

Movement as an Aid to Understanding Graphs

John Bovey, Peter Rodgers, Florence Benoy
University of Kent, UK

J.D.Bovey@kent.ac.uk, P.J.Rodgers@kent.ac.uk, P.M.Benoy@kent.ac.uk

Abstract
This paper describes a graph visualization method

that attempts to aid the understanding of graphs by
adding continuous local movement to graph diagrams.
The paper includes a discussion of some of the many
different kinds of potential graph movement and then
describes an empirical trial that was conducted to
investigate whether one kind of movement helps with a
particular graph comprehension task. Although the
results of the trial are promising, the degree of benefit
afforded by the movement varies between graphs and the
paper includes a discussion about graph features which
may account for this discrepancy.

1: Introduction

Graphs are widely used as a visualization technique
for interconnected data. Application areas include
network mapping, software engineering diagrams and
social network investigation. However, the layout of
nodes and edges on the screen is very important for
understanding the data and in many cases automatic
layout can produce untidy layout where node and edge
occlusion appear. In this paper we describe a technique
that seeks to make graph diagrams more understandable
by introducing small movements of the nodes about their
location on the screen.

There are two major reasons why a moving graph
diagram may be better than a still diagram. The first, and
most obvious reason is that any sort of continuous motion
should make it easier to resolve occluded detail. For
example, given the node and edges in Figure 1, it is not
clear whether there are two horizontal edges that meet the
node or whether the node happens to lie on top of a single
horizontal edge. If the node and edges were wobbling,
even slightly, then it would be obvious whether the node
and edges are joined since they would move together
rather than independently. There are other kinds of
occlusion that should be easier to resolve in a moving

graph. For example, a pair of edges that lie on top of each
other or nearly so will be separated at least some of the
time if the diagram is moving.

The second reason why a moving graph diagram may
be clearer than a still one is that people are good at
extracting information from the relative motion of things
in the environment. This makes it seem possible that a
moving graph should be easier to interpret than a still
graph as long as the motion reflects the structure in some
way. In other words, a user looking at the moving
diagram may be able to get a clearer idea of the overall
structure of the graph and relationships between its parts
than could be obtained from a still diagram.

Figure 1

In order to investigate the usefulness of graph

movement we developed an experimental software system
that could be used to display graphs moving in different
ways. This software was then used to run an empirical test
with a number of undergraduate students. Our
requirements for a simple controlled experiment means
that these tests differ from how such movement might be
used in a real world graph visualization system. In
particular, any real application should allow the user full
control of when the movement occurs, whereas the
experiments simply presented the subjects with moving or
still graphs. Our interpretation of the experimental results
indicates the effectiveness of the system is very sensitive
to the graph layout, and appears to be most effective when
occlusion is present or the investigation of the graph has
to cover a wide area.

We have not seen any previous work using this sort
of small movement to improve the understanding of two-
dimensional graphs. However, movement of various
alternative forms has been applied to graph visualizations.
A common technique is to animate the movement of
nodes to illustrate the operation of graph algorithms
primarily as an aid to teaching [1,3,5]. Another
application of graph animation is designed to help
maintain the user’s mental map of the graph when
comparing different drawings of the same topological
graph. Here the graph is smoothly transformed between
layouts [2]. Previous work in adding motion to aid
understanding of a graph’s structure includes [6], which
describes experiments that involve rotating a three
dimensional representation of a graph for comprehension.

The remainder of this paper is structured as follows:
Section 2 discusses the varieties of possible movement
that may help understanding a graph; Section 3 describes
an empirical trial intended to discover whether movement
is genuinely useful; Section 4 has an analysis of the
experimental results and Section 5 contains our
conclusions and possible further work.

2: Kinds of Graph Movement

Having decided that there may be benefits from
displaying a graph by moving it slightly, the next question
is what kind of movement will work best. There are
actually quite a lot of different ways that a graph can be
made to move – the motion could be random or periodic,
large or small, fast or slow, and it can be distributed
through the diagram in many different ways. In this
section we discuss some of the alternatives, though there
must be plenty of other possibilities that we have not
thought of. The techniques we discuss here are: Random
Movement, Circular Movement, Inelastic Movement and
Movement as Annotation.

Random Movement: One simple and relatively easy way
to add motion to a graph diagram is to let each node move
in a random walk – this is easy to implement by
repeatedly adding a random x or y increment to each node
position and then simply redrawing the graph. We would
probably want to restrict each node to stay close to its
original position since, for movement to be truly useful as
a graph display tool, it needs to work on graphs that have
already been laid out using a static graph layout
algorithm.

A variant on random walk can be much smoother.
Here the acceleration of a node is modified rather than
velocity directly. In this case the system must ensure that
the velocity does not get too great. In addition, there is no
direct way to completely bound the movement of a node,
as the direction is only indirectly set by altering the
current acceleration.

Circular Movement: Another possibility is to let each
node move in small circles. Although we could let
different nodes move in different sized circles at different
speeds, a simple, and surprisingly rich, approach is to
move each node in circles of the same size and period but
at different phases. Two nodes that are 180 degrees out of
phase will have large relative movement whereas nodes
that have a small phase difference will move more nearly
together. If we take this approach then we need some way
to allocate phase angles to nodes – there are several
different approaches:
1. Spread the phase angles locally within the graph so

that each node has as much movement as possible
relative to its neighbours.

2. Minimise local movement by giving similar phase
angles to neighbouring nodes. The idea of this is to
make the amount of relative motion of nodes increase
with their distance apart.

3. Build the allocation of phase angles into the layout
algorithm. This approach would require a layout
algorithm that allocates to each node, not just the x
and y coordinates but also a phase angle between 0
and 360 degrees. You could think of this as laying
out the graph in a three dimensional cylindrical space
consisting of the Cartesian product of two unit
intervals and the unit circle.
Of these alternatives, 1 should give the best chance of

uncovering occlusion, particularly by nodes or edges that
are close in the graph. By making local structure move
together, 2 or 3 should have a better chance of allowing
the movement to bring out the overall structure of the
graph but it needs more investigation to determine
whether this really works or not.

Inelastic Movement: The motivation for this variant is
that in both the random and the circular motions described
above the nodes move independently and the edges are
redrawn between the repositioned nodes, which is not the
kind of motion that can be seen in any real world
structure. If we are really trying to take advantage of an
inherent human ability to understand the structure of
things by seeing them in motion, then it might be worth
looking at ways to make graphs move as if they were real
life objects. One natural way to do this is to lay out the
graph in three dimensions and then display a two
dimensional projection of the moving, three-dimensional,
layout [6]. An alternative approach that may work for
sparse graphs is to lay out the graph in two dimensions
and then attempt to move it in a way that maintains the
lengths of the edges. This would give the effect of a
collection of linked, inelastic rods being gently shaken.
Modelling the graph’s edges as inelastic rods would not
be any use for dense graphs since they would form rigid
structures but it may be possible to get realistic looking
motion by introducing some elasticity into the edges.

Movement as Annotation: When graphs are used as
models, the systems they are modelling generally have far
more structure than simple nodes and edges. For example,
the nodes may represent more than one kind of object and
the edges more than one kind of link. Also, the objects
represented may have numerical properties like size and
strength. In a graph diagram this additional information is
represented by using colour, differing node shapes,
textual annotation and so on. It may also be possible to
use movement to show some of this additional
information. For example, if the nodes were of a number
of distinct types then it would be possible to make nodes
of the same type move in the same way. If the nodes
represent objects of different sizes then the those that
represent large objects could vibrate more slowly than
those representing small objects.

3: The Experimental Environment

In this section we describe the software and test
graphs that were developed to demonstrate the movement
method we thought showed most promise. The software
was designed to allow empirical experiments, so that the
effectiveness of the technique could be explored.

To test whether adding movement to simple graph
diagrams makes them easier to understand, we needed a
task or tasks for empirical subjects to complete. Such a
task should be one that is easy to explain to a student who
might not be familiar with graphs, that involves looking at
the graph in detail and that can be done reasonably
quickly. There are a few such tasks that have been used in
the past in empirical graph-interpretation experiments [4]
but the one that we decided to use is that of finding the
shortest path between two given nodes. This is certainly
easy to explain and is easy to test on an interactive graph
display – the test subject can simply be asked to click on
the nodes that form the path. The drawback is that, unless
the graphs are carefully chosen, it may not be at all clear
to the subject whether the path they have chosen is the
shortest or not. In principle, this should not be a problem
since the number of correct paths is as much a test result
as the time taken, but it does make it hard to compare
times if a very large proportion of selected paths are
incorrect. Our solution to this was to choose graphs and
end nodes so that the shortest paths are always four edges
long and are unique.

Our choice of graphs and paths was further
constrained by the need to complete each student’s series
of tests in a one hour test session. We initially did some
informal trials to determine what size of graph and length
of path seemed to work best and we eventually decided
that 5 node paths in graphs with about 16 nodes and 24
edges seemed the most appropriate. Using paths with 5

nodes meant that the test subject had to find three internal
nodes to complete the path. Paths that are longer than this
take a lot more time to discover, and shorter paths are
rather too easy to find using trial and error. We originally
intended to generate graphs with random topologies but,
again after some informal experiments, the best approach
seemed to be to use the same graph (shown in Figure 2,
with the path in thick lines) for all the tests but give it
different random layouts. That is, each graph diagram was
created by taking the graph in Figure 2 and allocating a
random position to each node. Some of the resulting
layouts can be seen in Figures 3 to 6. In practice, the fact
that all of the test graphs were the same was well hidden
by the random layouts and none of the test subjects
realised. It is, though, a feature of this particular path in
this graph that none of the path nodes lies on a triangle,
whereas all the nodes in the graph that are not on the path
do form a triangle with two other nodes in the graph. In
order to make the tests more uniform, we explained this
fact to the test subjects before they started, so the trials
can also be viewed as a test of the relative difficulty of
finding triangles in still and moving graphs.

All the graphs, whether still or moving, were
displayed in a 600 by 600 pixel display area with a dark
background. The unselected nodes were drawn as red 9 by
9 pixel squares and the edges as single pixel lines in
green. The highlighted path endpoints were distinguished
by being coloured white rather than red. The test subjects
were required to select, by pointing and clicking, the three
nodes that complete the path between the two highlighted
nodes. Nodes selected in this way were shown in yellow
rather than red and the edges between selected nodes were
highlighted by being coloured white rather than green.
Selected nodes that turned out to be wrong could be
deselected just by clicking on them again.

The goal of the trial was simply to attempt to
determine whether movement is useful or not, so we had
to make some decisions about the kind of movement to
use. After some informal experiments we decided to use
circular motion with a circumference of 20 pixels and a
diameter of 8 pixels. The speed of movement was such
that the nodes completed one revolution every 800
milliseconds. This is a level of movement that is sufficient
to resolve occlusion but is not so violent as to make the
graph uncomfortable to view. The nodes were made to
move relative to each other by giving them different
phase angles. We used eight different phase angles that
were allocated to nodes using a simple depth-first
traversal algorithm that tried to give different phase
angles to neighbouring nodes.

 Figure 2

 Figure 5: Graph 14 Figure 3: Graph 5

 Figure6: Graph 18 Figure 4: Graph 13

In terms of organizing the trials we used 18 different
graphs for the trials and every subject worked through a
sequence that included each graph both moving and still.
In addition to these sequences of 36 path-finding tasks
that were timed and checked for accuracy, we also
included 6 practice graphs that were added to the start of
the sequences and were not included in the results of the
trial. In order to minimise any effects due to fatigue, we
divided the sequences into blocks of 6, each with
alternating still and moving graphs, and provided rest
pauses between the blocks.

Since each sequence contains each graph twice, once
moving and once still, we wanted to minimise any bias
that might be caused by subjects remembering the graphs
and completing the path more quickly the second time. In
part we did this by using graph sequences in which the
moving and still occurrences of each graph were well
separated, but we also used matching pairs of sequences
with the graphs in the same order but the moving/still
attribute exchanged. This means that for each subject who
saw a particular graph first moving then still, there was
another subject who saw the same graph first still then
moving. We also used sequences in which the blocks of
graphs were permuted so that different subjects saw
different graphs early and late in their sequences.

4: Analysis of the Results

Our trials were done using 18 2nd and 3rd year
Computer Science Students from the University of Kent
(it is a coincidence that the number of graphs is the same
as the number of subjects). The subjects were
remunerated for their time and, since accuracy was
important, they were offered a gift token as incentive for
the greatest accuracy score.

Since each subject looked for the shortest path in
each of the 18 graphs, both moving and still, that gives
182 or 324 pairs of trials that can potentially be compared
for both accuracy and speed.

Accuracy irrespective of time: Of the 324 pairs, the 47
pairs that were both incorrect were discarded as nothing
can be deduced from them. Of the remaining 277 pairs,
253 included a correct solution for a moving graph and
233 a correct solution for a still graph, which gives a
small lead of 20 for the moving graphs. However, if the
data is displayed by graph, that is moving versus still,
there is a clear gain for moving graphs over still ones as in
13 out of the 18 graphs there were more correct solutions
for the moving graphs, in only 2 graphs were there more
correct solutions for still graphs and in just 3 graphs there
were equal numbers of correct graphs for both moving
and still. See Figure 7.

When time is considered as well, again the
performance with moving graphs is, on the whole, better.
Just over half (10) of the graphs have better average times
than those for the still graphs, but it is interesting to note
that the substantial differences in time are predominantly
evident in the case where performance for the moving
graph is better than for the still. See Figure 8.

If understanding of the graphs is gauged by
considering, for each subject, the difference between the
number of correct solutions over moving graphs and still
graphs (moving minus still), 10 subjects performed better
with the moving graphs, two performed better with the
still graphs and for the remaining 6 there was no
difference. See Figure 9. On the other hand if the average
times are considered, for correct solutions, 12 of the
subjects performed better with the moving graphs, see
Figure 10.

Accuracy and Time, Statistical Analysis: Since each
subject is presented with each graph, both moving and
still, we can consider the data as paired, with each subject
being his own control. Of the 324 pairs, 209 had the
correct solution for both the moving and the still graph.
Since it is difficult to assess the cause of failure to
identify the correct path, particularly if the time for the
incorrect solution is less than that for the correct one, the
statistical analysis was carried out over these 209 pairs.
The outcome of the t-test for paired data indicates that
there are no grounds for supposing that the moving graphs
were easier to understand than the still graphs. The
relatively large standard deviation for the difference
between the average times for each graph is indicative of
the presence of some large mean differences over average
times which are predominantly in favour of some of the
moving graphs, see Figure 8.

An analysis of variance indicated a significant
between graph effect that, coupled with the average time
differences above, prompted a closer look at the graphs
themselves. Close inspection of the times and correctness
scores for individual graphs did not reveal any conclusive
general evidence. This is not, perhaps, surprising given
the small data sets for both graphs and subjects and the
fact that the graph displays were generated randomly.

Questionnaire: As an aid to finding the shortest path,
subjects were advised that if a node was part of a triangle
then it would not lie on the shortest path. Subsequently
subjects were asked whether they thought the movement
helped in identifying either the triangles or the shortest
path, 8 and 9 subjects, respectively, of the 18 thought the
movement was helpful.

Difference Correct Solutions
by Graph

Moving Correct - Still Correct

-5

-4

-3

-2

-1

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Graph ID

D
iff

er
en

ce

Difference in Average Times
by Subject

 Still Average Time - Moving Average Time

-30

-20

-10

0

10

20

30

40

50

A B C D E F G H I J K L M N O P Q R

Subject ID

Se
co

nd
s

Figure 7 Figure 10

Our interpretation of the results: There are clearly
indications that movement helps in solving the set task,
but they are not conclusive. For some graphs we see a
substantial improvement in subjects’ performance
particularly in Graphs 13 and 14, see Figures 4 and 5. In
Graph 13, there is a high incidence of node-edge
occlusion, particularly around those nodes and edges
contained within the shortest path, but this is not the case
in Graph 14 so some other factor must come in to play.
Performance over Graph 5 is slightly better when the
graph is moving, but the poorest performance for time for
moving graphs overall, is for Graphs 5 and 18, see
Figures 3 and 6. However, Graph 18 has some occlusion
within the shortest path area; but Graph 5 has no
occlusion. Closer inspection of Graphs 5 and 18 reveals a
common feature: if the shortest path is considered over an
area, in both cases the area covered by the shortest path is
small relative to that covered by the graph as a whole.
Further, in Graph 14, which the subjects found less
difficult when moving, the area covered by the shortest
path is relatively large, almost half that of the graph as a
whole. The table shown in Figure 11 summarises these
observations, with the shaded rows indicating better
performance over moving graphs, unshaded better over
still graphs and asterisks the presence of the feature in the
column heading.

Difference Average Times
by Graph

Average Still Time - Average Moving Time

-40

-20

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Graph ID

Se
co

nd
s

Figure 8

Difference Correct Solutions
by Subject

Moving Correct - Still Correct

-3

-2

-1

0

1

2

3

4

5

6

A B C D E F G H I J K L M N O P Q R

Subject ID

D
iff

er
en

ce

graph high

node/edge
occlusion

node/edge
occlusion
on path

small
area

large
area

13 * *
14 * *
5 *
18 * *

Figure 9 Figure 11

The relative area of the shortest path may well be a
crucial factor with regard to the ease of finding that
shortest path.

Finally, it is worth noting that if we consider
individual subject performance the degree of subject
benefit from movement also varies slightly. There are just
two subjects who performed worse on average for
accuracy and 6 subjects who performed worse for time
when the graphs were moving, however, of those 6 the
actual differences in average times were less than 2
seconds. Hence, whilst most subjects saw an
improvement in overall performance, there are indications
that such movement may not always be helpful for all
people.

5: Concluding Remarks

Adding movement to graph diagrams shows promise
as a computationally inexpensive way to make the graph
structure clearer and easier to understand. Although there
are many different ways to make a graph move, we have
conducted an empirical trial into the effect of one kind of
movement on the performance of one task on a single
graph laid out in different random ways. In this trial, the
subjects’ performance on moving graphs was clearly
better overall, although we cannot claim that the
difference is statistically significant. However, we plan to
do more trials with different kinds of graph layout and
different kinds of movement. It does look likely that
movement mainly helps with occlusion, and it would be
interesting to quantify the level of occlusion in graph
diagrams so that we can determine whether resolving
occlusion is the only benefit.

If graph movement is going to be useful in real-life
graph display software then it will need to be used in
conjunction with other tools for making graphs more
understandable, such as graph layout algorithms and
automatic graph rendering techniques. For example, if our
trial graphs had been laid out neatly (as in Figure 2) then
adding movement would not have been useful, but most
real life graphs are much more complex than this and
automatic graph layout algorithms still result in diagrams
with occlusion. Also, our graphs are not typical in that the
nodes are very small and they have no added detail such
as node and edge names that make occlusion more likely.

Another possible role for movement in graph displays
could be in situations where the use of automatic layout
algorithms is not practical because the graph is too large
or because it is changing in real time. It is also clear that if
this technique is to be applied in a real world situation
then it will be necessary to allow the users control over
when, where and how the movement occurs. At its
simplest this is likely to be a ‘Move’ button on graph
display software, which switches on and off the
movement of graphs when desired. The software should
also allow the configuration of the movement, to tune the
particular movement method, movement speed and
movement distance for the needs of a particular user.

References

1. S. Feiner, D. Salesin and T. Banchoff. Dial: A
Diagrammatic Animation Language. IEEE Computer
Graphics and Applications 2,9 pp. 43-54. 1982.

2. C. Friedrich and P. Eades. Graph Drawing in Motion. Vol.
6, no. 3, pp. 353-370. 2002.

3. F. Höfting, E. Wanke, A. Balmoŝan and C. Bergmann. 1st
Grade - A System for Implementation, Testing and
Animation of Graph Algorithms. LNCS 665, 706-7. 1993.

4. H.C. Purchase, R.F. Cohen, and M. James. Validating
Graph Drawing Aesthetics. GD95, LNCS 1027, 435-446.
1995.

5. P. J. Rodgers and N. Vidal. Graph Algorithm Animation
with Grrr. In Agtive99: Applications of Graph
Transformations with Industrial Relevance, LNCS 1779,
pages 379-394. 2000.

6. C. Ware, G. Frank. Evaluating Stereo and Motion Cues for
Visualizing Information Nets in Three Dimensions. ACM
Transactions on Graphics Vol.15, no. 2, pp. 121-140. 1996

	1: Introduction
	2: Kinds of Graph Movement
	3: The Experimental Environment
	4: Analysis of the Results
	5: Concluding Remarks
	References

