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Abstract

This paper describes a the application of ant colony
optimization algorithms, which draw inspiration from
the way ants organize themselves in searching for food,
to the well-known bioinformatics problem of aligning
several protein sequences.

1 Introduction

Swarm intelligence methods are computational
techniques inspired by animals such as social in-
sects acting together to solve complex problems.
The main application of these techniques has been
to combinatorial optimization problems. This pa-
per discusses work-in-progress on the application of
swarm intelligence ideas to a bioinformatics prob-
lem, viz. aligning multiple protein sequences which
are believed to be related.

The paper begins with a brief survey of swarm in-
telligence and the multiple sequence alignment prob-
lem. The application of one to the other is then de-
scribed, and some preliminary results are given both
on synthetic problems and on real-world data.

2 Ant colony optimization and swarm intel-
ligence

Ant colonies are able to organize their foraging
behaviour in a seemingly efficient way without any
centralized control [7]. This self-organizing struc-
ture is carried out via stigmergic communication,
i.e. communication by changing the environment,
in this case by laying down pheromone trails.

Initially ants have no idea of where food is in the
environment, so they wander randomly, leaving a
pheromone trail. When an ant finds food it wan-
ders back to the nest. Initially these paths will be
arbitrary, but when an ant follows a shorter path it
will be able to follow that path more often within
the same time period than an ant following a longer
path, so there is a positive reinforcement process
whereby the shorter paths get stronger.

A simple version of this is illustrated in figure 1,
where ants have two possible routes from a nest to
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Fig. 1. A simple ant foraging problem.

a food source. If two ants set out at the same time,
one taking route A and one route B, which is twice as
long, then the ant taking A will have travelled back
and forth between the food source twice in the same
time that the other ant has travelled back and forth
once. Therefore there will be a stronger pheromone
trail on route A compared to route B. This idea
can be effectively scaled up to solving route finding
problems such as the TSP, with performance as good
as or better than existing heuristics [2, 3].

3 Multiple sequence alignment

Proteins are complex molecules which consist of
a long chain of amino acids. The sequence of these
amino acids along the chain is specified by transs-
cribing and translating the DNA sequence in the
cell. These chains fold up into a complex three di-
mensional structure. Proteins are the basic building
blocks of living organisms; most of the body is built
from proteins of various kinds, and proteins are used
to carry signals around the body and carry out the
various actions which an organism needs to do to
survive.

The fact that proteins consist of long linear se-
quences of simple subcomponents means that we can
store this information easily on the computer. Find-
ing relationships between such sequences is an im-
portant part of the subject known as bioinformatics
[1, 5, 8].

Over the course of evolutionary history proteins



become modified as organisms evolve. Nonetheless
enough commonality remains so that proteins with
a common evolutionary history can be identified.
There are a number of reasons for being interested
in this, e.g.:

1. This information can be used to support the
reconstruction of phylogenetic trees by giving
an indication of how much time has passed
since present organisms branched off from a
common ancestor.

2. If several proteins have commonalities at the
sequence level, this may correlate with com-
monalities in their three-dimensional struc-
ture, so this may contribute to the ongoing
work on predicting three-dimensional struc-
tures of proteins.

3. Certain “families” of proteins are commonly
found together. If two organisms have a strong
alignment between certain proteins which be-
long to one of these families, then it is likely
that the other proteins in the family will also
be present [1].

There are a number of ways in which protein se-
quences can change. Firstly one amino acid can
be substituted for another. In particular amino
acids that have similar properties are more likely
to be substituted, so alignment methods tend to in-
corporate measures of substitutability based either
on data about known substitutions or biochemical
properties. Secondly amino acids can be inserted or
deleted from the sequence. Therefore one of the re-
quirements for an alignment algorithm is to be able
to include gaps in the sequence to enable a sequence
which has lost or gained amino acids to be lined up
against another sequence which hasn’t. A number
of methods have been applied in multiple sequence
alignment such as hidden Markov models and dy-
namic programming (a good survey is [5]).

4 Applying ant colony optimization to mul-
tiple sequence alignment

We have developed a system, called AntAlign
(summarized in figure 2), which applies the ant
colony optimization techniques to the multiple se-
quence alignment problem.

The main idea of the system that ants take a
subsequence and move in an interval associated
with each sequence, strengthening a pheromone trail
when a close match is found to a sequence at that
position in other sequences. As the algorithm runs
larger fragments of sequence are picked up by the

Cycles The number of cycles executed.

PopPerTime | The number of Ants generated
per cycle.

StartLen The length of the Ant’s subse-
quence in the first cycle.

EndLen The length of the Ant’s subse-
quence in the final cycle.

Evap The rate of trail evaporation.

Intensity The intensity of the trail.

Drift The distance Ants are allowed to
drift from the current consensus
and still score a match.

RndChance | The chance that an Ant will
choose a random path rather
than a matched trail.

Table I. Parameters for the algorithm.

ants. This is designed to encourage the removal of
extraneous gaps later on in the process. The overall
architecture of the program is indicated in figure 2.

The first type of object used to build the system
is a “trail manager” (called an ITrail) which will
organize the pheromone sequences. There is one
ITrail for each sequence, and an additional ITrail
in the system which will manage the emerging con-
sensus sequence. The consensus sequence contains
the strongest match so far at each position.

Objects of this ITrail class play a number of
roles. The main role is in storing the pheromone
trails which are created as the ants move along
the sequences looking for a good match. Associ-
ated with each ITrail is an interval in which the
pheromone trails will be placed, i.e. a number of lo-
cations (longer than the sequence itself) into which
pheromone can be placed. The strength of these
pheromone trails will eventually determine the se-
quence.

The ITrail object also manages the three main
functions related to the pheromone trails (PTrails).
Firstly when a new Ant is created the ITrails ob-
ject compares the subsequence the Ant is carrying
to those associated with trails already stored in the
ITrails object to determine the possible paths the
Ant could take. The second function it provides is
the adding of PTrails into its interval, or enhanc-
ing existing PTrails if a matching PTrail is already
present. The final role the ITrail plays is applying
evaporation to the trail strengths at the end of each
cycle.

The main driving program is contained in the
AntSystem class. To start a run of the program
a number of parameters are specified (table I). The



A Schematic of the AntAlign System
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Fig. 2. An overview of the components of the AntAlign system and their interactions.

following pseudocode indicates the main algorithm
used:

LOOP until number == cyclesRequired
cargoLength := startingLength
+ (cycleNumber*rateOfLengthIncrease)
LOOP though each sequence
Generate number of ants required
from current sequence
LOOP through Ants
Get matches of current Ant to
consensus PTrails
Determine match probabilities
Determine path taken
Generate alignmentScore for
the path taken

An important decision in creating the al-
gorithm was that an Ant would have read
access only to the pheromone trails related
to the consensus sequence, not to the other
sequences directly (it would be interesting
future work to compare this with a variation
where ants associated with a sequence have
access to all other sequences). A match is de-
termined to have happened if the subsequence
carried by the Ant and the offset of the ant
from the start of the ITrail interval is close
to the offset of the PTrail. Close here means
within the distance specified by the Drift
parameter to the left or right.

IF (alignmentScore>0.0) Determine match probabilities. This  deter-

Put new PTrail into consensus trail
Put new PTrail into current
sequence trail
ENDIF
ENDLOOP
ENDLOQOP
ENDLOQOP

The first few lines of the algorithm simply sets up
loops through cycles, sequences and ants. During
each iteration around the inner loop each Ant takes a
random subsequence from its sequence and attempts
to place it within the interval. Details of the core
steps of the algorithm are as follows:

Get matches of Ants to consensus Ptrails.

mines the percentage probability of following
each of the paths in the set P = {p1,...,pn}
determined by the previous step in the
algorithm, or another path chosen at random
from all possible paths. The probability of a
path p; being chosen is

123

—7—— X (100 — RndChance

Z?:l ti ( )
where t; is the strength of trail p; and the
RndChance is the parameter giving the per-
centage chance of a random path being fol-
lowed instead of the path determined in the
previous step of the algorithm.



Determine path taken. A path is chosen accord-
ing to the probabilities calculated in the pre-
vious step of the algorithm.

Generate alignment score for path taken.

A score is calculated based on the match
between the current consensus sequence and
the path taken by the ant. This is based on
the well-known BLOSUM-62 matrix [6] which
was calculated from data about probabilities
of protein substitution from a large protein
sequence database.

Because the subsequences which each Ant car-
ries are generated at random, there is a chance
that parts of the sequence are missed out or mis-
aligned. To combat this a repair algorithm (the Se-
quenceChecker) is invoked every 10 cycles, which
tidies up inconsistencies. However as can be seen in
the results below this is not ideal. Current work is
attempting to improve the repair algorithm, and a
new version of the algorithm is being implemented
which divides the sequence completely between ants
which are not allowed to move out of sequence order.

5 Results

Firstly we show the alignment of six copies of the
same sequence (figure 3). With a small exception,
these are lined up perfectly by the algorithm. The
one exception is at the end of the third sequence,
where an amino acid has been missed out. This
demonstrates the need for improvements to the re-
pair algorithm.

Secondly we take six randomly generated se-
quences (figure 4). It is unsurprising that these se-
quences are all bunched close to each other; there
is minimal commonality between them which could
form the basis for spreading out the sequences.

The third experiment worked with real data. This
consisted of six variations on the chaperonin pro-
tein Cpn60 taken from six different bacterial species.
The results from this are illustrated in figure 5. As
would be expected from a highly conserved sequence
there is little spread, the representation is rather
compact. However several small improvements were
not discovered by the algorithm, e.g. sequence num-
ber 1 lags behind a much stronger position by one
position for much of the sequence.

The final experiment uses a less highly conserved
set of sequences, consisting of six serine proteases
from various species. These were chosen because
they have small regions which are active in the func-
tion of the protein and much of the remainder has
drifted over evolutionary timescales. These results

are shown in figure 6. A particular point of interest
is towards the end of the sequences, where a large
gap has been left in the first sequence to make it line
up strongly against the 4th and 5th sequences.

There is some evidence that the algorithm scales
well as the number of sequences being aligned is in-
creased. Results showing the time taken to align
various numbers of sequences are given in figure 7.
Adding a new sequence increases the time taken by
approximately a factor of 1.5.

6 Conclusions and future work

This paper has presented the current state of
work on this project. One important improvement
which needs to be made is to improve the repair
algorithm or replace the random assignment of sub-
sequence payloads to Ants with a more consistent
method. Another important area of work is carry-
ing out a more formal comparison with other algo-
rithms, including both heuristics developed specif-
ically for multiple sequence alignment and meta-
heuristics adapted for this problem.

References

[1] T.K. Attwood and D.J. Parry-Smith. Introduction
to Bioinformatics. Addison Wesley Longman, 1999.

[2] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz.
Swarm Intelligence. Oxford University Press, 1999.

[3] M. Dorigo, V. Maniezzo, and A. Colorni. The ant
system: Optimization by a colony of cooperating
agents. IEEE Transactions on Systems, Man and
Cybernetics—Part B, 26(1):29-41, 1996.

[4] Marco Dorigo, Gianni Di Caro, and Michael Sam-
pels, editors. Ant Algorithms: Third International
Workshop, ANTS 2002. Springer, 2002.

[5] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison.
Biological Sequence Analysis. Cambridge University
Press, 1998.

[6] S. Henikoff and J.G. Henikoff. Amino acid substi-
tution matrices from protein blocks. Proceedings of
the National Academy of Sciences USA, 89:10915—
10919, 1992.

[7] B. Holldobler and E.O. Wilson. The Ants. Springer,
1990.

[8] Arthur M. Lesk. Introduction to Bioinformatics. Ox-
ford University Press, 2002.



Alignment:

Alignment:
Consensus Sequence: EE 2 DENE T R EERD]
S i Consensus Sequence: G AN 5 Gl G G T SR G = GEEENY  DHON T
Sequence No. 2: Sequence No. 1 SN I <100 I G A GRS SOH A T ABHN TH A AN
Sequence No. 3: Sequence No. 2: -AG-G-GGIGAG-AA.GIS-SIAITA-T_SIIIT
Sequence No. 4: Sequence No. 3: IG-_GG-T-GE_C-EIC__EITI
. :quence No.
Sequence No. 6 N SN 7R 71 5 7R T £ I 7O TI -O0 £l TH TR e B B B e R L B B NDHORS 0 <88C
Consensus Sequence: 19 RSORS00, G MR - § < BRI T TR IR <1 S A NI G5 TIRI GBS
Sequence No. 1: 15 RO - 00 S O I B 7 )G\ AN R - § e GEERSENEN THEDOCHINGCAl AG ﬂ- o T RANS I o
q!
Sequence No. 2: TRKGCCR - ETOTH=ND: K¥E CE¥N -FPY 210G CYHYH = HKUFEHY -¥:2 Sequence No. 2: AR CHIEIRINE T8 G GISTINE 51 5., GRS G =1 G G AN
Sequence No. 3: TIRKHS - T I KRR G N 2 TG, G A ¥ Sequence No. 3 G THE T THEQ A TRECOESTOTEO B
Sequence No. 4: :lT-* ISR BN 7 TG A GREIH g 3 Sequence No. NG T AGTSHEEGHIS GIEINE SN A AGABREEG THEN A THEGOES TR TEO AR
Sequence No. §: T I O G I 7 70 A R HxA Sequence No. §: SIIGTRAGTSHE GHEEN AT GOESTHTED x
Sequence No. 'TIRHGIR - O SHD S8R IS BN .G A CHNE HRMIHRY 85 Sequence No. 6 BV THEDY GEINE N A A0 CHNSINN » TR0 COBS 0 T AR
Consensus Sequence = Consensus Sequence: ‘GBS TN A HESEOH SOES TGN A TN G G G S IR0 THIESEN <1 I <NE
Sequence No. 1: - Sequence No ‘GROHES;RISHON BN TGIBN » TR GGG >IN TN A BH G GO SHE
Sequence No. 2: - Sequence No. INHONSGS T TGN SOER TGN A THINE GG GRIN S GINI0 THEE A BRGBSGGA
Geouencs No. 3. Sequence No. 3: (GHBIS A HBEON SOER -DYEUNERERTCHE A BY . \ENVDECHN -1 CI-VR
e Mo 4. _ Sequence No. 4 (GND ¥ - LK Ol ~QER - DYEVHI -8 THEN = Y -0 TH-YCVIVAN R
Senence o' 5. z Sequence No. §: EGHD TN TTGHESGHN TGN A THEHT G ABY A\ EDNNGORY <1 DU
e et & z Sequence No. 6 THS TGN S G TGN A TR GG S GO TN ABRGHSGGARNAG
Consensus Sequence: [ e T T e — e
Sequence No. 1 IDHGHNN G NG 0 » CENHONRH - IBNEN A0 S GOG
Stats: Sequence No. 2: 70 EODNIIEREN A08>S GH R
iy EDHYCHT- 8 0 DENRYES D1
= its = i = Sequence No. A AA
ST D= R = 2R Seauence No. ECIDHNGHNE GRS CEN TG T TR GYEEE
Time Elapsed: 305.77 secs Sequence No. TGGTHONEE——
Consensus Sequence: "DV THD NI Gl TGS AGE SGAR ASESHN T GHEINDN -
Sequence No. 1 A BGH Il A BB G GG TR SGTH AGSME I AN AL A RN TS
Sequence No. 2: B GG THE NN GH TGS A CHOSGA R AR 5 SGCRIDMINDN -

Sequence No. 3:
. . . . . Sequence No. 4 'BEDVEIPLRNELYE——IH:NDOCHCERREEYEGS - -NYINDDHY]
Flg. 3Flg. 3. Results from the alignment of identical se- |seasence il 5 IREDVRTELENELYE: 15\ c805)\BEBYE >l =§YI¥DDRY

Sequence No

quences. Conmmanelosquancss

Sequence

N
Sequence No
Sequence No.
Sequence No
Alignment: Sequence na

o

Sequence

Gonsensus Sequence: --- NN 50 M G I BENENEE CONRN AW A NESH
Sequence =S ]
Sequence
Sequence

\EDH < S A GRS G CRENSERE G U Gl TS S TREEEIN <ECHE AN
AN SN S A G S G GRNISINNE G NSNS Gl - - - - -SNNEN B <NE AN

e e
Sequence

Sequence o
Sequence No

e o

Seence o Sequence SEEDRVINDNEN S <1 -HE GESBHHE G BENENEE CDNENG G A SNE 198
Sequence No josqusnoe L <f —
e I Sequence No. 6:
Consensus Sequence S e N BT
Sequence No. 1: IGEYN-
Se N 2:
Sequence Mo 2: G0N DN GIINC i 2T AHIR 77 VR GRS 511 Seouenos Na. 3
Sequence No. 3: [RBS SN -HDH 7 : = SNNNKHE <BEK T S 0 TR TH ZNNENIUERERDNRY Sequence No. 4: T A < OO0 -
Sequence No. 4: TRIGER - R TGN G T ANDRIEN - -1 GG . BTN, T Gequence No. §:
Sequence No. §: B0 - ERGNEEI G T AND ZIIKKE =G GE TREG - : -QNINCIERE Erzies .
Sequence Mo 6 -G BN - AT TANSEK = - EGIGAN AR - XERMERAT

Consensus
Sequence No.

Consensus Sequence

Sequence No. 1: - Sequence No.
Sequence No. 2 - e o
Sequence No. 3: - Sequence No.
SaquancalNc Al - Sequence No.
Sequence No. 5: 5 Sequence No
Soquence) No. 6 -
s
Sequence No.
Stats: Sequence No
Sequence No.
Sequence No.
Score = 0.0 Hits = 25348 Misses = 34652 Sequence No
Time Elapsed: 835.36 secs Sequenceiion
Consensus Sequence:
Sequence

No
Sequence No. 2:
Sequence No
Sequence No.
Sequence No

Fig. 4 Fig. 4. Results from the alignment of random se- |s:uens o
quences. Stats:

Score = 0.0 Hits = 18570 Misses = 41430

Alignment: Time Elapsed: 955.49 secs

gonsensusNSeq\fenca AT AGANEORGIN 2§ A A GHNESDINE GIDN A§ : A ENSEDN .1 SNEIET T

=1 AR N O . 8 -

equence No. i M s 3 M

Seduence Mo, 4 TN AN .MU BN I 1 BTN VS Fig. 6 Fig. 6. Results from the alignment of less highly con-

Seauence Mo 5 THIAG 8 BN I 0T OB 1T

Sadvance No. ¢ T . CANBI NN IR A 5\ BB TA RS served sequences.

Consensus Sequence: WA 705 IO I .5 Yl THEE =N TN

Sequence No. 1: | AORG TS ANDEEN

Sequence No. 2

Sequence No. 3

Sequence No. 4:
s
3

Sequence No
Sequence No.

Number of Sequences vs. Time Taken

Consensus Sequence:
Sequence No. 1
Sequence No. 2:

Sequence No. 3
Sequence No. 4 400
Sequence No. 5: —
Sequence No. 6 g 350
Consensus Sequence: & 300
Sequence No. | g 250
equence HNo
Sequence No. 3 % 200
Sequence No. 4: — 150
Sequence No. § AR GE Al w
Sequence No. & A GRERIN A BINIE G A0 A TIENN T IR £ 100
= a0
Stuts 0+ T T T T T T |
Score = 1.0 Hits = 21273 Misses = 38727 0 1 2 3 4 5 5 7

Time Elapsed: 1016.45 secs
Number of Sequences

Fig. 5 Fig. 5. Results from the alignment of highly conserved

sequences. Fig. 7. Time taken vs. number of sequences.



