

A Policy-based Model-Driven Security Framework

Peter F. Linington
University of Kent, UK

pfl@ukc.ac.uk

Abstract

The adoption of a model-driven approach to the construction of applications places the focus on business logic
and takes it away from detailed middleware mechanisms. It also opens new opportunities for more detailed and
more dynamic control of non-functional properties. This position statement illustrates the possibilities by
considering the ways in which maintenance of security infrastructure can exploit the model-driven approach.

1. MDA and policies

The basic idea, on which model-driven architecture is
based, of using a powerful tool-chain to create
complete applications together with their support
environment from descriptions of organisations and
their business processes has been a widely
acknowledged objective of distributed systems
development for many years. It is at the core, for
example, of the Open Distributed Processing (ODP)
architecture [1], which was finalised in 1995. It is
only now, however, with the increased strength of
modelling and transformational tools, that the goal is
within reach. The concept of a model driven
architecture was given a major impetus by its
strategic adoption within the OMG in 2000 [2].

In ODP, the system specification is divided into a
number of viewpoints, including an enterprise
viewpoint [3] expressing organisational or policy
constraints, and a computational viewpoint
expressing the required business logic. The
engineering viewpoint specifies a set of templates
that are used by the tool-chain to create the necessary
supporting infrastructure for the applications. The
functional and non-functional requirements stated in
the enterprise and computational viewpoints are used
by the tools to select an available engineering
template for instantiation.

In addition to the business-specific models, however,
there will be a number of models expressing
organisation-wide structures and policies; merging
these different models into a single set of

requirements implies that a model-driven architecture
tool-chain will need to incorporate aspect-oriented
techniques.

Policies governing non-functional concerns, such as
resource usage or security, are likely to be structured
hierarchically; there will be some organisation-wide
policies that are refined by more specific policies
established by individual sub-units.

This position paper makes some general points about
the form of policies needed in such a framework (in
section 2) and then outlines (in sections 3, 4 and 5) a
specific example of model-based policy currently
being investigated at Kent. It ends with a discussion
of the requirements for the evolution of such systems
(in section 6).

2. Policies and policy envelopes

Much of the current work on policy-based
management focuses on the definition of powerful
and flexible notations for the expression of policy, on
the assumption that decisions to be taken within the
system will best be expressed in a notation that
reflects the design process undertaken by a suitably
authorised manager or administrator. There is an
assumption that the design created is consistent with
the over all aims of the organisation concerned. In
practice, however, there are generally strict
constraints on what policies are acceptable, given that
existing organisation-wide policies are already in
place. In current architectures, this is often reflected
as a requirement to detect conflict between different

policy definitions, and to establish rules for the
resolution of such conflicts. However, this gives only
weak guidance to the definer of policies as to what
freedom is intended, and gives no guarantee at all of
future correctness when the organization-wide
policies are updated.

The author believes that categories of policy should
be established within an over-arching organizational
architecture model, and that this process should
include the definition of a policy envelope, so that it
is clear to the maintainer of a particular policy what
flexibility is allowed within the bounds established by
the architecture. In this view, establishing a policy
involves:

• defining, in the over-arching model, a scope or set
of circumstances in which the policy is to apply;

• identifying some non-trivial choice to be made
under the control of the policy (a specific set of
rules);

• identifying an envelope that constrains the range
of behaviours that can be specified for the choice
made by the policy;

• identifying what information must be available
from the environment for the policy to interpret in
order to make the choice;

• defining a decision procedure to be applied in
assessing the situation and in actually making the
choice;

• defining any invariants that may need to be
respected by the system in general for the policy
to be effective.

This view of policy fits well with the model-driven
architecture approach, since it views a hierarchy of
policies as being represented by a hierarchy of
models, and the definition of each model is
constrained to be within an envelope stated in the
more abstract model establishing its role. Thus each
model defined as input to the tool-chain is
interpretted in a context established by its place in the
overall view of the enterprise; the constraints
establish the envelope for that particular policy or
model. This parallels the structures of delegated
authority within the organization.

The resulting constraints form a contract between the
definers of the different models, so that there should
be no conflicts as long as the policy definition
remains within its envelope, and so long as the
definers of policies of broader scope respect the
envelopes for more detailed policies they have
defined.

This is, of course, an ideal to aim for, and the
decidability of consistency with the envelope will
often not be straightforward; both this, and the
precision with which the envelope can be expressed,
will depend on the specifics of the notations that are
being used.

3. A JISC Initiative on Authentication,
Authorisation and Accounting

The work at UKC most relevant to the views in this
position statement has been carried out under the
funding of the UK Joint Information Services
Committee (JISC), which funds academic networking
and content services for Further and Higher
Education in the UK. This work examines the
possibilities of integration between business models
and security models, and so explores a facet of
model-driven architecture perhaps unfamiliar to some
middleware experts. As part of a larger initiative to
encourage uniform authorisation mechanisms for a
wide range of data services [4], the JISC has
established a number of pilot projects on the use of
strong security mechanisms, particularly certificate
based schemes, on a national scale. As part of this
activity they have funded some longer-term activities,
including a study of the application of policies and
model-driven techniques to the problem of integrating
local and national level security infrastructures.

This project is aiming to demonstrate a proof of
concept system capable of generating configuration
information and dynamic updates for local security
components on the basis of local and national policies
and of user registration information.

One of the concerns in providing a flexible security
architecture in response to these needs is the balance
to be struck between the different kinds of security
mechanism. On the one hand, the authentication of
comparatively open access to national services from a
mobile and volatile population of staff and students
suggests a primarily application-lead set of
mechanisms with the minimum of real-time
coordination between components, and thinking is
therefore focused on certificate-based mechanisms.
On the other hand, concerns about campus security
and protection against widespread denial of service
attacks suggest a continuing need for fine-grain
network-level measures, with immediate local
control.

It would be highly desirable to be able to combine
these two aspects while retaining flexibility and

dynamic configuration. The network level
mechanisms, such as firewalls, should be managed
dynamically, based on the short-term knowledge of
interest in particular applications and involvement of
individuals in particular activities; for example,
student access to an external resource might be
enabled during specific class times, or access to an
information server from a remote location might be
established as a side-effect of the authorisation
decisions in the single sign-on and token granting
mechanisms for the site.

4. The main models involved

In the current project we are not concerned with the
details of the business logic. Whilst, in an ideal
world, we would expect there to be a set of
application specific models, the current system
assumes a generic access process in which named
clients interact with multi-tier business logic.

Details of the authentication structure are provided by
a local organization model and user directory. A
service directory indicates both local and national
resources; permissions are represented by mappings
from service specific roles by linking them to
identities in the organizational model. This includes
generic identity templates for presenters of
certificates in known category under recognized
authorities.

The most concrete kind of models is concerned with
representation of the supporting network
configuration, particularly the routes through
controlling components, such as firewalls and access
controlled routers. This model will be updated by
feedback from operational information so as to stay in
step with the real world situation (except when there
is a need to analyse the consequences of proposed
changes – see section 6).

Finally, there is a set of models representing security
policies. These models represent the rules for
deriving route-specific permissions from user-level
authentication events. For example, the authentication
of an individual and the request by that individual to
exercise some specific access right for a resource
should result in a suitable access route to the resource
being enabled, in much the same way as initialising a
service opens access paths through current object-
aware firewall systems in a CORBA environment.

These models are maintained partly in open LDAP
directories and partly in specific local repositories,
depending on the frequency and range of access

requirements. The choice of a suitable form of
repository will, in general, depend on the constraints
derived from existing management tools and
interfaces, such as the need to incorporate
information from existing network management or
infrastructure components. A practical infrastructure
should therefore incorporate adaptation mechanisms
to unify a number of different repository mechanisms.

5. Tools and transformations

The main tools required for such a system are,
leaving aside administrator interfaces for the more
static data models, those concerned with the
processing of the set of authenticated entities to create
a set of required access paths, and those needed to
apply these requirements to the known configuration,
and so to derive suitable network access control
information and target-service access tokens from the
set of access paths. This is a notional separation of
functions, rather than a practical guide to modularity,
because of the potentially intimidating scale of the
intermediate set of access paths.

The step from authentication to path authorisation
will involve the interpretation of the service or
organization-specific security policies. In practice,
there are likely to be resource limitations on the
complexity of the access controls that can be
expressed in supporting components, so the mapping
from the path set to local control expressions will not
be exact. For example, a national dataset service
which has typically a hundred simultaneous research
users could be protected by a low level network filter
dealing with individual source network addresses, but
this level of granularity could stress router resources.
It is certainly likely to do so if there are a thousand,
or ten thousand, simultaneous users! It may therefore
be expedient to construct a much smaller number of
control terms permitting access to, for example,
subnets containing one or more users; such a strategy
is likely to result in a comparatively small number of
control list entries.

Applying this kind of approximation involves an
element of risk. It is, for sure, less of a risk than
current open access strategies involve, but it is not an
exact match to the known authorised user
requirements. The transformational tool might also be
guided by supporting dynamic trust or threat
information to establish how to strike the best balance
between security and resource usage.

This approach to coordinating fine-scale application
and network security models would be quite

infeasible without a high degree of automation;
human security administrators could never come near
to the required rate of change of configuration.
However, once the process is dynamic, and is based
on the processing of explicit models of organizational
structure and security policy, it becomes possible for
the system to track changes in these models directly.
It also becomes possible for integration with other
models to be increased, with the models that are
representing the business logic being made more
security-aware.

6. The evolution of policies

Polices are not static; they are in a continual process
of evolution, and the many separate teams may be
responsible for the development of different localised
or pervasive policies. These teams will all have their
own timescales and deadlines. A major campaign to
introduce new security features may well proceed in
parallel with the introduction of new business
processes; any of the activities in the different teams
may need to generate testing configurations or to
release or rollback new versions without disruption of
the other development activities.

This implies that the generating tools need to be able
to pick up and act upon contextual information from
the developer or administrator invoking the tools so
as to determine what combination of versions and
what execution environment is needed on a particular
occasion. There should also be support for the
detection and management of unavoidable
dependencies between threads of development, such
as the need to make new classes of security
information visible within security-aware business
logic. For example, different qualifying data may
become necessary when a change in tax law
introduces new categories of obligation or exemption;
the change may come into effect on a particular day,
but preparatory steps will have been taken and
additional information and validity checking
introduced over a period of months beforehand. It
may be necessary for people or processes in selected
roles to retain access to old policies or simulate
application of proposed new policies over a period of
months or more. These considerations will make the
question of version management in a model-driven
architecture extremely important [5].

One may conclude from these requirements that the
repository on which a model-driven architecture is
based will need to have strong and flexible versioning
and scenario planning facilities to support parallel
development activities. It will be highly desirable for

the toolset to be able to construct test systems based
on the selections of versions of the different models
that are derived from a user-specific context, with
appropriate consistency checking and integration
support, as found in a sophisticated version
management system.

7. Conclusions

The definition of the model representing security
policies is feasible and the work on the demonstrator
described above is well advanced; it is expected to be
substantially complete before the MAMAD
workshop. It has already shown that the model-driven
architecture approach is applicable to the
management of pervasive infrastructure properties,
such as security, as well as to more specific models
concerned with business processes.

However, this activity has already helped to identify a
number of requirements for a model-driven
framework that need to be investigated further,
particularly in the support of independent phased
development and in the support for evolution within
model driven structures, before we really have a
mature model-driven software engineering process.

Acknowledgement

The author would like to acknowledge the support of
the UK Joint Information Systems Committee for the
project “Deriving Authority from Security Policy”
described in this paper.

References

[1] ISO/IEC IS 10746-3, Open Distributed
Processing Reference Model – Part 3:
Architecture, January 1995

[2] Richard Soley, “Model Driven Architecture”
Object Management Group White Paper
November, 2000

[3] ISO/IEC DIS 15414, Open Distributed
Processing – Enterprise Language, 2002.

[4] The JISC Authentication, Authorisation and
Accounting (AAA) programme,
http://www.jisc.ac.uk/index.cfm?name=prog
ramme_aaa

[5] P.F. Linington, “An ODP approach to the
development of large middleware systems”,
in Proc. DAIS99, June 1999.

