriented design for Java – concurrency for all,
PDPTA 2000’ (CSREA Press) June 2000, Vol. 1, pp. 51–57. See also
http://www.cs.ac.uk/projects/ofa/jcsp/ accessed December 2002

31 WELCH, P.H.: ‘An occam approach to transputer engineering’. Proceed-
ings of the 3rd. ACM conference on Hypercube concurrent computers
and applications, Pasadena, CA, January 1988, see also: http://
www.cs.ukc.ac.uk/pubs/1988/245

32 BARNES, F.R.M., and WELCH, P.H.: ‘Prioritised dynamic commu-
nicating processes: Part I’. Proceedings of WoTUG 25 Communicating
process architectures, in PASCOE, J., WELCH, P., LOADER, R., and
SUNDERAM, V. (Eds.): ‘Concurrent systems engineering’ (IOS Press),
Amsterdam, Sept. 2002, Vol. 60, pp. 321–351

33 WOOD, D.C., and BARNES, F.R.M.: Post-mortem debugging in
KRoC’. Communicating process architectures, Proceedings of
WoTUG 23, in WELCH, P., and BAKKERS, A. (Ed.): ‘Concurrent
systems engineering’ (IOS Press), Amsterdam, Sept. 2001, Vol. 60,
pp. 329–349

34 MOORES, J.: ‘The design and implementation of occam=CSP support
for a range of languages and platforms’. PhD Thesis, The University of
Kent at Canterbury, Canterbury, Kent CT2 7NF, Dec. 2000

35 VELLA, K.: ‘Seamless parallel computing on heterogeneous networks
of multiprocessor workstations’. PhD Thesis, The University of Kent at
Canterbury, Canterbury, Kent CT2 7NF, Dec. 1998

36 BARNES, F. ‘Socket, file and process libraries for occam’. Computing
Laboratory, University of Kent at Canterbury, June 2000, (http://
www.cs.ukc.ac.uk/people/rpg/frmb2/documents/.) accessed December
2002

37 GOODACRE, I.N.: ‘Occam net chans’. Project Rpt., Computing
Laboratory, University of Kent, April 2001

38 SCHWEIGLER, M.: ‘The distributed occam Protocol – A new layer on
top of TCP=IP to serve occam channels over the internet’. MSc Thesis,
Computing Laboratory, University of Kent at Canterbury, Sept. 2001

39 WELCH, P.H., ALDOUS, J.R., and FOSTER, J.: ‘CSP networking for
Java (JCSP.net)’. Proceedings of ICCS Computational science, in
SLOOT, P., TAN, C., DONGARRA, J., and HOEKSTRA, A. (Eds.):
Lecture Notes in Computer Science (Springer-Verlag, April 2002),
Vol. 2330, pp. 695–708 (http://www.cs.ukc.ac.uk/pubs/2002/1382)

40 WELCH, P.H., and VINTER, B.: Cluster computing and JCSP network-
ing’. Proceedings of WoTUG-25 Communicating process architectures,
in PASCOE, J., WELCH, P., LOADER, R., and SUNDERAM, V. (Eds.):
‘Concurrent Systems Engineering’ (IOS Press), Amsterdam, Sept. 2002,
Vol. 60, pp. 203–222

41 INMOS LIMITED: ‘The T9000 transputer instruction set manual’.
SGS-Thomson Microelectronics, 1993, Document 72 TRN 240 01

42 SUNTER, J.P.E., WIJBRANS, K.C.J., and BAKKERS, A.W.P.:
‘Co-operative priority scheduling in occam’. Proceedings of the 13th
occam user group technical meeting: Real-time Systems with transpu-
ters, ZEDAN, H. (Ed.): ‘Transputer and occam Engineering’
(IOS Press), Amsterdam, Sept. 1990, pp.175–185

43 WELCH, P.H.: ‘Multipriority scheduling for transputer-based real-time
control’. Proceedings of the 13th occam user group technical meeting:
Real-time systems with transputers, in ZEDAN, H. (Ed.): ‘Transputer
and occam Engineering’ (IOS Press), Amsterdam, Sept. 1990,
pp. 198–214

44 LIU, C.L., and LAYLAND, J.W.: ‘Scheduling algorithms for multi-
programming in a hard real-time environment’, J. ACM 20, 1973, 1,
pp. 46–61

45 GOLDSMITH, M.H., ROSCOE, A.W., and SCOTT, B.G.O.: ‘Denota-
tional semantics for Occam2, Part 1’, Transput. Commun., 1993, 1, (2),
pp. 65–91

46 GOLDSMITH, M.H., ROSCOE, A.W., and SCOTT, B.G.O.:
‘Denotational Semantics for Occam2, Part 2’, Transput. Commun., 1994,
2, (1), pp. 25–67

47 LAWRENCE, A.E.: ‘Extending CSP: denotational semantics’, IEE
Proc. Softw., 2003, 150, pp. 51–60

48 LAWRENCE, A.E.: ‘CSP extended: imperative state and true concur-
rency’, IEE Proc. Softw., 2003, 150, pp. 61–69

49 BARNES, F.R.M.INMOS LIMITED: ‘Dynamic occam processes’.
Fringe-session presentation at CPA-2000, 2000 (http://frmb.home.
cern.ch/frmb/pubs/dynoccam-slides.ps) accessed December 2002

50 FORD, B., BACK, G., BENSON, G., LEPREAU, J., LIN, A., and
SHIVERS, O.: ‘The flux OSKit: A substrate for kernel and language
research’. Proceedings of symposium on operating systems principles,
1997, pp. 38–51 (Software available from: http://www.cs.utah.edu/
flux/oskit/) accessed December 2002

136 IEE Proc.-Softw., Vol. 150, No. 2, April 2003

	Abstract
	1 Background
	2 Overview and motivation
	3 Channel direction specifiers
	4 Mobile channel types
	5 The extended rendezvous
	6 Dynamic process creation (the FORK)
	7 Extended rendezvous and channel-types
	8 Process priority
	9 Mobile process types
	10 Conclusions and future work
	11 Acknowledgments
	12 References

