
 
 
 

Movement as an Aid to Understanding Graphs 
 
 

John Bovey, Peter Rodgers, Florence Benoy 
University of Kent, UK 

 
J.D.Bovey@kent.ac.uk, P.J.Rodgers@kent.ac.uk, P.M.Benoy@kent.ac.uk 

 
 

Abstract 
This paper describes a graph visualization method 

that attempts to aid the understanding of graphs by 
adding continuous local movement to graph diagrams. 
The paper includes a discussion of some of the many 
different kinds of potential graph movement and then 
describes an empirical trial that was conducted to 
investigate whether one kind of movement helps with a 
particular graph comprehension task. Although the 
results of the trial are promising, the degree of benefit 
afforded by the movement varies between graphs and the 
paper includes a discussion about graph features which 
may account for this discrepancy. 

 

1: Introduction 

Graphs are widely used as a visualization technique 
for interconnected data. Application areas include 
network mapping, software engineering diagrams and 
social network investigation. However, the layout of 
nodes and edges on the screen is very important for 
understanding the data and in many cases automatic 
layout can produce untidy layout where node and edge 
occlusion appear. In this paper we describe a technique 
that seeks to make graph diagrams more understandable 
by introducing small movements of the nodes about their 
location on the screen. 

There are two major reasons why a moving graph 
diagram may be better than a still diagram. The first, and 
most obvious reason is that any sort of continuous motion 
should make it easier to resolve occluded detail. For 
example, given the node and edges in Figure 1, it is not 
clear whether there are two horizontal edges that meet the 
node or whether the node happens to lie on top of a single 
horizontal edge. If the node and edges were wobbling, 
even slightly, then it would be obvious whether the node 
and edges are joined since they would move together 
rather than independently. There are other kinds of 
occlusion that should be easier to resolve in a moving 

graph. For example, a pair of edges that lie on top of each 
other or nearly so will be separated at least some of the 
time if the diagram is moving. 

The second reason why a moving graph diagram may 
be clearer than a still one is that people are good at 
extracting information from the relative motion of things 
in the environment. This makes it seem possible that a 
moving graph should be easier to interpret than a still 
graph as long as the motion reflects the structure in some 
way. In other words, a user looking at the moving 
diagram may be able to get a clearer idea of the overall 
structure of the graph and relationships between its parts 
than could be obtained from a still diagram. 

 

 
Figure 1 

 
In order to investigate the usefulness of graph 

movement we developed an experimental software system 
that could be used to display graphs moving in different 
ways. This software was then used to run an empirical test 
with a number of undergraduate students. Our 
requirements for a simple controlled experiment means 
that these tests differ from how such movement might be 
used in a real world graph visualization system. In 
particular, any real application should allow the user full 
control of when the movement occurs, whereas the 
experiments simply presented the subjects with moving or 
still graphs. Our interpretation of the experimental results 
indicates the effectiveness of the system is very sensitive 
to the graph layout, and appears to be most effective when 
occlusion is present or the investigation of the graph has 
to cover a wide area. 



We have not seen any previous work using this sort 
of small movement to improve the understanding of two-
dimensional graphs. However, movement of various 
alternative forms has been applied to graph visualizations. 
A common technique is to animate the movement of 
nodes to illustrate the operation of graph algorithms 
primarily as an aid to teaching [1,3,5]. Another 
application of graph animation is designed to help 
maintain the user’s mental map of the graph when 
comparing different drawings of the same topological 
graph. Here the graph is smoothly transformed between 
layouts [2]. Previous work in adding motion to aid 
understanding of a graph’s structure includes [6], which 
describes experiments that involve rotating a three 
dimensional representation of a graph for comprehension. 

The remainder of this paper is structured as follows: 
Section 2 discusses the varieties of possible movement 
that may help understanding a graph; Section 3 describes 
an empirical trial intended to discover whether movement 
is genuinely useful; Section 4 has an analysis of the 
experimental results and Section 5 contains our 
conclusions and possible further work. 

2: Kinds of Graph Movement 

Having decided that there may be benefits from 
displaying a graph by moving it slightly, the next question 
is what kind of movement will work best. There are 
actually quite a lot of different ways that a graph can be 
made to move – the motion could be random or periodic, 
large or small, fast or slow, and it can be distributed 
through the diagram in many different ways. In this 
section we discuss some of the alternatives, though there 
must be plenty of other possibilities that we have not 
thought of. The techniques we discuss here are: Random 
Movement, Circular Movement, Inelastic Movement and 
Movement as Annotation. 

 
Random Movement: One simple and relatively easy way 
to add motion to a graph diagram is to let each node move 
in a random walk – this is easy to implement by 
repeatedly adding a random x or y increment to each node 
position and then simply redrawing the graph. We would 
probably want to restrict each node to stay close to its 
original position since, for movement to be truly useful as 
a graph display tool, it needs to work on graphs that have 
already been laid out using a static graph layout 
algorithm. 

A variant on random walk can be much smoother. 
Here the acceleration of a node is modified rather than 
velocity directly. In this case the system must ensure that 
the velocity does not get too great. In addition, there is no 
direct way to completely bound the movement of a node, 
as the direction is only indirectly set by altering the 
current acceleration. 

Circular Movement: Another possibility is to let each 
node move in small circles. Although we could let 
different nodes move in different sized circles at different 
speeds, a simple, and surprisingly rich, approach is to 
move each node in circles of the same size and period but 
at different phases. Two nodes that are 180 degrees out of 
phase will have large relative movement whereas nodes 
that have a small phase difference will move more nearly 
together. If we take this approach then we need some way 
to allocate phase angles to nodes – there are several 
different approaches: 
1. Spread the phase angles locally within the graph so 

that each node has as much movement as possible 
relative to its neighbours. 

2. Minimise local movement by giving similar phase 
angles to neighbouring nodes. The idea of this is to 
make the amount of relative motion of nodes increase 
with their distance apart. 

3. Build the allocation of phase angles into the layout 
algorithm. This approach would require a layout 
algorithm that allocates to each node, not just the x 
and y coordinates but also a phase angle between 0 
and 360 degrees. You could think of this as laying 
out the graph in a three dimensional cylindrical space 
consisting of the Cartesian product of two unit 
intervals and the unit circle. 
Of these alternatives, 1 should give the best chance of 

uncovering occlusion, particularly by nodes or edges that 
are close in the graph. By making local structure move 
together, 2 or 3 should have a better chance of allowing 
the movement to bring out the overall structure of the 
graph but it needs more investigation to determine 
whether this really works or not. 

 
Inelastic Movement: The motivation for this variant is 
that in both the random and the circular motions described 
above the nodes move independently and the edges are 
redrawn between the repositioned nodes, which is not the 
kind of motion that can be seen in any real world 
structure. If we are really trying to take advantage of an 
inherent human ability to understand the structure of 
things by seeing them in motion, then it might be worth 
looking at ways to make graphs move as if they were real 
life objects. One natural way to do this is to lay out the 
graph in three dimensions and then display a two 
dimensional projection of the moving, three-dimensional, 
layout [6]. An alternative approach that may work for 
sparse graphs is to lay out the graph in two dimensions 
and then attempt to move it in a way that maintains the 
lengths of the edges. This would give the effect of a 
collection of linked, inelastic rods being gently shaken. 
Modelling the graph’s edges as inelastic rods would not 
be any use for dense graphs since they would form rigid 
structures but it may be possible to get realistic looking 
motion by introducing some elasticity into the edges. 



Movement as Annotation: When graphs are used as 
models, the systems they are modelling generally have far 
more structure than simple nodes and edges. For example, 
the nodes may represent more than one kind of object and 
the edges more than one kind of link. Also, the objects 
represented may have numerical properties like size and 
strength. In a graph diagram this additional information is 
represented by using colour, differing node shapes, 
textual annotation and so on. It may also be possible to 
use movement to show some of this additional 
information. For example, if the nodes were of a number 
of distinct types then it would be possible to make nodes 
of the same type move in the same way. If the nodes 
represent objects of different sizes then the those that 
represent large objects could vibrate more slowly than 
those representing small objects. 

3: The Experimental Environment 

In this section we describe the software and test 
graphs that were developed to demonstrate the movement 
method we thought showed most promise. The software 
was designed to allow empirical experiments, so that the 
effectiveness of the technique could be explored. 

To test whether adding movement to simple graph 
diagrams makes them easier to understand, we needed a 
task or tasks for empirical subjects to complete. Such a 
task should be one that is easy to explain to a student who 
might not be familiar with graphs, that involves looking at 
the graph in detail and that can be done reasonably 
quickly. There are a few such tasks that have been used in 
the past in empirical graph-interpretation experiments [4] 
but the one that we decided to use is that of finding the 
shortest path between two given nodes. This is certainly 
easy to explain and is easy to test on an interactive graph 
display – the test subject can simply be asked to click on 
the nodes that form the path. The drawback is that, unless 
the graphs are carefully chosen, it may not be at all clear 
to the subject whether the path they have chosen is the 
shortest or not. In principle, this should not be a problem 
since the number of correct paths is as much a test result 
as the time taken, but it does make it hard to compare 
times if a very large proportion of selected paths are 
incorrect. Our solution to this was to choose graphs and 
end nodes so that the shortest paths are always four edges 
long and are unique. 

Our choice of graphs and paths was further 
constrained by the need to complete each student’s series 
of tests in a one hour test session. We initially did some 
informal trials to determine what size of graph and length 
of path seemed to work best and we eventually decided 
that 5 node paths in graphs with about 16 nodes and 24 
edges seemed the most appropriate. Using paths with 5 

nodes meant that the test subject had to find three internal 
nodes to complete the path. Paths that are longer than this 
take a lot more time to discover, and shorter paths are 
rather too easy to find using trial and error. We originally 
intended to generate graphs with random topologies but, 
again after some informal experiments, the best approach 
seemed to be to use the same graph (shown in Figure 2, 
with the path in thick lines) for all the tests but give it 
different random layouts. That is, each graph diagram was 
created by taking the graph in Figure 2 and allocating a 
random position to each node. Some of the resulting 
layouts can be seen in Figures 3 to 6. In practice, the fact 
that all of the test graphs were the same was well hidden 
by the random layouts and none of the test subjects 
realised. It is, though, a feature of this particular path in 
this graph that none of the path nodes lies on a triangle, 
whereas all the nodes in the graph that are not on the path 
do form a triangle with two other nodes in the graph. In 
order to make the tests more uniform, we explained this 
fact to the test subjects before they started, so the trials 
can also be viewed as a test of the relative difficulty of 
finding triangles in still and moving graphs. 

All the graphs, whether still or moving, were 
displayed in a 600 by 600 pixel display area with a dark 
background. The unselected nodes were drawn as red 9 by 
9 pixel squares and the edges as single pixel lines in 
green. The highlighted path endpoints were distinguished 
by being coloured white rather than red. The test subjects 
were required to select, by pointing and clicking, the three 
nodes that complete the path between the two highlighted 
nodes. Nodes selected in this way were shown in yellow 
rather than red and the edges between selected nodes were 
highlighted by being coloured white rather than green. 
Selected nodes that turned out to be wrong could be 
deselected just by clicking on them again. 

The goal of the trial was simply to attempt to 
determine whether movement is useful or not, so we had 
to make some decisions about the kind of movement to 
use. After some informal experiments we decided to use 
circular motion with a circumference of 20 pixels and a 
diameter of 8 pixels. The speed of movement was such 
that the nodes completed one revolution every 800 
milliseconds. This is a level of movement that is sufficient 
to resolve occlusion but is not so violent as to make the 
graph uncomfortable to view. The nodes were made to 
move relative to each other by giving them different 
phase angles. We used eight different phase angles that 
were allocated to nodes using a simple depth-first 
traversal algorithm that tried to give different phase 
angles to neighbouring nodes. 

 



 

 

 
 
 
 
 
 Figure 2   
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   Figure6: Graph 18 Figure 4: Graph 13       
 



In terms of organizing the trials we used 18 different 
graphs for the trials and every subject worked through a 
sequence that included each graph both moving and still. 
In addition to these sequences of 36 path-finding tasks 
that were timed and checked for accuracy, we also 
included 6 practice graphs that were added to the start of 
the sequences and were not included in the results of the 
trial. In order to minimise any effects due to fatigue, we 
divided the sequences into blocks of 6, each with 
alternating still and moving graphs, and provided rest 
pauses between the blocks. 

Since each sequence contains each graph twice, once 
moving and once still, we wanted to minimise any bias 
that might be caused by subjects remembering the graphs 
and completing the path more quickly the second time. In 
part we did this by using graph sequences in which the 
moving and still occurrences of each graph were well 
separated, but we also used matching pairs of sequences 
with the graphs in the same order but the moving/still 
attribute exchanged. This means that for each subject who 
saw a particular graph first moving then still, there was 
another subject who saw the same graph first still then 
moving. We also used sequences in which the blocks of 
graphs were permuted so that different subjects saw 
different graphs early and late in their sequences. 

4: Analysis of the Results 

Our trials were done using 18 2nd and 3rd year 
Computer Science Students from the University of Kent 
(it is a coincidence that the number of graphs is the same 
as the number of subjects). The subjects were 
remunerated for their time and, since accuracy was 
important, they were offered a gift token as incentive for 
the greatest accuracy score. 

Since each subject looked for the shortest path in 
each of the 18 graphs, both moving and still, that gives 
182 or 324 pairs of trials that can potentially be compared 
for both accuracy and speed. 

 
Accuracy irrespective of time: Of the 324 pairs, the 47 
pairs that were both incorrect were discarded as nothing 
can be deduced from them. Of the remaining 277 pairs, 
253 included a correct solution for a moving graph and 
233 a correct solution for a still graph, which gives a 
small lead of 20 for the moving graphs. However, if the 
data is displayed by graph, that is moving versus still, 
there is a clear gain for moving graphs over still ones as in 
13 out of the 18 graphs there were more correct solutions 
for the moving graphs, in only 2 graphs were there more 
correct solutions for still graphs and in just 3 graphs there 
were equal numbers of correct graphs for both moving 
and still. See Figure 7. 
 
 

When time is considered as well, again the 
performance with moving graphs is, on the whole, better. 
Just over half (10) of the graphs have better average times 
than those for the still graphs, but it is interesting to note 
that the substantial differences in time are predominantly 
evident in the case where performance for the moving 
graph is better than for the still. See Figure 8. 

If understanding of the graphs is gauged by 
considering, for each subject, the difference between the 
number of correct solutions over moving graphs and still 
graphs (moving minus still), 10 subjects performed better 
with the moving graphs, two performed better with the 
still graphs and for the remaining 6 there was no 
difference. See Figure 9. On the other hand if the average 
times are considered, for correct solutions, 12 of the 
subjects performed better with the moving graphs, see 
Figure 10. 

 
Accuracy and Time, Statistical Analysis: Since each 
subject is presented with each graph, both moving and 
still, we can consider the data as paired, with each subject 
being his own control. Of the 324 pairs, 209 had the 
correct solution for both the moving and the still graph. 
Since it is difficult to assess the cause of failure to 
identify the correct path, particularly if the time for the 
incorrect solution is less than that for the correct one, the 
statistical analysis was carried out over these 209 pairs. 
The outcome of the t-test for paired data indicates that 
there are no grounds for supposing that the moving graphs 
were easier to understand than the still graphs. The 
relatively large standard deviation for the difference 
between the average times for each graph is indicative of 
the presence of some large mean differences over average 
times which are predominantly in favour of some of the 
moving graphs, see Figure 8. 

An analysis of variance indicated a significant 
between graph effect that, coupled with the average time 
differences above, prompted a closer look at the graphs 
themselves. Close inspection of the times and correctness 
scores for individual graphs did not reveal any conclusive 
general evidence. This is not, perhaps, surprising given 
the small data sets for both graphs and subjects and the 
fact that the graph displays were generated randomly. 

 
Questionnaire: As an aid to finding the shortest path, 
subjects were advised that if a node was part of a triangle 
then it would not lie on the shortest path. Subsequently 
subjects were asked whether they thought the movement 
helped in identifying either the triangles or the shortest 
path, 8 and 9 subjects, respectively, of the 18 thought the 
movement was helpful. 
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Figure 7 Figure 10 

  
Our interpretation of the results: There are clearly 
indications that movement helps in solving the set task, 
but they are not conclusive. For some graphs we see a 
substantial improvement in subjects’ performance 
particularly in Graphs 13 and 14, see Figures 4 and 5. In 
Graph 13, there is a high incidence of node-edge 
occlusion, particularly around those nodes and edges 
contained within the shortest path, but this is not the case 
in Graph 14 so some other factor must come in to play. 
Performance over Graph 5 is slightly better when the 
graph is moving, but the poorest performance for time for 
moving graphs overall, is for Graphs 5 and 18, see 
Figures 3 and 6. However, Graph 18 has some occlusion 
within the shortest path area; but Graph 5 has no 
occlusion. Closer inspection of Graphs 5 and 18 reveals a 
common feature: if the shortest path is considered over an 
area, in both cases the area covered by the shortest path is 
small relative to that covered by the graph as a whole. 
Further, in Graph 14, which the subjects found less 
difficult when moving, the area covered by the shortest 
path is relatively large, almost half that of the graph as a 
whole. The table shown in Figure 11 summarises these 
observations, with the shaded rows indicating better 
performance over moving graphs, unshaded better over 
still graphs and asterisks the presence of the feature in the 
column heading. 
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The relative area of the shortest path may well be a 
crucial factor with regard to the ease of finding that 
shortest path. 

Finally, it is worth noting that if we consider 
individual subject performance the degree of subject 
benefit from movement also varies slightly. There are just 
two subjects who performed worse on average for 
accuracy and 6 subjects who performed worse for time 
when the graphs were moving, however, of those 6 the 
actual differences in average times were less than 2 
seconds. Hence, whilst most subjects saw an 
improvement in overall performance, there are indications 
that such movement may not always be helpful for all 
people. 

5: Concluding Remarks 

Adding movement to graph diagrams shows promise 
as a computationally inexpensive way to make the graph 
structure clearer and easier to understand. Although there 
are many different ways to make a graph move, we have 
conducted an empirical trial into the effect of one kind of 
movement on the performance of one task on a single 
graph laid out in different random ways. In this trial, the 
subjects’ performance on moving graphs was clearly 
better overall, although we cannot claim that the 
difference is statistically significant. However, we plan to 
do more trials with different kinds of graph layout and 
different kinds of movement. It does look likely that 
movement mainly helps with occlusion, and it would be 
interesting to quantify the level of occlusion in graph 
diagrams so that we can determine whether resolving 
occlusion is the only benefit. 

If graph movement is going to be useful in real-life 
graph display software then it will need to be used in 
conjunction with other tools for making graphs more 
understandable, such as graph layout algorithms and 
automatic graph rendering techniques. For example, if our 
trial graphs had been laid out neatly (as in Figure 2) then 
adding movement would not have been useful, but most 
real life graphs are much more complex than this and 
automatic graph layout algorithms still result in diagrams 
with occlusion. Also, our graphs are not typical in that the 
nodes are very small and they have no added detail such 
as node and edge names that make occlusion more likely. 

 
 
 
 
 
 
 
 
 
 

Another possible role for movement in graph displays 
could be in situations where the use of automatic layout 
algorithms is not practical because the graph is too large 
or because it is changing in real time. It is also clear that if 
this technique is to be applied in a real world situation 
then it will be necessary to allow the users control over 
when, where and how the movement occurs. At its 
simplest this is likely to be a ‘Move’ button on graph 
display software, which switches on and off the 
movement of graphs when desired. The software should 
also allow the configuration of the movement, to tune the 
particular movement method, movement speed and 
movement distance for the needs of a particular user. 
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