
A Refinement Strategy for the Compilation of
Classes, Inheritance, and Dynamic Binding

Adolfo Duran1, Ana Cavalcanti1 and Augusto Sampaio2

1 Computing Laboratory / University of Kent
Canterbury CT2 7NF United Kingdom
{aad2,A.L.C.Cavalcanti}@ukc.ac.uk

2 Centro de Informática / Universidade Federal de Pernambuco
Po Box 7851 50740-540 Recife PE Brazil

acas@cin.ufpe.br

Abstract. This paper presents a refinement strategy for the compila-
tion of a subset of Java that includes classes, inheritance, dynamic bind-
ing, visibility control, and recursion. We tackle the problem of compiler
correctness by reducing the task of compilation to that of program refine-
ment. More specifically, refinement laws are used as compilation rules to
reduce the source program to a normal form that models an interpreter
running the target code. The compilation process is formalized within
a single and uniform semantic framework, where translations or com-
parisons between semantics are avoided. Each compilation rule can be
proved correct with respect to the algebraic laws of the language.

1 Introduction

The concern with correctness of computer programs has increased due to their
use in applications where failure could result in unacceptable losses. Correct
compilers address the translation of source programs into a target language,
with a guarantee that the semantics is preserved. Several approaches have been
suggested; the majority focus on procedural languages [12, 14, 17].

Even though object-oriented programming has become very popular in recent
years, most applications are developed using informal methods. Approaches to
compiler correctness covering object-oriented features are rare in the literature.
Recently, there have been works based on verification, focused on the translation
between Java programs and the Java Virtual Machine (JVM) [3, 16].

Here, we describe an algebraic approach to construct a provably correct
compiler for an object-oriented language called ROOL (for Refinement Object-
oriented Language), which is based on a subset of sequential Java. This language
includes classes, inheritance, dynamic binding, recursion, type casts and tests,
and class-based visibility. It also includes specification constructors like those
of Morgan’s refinement calculus [13]. Our language was devised as a means to
study refinement of object-oriented programs in general, not only compilation.
Its weakest precondition and its algebraic semantics have been studied in [4, 2].
In [5], it is used to formalise refactoring as a refinement activity.

Our approach to compilation is inspired on that first described in [10], and
further developed for imperative programs in [15]. Its main advantage is the
characterisation of the compilation process within a uniform framework, where
translations are avoided. Compilation is identified with the reduction of a source
program, written in an executable subset of the language, to a normal form.

Our normal form is an interpreter-like program which emulates the behavior
of the target machine. From this interpreter we capture the sequence of generated
instructions. We define a ROOL Virtual Machine (RVM) as our target. It is based
on the Java Virtual Machine (JVM)[11].

The purpose of this paper is to provide a description of the compilation
process, and an example. We first presented our approach in [7]; there, however,
we do not consider classes, inheritance, recursive method calls, and dynamic
binding. In this paper, we consider the compilation of all these constructs; the
rules that justify in detail all our reduction steps can be found in [8]. We also
present an improved normal form, which provides the same functionality as that
in [7], but is more amenable to proof.

The remainder of this paper is structured as follows. In Section 2 we de-
scribe ROOL and introduce our case study. In Section 3, we describe the target
machine and our normal form. In Section 4, we describe and illustrate the com-
pilation phases and the transformations they impose on our example. Finally, in
Section 5, we outline our conclusions and discuss related and future work.

2 ROOL

A program in ROOL consists of a sequence cds of Java-like class declarations
followed by a main command c, which may contain objects of classes declared
in cds. A class declaration has the following form.

class N1 extends N2

{pri x1 : T1; }∗{prot x2 : T2; }∗{pub x3 : T3; }∗ //attributes

{meth m
∧
= (pds • c) end}∗ //methods

{new
∧
= (pds • c) end}∗ //Initialiser

end

First of all, the class name N1 is introduced. The clause extends determines
the immediate superclass of N1; if it is omitted, the built-in empty class object
is regarded as the superclass. A class can be recursive in that attributes and
method parameters of a class N , can have type N itself. Attributes are declared
with visibility modifiers similar to those of Java: pri, prot, and pub are used
for private, protected, and public attributes.

The clauses meth declare methods, which are regarded as public. Methods
are seen as parametrised commands in the style of Back [1]; the declaration pds
of the parameters of a method is separated from its body c by the symbol ‘•’. The
declaration of a parameter x of type T can take the form val x : T or res x : T ,
corresponding to the traditional conventions of parameter passing known as call-
by-value and call-by-result. The new clause declares initialisers: methods that
are called after creating an object of the class.

In Figure 1, we give an example of an executable program in ROOL that
will be used to illustrate our compilation strategy. It simulates a mechanism to
keep track of a robot’s path. The robot starts in the position (0, 0). Every time
it moves, a step of length l is taken towards north, south, east , or west . The
outcome of this program is the total length of the route described by the robot.

class Step
pri dir , len : int;

meth setDirection
∧
= (val d : Int ; • self .dir := d) end

meth setLength
∧
= (val l : Int ; • self .len := l) end

meth getLength
∧
= (res l : Int ; • l := self .len) end

end
class Path extends Step

pri previous : Path;

meth addStep
∧
= (val d , l : Int •

self .previous := self ; self .setDirection(d); self .setLength(l);
) end

meth getLength
∧
= (res l : Int •

var aux : Int •
if (self .previous <> null) → self .previous.getLength(aux)

[] (self .previous = null) → aux := 0
fi;
super.getLength(l); l := l + aux ;

end
) end

new
∧
= (val d , l : Int •

self .setDirection(d); self .setLength(l); self .previous := null
) end

end
• var p : Path •

p := new Path(north, l0); p.aadStep(north, l1); p.aadStep(east , l2);
p.aadStep(south, l3); p.aadStep(west , l4); p.getLength(out);

end

Fig. 1. ROOL program for keeping tracking of a robot’s path

Two classes are declared in our example, Step and Path. The first one has
two integer attributes: dir and len, corresponding to the direction and length of
a step. The values of these attributes can be set using the methods setDirection
and setLength, whereas the length of a step can be retrieved using the method
getLength.

The class Path extends Step, introducing the attribute previous to hold the
preceding steps that outline the robot’s path; Path is a recursive class. The
method addStep introduces a step in the path; it first assigns the current path
(self) to previous, and then invokes the two methods setDirection and setLength
to record the current step. The length of a path is calculated by the method
getLength, a recursive redefinition of the method with same name declared in

Step. Each recursive invocation of getLength visits a step in the path; it traverses
the list of steps accumulating the length. The sequence of nested invocations ends
when the first step is reached: the value of previous is null. To get the length of
the current step, we use a method call super.getLength to guarantee that the
method declared in Step, which is Path’s superclass, is invoked.

A method call le.m is as a parametrised command; m refers to the method
associated with the object that is the current value of the expression le. In addi-
tion to method calls, the main command, the body of methods, and initialisers
are defined using imperative constructs similar to those of Morgan’s refinement
calculus [13]. They are described in the following grammar.

c ∈ Com ::= le := e | x : [pre, post] assignment, specification
| c1; c2 sequential composition
| pc(e) parametrised command application
| if []i • bi → ci fi alternation
| rec X • c end | X recursion, recursive call
| var x : T • c end local variable block
| avar x : T • c end angelic variable block

Left-expressions le are those that can appear as target of assignments and
method calls, and as result and value-result arguments. An assignment has the
form le := e, where e is an arbitrary expression; the semantics is of copy rather
than reference. The specification statement x : [pre, post] describes a program
that, when executed in a state that satisfies the precondition pre, terminates in
a state that satisfies the postcondition post , modifying only variables in x .

A parametrised command can have the form val x : T • c or res x : T • c.
The alternation is composed by a collection of guarded command bi → ci , as
in Dijkstra’s language [6]. The block rec X • c end introduces a recursive
command named X with body c; occurrences of X in c are recursive calls.
The difference between the two kinds of variable blocks is the way in which the
variables are initialised; in a var block, the initial value is arbitrary, whereas in
a avar block, it is angelically chosen. The variables introduced in a avar block
are angelic variables, also known as logical constants. ROOL does not include a
while statement, but it can be defined in the standard way using recursion.

The following grammar describes the ROOL expressions, which are mainly
those normally found in an object-oriented language.

e ∈ Exp ::= self | super | null
| new N object creation
| x | f (e) variable, built-in application
| e is L | (N) type test and cast
| e.x | (e; x : e) attribute selection and update

The reference self corresponds to this of Java. The expression new N creates

an object of class N . A type test allows to check the dynamic type of an object,
like the instanceof in Java. An update expression (e1; x : e2) denotes a fresh
object copied from e1, but with attribute x mapped to a copy of e2.

3 Target Machine

In our approach to compilation, the behavior of the target machine is given by
an interpreter written in ROOL itself. Each executable command is translated
to a sequence of bytecode instructions encoded as ROOL commands. The ROOL
interpreter models a cyclic mechanism which executes one instruction at a time.

The interpreter represents the target machine components using the variables
PC (program counter), S (the operand stack), F (the frame stack), M (store
for variables), Cls (symbol table for the classes declared in the source program),
and CP (constant pool). The execution of an instruction changes these compo-
nents, updating the machine state. The PC register contains the address of the
bytecode instruction currently being executed. Because the virtual machine has
no registers for storing temporary values, everything must be pushed onto the
operand stack S before it can be used in a calculation. The frame stack F is
composed by objects of a class FrameInfo that hold the state of execution of a
method. When a method is invoked, a new frame is placed on the top of the
frame stack; when the method completes, the frame is discarded.

The observable data space of our interpreter is a store for variables M : the
concrete counterpart of the variables of the source program. It is a map from
the address of the variables to their values; the model is a sequence of objects.
Each method invocation frame possesses a store for variables, which records the
values of the variables visible during the invocation.

The component Cls is a symbol table holding the essential information about
the class declarations in the source program; it is represented by a sequence of
objects of the class ClassInfo. Each of them has the following attributes: name,
which records the class name; super, the superclass name; subcls, the sequence of
immediate subclasses names; mtds, the sequence of methods (objects of a class of
MethodInfo) declared in the class; and attrib, the sequence of attributes (objects
of a class of AttribInfo) declared in the class. An object of MethodInfo holds the
following attributes: name, which records the method name; and descriptor, the
list of the type and mechanism used to pass each of the parameters. Attributes
are recorded using objects of the class AttribInfo; their attributes are also name
and descriptor; the latter contains the type and visibility of the attribute.

The constant pool is a heterogeneous list of references to classes, attributes,
methods, and constants; these references are entries obtained through an index.
Entries are objects of four different classes. A class entry is an object of a class
CpEntryClass, which contains only a class name; from that class we can obtain
the corresponding object of ClassInfo in Cls. An attribute entry contains an
object of CpEntryAttrib, which holds an attribute name and the class where the
attribute is defined. A method entry holds an object of CpEntryMtd containing
the method name and the name of the class where the method is defined. Finally,

an entry containing an integer constant is an object of a class DataInfoInt ;
integer values are encapsulated in objects.

3.1 Normal Form

Our normal form is an interpreter-like program modelling a cyclic mechanism
that executes one instruction at a time. Every cycle fetches the next instruction
to be executed and simulates its effect on the internal data structures of the in-
terpreter. The normal form consists of a sequence of class declarations (cdsRVM)
followed by a main command named I , as shown in Figure 2. The class declara-
tions define the classes mentioned in the description of the RVM components.
The main command describes the behavior of our target machine executing a
compiled program: an iterated execution of a sequence of bytecodes represented
by the set of guarded commands GCS .

The main command is a var block declaration that introduces three local
variables, PC , S , and F : the program counter, the operand stack, and the frame
stack. The first two commands in the variable block are assignments to create a
new operand stack and a new frame stack.

cdsRVM • var PC ,S ,F : Int ,Stack ,FrameStack •
S := new Stack ; F := new FrameSTack ;
PC := s;
while PC ≥ s ∧ PC < f → if GCS fi end

end

Fig. 2. The ROOL Interpreter (cdsRVM • I)

The variable PC is used for scheduling the selection and sequencing of in-
structions. The abbreviation GCS depicts the stored program as a set of guarded
commands of the form (PC = k) → q , where q is a machine instruction that
is executed when PC is k . The initial value of PC is the address s of the first in-
struction to be executed; the final address is f . The while statement is executed
until PC reaches a value beyond the interval determined by s and f . The body
of the while tests the PC value and selects the instruction to be executed. All
instructions modify PC . The set of guarded commands is an abstract represen-
tation of the target code. The design of a compiler in our approach is actually
an abstract design of a code generator.

For convenience, we define some abbreviations.

Definition 1 (Abbreviations for the interpreter)

Init
def
= S := new Stack ; F := new FrameStack ;

v : [s,GCS , f]
def
= PC := s;

while PC ≥ s ∧ PC < f → if GCS fi end
where v is the list PC , S, F .

Together, Init and v : [s,GCS , f] compose the body of variable block in the
main command.

3.2 Machine Instructions

In this section, we give some examples of how the instructions of our virtual
machine are defined. We assume that n stands for an address in M , and k for
an address in the sequence of bytecodes.

Definition 2 (Instructions definition)

load(n)
def
= S := 〈M [n]〉a S ; PC := PC + 2

bop
def
= S := 〈head(tail(S))bop head(S)〉a tail(tail(S)); PC := PC + 1

goto(k)
def
= PC := k

new(j)
def
= var o : ObjectInfo •

o := newObjectInfo; o.create(Cls,CP , j);
S := 〈o〉a S ; ; PC := PC + 2

end

Pushing a local variable onto the operand stack is done by the instruction load ,
and involves moving a value from the store of variable M to the operand stack
S . To deal with operators, we group them so that bop stand for binary opera-
tors. The instruction goto always branches: the integer argument k is assigned
to PC . The instruction new builds an object of class ObjectInfo to hold the rep-
resentation of an object whose type is indicated by the argument j . This is an
index to a class entry in the constant pool. The call o.create(Cls,CP , j) traverses
Cls, the representation of the source program class hierarchy, determining and
recording in o the attributes of the class indicated by j , and of its superclasses.
The resulting object o is pushed into the operand stack S .

4 Strategy for Compilation

In this section we give an overview of our reduction strategy for compilation.
There are five phases: class pre-compilation, redirection of method calls, sim-
plification of expressions, data refinement, and control elimination. Class pre-
compilation records the structure of the classes in the source program and intro-
duces the class L, which includes just one method, lookUp, to resolve dynamic
binding. The redirection of method calls consists of rewriting each method call to
a call to lookUp. The simplification of expressions eliminates nested expressions
in assignments and guards. In the data refinement phase, the abstract space of
the source program is substituted by the the concrete space of the target ma-
chine. Finally, the purpose of control elimination is to reduce the nested control
structure of the source program to the single flat iteration of the normal form.
The idea is to progressively change the structure of the source program to get
to the normal form.

The compilation process is justified by reduction theorems; for each phase, a
theorem asserts the expected outcome, and a main theorem links the intermedi-
ate steps and establishes the outcome for the entire process. Since the reduction

theorems are proved from the basic laws of ROOL, they corroborate the correct-
ness of the compilation process. We anticipate the main theorem.

Theorem 1 (Compilation Process) Let cds • c be an executable source pro-
gram. Given the symbol tables Φ and Ψ , then there are s, GCS, and f such that

Ψ(cds • c) v cdsRVM • Init ; v : [s,GSC , f]

The symbol v represents the refinement relation; this theorem guarantees that
the normal form embeds a correct implementation of the source program. Its
constructive proof characterises the compilation process, discussed in the sequel.

Since the source program operates on a data space different from that of the
normal form, it does not make sense to compare them directly. A function Ψ
performs the necessary change of data representation. The symbol table Ψ maps
the variables declared in the source program to addresses in the store M , in such
a way that M [Ψx] holds the value of x .

Before we describe our compilation strategy, we explicit the following restric-
tions, which we assume to hold for the source programs; there is no name clashing
for attributes in the set of class declarations cds; name clashing for methods are
allowed only in the case of redefinitions; and all references to an attribute have
the form self .a. These conditions are necessary to ensure the applicability of the
compilation rules and the convergence of the overall process. They do not impose
any semantic restrictions, and can be satisfied with simple syntactic changes to
an arbitrary source program. We further discuss the roles of these conditions
during the detailed description of the reduction steps for compilation.

4.1 Class Pre-compilation

The outcome of this phase is summarised by the theorem below. It establishes
that the compilation rules applied in this phase are sufficient to end up with
a program in a form where all method declarations of the source program are
copied to the lookUp method of a new class L.

Theorem 2 (Class Pre-compilation) Let cds • c be an executable source pro-
gram, then there is a program cdsRVM , cds ′, L • c′ such that

cds • c v cdsRVM , L, cds ′ • c′

where the main command c′ differs from c only by trivial casts; cds ′ has the
same structure of cds, but all the attributes are public; and the class L has only
a declaration of a method lookUp.

Initially, the source program does not refer to the set of class declarations
cdsRVM . The commands that will be introduced in L and in the main com-
mand are built using methods, attributes, and types defined in cdsRVM . For
that reason, when we start the process of restructuring the code, introducing
the class L, the need to introduce cdsRVM arises. Throughout the compilation
process, the class L plays a fundamental role in our strategy: it establishes the
basic conditions that will allow the elimination of cds, and all source program
references.

In order to define lookUp, we need to copy all method bodies declared in
cds. The idea is to transform all method calls to a unique pattern, where the
invoked method is always lookUp. Once lookUp is invoked, the method body
associated with the original method call should be selected, and then executed.
As a consequence of such transformations, the method declarations in cds become
useless and can be eliminated. Since the association of a method call with its
corresponding method body is affected by dynamic binding and by the use of
super, it is necessary to address the treatment of these issues.

This compilation phase comprise three steps; the first two change the visi-
bility of the attributes in cds, and introduce trivial casts. Both are necessary to
avoid syntactic errors that can be originated by the introduction of lookUp. The
last step in this phase deals with the lookUp creation.

Changing visibility of attributes. We need to guarantee that the bodies of
the methods do not contain references to private and protected attributes; other-
wise, an error can arise when we copy them to the lookUp method. Therefore, we
change the declarations of the attributes to make them all public. Even though
this is not a good idea from a software engineering point of view, this does not
change the behaviour of a complete program.

To perform these transformations, we use the laws presented in [2]. Due to
space restrictions, we omit most of the compilation rules; our objective in this
paper is to present and illustrate the compilation strategy. In our example, we
change the declarations of dir and len in Step, and previous in Path.

Introducing trivial casts. We introduce type casts to produce an uniform
program text in which all targets are cast with its static type. The purpose of
this step is to explicitly annotate in the program text the declared type of each
target. The casts have no effect.

We need a data structure that maps the elements declared in the source
program to indexes in the constant pool CP . From these indexes, the objects
representing the classes, methods, or attributes can be obtained from Cls; the
constants are represented by objects in CP . We assume that this data structure
built as part of the syntactic analysis and type checking of the program.

lookUp creation. Basically, lookUp consists of a sequence of two conditionals.
The first conditional treats the dynamic binding and the use of super, whereas
the second implements the method body selection. The general format of the
lookUp declaration is as follows.

meth lookUp ∧= (val S : Stack ; res Sres : Stack•
var mtd : Int ; o : Object ; w : T ; •

S .Pop(db); S .Pop(mtd); S .Pop(o);
conditional1; conditional2;
S .Push(o); Sres := S ;

end
) end

The formal parameters are the operand stacks S and Sres. When lookUp starts,
it pops two values from S : mtd and o. The former indicates the method to

be executed, and the latter, the target of the method call. When the dynamic
binding is considered in the conditional1, the value of mtd may be modified. The
conditional2 selects the method body denoted by mtd ; arguments are handled
through variables declared in the list w . The two last commands pushes a copy
of o back onto S and assigns S to Sout .

Associated with each method m, we have three indexes, ι, σ and δ. The
first, ιC .m , identifies the declaration of the method m occurring in the class
C . In our robot example, we use the following values: ιStep.setDirection 7→ 1,
ιStep.setLength 7→ 2, ιStep.getLength 7→ 3, ιPath.addStep 7→ 4, ιPath.getLength 7→ 5, and
ιPath.initialiser 7→ 6. The initialiser declared in Path is treated like an ordinary
method, and is denoted by 6. There is no ι index for the setDirection method of
Path, because this class does not include a declaration for this method

The second index, σC .m , is used to identify references to the method m of
the class C in calls of the form super.m, which do not require dynamic binding.
If a declaration of a method m is shared (through inheritance) by two classes
D and E , then σD.m and σE .m have the same value. In our example, we chose
the following values for this index: σStep.setDirection 7→ 1, σPath.setDirection 7→ 1,
σStep.setLength 7→ 2, σPath.setLength 7→ 2, σStep.getLength 7→ 3, σPath.getLength 7→ 5,
σPath.addStep 7→ 4, σPath.initializer 7→ 6. It is important to observe that, since Path
inherits setDirection from Step, this method is available in both classes, and so
the values of σStep.setDirection and σPath.setDirection are both 1.

The last index, δ.m, identifies references to m in calls that may require dy-
namic binding: those of the form le.m. When m has just one definition, the
values of σC .m and δm are identical for all classes C in which m is available.
Otherwise, δm has a value that is not associated with any method declaration
by ι and by σ. In our example, the values chosen are as follows: δsetDirection 7→ 1,
δsetLength 7→ 2, δsetLength 7→ 2, δgetLength 7→ 0, δaddStep 7→ 4, δinitializerPath

7→ 6. In
the case of the method getLength, it is defined in Step and redefined in Path;
for this reason, it is associated with 0, an index not used by ι or by σ. This
indicates that calls to getLength require dynamic binding. For setLength, on the
other hand, we use 2, which is the value of σ for setLength in Step and Path.
This indicates that calls to setLength do not require dynamic binding.

A function creates the conditional1 based on the class hierarchy in Cls and
the indexes above. Starting from the bottom of the hierarchy, for each redefined
method m, a nest of conditionals is created. The outermost conditional addresses
the class C at the bottom of the hierarchy of classes where m is available. In
this conditional, one first guard tests if C is the dynamic type of the object
o. If so, the command associated with this guard is an assignment of σC .m to
the variable mtd . One other guard tests if C is not the dynamic type of the o.
In this case, the command associated with this guard is a similar conditional,
addressing the immediate superclass of C . For instance, in our example, the only
redefined method is getLength. We chose 0 as the value of δgetLength . When the
conditional1 is created, a test is introduced to check if the value in mtd is 0. In
this case, the type of o is tested, and 3 or 5, corresponding to σStep.getLength and

σPath.getLength , is assigned to mtd to indicate which version has to be executed.
The resulting conditional is as follows.

if mtd = δgetLength →
if o is Path → mtd := σPath.getLength

[]¬(o is Path) → if o is Step → mtd := ΦStep.getLength

[]¬(o is Step) → skip
fi

fi
[]¬(mtd = δgetLength) → skip
fi

In summary, the first conditional tests the dynamic type of o. If C is the current
type of o, an assignment of σC .m to the variable mtd is done. The value of mtd
is tested in conditional2 to select the method body that has to be executed.

The creation of conditional2 is based on the class hierarchy described in
Cls. Each guard in the conditional tests the value in mtd to identify a method
declaration. The general form of the conditional2 is as follows.

if []〈0≤ i ≤ k〉(mtd = ιC .m) → In(ιC .m , v);
pcιC .m [o/self](w);
Out(ιC .m , r)

fi
The notation pcιC .m [o/self] expresses the substitution of o for every occurrence
of self in the parametrised command pcιC .m : the body of the method declaration
identified by ιC .m . It is applied to the list of variables w , which is formed from
two other lists v and r . The input arguments are popped from S and stored
in v , whereas the result arguments are placed in r . The function In(ιC .m , v)
inspects the signature of m, and creates the list of commands that pop the input
values from the operand stack S , initialising the list of variables v . Similarly,
Out(ιC .m , r) creates the list of commands that push the result values on S .

In our example, the conditional2 is formed by six guards, one for each method
declaration in the source program. To select the parametrised command corre-
sponding to the method body that has to be executed, the value of mtd is used.
For our example, the first guard in the conditional2 is as follows.

if mtd = 1 → S .Pop(x1); (val d : Int ; • (Step)o.dir := d)(x1)[] . . .
It tests if the value in mtd is equal 1. If so, the body of the method setDirection
declared in Step is executed, with the element at the top of the operand stack
as argument.

4.2 Redirecting method calls

In this phase all method calls are redirected to lookUp, so that the method dec-
larations in cds become useless and can, therefore, be eliminated. The outcome
is summarised by the Theorem 3: the compilation rules applied in this phase are
sufficient to end up with a program where all calls are to the lookUp method.

Theorem 3 (Redirection of method calls) Let cdsRVM , cds,L • c be an exe-
cutable program where all attributes in cds are public, and the class L and its
lookUp method are as above, then there is a program cdsRVM , cds ′, L′ • c′ such
that cdsRVM , cds,L • c v cdsRVM , L′, cds ′ • c′, where cds ′ contains only the
attribute declarations of cds, the main command c′ has the same functionality
of c, but neither c′ nor lookUp refer to the methods declared in cds.

In order to transform each method call that appears in the program into a
method call to lookUp, we need to simplify the targets. In calls le.m(e) and
super.m(e), both le and e can have nested expressions. The idea is to reduce
all possible method calls to a simpler form, suitable to be manipulated by the
subsequent steps. The laws needed can be found in [7, 8].

We also use rules that rely on the type of parameter passing used to to deter-
mine which arguments have to be pushed onto and popped from S . To illustrate
these transformations, we present the rule that addresses calls-by-result. We use
the notation cdsRVM , cds,N . c v c′ to mean that the refinement c v c′ holds in
the context of the sequence of class declarations of cdsRVM , cds, for a command
c inside N , which denotes the main command or a class in cdsRVM or cds.

Rule 1 (Result parameter)
cdsRVM , cds ′′,L′ .
(C)le.m(x) v var o : Object ; S : Stack ; V : L •

S := new Stack ; V := new L; o := le;
S .Push(o); S .Push(δC .m); V .lookUp(S);
S .Pop(o); S .Pop(x); le := o;

end
provided the definition of m in C has one result parameter, and o, S and V are
fresh names.

For the compilation of a call-by-result, a variable block is introduced, declaring
an object o, the operand Stack S , and a variable V of class L. New objects are
created to initialise S and V , whereas o receives a copy of the object denoted
by le. Then, o and δC .m are pushed onto S . After the invocation of the lookUp
method, the value of the parameter is popped from S and assigned to x ; the
resulting object is assigned to le.

As an example, we consider the method call p.getLength(out) in the main
command of the robot program. This method has a result parameter. The result
of applying Rule 1 is as follows.

var o : Object ; S : Stack ; V : L •
S := new Stack ; V := new L;
o := p; S .Push(o);
S .Push(0); V .lookUp(S);
S .Pop(o); S .Pop(out); p := o;

end
The indication that dynamic binding must be performed is done by S .Push(0),
where 0 is the value of δgetLength . In lookUp, the value associated to mtd is
modified, based on the type of o. In this case, o is an instance of the class Path,

thus, 5 is the value that is assigned to mtd , indicating that the method body
declared in Path is the one that has to be executed. When lookUp completes, the
value of out is popped from S . Finally, the returning value of o is also popped
from S , and assigned to p.

Applying compilation rules like that above introduces several variable blocks.
To accomplish the result in Theorem 3, we need to apply laws that expand the
scope of variable blocks. These laws are standard [8].

When super appears as target in a method call, the check of dynamic binding
is not necessary. Therefore, we use a slightly different version of the above rules.
Instead of δm , σ(C .super).m is used. This modification prevents the value of mtd
from being changed in lookUp, because σ(C .super).m denotes an specific method
body, the one declared as m and associated with the immediate superclass of C .

var p : Path o : Object ; S : Stack ; V : L •
p := new Path; S := new Stack ; V := new L;
o := p; S .Push(l0); S .Push(north); S .Push(o);
S .Push(6); V .lookUp(S); S .Pop(o); p := o;
o := p; S .Push(l1); S .Push(north); S .Push(o);
S .Push(4); V .lookUp(S); S .Pop(o); p := o;
o := p; S .Push(l2); S .Push(east); S .Push(o);
S .Push(4); V .lookUp(S); S .Pop(o); p := o;
S .Pop(o); p := o; o := p; S .Push(l3);
S .Push(south); S .Push(o); S .Push(4); V .lookUp(S);
S .Pop(o); p := o; o := p; S .Push(l4); S .Push(west); S .Push(o);
S .Push(4); V .lookUp(S); S .Pop(o); p := o; o := p; S .Push(o);
S .Push(0); V .lookUp(S); S .Pop(o); S .Pop(out); p := o;

end

Fig. 3. Main command obtained after redirecting method calls

The method getLength uses recursion to find the length of a robot’s path. The
redirection of a recursive method call does not imply in any overhead. Any re-
cursion is automatically embedded in recursive calls to lookUp. For instance, the
recursive call (Path)o.previous.getLenth(aux) appears in lookUp, in the method
body related to the getLength method of Path. When we rewrite this method
call, we obtain the following.

var o1 : Object ; S : Stack ; V : L •
S := new Stack ; V := new L;
o1 := o.previous; S .Push(o1);
S .Push(0); V .lookUp(S); S .Pop(o1);
S .Pop(out); o.previous := o1;

end
Recursion arises because we use 0 again to identify the method to be called.

In order to eliminate a parametrised commands, we use the standard defini-
tions in the literature [1]. For each parametrised command, a variable block is
introduced. We can combine them using standard laws of ROOL.

This phase considers method calls in lookUp and in the main command. In
Figure 3, we show the main command resulting from the compilation of our
example. For each call in the main command, a variable block is introduced
and further manipulated to expand its scope. The first call to lookUp has 6 as
an argument, indicating that the body of the initialiser declared in Path has
to be executed to give p its first value. Then, the next four lookUp invocations
correspond to calls to addStep. Finally, the last one refers to a call to getLength.

4.3 Simplification of Expressions

This phase eliminates nested expressions that appear in assignments and guards.
The expected outcome is stated by Theorem 4.

Theorem 4 (Simplification of Expressions) Let cdsRVM , cds, L • c be an exe-
cutable source program, then there is a program cdsRVM , cds ′, L′ • c′ such that
cdsRVM , cds, L • c v cdsRVM , cds ′, L′ • c′ where each assignment in c′,
cds ′ and, L′ operates through the operand stack, and each boolean expression is
a variable.

Variables that represent the components of RVM , and the auxiliary variable
V used to invoke lookUp are not affected by the transformations of this phase.
Basically, the task of eliminating nested expressions in a source program involves
rewriting assignments and boolean expressions in the L and in main command.
Since new variables are introduced, we apply extra laws to expand the scope of
variable blocks.

Before we proceed to the Data Refinement phase, we need to change the
parameters of the method lookUp. This change is due to the need to access the
class hierarchy information and constants stored in the global variables Cls and
CP . Then, the refactoring rule that allows us to add a parameter is applied twice
to introduce the desired parameters in lookUp.

In Figure 4, we show the result of applying these laws to the class L of
our example. The simplification of the conditionals required the introduction of
11 boolean variables. Every boolean expression is assigned to a boolean vari-
able, and these variables replace the corresponding expression in the guards, so
that, each guard now consists of a simple boolean variable. Each assignment
is rewritten to operate exclusively through the operand stack S . Since the pair
(S .Pop(x), S .Push(x)) is a simulation (S .Pop(x); S .Push(x) v skip). Dis-
pensable sequences of push and pops are eliminated.

4.4 Data Refinement

The data refinement phase replaces the abstract space of the source program
with the concrete state of the target machine. This means that all references to
variables, methods, attributes, and classes declared in the source program must
be replaced with the corresponding ones in the target machine.

The following theorem summarizes the outcome of this phase of compilation.

class L

meth lookUp
∧
=

(val CP ,Cls,S : Seq Object ,Seq ClassInfo,Stack ; res Sres : Stack•
var x1, x2 : Int ; mtd , aux : Int ; o : Object

b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11 : Boolean •
S .Pop(mtd); S .Pop(o); S .Push(0); S .Push(mtd); S .Equal ;
S .Pop(b1); S .Push(o is Path); S .Pop(b2);
S .Push(o is Path); S .Neg ; S .Pop(b3);
if b1 →

if b2 → S .Load(5); S .Pop(mtd);
[]b3 → if o is Step → S .Load(3); S .Pop(mtd); fi

fi
fi;
S .Push(1); S .Push(mtd); S .Equal ; S .Pop(b4);
S .Push(2); S .Push(mtd); S .Equal ; S .Pop(b5);
S .Push(3); S .Push(mtd); S .Equal ; S .Pop(b6);
S .Push(4); S .Push(mtd); S .Equal ; S .Pop(b7);
S .Push(5); S .Push(mtd); S .Equal ; S .Pop(b8);
S .Push(null); S .Push(o.previous); S .NEqual ; S .Pop(b9);
S .Push(null); S .Push(o.previous); S .Equal ; S .Pop(b10);
S .Push(6); S .Push(mtd); S .Equal ; S .Pop(b11);
if b4 → S .Pop(o.dir) []b5 → S .Pop(o.len); []b6 → Push(o.len);

[]b7 → S .Pop(x1); S .Pop(x2); S .Push(o); S .Pop(o.previous);
S .Push(o); S .Push(x1); S .Push(1); V .lookUp(S ,S);
S .Push(x2); S .Push(2); V .lookUp(S ,S); S .Pop(o);

[]b8 → if b9 → S .Push(o.previous); S .Push(0);
V .lookUp(S ,S); S .Pop(o.previous); S .Pop(aux);

[] b10 → S .Push(0); S .Pop(aux)
fi; S .Push(o); S .Push(3); V .lookUp(S ,S);
S .Pop(o); S .Push(aux); S .Add

[]b11 → S .Pop(x1); S .Pop(x2); S .Push(o); S .Push(1);
V .lookUp(S ,S); S .Push(x2); S .Push(2);
V .lookUp(S ,S); S .Pop(o); S .Push(null); S .Pop(o.previous)

fi
S .Push(o); S .Push(S); S .Pop(Sres);

end
) end

end

Fig. 4. Program generated by the simplification of expressions

Theorem 5 (Data Refinement) Consider a program of the form
cdsRVM , cds, L • (var S ,V ,w : Stack ,L,T • r end), where in r there are no
local declarations, all assignments are through the operand stack, and all boolean
conditions are boolean variables. In addition, the class L includes only a decla-
ration of a method called lookUp, whose format is as follows

meth lookUp ∧=
(val CP ,Cls,S : Seq Object ,Seq ClassInfo,Stack ; res Sres : Stack •

var o : Object ; V : L; x : T • l end
)end

where l satisfies the same restrictions as r. Then, there are programs q and u
such that

Ψ(ω(cdsRVM , cds, L • (var S ,V ,w : Stack ,L,T • r end)))
v cdsRVM , L′ • var S ,V : Stack ,L′ • q end

and the method lookUp declared in L′ has the following form.
meth lookUp ∧=

(val CP ,Cls,S : Seq Object ,Seq ClassInfo,Stack ; res Sres : Stack •
var V : L′; M : Memory • u end

)end

where q and u preserve the control structure of r and l , respectively, but op-
erate mainly on the concrete space.

Only in the next phase, after introducing the stack of frames F , we can eliminate
the local variables V and M , and join the code in the lookUp method with the
code in the main command.

To carry out the change of data representation, we use the distributivity
properties of the function Ψ as in [15, 7]. It is a polymorphic function that applies
to programs and commands, and distributes over the commands in the class
declarations and main command, applying a function with the same name. The
function Ψ does not affect the classes used to define our interpreter (cdsRVM),
the components of our target machine, and commands that have no reference to
variables or classes of the source program.

For example, after the simplification of expressions, objects are created by
S .Push(new C), where the expression new C references a class C declared
in the source program. The function Ψ eliminates this reference, introducing a
method call whose parameter is an index in CP corresponding to C . When ap-
plied to constructors that deal with control, like the conditional and iteration
commands, Ψ distributes over the components of these commands. For illus-
tration, Figure 5 presents the initial segment of the class L. The classes and
variables declared in the source program are eliminated. The program operates
exclusively on the concrete space.

4.5 Control Elimination

In this phase, the nested control structure of the source program is reduced to
a single flat iteration. The result is a program in the normal form described in
Figure 2. The next theorem summarises the outcome of this phase of compilation.

class L

meth lookUp
∧
=

val Cls,CP ,S : Seq ClassInfo, Seq Object ,Stack ; resSres : Stack•
S .Store(Ψmtd); S .Store(M [Ψo])
S .Load(CP [Φ0]); S .Load(M [Ψmtd]); S .Equal ; S .Store(M [Ψb1]);
S .Load(M [Ψo]); S .Instanceof (Cls,CP , ΦPath); S .Store(M [Ψb2]);
S .Load(M [Ψo]); S .Instanceof (Cls,CP , ΦPath); S .Neg ; S .Store(M [Ψb3]);
if M [Ψb1] →

if M [Ψb2] → S .Load(CP [Φ5]); S .Store(M [Ψmtd]);
[]M [Ψb3] → if o is Step → S .Load(CP [Φ3]); S .Store(M [Ψmtd]); fi

fi
fi
. . .

end

Fig. 5. Class L after the the data refinement

Theorem 6 (Control Elimination) Consider a program cdsRVM , L • q, which
operates mainly on the concrete space, with the method lookUp of L declared in
the following form.
meth lookUp ∧=

(val CP ,Cls,S : Seq Object ,Seq ClassInfo,Stack ; res Sres : Stack •
var o : object ; V : L; M : Memory • u end

) end
Then, there is a normal form program such that cdsRVM , L • q v cdsRVM • I .

To accomplish the goal established by this theorem, we apply to the commands
in the main command and in the body of lookUp rules that create the cor-
responding series of guarded commands. Eventually, we produce a program
v : [s + 1,GCSm , i − 1] in lookUp, and v : [i + 1,GCSc , f] in the main com-
mand. In the program below, we present the general form our example at this
stage.

class L

meth lookUp
∧
= (

val Cls,CP ,S : Seq ClassInfo, Seq Object , Stack ; resSres : Stack •
var A : N ; M : Seq object ; • V := new N ; v : [s + 1,GCSm , i − 1] end)

end
end
• var A : N ; S : Stack •

V := newN ; S := newStack ; v : [i + 1,GCSc , f]
end

To reduce this program to our normal form, we need to eliminate the class L.
The only obstacle resides in the method calls to lookUp that may exist in GCSm

and GCSc . Both correspond to conditionals, in which the guarded commands

are closely related to the definition of the behaviour of the machine. To produce
the desired normal form, it is necessary to join them. To achieve this goal we
need to expand GCSc using the guards presented in GCSm . Using basic laws
of ROOL, we can extend a conditional by introducing new guarded commands.
This leads to a refinement, because the resulting program is more deterministic.

We modify the program above, to obtain the program in the normal form,
as shown below. The first action is to deviate the execution flow to the address
i +1, where the instructions corresponding to the main command start. When a
method invocation occurs, the execution flow is deviated to s +1. Executing the
instructions in GCSm , the PC eventually reaches the address i . Then, the saved
values of PC and M are popped from F , and the execution flow is deviated to
just after the invocation. The program ends when PC gets the value f .

class L

meth lookUp
∧
= (

val Cls,CP ,S : Seq ClassInfo, Seq Object , Stack ; res Sres : Stack •
var A : N ; M : Seq object ; • V := new N ; v : [s + 1,GCSc , i] end)

end
end
• var A : N ; S : Stack •

V := newN ; S := newStack ;
v : [s, (PC = s) → PC := i + 1

[] GCSm

[] (PC = i) → F .Pop(PC); F .Pop(M)
[] GCSc , f]

end

Using the next rule we can eliminate method calls to lookUp, and afterwards,
we can eliminate the auxiliary class L.

Rule 2 (Eliminating method calls)

cdsRVM L .
V .lookUp(Cls,CP ,S) v F .Push(PC); F .Push(M); PC := s + 1;

This rule compiles a call to lookUp by pushing the value of the PC and M onto
F , and the assigning of the value s+1 to PC . In this address, the code relative to
lookUp is stored. Once the frame stack F is introduced, we are able to eliminate
all method calls, because F plays the same role of the implicit stack used when a
method is called. Therefore, we can reduce the whole program to a flat iteration.

4.6 The Compilation Process

Here, we sketch the proof to the Theorem 1. Basically, we want to transform
Ψ(cds • c) into cdsRVM • Init ; v : [s,GSC , f]. From Theorem 2 (Class Pre-
compilation), we can transform cds • c, and obtain cdsRVM , cds ′, L • c′. At
this point, we can refer to the Theorem 3 (Redirection of method calls) which es-
tablishes that cdsRVM , cds,L • c v cdsRVM , L, cds ′ • c′. Then Theorem 4

(Simplification of Expressions), states that we can obtain cdsRVM , cds ′, L′ • c′

from cdsRVM , cds, L • c. Using monotonicity of Ψ , we can conclude that
Ψ(cds • c) v Ψ(cdsRVM , cds ′, L′ • c′). At this point, based on the Theorem
5 (Data Refinement), cds is eliminated and the outcome program operates over
the concrete space. Finally, from Theorem 6 we achieve a program in our normal
form, cdsRVM • Init ; v : [s,GSC , f].

5 Final Considerations

As an attempt to address the correct implementation of object-oriented pro-
grams, we have proposed a refinement strategy for the compilation of ROOL, a
language that includes classes, inheritance, dynamic binding, and recursion. This
language is sufficiently similar to Java to be used in meaningful case studies; our
result represents significant advance on previous work. In [7], we detail the com-
pilation rules for the phases of simplification of expressions, data refinement, and
control elimination. Here, we focus on the overall strategy for the compilation,
illustrating the whole process through a case study.

The classes declared in the source program have to be eliminated during the
compilation process. In order to remove them, we developed a strategy based on
the introduction of an auxiliary class L that allows us to eliminate the references
to methods of the source program. Inheritance is treated through the generation
of a data structure Cls resembling the original class hierarchy. Dynamic binding
is handled with the use of a function to construct a conditional to check the type
of the target object at run time.

The main difference between our work and those in [3, 16] resides in the fact
that their approach is based on verification, instead of on calculation. Recently, a
case study in verified program compilation from imperative program to assembler
code was presented in [17]. The compiled code is data refined by calculation. That
case study, however, does not comprise object-oriented features.

In [2], a similar strategy for normal form reduction was adopted as a measure
of completeness of the set of proposed laws for ROOL. Here, a similar set of laws,
together with specific compilation rules, are used to carry out the design of a
provably correct compiler. Obviously, due to the nature of our application, our
normal form and our strategy need to be different.

We are currently working on the proof soundness of the compilation rules.
Initial results are reported in [9]. The proofs are based on basic laws of rule, that
are sound with respect to its weakest precondition semantics [2].

Further work is needed towards the mechanisation of this approach. Its alge-
braic nature makes the mechanisation easier, allowing the use of a term rewrite
system as a tool for specification, verification, and prototype implementation.
We already have initial results in this direction.

6 Acknowledgments

Adolfo Duran is supported by UFBA (Universidade Federal da Bahia, Brazil)
and CAPES: grant BEX0786/02-0. The other authors are partially suported

by CNPq: grants 520763/98-0 and 472204/01-7 (Ana Cavalcanti), 521039/95-9
(Augusto Sampaio), and 680032/99-1.

References

1. R. J. R. Back. Procedural abstraction in the refinement calculus. Technical Report
Ser. A No. 55, Department of Computer Science, Abo - Finland, 1987.

2. P. Borba, A. Sampaio, and M. Cornélio. A refinement algebra for object-oriented
programming. In To Appear in the Proceedings of ECOOP 2003, 2003.

3. E. Börger and W. Schulte. Defining the java virtual machine as platform for prov-
ably correct java compilation. In MFCS’98., number 1450, pages 17–35. Springer
LNCS, 1998.

4. A. Cavalcanti and D. Naumann. A weakest precondition semantics for refine-
ment of object-oriented programs. IEEE Transactions on Software Enginnering,
26(08):713–728, 2000.

5. M. Cornélio, A. Cavalcanti, and Augusto Sampaio. Refactoring by transforma-
tion. In Proceedings of REFINE’2002, Electronic Notes in Theoretical Computer
Science, 2002.

6. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, Engewood Cliffs,
1976.

7. A. Duran, A. Cavalcanti, and A. Sampaio. Refinement algebra for formal bytecode
generation. In ICFEM 2002 - 4th International Conference on Formal Engineering
Methods, pages 347–358, Shanghai, China, October 2002. Springer-Verlag.

8. A. Duran, A. Cavalcanti, and A. Sampaio. A refinement strategy for the compi-
lation of classes, inheritance, and dynamic binding (extended version). Technical
report, Computing Laboratory, University of Kent at Canterbury, 2003.

9. A. Duran, A. Sampaio, and A. Cavalcanti. Formal bytecode generation for rool
virtual machine. In IV WMF— Workshop on Formal Methods. PUC—Rio de
Janeiro/Brazil, October 2001.

10. C. A. R. Hoare, J. He, and A. Sampaio. Normal form approach to compiler design.
Acta Informatica, 30:701–739, 1993.

11. Tim Lindholm and Frank Yellin. The java Virtual Machine Specification. Addison-
Wesley, 1997.

12. J. McCarthy and J. Painter. Correctness of a compiler for arithmetic expressions. In
Symposium on Applied Mathematics, pages 33–41. American Mathematical Society,
1967.

13. C. Morgan. Programming from Specifications. Prentice Hall, second edition, 1994.
14. M. Müller-Olm. Modular Compiler Verification: A Refinement-Algebraic Approach

Advocating Stepwise Abstraction, volume 1283 of LNCS. Springer-Verlag, Heidel-
berg, Germany, 1997.

15. A. Sampaio. An Algebraic Approach to Compiler Design, volume 4 of AMAST
Series in Computing. World Scientific, 1997.

16. R. Stärk, J. Schmid, and E. Börger. Java and the Java Virtual Machine - Defini-
tion, Verification, Validation. Springer-Verlag, 2001.

17. L. Wildman. A formal basis for a program compilation proof tool. In Lars-Henrik
Eriksson and Peter Alexander Lindsay, editors, FME2002: Formal Methods – Get-
ting IT Right, Copenhagen, Denmark, July 2002. International Symposium of For-
mal Methods Europe, Springer.

