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Abstract 
This paper introduces a new edge length heuristic 

that finds a graph layout where the edge lengths are 
proportional to the weights on the graph edges. The 
heuristic can be used in combination with the spring 
embedder to produce a compromise between a drawing 
with an accurate presentation of edge length and a 
drawing with good general comprehensibility. We 
describe our preliminary investigations in combining the 
two methods so that a user can tune their preference and 
demonstrate the effectiveness of the system on both 
randomly generated graphs and graphs representing web 
page similarity data. 
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1: Introduction 

The automatic layout of interconnected data, termed 
graph drawing, is widespread in information visualization. 
In many application areas, the graphs being visualized are 
weighted, where the weights on the edges represent a 
measure between connected nodes. Examples of such data 
are web page similarity graphs or the graphs depicting the 
closeness of bibliography entries. For visualizing this sort 
of information, an important requirement is that the 
displayed edge length should be proportional to the 
weight. However, a good solution for edge weights is 
often at the cost of making the overall graph drawing less 
comprehensible, so the user finds that examining the data 
is difficult. 

A widely used method for drawing graphs with 
proportional edge lengths is to apply a metric spring 
embedder to the graph. This applies the spring embedder, 
first developed by Eades [1], with modifications made to 
ensure that the attractive forces acting on edges are 
inversely proportional to the edge weight. Many 
applications use this approach, such as visualizations for 
biological data [3] or showing the similarity between 
news stories [2]. Tools to support this form of graph 
drawing have been developed, including NetVis ViStA 
[5], and some force directed approaches are easily 
modified to optimize on edge length [4]. The result of 
using these methods is that the graph is often nicely 
drawn for comprehensibility and that the edge weights 
and edge lengths have some relationship. However, the 
resultant edge lengths are usually far from their ideal 
values, even when the graph has a possibly exact solution. 

Metric embedding techniques, which attempt to 
optimise laying out edge lengths proportional to their 
weights have been widely applied. Finding an optimal 
solution for this problem is NP-Complete and so such 
techniques are approximative. They include 
multidimensional scaling methods and hierarchical 
decomposition [7]. The result of such techniques is good 
for edge lengths, but the layout is also usually a jumbled 
graph that is difficult to analyse visually. 

In this paper, we introduce a new edge length method 
that can be closely integrated with the metric spring 
embedder to produce a compromise between a 
comprehensible graph and a metric embedding. 

As with the spring embedder, the system iterates a 
number of times until a reasonable drawing has been 
found. On every iteration, the metric spring embedder 
method is first applied to the nodes in the graph, and then 
the edge length heuristic is applied to the nodes in the 
graph. No modification is required to the calculation of 
the forces in the spring embedder. On any iteration, it is 
possible to apply either or both methods, so providing a 
tuning mechanism where the user can decide how much 
spring embedding or edge length method they require for 
their final drawing depending on their emphasis on 
comprehensibility or edge length proportionality. The 
edge length method is more powerful than the spring 
embedder and produces an equilibrium faster. Hence, to 
produce a more understandable graph it can be left out for 
several iterations whilst the spring embedder is applied on 
every iteration. This means the tuning is defined as how 
frequently the edge length method is applied. 

To apply an iteration of the edge length heuristic, the 
method iterates through the nodes in the graph. For each 
node, the edge length heuristic takes each connecting 
edge and finds the ideal length based on multiplying the 
weight of the edge by a constant. The position of the node 
to create that ideal length is then calculated. Once all the 
positions for the connecting edges are calculated, the node 
is then moved to the average of the positions. 

The heuristic can be implemented with O(|E|) time 
complexity for each iteration, where |E| is the number of 
edges in the graph. This compares well with the spring 
embedder which is O(|N|2) for each iteration of the 
classical embedder [1], where |N| is the number of nodes 
in the graph, although O(|N| log |N|) can be achieved with 
optimisations. Hence, the scalability of our method is 
largely dependent on the spring embedder rather than the 
heuristic. The spring embedder has been applied to graphs 
of over a hundred thousand nodes [8]. 



The edge length heuristic in pseudocode: A version of the edge length heuristic was first 
developed as a preprocessor for the standard spring 
embedder [6]. Rather than making edge lengths 
proportional to weight, it was designed to make edge 
lengths equal. In this form it was combined with a grid 
allocation method in a two phase system. It has the effect 
of evening out edge lengths and giving nodes a minimum 
separation, so approximating the goal of the spring 
embedder. This was shown to significantly reduce the 
time taken for subsequent spring embedding. This 
investigation also indicated that graph drawings produced 
by using the heuristic alone were often unclear and that 
good results for edge length are at the expense of 
providing users with a generally comprehensible diagram. 

 
APPLY_EDGE_LENGTH(G) 
  FOREACH n IN G 
    F = setOfConnectingEdges(n) 
    P = {} 
    FOREACH ei IN F 
      Calculate location of pi 
      Add p  to P i

    Move node to mean location in P 
 

The metric spring embedder method operates like a 
standard classic spring embedder, see [1] except that on 
each iteration, the repulsive force calculation for each 
edge ei is multiplied by the inverse of wi. 

The two methods are then combined in the graph 
drawing system, which iterates a user defined number of 
times. On each iteration, both, or just one of the methods 
can be applied. In general, the spring embedder is always 
applied, except in the case where the edge length method 
only is required. The edge length method can be applied 
on every iteration, or less frequently, such as every 5 
iterations. Where the spring embedder only is required, 
the edge length method is not applied at all. 

The remainder of this paper is organized as follows: 
Section 2 describes the edge length heuristic in more 
detail; Section 3 gives the results of using the method in 
various combinations with the metric spring embedder on 
test data; and finally, Section 4 gives our conclusions and 
directions for further research. 

2: Description of the Method 

This section describes the edge length method in 
detail and discusses how it is integrated with the spring 
embedder to produce a tuneable graph drawing system. 

 
The graph drawing method in pseudocode: 
 

DRAW(G) For our experiments, we consider connected graphs 
in two-dimensional space. We define a graph G = (N,E), 
where N is the set of nodes and E is the set of edges that 
connect nodes together. We also define a weight function, 
W, assigning a real number to all the edges in E. 

FOREACH iteration, i 
  if(USE_SPRING_EMBEDDER(i)) 
    APPLY_SPRING_EMBEDDER(G) 
  if(USE_EDGE_LENGTH(i)) 
    APPLY_EDGE_LENGTH(G) 
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3: Results 

In order to gauge the effect of applying the edge 
length heuristic, we performed four graph drawing 
variations on a set of test graphs. The variations were 
various ways of combining the edge length method with 
the metric spring embedder. The idea was to apply a 
different emphasis on the two conflicting goals of 
producing comprehensible graphs and making the edge 
lengths in the graph as proportional to the edge weights as 
possible. The four variations were: spring embedding only 
(SE); spring embedding every iteration and edge length 
every five iterations (SE5EL1); both spring embedding 
and edge length on each iteration (SE1EL1); and edge 
length method alone (EL). 

Figure 1 
A diagrammatic representation of the effect of the edge 

length heuristic on Node n. 
 

The edge length heuristic places a node n at the 
average of the ideal positions for each connecting edge. It 
repeats this for each node in the graph. For each edge ei 
with weight wi that connects node n to node mi, we 
calculate the position of point pi such that the vector mipi 
= kwi(ui), where ui is the unit vector of min, see Figure 1. 
This can be considered the ideal location of the node n if 
it connected to only the node mi. k is a constant that 
adjusts the final edge length according to the desired edge 
length and the values of the weights, so that k can be 
reduced if the weights in a particular graph are large. The 
node is then moved to the average of all the locations pi. 

The test graphs, listed in Figure 2, are a combination 
of randomly generated graphs (those graph names starting 
with ‘random’) and graphs generated from web pages 
(those graph names starting with ‘www.’), with similarity 
data where nodes represent web pages, edges represent 
hyperlinks between pages, and edge weights are values 
representing the number of shared links of the two pages. 
In addition there are a few hand created graphs to explore 
specific possible issues (those graphs named ‘metric’, 
‘nonmetric’, ‘general’, ‘simple’ and ‘clustered’) and a 
graph derived from real world data (the graph named 
‘bibliography’, see [2]). 

  



Graph Number of Nodes Number of Edges

metric 3 3 
nonmetric 3 3 
random10-20 10 18 
thing 17 30 
simple 18 30 
www.web-bits.net 18 51 
clustered 19 30 
random20-40 20 38 
www.brettmeyers.com 23 60 
www.counter-strike.net 25 26 
random30-60 28 58 
www.a-spotted-dog.com 31 129 
random40-80 40 77 
random50-50 43 49 
random50-75 47 72 
random50-100 49 97 
random50-150 50 149 
random50-200 50 195 
random50-300 50 297 
random60-120 60 115 
random80-160 80 156 
random100-200 98 196 
www.bersirc.com 104 803 
www.ivarjohnson.com 111 225 
random150-300 150 297 
random200-400 194 399 
www.peacenikjive.com 226 669 
random300-600 296 598 
random400-800 390 799 
random500-1000 496 998 
bibliography 504 754 

Graph SE SE5EL1 SE1EL1 EL 

metric 2069.17 1.06 0.16 0.18
nonmetric 29821.14 20023.50 20025.33 20022.71
random10-20 526.00 184.82 190.89 195.22
thing 195.39 210.86 33.29 4.25
simple 79.30 56.25 17.78 0.13
www.web-bits.net 24.44 12.75 11.06 11.34
clustered 179.27 17.50 8.14 8.50
random20-40 115.49 90.10 53.37 27.47
www.brettmeyers.com 13.06 3.31 1.53 1.12
www.counter-strike.net 59.66 0.18 0.03 0.00
random30-60 42.81 35.50 15.26 7.75
www.a-spotted-dog.com 8.92 1.93 1.54 1.49
random40-80 25.54 3.62 1.26 1.01
random50-50 63.14 35.52 8.23 3.62
random50-75 29.14 3.37 1.78 1.53
random50-100 18.63 3.32 2.08 1.97
random50-150 9.55 2.83 2.13 2.25
random50-200 5.42 1.88 1.63 1.68
random50-300 2.70 1.09 1.02 1.00
random60-120 14.06 3.10 1.54 1.46
random80-160 7.58 1.49 0.59 0.51
random100-200 4.65 1.10 0.38 0.25
www.bersirc.com 0.39 0.04 0.02 0.02
www.ivarjohnson.com 3.29 1.75 0.36 0.07
random150-300 1.84 0.58 0.21 0.11
random200-400 1.08 0.42 0.11 0.03
www.peacenikjive.com 0.63 0.25 0.10 0.07
random300-600 0.49 0.24 0.06 0.01
random400-800 0.29 0.15 0.05 0.01
random500-1000 0.18 0.11 0.03 0.00
bibliography 0.47 0.39 0.17 0.01

Figure 2 Figure 3 
The test graphs. The amount of distortion. The values with a grey 

background are those which are higher than the value in 
the column to the immediate left. 

 
Our criteria of success for the edge length accuracy 

was a calculation of distortion, a measure of how close 
the edge lengths in the graph are to their ideal. The 
distortion we used is given by: 

 
Each graph drawing variation was applied to each 

graph with approximately 1000 iterations used. Before 
each application, the positions of the nodes were 
randomized before the variation was applied. The number 
of iterations was set so that the SE5EL1 variation finished 
on 4 spring embedding iterations, rather than the iteration 
that included both methods. Some modifications to values 
for the edge length and spring embedder methods were 
made to ensure reasonable results. The measures were 
then applied to the resultant layouts. This was repeated 10 
times. The average distortion of these experiments is 
shown in Figure 3. 
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where l(e) is the length edge e, w(e) is the weight of 

edge e, ul(e) is the desired unit length if edge e, i.e. the 
sum of edge length in the graph divided by the number of 
edges. This allows us to multiply ul(e) by the weight of an 
edge w(e) to give us the ideal weight for e. We divide by 
the total edge length squared to make the measure 
dimensionless, that is, the measure does not vary on the 
physical size of the graph, only on the relative differences 
of the edge lengths. The constant 1.0E6 has been factored 
in so that the numbers are of a magnitude that makes for 
easier comparisons. 

From Figure 3, it can be seen that EL variation is by 
far the most effective in reducing distortion. The SE1EL1 
variation is consistently the next most effective. Using the 
spring embedder every iteration and the edge length 
method every 5 iterations is more effective than using the 
spring embedder alone. The data points that do not bear 
out these conclusions are shown with a grey background,  



and are particularly prevalent in smaller graphs. Most of 
these points have very small differences Some of these 
figures are because the node coordinates have integer 
values, and so some rounding occurs. This is certainly 
true in the case of “metric” and “nonmetric”. The only 
significant case where the negative case does not involve 
the EL variation is in “thing”, where the SE1EL1 is 
surprisingly worse than the SE alone. Its not clear why 
this should be so, particularly as the other variants give 
much lower distortion than both SE and SE1EL1. In six 
cases the EL variation gives a slightly worse result than 
the SE1EL1 variation. One of these cases is due to 
rounding, however we conjecture that in some graphs, 
particularly small ones, applying the spring embedder 
allows the edges to settle slightly more effectively than 
using the edge length alone. 

 
Figure 4c 

Graph ‘clustered’ drawn with the SE1EL1 variation. 

 

It is difficult to accurately measure the aesthetics in 
the graph, so we justify the tuning of the graph from a 
comprehensibility perspective by giving some example 
layouts. In some cases the graphs displayed have been 
chosen from amongst the 10 alternatives to best illustrate 
the concepts discussed. 
 

 

Figure 4d 
Graph ‘clustered’ drawn with the EL variation. 

 
To illustrate the output from the drawing variations, 
figures 4a, 4b, 4c and 4d show example layouts of the 
four variations applied to the graph ‘clustered’. This 
graph is a good demonstration, by visual inspection, of 
the notion that as the edge lengths become closer to the 
edge weights, the comprehensibility of the graph reduces. 
Its clear that the layout in Figure 4a, produced by the 
spring embedder only, variation SE, is very easy to 
analyse, so that discovering paths between nodes, finding 
neighbouring nodes and other common graph 
investigations are relatively unproblematic, but the 
distortion is 179.27, which is poor compared to the other 
drawings of the same graph. The first compromise 
drawing method, shown in Figure 4b, is the SE5EL1 
variation, which emphasises the spring embedder. Here, 
an edge crossing and a certain amount of reduced 
evenness can be seen. However, the distortion is much 
better with a value of 17.50. Figure 4c is the compromise 
variation SE1EL1, emphasising the edge length method. 
Certainly compared to SE it has worse comprehensibility, 
and it has more edge crossings than SE5EL1, making 
manual investigation of the graph harder, but it has a 
better distortion than both, with a measure of 8.14. Figure 
4d is the edge length method only variation, EL. This is a 
rare example where the edge length only method has a 
worse distortion, at 8.50, than the SE5EL1 compromise 
method. This is a very small difference and, as stated 
above, may be due to some advantage in settling given by 
the spring embedder for some small graphs. 

Figure 4a 
Graph ‘clustered’ drawn with the SE variation. 

 

  
Figure 4b 

Graph ‘clustered’ drawn with the SE5EL1 variation. 



 

 

Figure 5a 
Graph ‘simple’ drawn with the SE variation. 

 

 

Figure 5d 
Graph ‘simple’ drawn with the EL variation. 

 
The example graph ‘simple’ given in Figures 5a to 5d 
shows a less pronounced difference between the SE and 
SE5EL1 variations. However, the improvement in 
distortion is significant, with the SE variation, shown in 
Figure 5a, having a value of 79.30 and the SE5EL1 
variation, shown in Figure 5b, having a value of 56.25. 
This case indicates that sometimes edge length accuracy 
can be improved with little negative effect on 
comprehensibility. The SE1EL1 variation, shown in 
Figure 5c, has somewhat reduced comprehensibility, but 
considerably improved distortion, at 17.78. Figure 5d 
shows the EL only variation, with poor comprehensibility, 
but minimal distortion of 0.13. 

Figure 5b 
Graph ‘simple’ drawn with the SE5EL1 variation. 

 
 

 

 
Figure 6a 

Graph ‘nonmetric’ drawn with the SE variation. 

 
Figure 6b 

Graph ‘nonmetric’ drawn with the EL variation. The 
SE5EL1 and SE1EL1 variations look very similar. 

 
Figures 6a and 6b show layouts of the very small 

graph ‘nonmetric’, which is a triangle failing the metric 
inequality, so that it cannot be exactly drawn on the plane 
with edge length proportional to edge weight. Figure 6a 
shows a comprehensible drawing, with poor distortion 
29821.14, whereas Figure 6b shows an example of the 

Figure 5c 
Graph ‘simple’ drawn with the SE1EL1 variation. 

 



Much possible further research results from this 
preliminary investigation. We have observed that in some 
cases applying the edge length method after the spring 
embedder, rather than directly onto a randomly laid out 
graph, often improved the comprehensibility of the final 
drawing. This is related to previous research [6], where 
we found that the spring embedder was made more 
efficient by a preprocessing step consisting of an earlier 
version of the edge length method. The connection 
between the two methods is clearly in need of more 
research. 

edge lengths as close as they can be to the ideal, giving a 
distortion of 20023.50, but the nodes lying in a row are 
confusing and so adversely affect comprehensibility. The 
three methods integrating the edge length heuristic 
produce approximately the same figures, with some minor 
variation due to rounding. 
 

 

Investigation is underway to evaluate the edge length 
heuristic as a metric embedding method, with no aesthetic 
consideration for applications such as clustering, against 
other common methods, in particular multidimensional 
scaling techniques and hierarchical decomposition. 

Figure 7a 
Graph ‘metric’ drawn with the SE variation. 

 In order to make the method more usable, 
implementation optimizations and speed up techniques 
are required. The software is currently implemented in a 
way that makes investigation easy, but this comes at a 
serious compromise to execution time. In addition, to 
make the system more user friendly, the system should 
provide an indication of suitable values for various 
constants used by both the edge length method and the 
spring embedder. These values could be derived from 
graph size, density and edge weights. 

 
Figure 7b 

Graph ‘metric’ drawn with the EL variation. 
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