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Abstract. MONA implements an efficient decision procedure for the
weak second-order logic WS1S, and has already been applied in many
non-trivial problems. Among these, we follow on from the work of Smith
and Klarlund on the verification of a sliding-window protocol. This pa-
per extends the scope of MONA to the verification of time-dependent
protocols. We present Discrete Timed Automata (DTA) as a suitable
formalism to specify and verify such protocols. In this paper our case
study will be the specification and verification of a multimedia stream.
DTA are as much influenced by IO Automata (syntactically) as they
are by Timed Automata (semantically). A composition strategy is given
to combine a set of synchronising automata, resulting in a product au-
tomaton over which safety properties can be verified. Invariance proofs
are then performed inductively on the automaton structure. MONA sup-
ports the mechanical verification of invariance proofs.

1 Introduction

MONA [1] implements an efficient decision procedure for the weak second-order
logic WS1S, which is interpreted over N. MONA has found application in many
non-trivial problems, but here we are interested in its potential for protocol
verification. Smith and Klarlund [2] showed that a sliding-window protocol can
be modelled in IO Automata [3], and then verified it in MONA using invariance
proofs. Following on from these ideas, this paper extends the scope of MONA
to the verification of time-dependent protocols.

We present Discrete Timed Automata (DTA) as a formalism to describe a
class of time-dependent protocols. A system is viewed as a collection of syn-
chronising components, each one modelled as a different automaton. A DTA
is composed of a set of variables, whose valuations determine the automaton
states, and a collection of (input, output or internal) actions defined through
preconditions and effects. Thus, a DTA inherits much of its internal structure
from IO Automata. Time passage is modelled through a special action TICK,
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which modifies a shared-variable T . The value of T can be consulted by other
actions to define time constraints (e.g. preconditions) but it is only modifiable
by TICK. In our examples we have decided to include TICK and T in a separate
Clock automaton, rather than in a component automaton. This gives the idea
of an independent, “global” time. The temporal framework is discrete (T ∈ N)
in order to use MONA as a verification tool: preconditions and effects, as well
as time progress, will be expressed as WS1S formulas. Actions may also include
deadlines (see e.g. [4, 5]) to model urgency. When the system reaches a state
where a deadline holds, action TICK is prevented from happening and so at least
one enabled action must be performed for the execution to proceed. A simple
composition operator results in a single DTA where safety properties can be
verified (i.e. that “nothing bad happens”). Our semantics of composition are in-
fluenced by work on Timed Automata with Deadlines [5], though in our case
the treatment of deadlines is not so elaborate (for example, and unlike in [5], we
cannot preserve time-lock freedom). The behavioural semantics of DTA is given
in terms of labelled transition systems (see e.g. [6]).

The method of invariance proofs [7] is a well known deductive approach for
verifying safety properties. Systems are expressed as a collection of transitions,
and an inference rule is provided to deduce the truth of a given property in
all computation states. This rule suggests an inductive verification method: we
check that the property holds at the initial state and that it is preserved by
every transition in the system, with transitions modelled as logic formulas over
state variables.

Our case study will be the verification of a media stream. Bowman et. al. [8]
showed that the stream can be specified and verified using the real-time model
checker UPPAAL [9]. However, the advantage of automatic verification was hin-
dered by UPPAAL’s restricted logic. Quality of service must be described as
reachability properties in order to be verified in UPPAAL, but some require-
ments, like latency, cannot be naturally modelled as such. Consequently the
original stream implementation had to be significantly modified, in this case
with the addition of probe actions and test automata.

We offer an alternative analysis for the media stream example based on in-
variance proofs. We model the media stream as a collection of DTA, obtained
from the UPPAAL specification given in [8]. We compose the DTA and trans-
late the resulting actions into MONA formulas, which represent the transitions
in the product automaton. Over these formulas, then, invariance proofs are used
to verify two correctness properties: a) that the stream can be implemented with
two one-place buffers, and b) that a certain end-to-end latency is preserved. Due
to space limitations we are not considering here other quality of service proper-
ties, such as throughput or jitter, though we anticipate they can be verified in
the same way.

The main contribution of this work is the introduction of a formalism, DTA,
which allows MONA to be used in the verification of time-dependent protocols.
The kind of arithmetic reasoning these problems require can be conveniently
performed in MONA:
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– The interpretation of WS1S is tied to arithmetic, and so it can naturally
express (discrete) time constraints. For example, we will see that latency
does not require major changes in the stream model to be expressed and
verified. Also, interval temporal logics like ITL [10] and Duration Calculus
[11] have been encoded in MONA, which is evidence of its suitability for
expressing and verifying temporal logic properties.

– Invariance proofs require user interaction when the invariant in question is
not itself inductive. Nevertheless, this technique has been studied extensively,
and a number of heuristics have been proposed to facilitate this task [7]. Also
neither invariance proofs nor DTA are restricted to finite-state systems, and
so mechanical verification can be provided in contexts where model checking
cannot be applied.

– MONA can be used as an efficient verification tool, due to its inclusion of
optimisations such as BDDs, DAGification and formula reductions [12].

Paper organization: Section 2 presents the necessary background: the de-
scription of the media stream example, its formalisation in UPPAAL and a brief
overview of the MONA tool. Discrete Timed Automata are presented in section
3, and a formalisation of the media stream is obtained from the UPPAAL speci-
fication. Section 4 explains invariance proofs. This method is then applied in the
verification of the media stream. Conclusions and further research are discussed
in section 5.

2 Background

A Simple Media Stream The most basic requirement for supporting multime-
dia is to be able to define continuous flows of data, such structures are typically
called media streams [13]. The basic media stream is as depicted in figure 1. It
has three top level components: a Source, a Sink and a communication Medium
(which we will from now on simply refer to as the Medium). The scenario is
that the Source process generates a continuous sequence of packets1 which are
relayed by the Medium to a Sink process which displays the packets. Three
basic inter-process communication actions support the flow of data (see figure 1
again), sourceout , sinkin and play , which respectively transfer packets from the
Source to the Medium, from the Medium to the Sink and display them at the
Sink.

The following informal description of the behaviour of the stream is adapted
from the one appearing in [8].

– All communication between the Source and the Sink is asynchronous.
– The Medium is reliable.
– The Source transmits a packet every 50 ms (i.e. 20 packets per second).

1 These could be video frames, sound samples or any other item in a continuous
media transmission. In this way the scenario remains completely generic. However,
instantiation of data parameters will specialize the scenario.
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Fig. 1. A Multimedia Stream (from [8])

– Packets arrive at the Sink between 80 ms and 90 ms after their transmission.
This is the latency of the Medium.

– Whenever the Sink receives a packet, it needs 5 ms to process it, after which
it is ready to receive the next packet.

The properties we will verify are the following:

1. Medium capacity. We have modelled the transmission medium with two
one-place buffers. We have to ensure that whenever the Source wishes to
send a packet, at least one of the buffers is empty.

2. Latency. The end-to-end delay between a sourceout action and its corre-
sponding sinkin action cannot be more than 95ms, which puts an upper
bound on the end-to-end transmission delay.

Stream example formalised in UPPAAL Consider the stream example
depicted in figure 1, and its formalisation in UPPAAL given by figure 2. We have
decided to include this model here because UPPAAL lends a graphical notation
to the problem solution, and has influenced the semantics we have chosen for
DTA. Consequently, the corresponding formalisation in DTA will be more clear
to the reader. An introduction to UPPAAL and a more detailed explanation of
this example can be found in [8].

The initial location in the Source, State0 is annotated as committed to ensure
that the first packet (sourceout!) is sent immediately. The guard t1 == 50 en-
ables the sending of sourceouts at exactly 50 ms after the last one. The invariant
at State1 ensures that the enabled transition really happens at t1 == 50. When
the transition is performed the clock t1 is reset and the behaviour repeats itself.

We will show that the medium can be modelled by two independent one-
place-buffers, Place1 and Place2. Each buffer is modelled as an automaton with
two locations. At the initial location the buffer can receive a sourceout from the
Source, and a timer is started to model the delay imposed by the medium. The
sinkin action following the sourceout is delayed by at least 80 ms and at most
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90 ms. The Sink automaton is initially waiting for a packet from the medium
(signaled by sinkin?). When it arrives the clock t2 is reset, acting as a timer to
model the 5 ms delay caused by the playing of the packet. Then control returns
to the initial location.
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Fig. 2. UPPAAL specification of the media stream (from [8])

MONA: MONA [1] is a tool implementing an efficient decision procedure for
WS1S (Weak monadic Second-order theory of 1 Succesor) [14], which has been
successfully applied in many non-trivial settings (see [1] for a list of applications).
Efficiency is achieved through a number of optimisations, such as BDDs, DAG-
ification and formula reductions [12]. WS1S is a formalism with an arithmetic-
based interpretation. Variables may hold boolean values, natural numbers (first-
order variables) and sets of natural numbers (second-order variables). Usual logic
connectives, such as ∼ (negation), & (conjunction), | (disjunction) and => (impli-
cation) are available. Expressions on natural numbers include comparisons (e.g.
=, >) and addition of constant values (e.g. t + n). Quantification over numbers
and sets is also available. MONA programs consist of a declaration section and
a formula section. MONA translates the formula to a finite automaton, checks
satisfiability and outputs a model/counterexample built over the declared vari-
ables.
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3 Discrete Timed Automata

We present Discrete Timed Automata (DTA) as a formalism with a general
IO Automata-like structure. DTA are composed of a set of variables, whose
valuations determine the automaton states, and a collection of (input, output
or internal) actions defined through preconditions and effects. Interaction with
the environment is achieved by output actions (sent to the environment) and
input actions (received from the environment). Synchronisation is then achieved
through matching pairs of input/output actions. However, DTA are influenced
by UPPAAL (and consequently by Timed Automata [15]) as much as by IO
Automata:

1. System are modelled as a collection of synchronising automata. Discrete time
is represented by a variable T in N, which can be consulted by any automata
in the collection to define its own temporal constraints (e.g. preconditions
and deadlines). One automaton in the collection will include a special action,
TICK, which increments T to model the passage of time.

2. Input actions may have preconditions; in the context of time-dependent pro-
tocols, usually a process is only able to respond to the environment if certain
time constraints hold.

3. We allow the same output action in possibly many automata; in this way,
for example, we can naturally model a “server” process attending (e.g. per-
forming some input action) requests of multiple clients (e.g. performing the
same output action).

4. Composition follows the strategy used in UPPAAL. When an output action
in one component matches input actions in many other components, only
one pair input/ouput is actually performed, i.e. components can only evolve
autonomously (through internal actions) or in pairs (through a pair of syn-
chronising actions). Also, synchronising actions are treated as internal to
the resulting product automaton, and unmatched input/ouput actions are
removed from it.

5. The effect of an action is modelled as a MONA formula on primed variables,
which hold the values in the next computation state. All variables not men-
tioned in the effect are considered unchanged. This declarative style allows
us to more easily describe the effects of composition, and to verify them in
MONA.

6. Actions include a deadline formula: time is prevented from passing in those
states where the deadline holds. In other words, deadlines can be seen as
preconditions on the TICK action. Therefore the action in question becomes
urgent: it must be performed for the system to progress. Our decision to
relate deadlines with actions, rather than invariants with states is consistent
with [4, 5] and we believe leads to a more flexible treatment of urgency.

The structure of a DTA can be observed in figure 3. The signature of a given
automaton X, sig(X), is defined as its set of actions. This set is partitioned into
output out(X), input in(X) and internal actions int(X). var(X) denotes the
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set of variables declared in X (Var: is a MONA variable declaration section).
All variables, except for a special time variable T , are considered local to the
automaton. init(X) is a MONA formula describing initial valuations for var(X)
(Init:). Actions in X (Actions:) can be defined as tuples (a, p, d, e) where a is a
label and p, d, e are MONA formulas respectively denoting a precondition (prec:),
deadline (deadline:) and effect (eff:). aX will refer to any action in X with label
a, and we also use a!X (a?X) to denote an output (input) action. Preconditions,
deadlines and effects will be denoted as aX .p, aX .d, and aX .e, and will refer
to variables in var(X) ∪ {T}. aX .e will also refer to primed versions of these
variables. The syntax of variable declarations and formulas can be found in [1].
Note that different actions in the same automaton may have the same label; in
this way we naturally model actions which have different effects depending on the
computation state. The behaviour of a DTA will be defined as part of a collection
(maybe just a singleton) of communicating automata, C = {A1, . . . , An}. We
impose a number of well-formedness conditions upon C:
1. One (and only one) automaton in the collection, AT ∈ C, is required to

declare a shared first-order variable T , with init(AT ) ≡ T=0; and to include
an internal action TICK with effect: T ′ = T+1. This represents the passage
of discrete-time.

2. There are no common variables among the automata, except for T , i.e.⋂n
1 var(Ai) = {T}.

3. Internal actions in one automaton do not appear as (internal, output or
input) actions in any other automaton, i.e.
∀ Ai, Aj ∈ C, i 6= j : int(Ai) ∩ sig(Aj) = ∅.

DTA semantics is formally defined in terms of a labelled transition system: a
4-tuple [[C]]ts = (S,L,→, s0) where S denotes a set of states, L denotes a set of
action labels, → ⊆ S × L × S is a transition relation and s0 is the initial state
for the behaviour of C. We will use s

a→ u to denote (s, a, u) ∈→.
States are defined by valuations of DTA variables. As we will eventually

translate DTA specifications into MONA programs we will only be concerned
with the available MONA types: boolean values B = {true, false}, natural
numbers N, and sets of natural numbers P(N). We refer the reader to [2] for an
example of how other higher-level data types can also be represented in MONA.
Then S ⊆ P(V ×N∪B∪ P(N)), where V =

⋃n
1 var(Ai) is the set of variables in

the collection. In other words, s ∈ S is such that s = {(v1, [[v1]]), . . . (vm, [[vm]])},
where [[vi]] denotes the value of variable vi in state s. We will use s |= φ to
denote satisfaction under WS1S semantics, where s ∈ S and φ may be an initial,
precondition or deadline formula. Actions are said to be enabled on every state
which satisfies their preconditions: s |= aX .p. We assume that every automaton
has a single initial state (i.e. init(Ai) has a single model in terms if var(Ai)).
The initial state s0 is then defined as follows:

s0 |= init(A1) & . . . & init(An)

The interpretation of effect formulas, however, has to be defined on a pair of
states (s, u) in order to formalise the following assumptions:
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– Unprimed variables denote valuations in the current state (s); primed vari-
ables denote valuations in the after state (u), and

– all variables in the automaton, whose primed versions do not appear in the
effect formula, preserve their values in the after state.

Let prime(u) denote the state resulting from u by renaming every variable to its
primed version, i.e. (v, [[v]]) ∈ u iff (v′, [[v]]) ∈ prime(u). Let v1, . . . , vn be those
variables in X whose primed versions do not appear in aX .e. Then (s, u) |= aX .e
denotes:

s ∪ prime(u) |= aX .e & v′1=v1 & . . . & v′n=vn

The transition relation for [[C]]ts is defined by a set of inference rules. Let X, Y ∈
C, X 6= Y . Rules (1) and (2) define a preliminary relation Ã with no urgency
enforced, where synchronisation is resolved:

(1)
aX ∈ int(X), s |= aX .p, (s, u) |= aX .e

s
aÃ u

(2)
s |= a!X .p, s |= a?Y .p, (s, u) |= a!X .e, (s, u) |= a?Y .e

s
aÃ u

Now, rules (3) and (4) enforce urgency on Ã to yield the relation →, which can
be thought of as pruning the graph constructed by the first two rules by allowing
TICK transitions only when no deadline holds in the current state:

(3)
s

aÃ u, a 6= TICK

s
a→ u

(4)
s

TICKÃ u, ∀ aX : s |= ∼ aX .d

s
TICK→ u

Computations are then represented in the graph by (possibly infinite) paths from
the root (s0).

The media stream formalised in DTA Given the specification of the media
stream in UPPAAL, we obtain a collection of DTA with the same behaviour.
Every timed automaton will be modelled as a distinct DTA. The passage of
(global) time is modelled by adding an automaton Clock which only includes
the action TICK. UPPAAL locations, clocks and other variables are modelled
as local DTA variables, and transitions as DTA actions. Variables representing
local clocks are actually keeping the last sampled value of T , and so we will
refer to them as capture variables. T is sampled whenever a local clock is to be
reset, so an UPPAAL clock reset action such as c := 0 and a guard condition
such as c > n are respectively translated to c’=T and T>c+n, in the eff and
prec sections. Here, c denotes a local clock, n ∈ N, and c its corresponding cap-
ture variable. For a transition from location li to lj , the prec and eff sections
in the corresponding DTA action will also include the expressions state=li and
state’=lj , respectively. Here state is the DTA variable modelling the current
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UPPAAL automaton location. An invariant such as c ≤ n in location l is trans-
lated to a deadline formula state=l & T>=c+n, which will be attached to every
action modelling the outgoing transitions from l. Note that the invariant can
be interpreted as “the automaton can remain in l as long as c ≤ n”, and the
deadline effectively represents this as “time cannot pass when the automaton is
in l and c >= n” (which is expressed with capture variables as T>=c+n).

Figure 3 shows the media stream formalised as a collection of DTA. The ab-
sence of a prec or deadline section is a shorthand for prec = true and deadline =
false, respectively. The MONA keyword var1 declares a first order variable (a
natural number), and the where clause restricts its values to a given set. We only
show one of the buffers, Place1 (the DTA for Place2 is similar). Note for exam-
ple the second SOURCEOUT! action in Source. This models the loop sourceout!
in State1 (figure 2). For the loop transition to occur, Source must be in State1
and t1==50. These conditions are modelled in the DTA by SourceState=1 &
T=t1+50 (50 ms have passed since the last time t1 captured the global time).
As an effect of this transition, the local clock is reset (t1:=0), which is modelled
as a new capture of the current global time, i.e. t1’=T (this asserts the value
of t1 in the next state). SourceState is not mentioned, so it is assumed to be
unchanged. The deadline for this action can easily be derived from the invariant
in State1, and clearly implies the precondition.

Note that the committed location State0 (fig. 2) has been modelled by attach-
ing a deadline SourceState=0 in action SOURCEOUT!. Because in this particular
example no other transition in the system is enabled at that moment, this suffices
to achieve the desired effect: the transition is immediately taken. But actually,
we are only disallowing the passage of time. In general, if other transitions were
enabled at that moment they could still be taken before SOURCEOUT!. Committed
locations enforce priorities among actions; we are currently investigating exten-
sions to DTA to handle this and other features.

Parallel composition of communicating DTA Composition must preserve
the semantics given by transition rules (1 to 4) and the well-formedness con-
ditions (for example, if there were common variables in the collection, we may
apply renaming). Given a collection of automata C as defined before, we define
the product automaton

∏n
1 Ai as follows:

var(
∏n

1 Ai) =
⋃n

1 var(Ai)

init(
∏n

1 Ai) = init(A1) & . . . & init(An)

int(
∏n

1 Ai) =
⋃n

1 int(Ai)∪ {(a, p′, d′, e′) | X, Y ∈ C, a!X , a?Y } where
p′ = a!X .p & a?Y .p
d′ = a!X .d | a?Y .d
e′ = a!X .e & a?Y .e

in(
∏n

1 Ai) = ∅ = out(
∏n

1 Ai)
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Automaton: Clock

Var: var1 T
Init: T=0

Actions: TICK

eff: T ′ = T+1

Automaton: Source

Var: var1 SourceState where SourceState in {0,1}
var1 t1

Init: SourceState=0 & t1=T
Actions: SOURCEOUT!

prec: SourceState=0

deadline: SourceState=0

eff: SourceState’=1

SOURCEOUT!

prec: SourceState=1 & T=t1+50

deadline: SourceState=1 & T>=t1+50

eff: t1’=T

Automaton: Place1

Var: var1 Place1State where Place1State in {1,2}
var1 t4

Init: Place1State=1 & t4=T
Actions:

SOURCEOUT?

prec: Place1State=1

eff: Place1State’=2 & t4’=T
SINKIN!

prec: Place1State=2 & T>t4+80

deadline: Place1State=2 & T>=t4+90

eff: Place1State’=1

Automaton: Sink

Var: var1 SinkState where SinkState in {1,2}
var1 t2

Init: SinkState=1 & t2=T
Actions: SINKIN?

prec: SinkState=1

eff: SinkState’=2 & t2’=T;

PLAY

prec: SinkState=2 & T=t2+5

deadline: SinkState=2 & T>=t2+5

eff: SinkState’=1

Fig. 3. Media stream as a collection of DTA
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Composition, then, converts synchronising actions into internal actions, and no
unmatched input/ouput action in the collection is preserved. Deadlines for com-
plete actions, i.e. actions which results from successful synchronisation, are strict:
the complete action must be performed whenever either the input or output ac-
tion must be performed. This is characterized as a disjunction of the component
deadlines (see [4, 5] for a discussion on this and other composition strategies).

We now present an operation to move urgency information to the precon-
dition of the TICK action. Every action will eventually be translated to MONA
formulas as transition relations over consecutive execution states. However, in-
variance proofs require system transitions to be expressed solely in terms of their
preconditions and effects, and so we need a way to map a system with deadlines
to one without them. Semantically, deadlines denote sets of states where time
is not allowed to pass. Therefore we can view deadlines as preconditions for the
TICK action, restricted to the conjunction of all deadlines (negated) appearing
in any action of

∏n
1 Ai.

Figure 4 shows a fragment of the product automaton for the media stream,
where deadlines have been placed as preconditions in the TICK action (syn-
chronisation with Place2 is omitted). The reader is encouraged to apply the
composition rules over actions SOURCEOUT! and SOURCEOUT? in figure 3, which
eventually produce the internal actions SOURCEOUT in the product automaton.

4 Invariance proofs

This is the well-known method proposed by Manna and Pnueli (see e.g. [7])
to verify safety properties. These properties are expressed by a temporal logic
formula of the form 2ψ, where ψ characterizes all possible system states except
those which are considered undesirable. Informally, a formula such as 2ψ is valid
if ψ holds at all states in any possible system execution.

Invariance proofs are deductive: given a set of valid premises, the truth of a
property at every state can be deduced from the following inference rule,

P1. ϕ → ψ
P2. Θ → ϕ
P3. ∀ τ ∈ T . ϕ ∧ ρτ → ϕ′

2ψ

Here T is a set of transitions and ψ and ϕ are state formulas, i.e. their satisfaction
only depends on the state where they are interpreted. Formula Θ characterizes
a set of possible initial states. Single transitions are represented by transition
relations: ρτ is a formula expressing the effect of transition τ in terms of the
values of variables in the current and next computation state. Typically ρτ will
conjoin the preconditions of τ , as a formula over unprimed variables, with the
effects of τ as a formula over their primed versions. Similarly, ϕ′ is obtained by
replacing in ϕ all variable names with their primed versions.

The rule deduces the validity of 2ψ provided the existence of a (usually
stronger) formula ϕ such that (P1) ϕ implies ψ, (P2) ϕ holds at the initial state

11



Automaton: [Clock||Source||Place1||Place2||Sink]
Var: var1 T, t1, t2, t3, t4

var1 SourceState where SourceState in {0,1}
var1 Place1State where Place1State in {1,2}
var1 Place2State where Place2State in {1,2}
var1 SinkState where SinkState in {1,2}

Init: T=0 & t1=T & t2=T & t3=T & t4=T &

SourceState=0 & Place1State=1 & Place2State=1 & SinkState=1

Actions: TICK

prec: ∼ SourceState=0 & ∼(SourceState=1 & T>=t1+50) &

∼(Place1State=2 & T>=t4+90) & ∼(SinkState=2 & T>=t2+5)

eff: T ′ = T+1

SOURCEOUT

prec: SourceState=0 & Place1State=1

eff: SourceState’=1 & t4’=T & Place1State’=2

SOURCEOUT

prec: SourceState=1 & T=t1+50 & Place1State=1

eff: t1’=T & t4’=T & Place2State’=2

SINKIN

prec: Place1State=2 & T>t4+80 & SinkState=1

eff: Place1State’=1 & SinkState’=2 & t2’=T
PLAY

prec: SinkState=2 & T=t2+5

eff: SinkState’=1

Fig. 4. The media stream after DTA composition

and (P3) ϕ is preserved by all transitions in T . Often, even when ψ holds at
all computation states, premises P2 and P3 cannot be proved to be valid (just
satisfiable in system states). This is true when ψ is not inductive [7], and so we
are left with the task of finding the proper inductive formula ϕ (also called the
invariant).

Verifying medium capacity We wish to verify that it is never the case
that both buffers are full whenever the Source wishes to send a new packet.
Because the property trivially holds in the initial state, we just consider the
SOURCEOUT action performed at T=t1+50. The MONA formula Place1State=2
& Place2State=2 represents that both buffers are full. We therefore verify that
the following property holds at all computation states:

ψ ≡ ∼(T=t1+50 & Place1State=2 & Place2State=2)

The invariance rule can be applied to verify the media stream as follows. The
stream is represented by the deadline-free product automaton

∏n
1 Ai (T in the

above inference rule). We assert an initial invariant ϕ0 ≡ ψ (and so P1 is en-
forced), and we take Θ ≡ init(

∏n
1 Ai). For every action (τ) in the product, with

section formulas precτ and effτ , its transition relation is given by the MONA
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formula: ρτ ≡ precτ & eff τ . Then we run MONA to check (P2) the validity of
Θ => ϕi, and (P3) the validity of ϕi & ρτ => ϕ′i for every action τ . As a result
of this analysis either MONA returns “valid” for all of these formulas, and so
because of the invariance rule, 2ψ holds; or it returns a counterexample. User
interaction is required in the last case. If the counterexample characterizes a
reachable system state, then ψ does not hold for every computation state and so
it is not a safety property. On the other hand, if it describes an unreachable state,
an invariant property α should be determined to strengthen the current invariant,
ϕi+1 ≡ ϕi & α, and the process starts again.

As a result of the media stream verification we were able to strengthen the
safety property, obtaining the following invariant,

1) ∼ (T=t1+50 & Place1State=2 & Place2State=2) &
2) (Place1State=2 & Place2State=2 => (t3>=t4+50 | t4>=t3+50)) &
3) t1>=t3 & t1>=t4 &
4) (SourceState=0 => T=0 & Place1State=1 & Place2State=1)

Here, formula (1) is the safety property to verify; (2) and (3) assert the relation
between the capture variables t3 and t4 as a result of synchronisation; and (4)
asserts initial valuations. Figure 5 shows the resulting MONA file for TICK in
the product DTA. Note that the primed version of the invariant only refers to
primed variables when these have been changed by the action. For this particular
action the only variable affected is T (the global time).

Verifying latency As discussed in [8], latency can easily be verified in this
media stream by inspecting the UPPAAL automata, but in real world systems
this analysis may not be so straightforward. In this case, to express the latency
requirement we need to relate the corresponding SOURCEOUT and PLAY actions,
i.e. the delay is to be taken between the sending and playing times of the same
packet. As shown in [8], we may assume that packets carry sequence numbers
with them, and moreover that two sequence numbers are sufficient, the capacity
verification ensures this.

So for any sequence number, the time between the corresponding PLAY and
SOURCEOUT actions must be less than 95 ms. Since in DTA the time of relevant
events is kept in the capture variables, and the current time is always avail-
able in the value of T , every state where a PLAY action happens (T=t2+5 &
SinkState=2) also holds the sending time of the last packet transmitted by the
Source. Therefore conditions are given to express latency as a safety formula.

But the sending time of the last packet is not sufficient, because we may
be relating a PLAY action with the wrong SOURCEOUT. To solve this problem we
propose to capture the sending times of consecutive packets with two different
variables, t1 0, and t1 1. Unlike the alternative found in [8], the media stream
design in DTA is not substantially changed. Latency can then be expressed as:

2(SinkState=2 & T=t2+5 => (T<=t1 0+95 & T<=t1 1+95))
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var1 T,T’,t1,t3,t4,t2,

SourceState where SourceState in {0,1},

Place1State where Place1State in {1,2},

Place2State where Place2State in {1,2},

SinkState where SinkState in {1,2};

# prec

~SourceState=0 & ~(SourceState=1 & T>=t1+50) &

~(Place1State=2 & T>=t4+90) & ~(Place2State=2 & T>=t3+90) &

~(SinkState=2 & T>=t2+5) &

#eff

T’ = T+1 &

# INV

~(T=t1+50 & Place1State=2 & Place2State=2) &

(Place1State=2 & Place2State=2 => t3 >= t4+50 | t4 >= t3+50 ) &

(t1>=t3) & (t1>=t4) &

(SourceState=0 => T=0 & Place1State=1 & Place2State=1)

=>

# INV’

~(T’=t1+50 & Place1State=2 & Place2State=2) &

(Place1State=2 & Place2State=2 => t3 >= t4+50 | t4 >= t3+50 ) &

(t1>=t3) & (t1>=t4) &

(SourceState=0 => T’=0 & Place1State=1 & Place2State=1) ;

Fig. 5. MONA file to verify transition TICK

This property is bounding the time between the sending of the last two pack-
ets and any PLAY action. Because one of these packets is always the one that
is being played, this safety property correctly expresses the desired 95 ms end-
to-end latency. Figure 6 shows the modified Source automaton (changes in the
product DTA follows from the composition rules). After sending the first packet
(SourceState=0) it enters into a 2-state loop (SourceState=1, SourceState=2),
capturing the time when each (sequenced) packet is sent (t1 0, t1 1). Verifica-
tion in MONA returned the following invariant,

1) (SinkState=2 & T=t2+5 => (T<=t1 0+95 & T<=t1 1+95)) &
2) (t1 0 = t1 1+50 | t1 1 = t1 0+50 | (t1 0=0 & t1 1=0))

Here, formula (1) models latency and (2) describes the “alternating” dependency
between t1 0 and t1 1.

5 Conclusions

We have presented Discrete Timed Automata as a formalism to describe a class
of time-dependent protocols. DTA can be directly translated to MONA, which
provides mechanical verification for safety properties.

From Manna and Pnueli’s seminal work (see e.g. [16] and [7]) it is well known
that safety properties can be deductively verified using invariance proofs. An
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Automaton: Source

Var: var1 SourceState where SourceState in {0,1,2}
var1 t1 0, t1 1

Init: SourceState=0 & t1 0=T & t1 1=T
Actions: SOURCEOUT!

prec: SourceState=0

deadline: SourceState=0

eff: SourceState’=1

SOURCEOUT!

prec: SourceState=1 & T=t1 0+50

deadline: SourceState=1 & T>=t1 0+50

eff: SourceState’=2 & t1 1’=T
SOURCEOUT!

prec: SourceState=2 & T=t1 1+50

deadline: SourceState’=2 & T>=t1 1+50

eff: SourceState’=1 & t1 0’=T

Fig. 6. Source automaton modified to verify latency

inference rule deduce the truth of a property at all computation states, if it
holds at the initial state and is preserved by every transition.

DTA and safety properties are translated to a set of MONA formulas, and
so MONA is used to validate the inductive steps required by the invariance rule.
User interaction is still required to strengthen non-inductive properties, but the
task is reduced to analysing MONA counterexamples. Also, invariance proofs
and DTA are not restricted to finite-state systems, and proofs benefit from the
optimisations included in the MONA tool.

Our case study has been the verification of a media stream according to two
correctness properties: a) that an implementation of the transmission medium
with two one-place buffers is enough to manage the packet load, and b) that the
end-to-end latency between sender and receiver is bounded by a certain value.

Although the stream example is not very large, and we have assumed a
discrete-time framework, it nicely illustrates the technique we have developed.
We believe this will scale up to larger case studies. For example, the verification
of throughput and jitter in the lip-synchronisation protocol [17] is an interesting
next step. Also, [5] suggests that different composition strategies (which pre-
serves action-lock and time-lock freedom) and action priorities could be modelled
in our formalism. Further research will also consider the verification of liveness
properties, which cannot be handled with invariance proofs.

Finally, let us note that in favour of a general, initial presentation of the
concepts, we have decided not to include an analysis of related works in this
conference paper. In particular, our work has similarities to Lynch and Vaan-
drager’s Timed IO Automata [18] and Lamport’s TLA [19].
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