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Abstract 
 
 

An adaptive test is one in which the number of test items and the order in which the items are 

presented are computed during the delivery of the test so as to obtain an accurate estimate of 

a student’s knowledge, with a minimum number of test items.  This thesis is concerned with 

the design and development of computerised adaptive tests for use within educational 

settings.  Just as, in the same setting, intelligent tutoring systems are designed to emulate 

human tutors, adaptive testing systems can be designed to mimic effective informal 

examiners.  The thesis focuses on the role of adaptive testing in student modelling, and 

demonstrates the practicality of constructing such tests using expert emulation. 

 

The thesis makes the case that, for small scale adaptive tests, a construction process based on 

the knowledge acquisition technique of expert systems is practical and economical.  Several 

experiments in knowledge acquisition for the construction of an adaptive test are described, 

in particular, experiments to elicit information for the domain knowledge, the student model 

and the problem progression strategy.  It shows how a description of a particular problem 

domain may be captured using traditional techniques that are supported by software 

developed in the constraint logic extension to Prolog.  It also discusses knowledge acquisition 

techniques for determining the sequence in which questions should be asked.   

 

A student modelling architecture called SKATE is presented.  This incorporates an adaptive 

testing strategy called XP, which was elicited from a human expert.  The strategy, XP, is 

evaluated using simulations of students.  This approach to evaluation facilitates comparisons 

between approaches to testing and is potentially useful in tuning adaptive tests. 



   

 iv  

Acknowledgements 
 

 

To the many people ‘behind the scenes’, I thank you all: 

 

To my supervisor, Dr Roger E. Cooley, for his unwavering and unstinting guidance 

throughout the PhD course. 

 

To the friends I have made over the years, who in their different ways, have made my stay 

away from home a most memorable one, in particular, Sukaina, Florence, Pamela C., 

Claudio, Francisco, Steve, Tom, Andy, Edries, Chris, Justine, Kerry, Sinan, Huda, Haytham, 

Birgit, Karen G., Peter, Karen D., Freddie, Ros, Jane, Joseph, Simone, Wuen Hao, Chandra 

and Pamela. 

 

To my family who has been a tower of strength, in particular my parents, Dato and Datin 

Chua Kong Leng, and my parents-in-law, Pengiran Hassan and Peni Jurof.  To my husband, 

Pengiran Abdul Wahab, and my children, Ak. Mohammad Hanif, Dk. Hawa Hafizah, Ak. 

Mohammad Hazim and Dk. Hawa Hayati, who have all been there for me.  To my sisters, 

sisters-in-law, and Zenaida for playing the mother figure to my children during the months of 

my absence.   

 

To His Majesty’s Government of Brunei, the Ministry of Education and Institut Teknologi 

Brunei, my deepest gratitude for the financial support and the opportunity to perform 

research.  



   

 v  

Table of Contents 
  

Abstract......................................................................................................................... .. iii 
Acknowledgements ...................................................................................................... .. iv 

 

Chapter 1.  Introduction................................................................................................ ... 1 
1.1 Motivation............................................................................................................... 1 
1.2 Aim of Research ..................................................................................................... 4 
1.3 Outline of Thesis..................................................................................................... 5 
1.4 Miscellaneous ......................................................................................................... 7 

 

Chapter 2.  Student Modelling, Intelligent Tutoring and Adaptive Testing ................ ... 8 
2.1 Introduction............................................................................................................. 8 
2.2 Intelligent Tutoring Systems................................................................................... 8 

2.2.1 Components of an Intelligent Tutoring System......................................... 13 
2.3 Student Modelling and Intelligent Tutoring ......................................................... 14 
2.4 Modelling Domain-Specific Knowledge .............................................................. 16 

2.4.1 Scalar Model.............................................................................................. 17 
2.4.2 Overlay Model........................................................................................... 17 
2.4.3 Differential Model ..................................................................................... 18 
2.4.4 Perturbation Model.................................................................................... 19 
2.4.5 Genetic Graph............................................................................................ 22 
2.4.6 Bounded Model ......................................................................................... 22 
2.4.7 Constraint-based Model............................................................................. 23 
2.4.8 Machine Learning...................................................................................... 23 
2.4.9 Computerised Adaptive Testing ................................................................ 24 

2.5 Computerised Adaptive Testing ........................................................................... 25 
2.5.1 Item Response Theory............................................................................... 28 

2.5.1.1 Describing the Domain .................................................................. 29 
2.5.1.2 The Problem Progression Strategy................................................. 29 

2.5.2 Knowledge Space Theory.......................................................................... 33 
2.5.2.1 Describing the Domain .................................................................. 34 



   

 vi  

2.5.2.2 The Problem Progression Strategy................................................. 36 
2.6 Challenges in Student Modelling.......................................................................... 37 
2.7 Dealing with Uncertainty...................................................................................... 40 
2.8 Conclusion ............................................................................................................ 41 

 

Chapter 3.  Knowledge Acquisition and Representation ............................................. . 44 
3.1 Introduction........................................................................................................... 44 
3.2 Context.................................................................................................................. 45 

3.2.1 Choosing an Expert ................................................................................... 45 
3.2.2 Type of Students........................................................................................ 46 
3.2.3 Choosing a Domain ................................................................................... 46 
3.2.4 Role of Expert ........................................................................................... 47 
3.2.5 The MATT Experiment............................................................................. 49 

3.2.5.1 Aim of Experiment......................................................................... 49 
3.2.5.2 Subjects .......................................................................................... 49 
3.2.5.3 Method ........................................................................................... 49 
3.2.5.4 Findings.......................................................................................... 50 
3.2.5.5 Experiment Summary .................................................................... 52 

3.3 Conventional Knowledge Acquisition Techniques............................................... 52 
3.4 Constraint Logic Programming............................................................................. 53 

3.4.1 Background of Constraint Logic Programming ........................................ 53 
3.4.2 Constraint Logic Programming as a Tool for Knowledge Acquisition..... 56 

3.5 Domain Knowledge Representation ..................................................................... 57 
3.6 Eliciting the Domain Knowledge.......................................................................... 58 

3.6.1 Categorising Problems............................................................................... 58 
3.6.2 Categorising Responses............................................................................. 61 
3.6.3 Domain Representation in clp(FD)............................................................ 62 

3.6.3.1 Problem Generation ....................................................................... 64 
3.6.3.2 Evaluating Student Answers .......................................................... 65 

3.7 Eliciting Other Information................................................................................... 65 
3.7.1 Categorising Problem Solving Skills......................................................... 65 
3.7.2 Measuring Problem Difficulty................................................................... 66 

3.8 Conclusion ............................................................................................................ 68 



   

 vii  

 

Chapter 4.  Initial Experiments: Creating a Student Model and Problem Progression in 

Adaptive Testing .......................................................................................................... . 69 
4.1 Introduction........................................................................................................... 69 
4.2 The Use of a Student Model ................................................................................. 70 

4.2.1 The DSA Experiment ................................................................................ 72 
4.2.1.1 Aim of Experiment......................................................................... 72 
4.2.1.2 Subjects .......................................................................................... 72 
4.2.1.3 Method ........................................................................................... 72 
4.2.1.4 Findings.......................................................................................... 73 
4.2.1.5 Experiment Summary .................................................................... 75 

4.3 Contents of the Student Model in SKATE ........................................................... 76 
4.4 The Progression Problem...................................................................................... 78 
4.5 Direct Elicitation of Test Item Sequencing........................................................... 80 

4.5.1 Manual Querying An Expert ..................................................................... 80 
4.5.1.1 Aim of Experiment......................................................................... 80 
4.5.1.2 Method ........................................................................................... 80 
4.5.1.3 Results............................................................................................ 81 
4.5.1.4 Comments ...................................................................................... 82 

4.5.2 Computer-aided Elicitation ....................................................................... 82 
4.5.2.1 The Query Procedure ..................................................................... 82 
4.5.2.2 The Delivery Procedure – the BT algorithm.................................. 83 
4.5.2.3 Comments ...................................................................................... 84 

4.6 Problem Progression based on Problem Solving Skills ........................................ 84 
4.6.1 Aim of Experiment .................................................................................... 84 
4.6.2 Method....................................................................................................... 85 
4.6.3 Example..................................................................................................... 85 
4.6.4 Comments.................................................................................................. 88 

4.7 Conclusion ............................................................................................................ 89 
 

 

 

 



   

 viii  

Chapter 5.  Design and Implementation ....................................................................... . 90 
5.1 Introduction........................................................................................................... 90 
5.2 Origins of the Design............................................................................................ 91 
5.3 SKATE – A Student Modelling Architecture....................................................... 92 
5.4 The Adaptive Testing Strategy ............................................................................. 93 

5.4.1 Parameters of XP....................................................................................... 94 
5.5 Domain Knowledge .............................................................................................. 96 

5.5.1 Problem Solving Skills .............................................................................. 96 
5.5.2 Problems.................................................................................................... 97 

5.5.2.1 One Skill Problems ........................................................................ 98 
5.5.2.2 Two Skills Problems ...................................................................... 98 
5.5.2.3 Three Skills Problems .................................................................... 99 
5.5.2.4 Four Skills Problems.................................................................... 101 
5.5.2.5 Five Skills Problems .................................................................... 102 

5.6 The Student Model.............................................................................................. 102 
5.7 Conclusion .......................................................................................................... 103 

 
Chapter 6.  Experiment and Analysis ........................................................................... 104 
6.1 Introduction......................................................................................................... 104 
6.2 The Evaluation Strategy...................................................................................... 105 
6.3 Creating Simulated Students............................................................................... 107 

6.3.1 Sam1 Student Type – knows all the skills............................................... 108 
6.3.2 Sam2 Student Type – gaps in knowledge................................................ 108 
6.3.3 Sam3 Student Type - malrules ................................................................ 108 
6.3.4 Sam4 Student Type – lucky guesses........................................................ 109 
6.3.5 Sam5 Student Type – careless slips......................................................... 109 

6.4 Generating Logfiles ............................................................................................ 109 
6.5 Running the XP and ST Assessors...................................................................... 111 
6.6 Comparing XP and ST Assessors ....................................................................... 114 
6.7 Varying the Parameters of XP ............................................................................ 121 
6.8 Running Variations of XP................................................................................... 122 
6.9 Conclusion .......................................................................................................... 125 

 



   

 ix  

Chapter 7.  Conclusions................................................................................................ 126 
7.1 Summary............................................................................................................. 126 
7.2 Publications......................................................................................................... 129 
7.3 Main Contributions ............................................................................................. 129 

7.3.1 The Domain Model.................................................................................. 130 
7.3.2 The Student Model .................................................................................. 132 
7.3.3 The Test Delivery Model......................................................................... 132 
7.3.4 Learning................................................................................................... 134 

7.4 Further Work....................................................................................................... 135 
 

Appendix A. Item Characteristic Curves...................................................................... 136 
Appendix  B.  Manual Adaptive Testing...................................................................... 138 
Appendix C. Clp(fd) Representation of Problem Classes............................................ 142 
Appendix D. Problem Classes of Fraction Additions .................................................. 147 
Appendix E. Fixed-Item Test in Fraction Additions .................................................... 149 
Appendix F. Diagnosing Student Answers .................................................................. 157 
Appendix G. Simulated Students ................................................................................. 161 
Appendix H.  Set of Fraction Additions Problems....................................................... 165 
Appendix I.  Generated Logfiles .................................................................................. 167 
Appendix J.  Running XP Adaptive Test ..................................................................... 177 
Appendix K. Running ST Sequential Test ................................................................... 184 
Appendix L. Running XP1 Adaptive Test ................................................................... 194 
Appendix M. Running XP2 Adaptive Test .................................................................. 203 
Appendix N. Running XP3 Adaptive Test ................................................................... 211 
Appendix O.  Tabulated Results of Different Students................................................ 219 
Appendix P.  Summary of Performance of Assessors.................................................. 230 
Appendix Q.  List of Publications ................................................................................ 232 
Bibliography ................................................................................................................. 233 
 



   

 x  

List of Figures 
 
Figure 1.  The Architecture of SKATE................................................................................................... 5 
Figure 2.  ICAI Domains (Kearsley, 1987) ........................................................................................... 10 
Figure 3.  The 2 Sigma Problem (Bloom, 1984) ................................................................................... 12 
Figure 4.  Major Components of an Intelligent Tutoring System ......................................................... 13 
Figure 5.  Overlay Student Model......................................................................................................... 17 
Figure 6.  A Differential Student Model ............................................................................................... 19 
Figure 7.  A Perturbation Model ........................................................................................................... 20 
Figure 8.  A Flowchart describing an Adaptive Test (Thissen and Mislevy, 1990).............................. 30 
Figure 9.  Formulas for 1-PL, 2-PL and 3-PL models .......................................................................... 31 
Figure 10.  Item Characteristic Curves for 1-PL Model at three levels of difficulty............................. 32 
Figure 11.  Item Characteristic Curves for 2-PL Model (with difficulty level b=1) ............................. 32 
Figure 12.  Item Characteristic Curves for 3-PL Model........................................................................ 33 
Figure 13.  Illustration of Prerequisite Relationships and the Assessment Algorithm .......................... 36 
Figure 14.  Partitioning an Area of Syllabus ......................................................................................... 47 
Figure 15.  Classes of Problems............................................................................................................ 60 
Figure 16.  Types of Possible Responses .............................................................................................. 61 
Figure 17.  A Problem Class and a corresponding Response Type....................................................... 64 
Figure 18.  A List of Mal Rules ............................................................................................................ 75 
Figure 19.  A Set of Test Items ............................................................................................................. 80 
Figure 20.  Manually Elicited Test Item Sequence as a Binary Tree .................................................... 81 
Figure 21.  Problem Progression for a Domain of Five Skills .............................................................. 85 
Figure 22.  The Architecture of SKATE with XP testing strategy........................................................ 92 
Figure 23.  A Fragment of the Interaction History Module ................................................................ 103 
Figure 24.  The Evaluation Strategy.................................................................................................... 107 
Figure 25.  Sample of a generated logfile ........................................................................................... 110 
Figure 26.  Running XP on Student sam2e ......................................................................................... 112 
Figure 27.  Comparing XP and ST – Accuracy of Mastered Skills..................................................... 118 
Figure 28.  Comparing XP and ST – Accuracy of Unmastered Skills ................................................ 118 
Figure 29.  Comparing XP and ST – Overall Accuracy...................................................................... 119 
Figure 30.  Comparing Assessors – Overall Accuracy........................................................................ 122 
Figure 31.  Comparing Assessors - Accuracy of Mastered Skills ....................................................... 124 
Figure 32.  Comparing Assessors – Accuracy of Unmastered Skills .................................................. 124 



   

 xi  

Figure 33.  2-PL Item Characteristic Curves (b=0)............................................................................. 136 
Figure 34.  2-PL Item Characteristic Curves (b=-1) ........................................................................... 137 
Figure 35.  2-PL Item Characteristic Curves (b=0, c=0.2).................................................................. 137 
Figure 36.  Prolog Instantiations of Simulated Students ..................................................................... 164 
 
 



   

 xii  

List of Tables 
 
Table 1.  Correlating Knowledge Type and Acquisition Technique ..................................................... 53 
Table 2.  Tabulated Results of sam2f after running XP ...................................................................... 116 
Table 3.  Tabulated Results of sam2f after running ST....................................................................... 116 
Table 4.  Test Questions categorised by Problem Class and Skills ..................................................... 158 
Table 5.  Evaluating Final Answers only ............................................................................................ 159 
Table 6.   Inspecting Solution Paths and Final Answers ..................................................................... 160 
Table 7.  Simulated Students with overlay knowledge ....................................................................... 162 
Table 8.  Simulated Students with noisy data ..................................................................................... 163 
Table 9.  Comparing Five Assessors for Five types of Simulated Students........................................ 231 
 



   

 xiii  

 
 



Chapter 1. Introduction  1   

  

Chapter 1.  

Introduction 

 

In the context of education, a “test” is usually a series of questions.  Typically the sequence 

of questions is fixed, but in an adaptive test, the selection of questions is partially determined 

by the responses to earlier questions in the sequence.  This thesis is concerned with the 

design and development of adaptive tests in the context of student modelling within 

intelligent tutoring systems.  It proposes a strategy for constructing such tests based on expert 

emulation.  

 

This chapter presents the motivation and aim of the research and an outline of the thesis. 

 

 

1.1 Motivation 
The last three decades have seen a considerable effort to develop intelligent tutoring systems 

which provide tuition that is tailored to the needs of individual students.  The individualised 

attention such systems offer is made possible through student modelling. 

 

Student modelling is concerned with the task of keeping a record of many aspects of a 

student (Greer and McCalla, 1991).  Such a record is called a student model (Self, 1974) and 

it may include domain-specific information, such as how much and what the student has 

learned to date, what misconceptions he or she may have, and what problem solving 
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strategies he or she may possess, and learner-specific characteristics, such as what learning 

styles seem to be successful for the student, and what conative and affective dimensions 

would impact the student.  The task of inferring such information from learner’s behaviour is 

a major challenge in student modelling.  

 

In recent years, computerised adaptive testing has gained popularity as a student modelling 

technique (for example, (Huang, 1996) (Collins et al., 1996) (Dowling and Kaluscha, 1995) 

(Ríos et al., 1999)).  Though originally used for tests of competence rather than for diagnostic 

purposes, computerised adaptive testing is useful when deep cognitive modelling is not 

necessary.  This is the case when the aim of an intelligent tutoring system is to present 

remedial teaching based on an assessment of the student’s domain-specific knowledge in 

terms of what he or she knows. When attempting to infer a student’s knowledge in terms of 

aspects such as his or her problem solving strategies and misconceptions, adaptive testing is 

not appropriate. 

 

Computerised adaptive testing is characterised by the use of the minimum number of 

questions of ‘appropriate’ difficulty, in order to determine, with high accuracy, the level of 

performance of the student (Welch and Frick, 1993).  It is superior to the conventional fixed-

item pencil-and-paper tests in that it has the effect of reducing test anxiety and the overall 

testing time.  Though computerised adaptive tests can be both accurate and efficient, they are 

not necessarily any easier to construct than other student modelling programs.  A review of 

literature reveals two major approaches of computerised adaptive testing commonly used in 

student modelling.  They are the Item Response Theory (Wainer and Mislevy, 1990) and 

Knowledge Space Theory (Falmagne et al., 1990).  The first approach uses a statistical model 

and requires large empirical studies to calibrate its questions against student populations.  

This is not feasible for small-scale construction of adaptive tests for use within classrooms.  

Also, such tests perform summative assessment and represent a student’s knowledge of a 

subject domain as a single proficiency estimate only.  The second approach does not require 

large empirical studies and has adopted expert emulation in eliciting the problem progression 

strategy of adaptive testing.  The result of diagnosis takes the form of a ‘knowledge state’ 

which represents the set of problems or skills that the student has displayed mastery of.  This 

is more closely related to the diagnostic endeavour of many student modelling systems. 
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The thesis is mainly concerned with tutoring in an environment in which the knowledge state 

of a student is the most significant determiner of the form of remedial tutoring.  The 

motivation behind the research is to examine the feasibility of eliciting the strategies of a 

human teacher or tutor for the whole process of adaptive testing, from the construction and 

representation of the test syllabus to the problem progression or testing strategy itself.  While 

expert emulation is common in designing many intelligent tutoring systems (Seidel and Park, 

1994), it is not a common practice in the design of adaptive tests.  Adaptive testing systems 

can be designed to emulate an effective informal examiner.  As Wainer (1990) pointed out, 

the basic notion of an adaptive test is “to mimic what a wise [human] examiner would do”. 

 

Adaptability is the key attribute of human intelligence (Boy, 1996) and it is this trait which an 

effective human tutor possesses that enables him or her to provide one-on-one tutoring and 

adapt to the needs of the individually different student.  This is what Philip of Macedon’s 

son, Alexander, had enjoyed as a royal prerogative: the personal services of a tutor as well-

informed and responsive as Aristotle (Suppes, 1966).  Studies have shown that the 

knowledge of human tutors is rich and varied (Putnam, 1987) and that human tutoring 

provides the most effective method of instruction (Bloom, 1984).  Since the study by Bloom 

revealed that one-on-one human tutoring is the most successful form of instruction with 2-

sigma learning gains over classroom teaching, designers of intelligent tutoring systems have 

replicated this finding with computer tutors where computers generate adaptive forms of 

tutoring for individual learners (du Boulay, 2000a).  This means that by studying human 

tutors, intelligent tutoring systems can be designed and developed to provide individualised 

or adaptive instruction (Park, 1996) and to act much like a private tutor by aiming at 2-sigma 

learning gains. 

 

The hope underpinning this thesis is that just as human one-on-one tutoring has been proven 

to be the most effective form of instruction, human one-on-one testing to assess the state of 

knowledge of a student is the most effective form of assessment, and that the testing strategy 

is worth capturing.  The thesis makes the case that for small scale adaptive tests, a 

construction process based on the knowledge acquisition technique of expert systems is 

practical and economical.  The end result of such emulation is a student modelling tool for 

adaptive testing which can be used by human teachers themselves. 
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1.2 Aim of Research 
The aim of the research is to develop a strategy for the design and construction of small-scale 

adaptive tests based on expert emulation.  In one-on-one tutoring, there are three main types 

of knowledge which a human tutor needs to achieve effective tutoring (Self, 1974) and these 

knowledge components form the building blocks of an intelligent tutoring system (Ohlsson, 

1987).  Similarly, in one-on-one testing, there are three main types of knowledge which an 

informal examiner needs to maintain in order to render effective assessment.  This is the 

knowledge about what to test (the domain knowledge or testing syllabus), who to test (the 

student model) and how to test (the problem progression strategy).  The types of knowledge 

so gained from a human teacher or tutor can be represented in a student modelling 

architecture called SKATE shown in Figure 1.  

 

SKATE, which stands for Student Knowledge assessment by Adaptive Testing and Expert 

emulation, represents the adaptive testing strategy of the expert.  Its function is to model the 

knowledge of the student in a subject domain by adaptive testing and to build a student model 

which can be used to guide subsequent remedial help.  In Figure 1, the student modeller 

orchestrates the test administration while the interface module facilitates communication 

between SKATE and the human student. 

 

The following questions need to be answered: 

• Is there an efficient and effective approach of capturing such information? 

• Is there an efficient way of representing such information? 

 

In order to answer these questions, the following tasks were identified: 

a. to review current student modelling and adaptive testing techniques, 

b. to survey the conventional knowledge acquisition techniques, 

c. to investigate the potential use of constraint logic programming as a knowledge 

acquisition tool, 

d. to carry out expert emulation based on the techniques identified in b. and c. above,  

e. to incorporate the information and strategies gained from expert emulation in a student 

modelling architecture, and, 

f. to evaluate the student modelling strategy. 
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These tasks are handled by different parts of the thesis.  Task a. is examined in Chapter 2.  

Tasks b. and c. are investigated in Chapter 3.  Task d. is carried out in Chapters 3 and 4 while 

task e. is handled by Chapter 5.  Task f. is carried out in Chapter 6. 

 

Domain
Knowledge Student Modeller

Student

Adaptive
Testing
Strategy

Student
Model

Interface
Legend

Database

Human User

Process

Flow of interaction

 
Figure 1.  The Architecture of SKATE 

 
 
1.3 Outline of Thes
This thesis consists of seven

subsequent six chapters now 

 

Chapter 2 presents a review 

and focuses on computerised

describes the intelligent tu

techniques which model dom

with student modelling and
 

is 
 chapters including this introductory one.  An overview of the 

follows. 

of literature on student modelling in intelligent tutoring systems 

 adaptive testing as a recent advent in student modelling.  It first 

toring paradigm and examines the major student modelling 

ain-specific knowledge of the student.  Challenges associated 

 uncertainties are addressed. The chapter further discusses 
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computerised adaptive testing in the light of other testing procedures such as fixed-item 

testing and self-adaptive testing.  Two major approaches of computerised adaptive testing 

which have been influential in student modelling are described along two aspects – the 

construction of the domain and the problem progression strategy.   

 
Chapter 3 first lays the foundation for knowledge acquisition by describing the context in 

which the research is conducted.  It includes a description of a small experiment called 

MATT which confirms that the expert teacher performs adaptive testing when assessing a 

student’s knowledge in a subject domain on a one-on-one interaction.  Knowledge 

acquisition techniques are discussed including the potential use of constraint logic 

programming in numeric domains.  The chapter then discusses the results of knowledge 

elicitation in the construction of the domain knowledge which represents the test syllabus.  

Other issues like identifying problem solving skills, generating problems, diagnosing student 

answers and measuring problem difficulty are discussed.  It also shows how Constraint Logic 

Programming can be used for knowledge elicitation, knowledge representation, problem 

generation and answer evaluation.   

 

Chapter 4  discusses the experiments in creating a student model and a problem progression 

strategy in SKATE.  It first discusses the usefulness of a student model for adaptive testing 

and seeks to determine the contents of such a model.  It bases its decision on the findings of 

two experiments, such as the remediation strategy of the expert after testing and concludes 

with the choice to maintain domain-specific information about the student, in terms of what 

is believed to be mastered and a record of successful and unsuccessful attempts at problems.  

A clp(FD) representation means that the overlay student model is executable and is useful for 

predicting a student’s performance and for generating problems during remediation.  The 

chapter next presents two distinct strategies for problem progression based on expert 

emulation.  The first experiment is the development of a computer-aided procedure to 

systematically query an expert to extract a test item sequence called BT.  The second 

experiment describes a knowledge elicitation exercise which captures the expert’s testing 

strategy called XP, which is based on his measure of problem difficulty by the number of 

skills needed to solve a problem. 
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Chapter 5 describes the SKATE architecture and its knowledge components.  It is the 

culmination of the elicitation work carried out in the previous three chapters.  Fraction 

addition is the example domain used throughout the study but the proposed architecture 

should be able to support other topics in mathematics.  The student modelling component of 

SKATE called XP is described. 

 

Chapter 6 describes an evaluation strategy carried out to measure the performance of XP 

student modelling strategy.  Since the circumstances under which this work was undertaken 

precluded classroom testing, simulations of student behaviour are used.  The results from the 

evaluation are compared with those of a sequential testing strategy, ST.  Different versions of 

XP are created and evaluated against XP and ST. 

 

Chapter 7 provides a summary and findings of the work achieved so far.  It presents the main 

contributions of the research and concludes with directions for future work. 

 

 

1.4 Miscellaneous 
The masculine will be used throughout the manuscript to denote both male and female.  The 

following acronyms are used in the thesis: 

• CAI Computer-Assisted Instructional  

• ICAI Intelligent Computer-Assisted Instructional  

• ITSs   Intelligent Tutoring Systems 

• CAT Computerised Adaptive Testing 

• IRT  Item Response Theory 

• KST Knowledge Space Theory 

• clp(FD) Constraint Logic Programming over Finite Domains 

• FIT  Fixed-Item Testing 

• SAT Self-Adaptive Test 

 

In order to avoid repetition, there will be constant referencing to different parts of the thesis.  

For example, the phrase “see Section 2.3” means see Section 2.3 of Chapter 2, where the 

integer part denotes the chapter number.   
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Chapter 2.  
Student Modelling, Intelligent Tutoring and 

Adaptive Testing 

 

 
2.1 Introduction 
This chapter presents a review of literature on student modelling in intelligent tutoring 

systems and focuses on computerised adaptive testing as a recent advent in student 

modelling.  It first describes the intelligent tutoring paradigm and examines the major student 

modelling techniques which model domain-specific knowledge of the student.  Challenges 

associated with student modelling and uncertainties are addressed. The chapter further 

discusses computerised adaptive testing in the light of other testing procedures such as fixed-

item testing and self-adaptive testing.  Two major approaches of computerised adaptive 

testing which have been influential in student modelling are described along two aspects – 

the construction of the domain and the problem progression strategy.  The chapter concludes 

with a discussion on the implications of the review of these two techniques on the design of 

SKATE. 

 

 

2.2 Intelligent Tutoring Systems 
Computers have been used in education for more than three decades (Mandl and Lesgold, 

1988).  With lowering costs and continual improvements in computer technology, computers 

are becoming more affordable and accessible to educational institutions.  The widespread use 
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of computers in classrooms has been mainly in information processing software applications 

such as word processors, spreadsheets and database systems, and to a certain degree in 

subject-specific computer-assisted instructional or CAI systems.   

 

The CAI systems of the 1950s were influenced by the behaviourist psychological theories 

(Skinner, 1954) and were simple linear programs.  These evolved into branching programs in 

the 1960s which offered a degree of adaptability to the student.  An action of the student may 

correspond to a branch point in the program and a branch is selected based on the response of 

the student.  There may be a script for each branch point, for example, “if question 2 

answered correctly, go to question 10, else go to question 3”.  Branching programs evolved 

into generative programs in the 1970s (Uhr, 1969).  These are frame-oriented tutoring 

systems and could generate new problems from a combination of different elements in a 

database but still, adaptability was limited and often unrelated to the individual student needs.  

The instructional design was hard-wired into the domain content material as simple branches 

and loops.  There was no inferencing about the student’s learning state.   These early systems 

could not handle complex student responses and did not explicitly address the issues of how 

students learn.  The assumption was that if these systems presented information to the 

learner, the learner would absorb it (Urban-Lurain, 1996).  Although there have been notable 

successes, the architecture of CAI systems has been inadequate to provide robust and rich 

learning environments (Clancey and Soloway, 1990). 

 

As computer technology became more sophisticated in terms of processing power, storage 

facilities, peripheral designs, graphical user interfaces and networking, researchers began to 

think about CAI systems which offered more individualised attention to students.  They 

began to look at other techniques, such as Artificial Intelligence, in the attempt to produce 

effective computer tutors which emulate a good private human tutor who “has the ability to 

perceive a student’s view and adapt their behaviour accordingly” (Wenger, 1987).  This 

prompted research in Intelligent Computer-assisted Instructional or ICAI systems in the mid 

1970s.  This interest coincided with the emergence of expert systems which use Artificial 

Intelligence techniques to mimic human experts in fields such as medicine and engineering.  

Along the same vein, ICAI systems were developed with the aim to mimic human tutors.  
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According to the handbook of Artificial Intelligence, ICAI systems represent one of the main 

applied fields of Artificial Intelligence (Barr and Feigenbaum, 1981).  In 1982, the field 

acquired its most popular name, Intelligent Tutoring Systems (or ITSs), when Sleeman and 

Brown (1979) published a special issue of the International Journal of Man-Machine Studies 

as a book (Sleeman and Brown, 1982).  Early examples of ITSs are compiled by Barr and 

Feigenbaum (1981) and Polson and Richardson (1988) and include SCHOLAR (Carbonell, 

1970), GUIDON (Clancey, 1979) and DEBUGGY (Brown and Burton, 1978).  Many other 

textbooks, surveys and reviews have been published by key researchers such as Self (1974, 

1979, 1988a, 1988b, 1995, 1999a, 1999b), Wenger (1987), Clancey and Soloway (1990), 

Anderson (1992) and Shute and Psotka (1996). 

 

The intelligent tutoring paradigm draws its characteristics and strengths from many different 

disciplines. The development of such programs lies at the intersection of Computer Science, 

Cognitive Psychology and Educational Research; this field is often referred to as Cognitive 

Science (Kearsley, 1987) – see Figure 2.   

 

 

 

 

 

 

 

 

 

Figure 2.  ICAI Domains (Kearsley, 1987) 

 

From the field of education and training, ideas on teaching and learning strategies were 

adopted such as one-on-one tutoring, collaborative learning, peer-to-peer interaction and 

learning companions.  From the field of Artificial Intelligence and Expert Systems, 

techniques such as machine learning, fuzzy logic, rule-based inferencing, and Bayesian 

network inferencing featured in many intelligent tutoring and student modelling endeavours.  

Ideas were also drawn from the field of cognitive psychology.  This includes the work of 

John Anderson who developed the ACT theory of cognition (Anderson, 1983) and built 
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several computer tutors using this theory.  Examples include the LISP Tutor (Anderson and 

Reiser, 1985) and the Geometry Tutor (Anderson et al., 1985).  The ACT theory has evolved 

as ACT*, ACT-R and more recently as ACT-R/PM which has the potential of modelling 

high-density sensing information such as the tracking of eye movement and speech 

recognition (Anderson, 1998b). 

 

The field of intelligent tutoring is relatively young.  Since its inception nearly three decades 

ago, interest was at its prime in the late 1970s and 1980s.  However, interest began to wane 

when difficulties in developing effective ITSs, especially in student modelling, were 

encountered.  While a few ITSs have been deployed into real life settings, many still 

remained within research laboratories.  Today, the field of ITS is in a state of equilibrium and 

is still actively researched, as is evident in the proliferation of current journals and 

conferences: 

 
• Journal of Artificial Intelligence in Education (IJAIED) 

• International Conference on Intelligent Tutoring Systems (ITS) 

• International Conference on Artificial Intelligence in Education (AIED) 

• International Conference on User Modeling (UM) 

• World Conference on Computers in Education (WCCE) 

• International Conference on Computers in Education and International Conference on 

Computer Assisted Instruction (ICCE/ICCAI) 

 

Today, ITS research spans across many subfields such as:  

 
• student modelling 

• agent-based tutoring systems 

• authoring tools 

• ontological engineering 

• ITS architectures  

• distributed learning environments 

• instructional design 

• web-based education 
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Today, the aim of many ITS designers is to design and build computer tutors which can offer 

their students nearly the same degree of reasoning as achieved with a human tutor.  As 

mentioned in Section 1.1, a study conducted by Bloom (1984) revealed that one-on-one 

human tutoring is the most successful form of instruction.  Bloom found that one-on-one 

human tutoring shifted the distribution of achievement scores of students by about two 

standard deviations or two sigma learning gains compared with the conventional classroom 

teaching.  This is shown in Figure 3 where the class average moves from 50th percentile to the 

98th percentile.  This two standard deviation improvement, or Two Sigma shift, has become a 

goal at which designers of ITSs aim (du Boulay, 2000b).  To date, no intelligent tutoring 

system has attained this goal.  For example, with the LISP Tutor (Anderson and Reiser, 

1985), studies showed that while the computer tutor was more effective than “learning on 

your own”, it was not as effective as a human tutor. 

 

  

 

Figure 3.  The 2 Sigma Problem (Bloom, 1984) 
 

As mentioned in the previous chapter, there are three types of knowledge used to achieve 

effective human tutoring – knowledge of the subject matter, knowledge of teaching strategy 

and methods, and knowledge of the student (Self, 1974).  In the following subsection, it will 

be shown that these three types of knowledge form the building blocks of an ITS. 
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2.2.1 Components of an Intelligent Tutoring System 
There are three important functions of an ITS (McCalla and Greer, 1994).  First, an ITS 

models the knowledge of the learner in some computationally useful and inspectable way.  

Next, based on the student model of the learner, the ITS intervenes in the interaction between 

system and learner with the goal of facilitating learning.  Finally, the ITS evaluates the 

success of its intervention and adjusts its model of the learner, and the loop repeats.   

 

In order to carry out these functions in a one-on-one interaction with a learner, an ITS must 

have a model of instructional content that specifies what to teach, a model of a teaching 

strategy that specifies how to teach, and a model of a student that specifies who to teach 

(Ohlsson, 1987).  These models are similar to the types of knowledge types mentioned earlier 

which are necessary for effective human tutoring.  Wenger (1987) describes an ITS as a 

knowledge communication system which comprises at least four functional interacting 

components the domain knowledge model, the pedagogical module, the student model, and 

the interface or communication module (Figure 4):   

 

 

Pedagogical
Module

Student

Student Model

Interface

Domain
Knowledge

Module

 
 

Figure 4.  Major Components of an Intelligent Tutoring System 
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• Domain Knowledge Module 

This module contains the knowledge of what to teach.  It represents an area of syllabus and 

usually requires knowledge engineering in its construction.  Domain knowledge is usually 

represented as skills, concepts, procedures and problems of the subject domain under study. 

 
• The Pedagogical Module 

This component contains the knowledge of how to teach, that is a teaching or tutoring 

strategy.  It orchestrates the whole tutoring process and deals with issues like which topic to 

present, when to present a new topic, when to present a problem, when to review, and when 

to offer remedial help. 

  
• Student Model 

This component contains the knowledge about who it is teaching.  It keeps track of 

information that is specific to each individual student, such as his mastery or competence of 

the material being taught, and his misconceptions.  In effect, it stores the computer tutor’s 

beliefs about the student.  These information is used by the pedagogical module to tailor its 

teaching to the individual needs of the student. 

 
• Interface Module 

This module provides a communication mechanism for handling the interactions between the 

computer tutor and the student, such as mixed-initiative dialogues.  

 

 

2.3 Student Modelling and Intelligent Tutoring 
Student modelling is a type of user modelling and is specifically relevant to the adaptability 

of intelligent tutoring systems where the users are students or learners.  One of the earliest 

attempts at a student model was by Carbonell (1970) who used a semantic network to 

represent domain knowledge.  The term ‘student modelling’ stems from CAI research.  Early 

CAI efforts have attempted to enhance individualised instruction through the use of student 

models.  In a seminal paper on student modelling, Self (1974) describes generative CAI 

systems where problems and comments are not prestored but generated dynamically and this 

generation is a function of the student model.  He further classifies generative CAI systems 

into two categories where knowledge of what is being taught is kept implicit or explicit.  
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While most generative CAI systems belong to the first category, it is only the second 

category which allows the type of knowledge of who is being taught to refer directly to the 

type of knowledge of what is being taught, thus allowing the construction of a student model.  

Over the years, the term ‘student modelling’ came to be closely associated with ITSs when 

increasing efforts by Artificial Intelligence techniques were channelled to tackle the task of 

student modelling.  

 

Student models can be classified according to the functions they can perform.  Self (1988b) 

describes six main functions of student models: 

 
• Corrective 

 Feedback intended at repairing a misunderstanding of the student.  In this case, the model 

must identify a difference between the student’s understanding and the correct knowledge, 

and provide this information to other parts of the system. 

 
• Elaborative 

 Extending the knowledge of the student.  In this case, the model should identify areas 

where the student can be introduced to new material, or a refinement of his current 

understanding. 

 
• Strategic 

 Changing the approach to teaching at a higher level than local tactics.  This requires the 

student model to provide more general information about the student, such as his success 

rate with the current teaching strategy as opposed to a previous teaching strategy. 

 
• Diagnostic 

 Analysis of the state of the student.  In some sense, all aspects of student modelling are 

diagnostic.  What is meant here is the explicit use of the student model to refine 

information about the student in order to make a decision.  If, for example, the tutor 

wishes to introduce a new topic, but the student model is unable to indicate whether the 

current level of understanding of the student is adequate, the model can be requested to 

generate diagnostic examples which can be presented to the student. 
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• Predictive 

 Using the model to anticipate the effect of an action upon the student.  This requires the 

student model to act as a ‘simulator’ to simulate the behaviour of the student, given a 

particular action. 

 
• Evaluative 

 Providing an assessment of the level of achievement of the student.  This requires the 

system to make some aggregation across the information that it has. 

 

Early CAI systems, with their branching mechanisms, in some sense supported corrective 

and elaborative functions but lacked strategic, diagnostic or predictive roles, while 

Carbonell’s student model fulfilled all the functions given above.   

 

Student models can also be classified by their modes of interpretation: process or state 

models (Clancey, 1986).  Process models are capable of simulating the process by which the 

learner solves a problem and can therefore perform the predictive function of student 

modelling.  They are also called executable or runnable models. A student model is 

executable if its present state can be utilised by a certain interpreter to simulate the behaviour 

of the modelled student when he is solving a problem.  Executable models are also referred to 

as procedural models (Brusilovskiy, 1994) as student knowledge in the student model are 

usually represented as procedures, the most common knowledge elements being production 

rules.  Examples of process models are LISP Tutor (Anderson and Reiser, 1985) and 

GUIDON (Clancey, 1979).  On the other hand, state models do not have the capability of 

simulating and contain only state information.  Examples include SOPHIE (Brown et al., 

1975) for troubleshooting electronic circuits, PROUST (Soloway and Johnson, 1984) for 

program plan recognition of Pascal programs, and constraint-based models (Ohlsson, 1994). 

 

 

2.4 Modelling Domain-Specific Knowledge 
There are two major types of information which may be contained in a student model: model 

of domain-specific knowledge and model of individual, learner-related characteristics. 
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Learner-related characteristics can be conative such as wants, intentions and/or  affective such 

as motivation, emotion and anxiety (Self, 1994). Examples include modelling motivation 

(Matsubara and Nagamachi, 1996) and modelling learning styles (Bull and Shurville, 1999).  

There has been relatively little attention devoted to modelling the learner’s state of such 

characteristics beyond domain knowledge and common misconceptions.  As such, there is 

still a lack of standardised means of classifying these models.  On the other hand, there are 

established techniques for modelling student knowledge in relation to domain or course 

knowledge.  The following subsections discuss these techniques. 

 

2.4.1 Scalar Model 
The simplest form of a student model is a scalar model, which estimates the level of user 

knowledge of the course material by means of a certain integral estimate such a number 

ranging from 1 to 5.  

 

2.4.2 Overlay Model 
The overlay model is a student model which contains the student’s knowledge as a subset of 

the expert or domain knowledge (Figure 5).  It works on the basis that students will learn the 

domain and gain knowledge through aspiring to become experts.  Knowledge is represented 

and structured in the same way for both the domain knowledge and the student model, the 

difference being in terms of completeness.  Knowledge representation techniques include 

rule-based representations and semantic networks.  During student modelling, diagnosis takes 

place by comparing the student’s knowledge with the domain knowledge and the difference 

is explained as the student’s lack of skill.  
 

Domain Knowledge

Overlay Student Model

 

Figure 5.  Overlay Student Model 



Chapter 2. Student Modelling, Intelligent Tutoringand Adaptive Testing 18 

  

Examples of overlay models are SCHOLAR (Carbonell, 1970), a geography tutor for South 

America, which adopts a semantic network representation, and GUIDON (Clancey, 1979), a 

tutor built on MYCIN, a knowledge-based program that provides consultations about 

infectious disease diagnosis and therapy.  

 

This method is incomplete because only the lack of knowledge can be modelled.  The main 

problem with the overlay model is that it assumes that a student’s knowledge can be merely a 

subset of that of an expert, which may not be the case.  The domain model is usually 

represented in terms of atomic units, that is, a student either knows or does not know a 

certain unit.  A student’s partial knowledge of a unit cannot be represented.  Also, it does not 

represent any knowledge or beliefs, such as misconceptions, that the student might have that 

differ from those of the expert.  There is no possibility of allowing the student (novice) to 

have different conceptions of the domain from that of the expert, although there are studies 

which have shown otherwise.  For example, when categorising problems, novices tend to rely 

on surface analogies between problems while experts use deeper functional analogies (Chi et 

al., 1981). 

 

2.4.3 Differential Model 
The differential model is seen as an improvement to the overlay model.  It does not assume 

that gaps in student knowledge are all undesirable.  It divides the student’s knowledge into 

two categories: knowledge that the student should know and knowledge the student could not 

be expected to know (see Figure 6). 

 

Examples of systems which use this approach to student modelling are WEST (Burton and 

Brown, 1985), an electronic board game to teach arithmetic, and GUIDON2 (Clancey, 1987).  

This model still suffers from most of the same difficulties as the standard overlay model as it 

still assumes that the student model is essentially a subset of the expert and the student model 

remains incomplete. 
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Figure 6.  A Differential Student Model 

 

 
2.4.4 Perturbation Model 
The perturbation model approach, also called the buggy model and the mal rule model, goes 

beyond inferring what the student knows and does not know about a domain by inferring as 

well, any faulty knowledge or misconceptions that the student might possess. The 

perturbation student model, which represents the student’s correct and faulty knowledge, is 

considered a subset of both the domain knowledge and buggy knowledge (see Figure 7).  

 

This approach combines the standard overlay model with a representation of faulty or buggy 

knowledge.  The domain or expert knowledge is first represented and then augmented with 

explicit knowledge of possible misconceptions of the student.  This explicit knowledge is 

known as buggy knowledge and allows a more sophisticated diagnosis of the student’s state 

of knowledge than can be accomplished with a simple overlay model.  Subsequent 

remediation goes beyond filling in gaps in the student’s knowledge where the tutor must 

identify and eliminate the student’s misconceptions as well as adding the correct conceptions 

to the understanding of the student. 
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Figure 7.  A Perturbation Model 

 

Examples of this approach are DEBUGGY (Brown and Burton, 1978) , a system to evaluate 

a learner’s subtraction performance, Leeds Modelling Systems or LMS (Sleeman and Smith, 

1981), a system for testing algebra skills, and PROUST (Soloway and Johnson, 1984), a 

system for PASCAL programming, and the Geometry Tutor (Anderson et al., 1985). 

 

In the literature on perturbation models, different terms have been used such as bug, 

misconception, error and mal rule.  These terms are often used interchangeably but are 

actually quite distinct from one another.  When a student demonstrates a consistent but 

incorrect general model, this is called a misconception.  A bug, on the other hand, refers to 

some structural flaw in a procedure that often manifests itself in faulty behaviour. A 

collection of bugs and misconceptions is referred to as buggy knowledge, a bug library or a 

bug catalogue.   

 
When the idea of perturbations is applied to rule-based representations, the buggy knowledge 

becomes known as buggy rules or mal rules.  An example is BUGGY (Brown and Burton, 

1978) where a rule-based domain knowledge of multi-column subtraction was developed 

together with a rule-based bug library.  The bug library was based on a large empirical study 

where a set of students’ responses to a mathematics test were collected and analysed.  The 

correct responses formed the rules in the domain knowledge while the incorrect responses 

were represented as mal rules in the bug library.  In this way, a student’s current subtraction 
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procedure could be explained by either a correct rule or mal rule. 

 
The terms error and bug will now be distinguished.  As mentioned earlier, with the 

perturbation model approach, there is a set of correct procedures which make up the domain 

knowledge and a set of incorrect or faulty procedures which make up the buggy knowledge.  

A procedure, when executed, produces a specific behaviour or outcome.  If the outcome does 

not correspond to that what is expected, the difference between expected behaviour and 

observed behaviour is described as an error.  A bug, however, is a variant of the procedure 

which generates an error.  It is possible for the same error to be explained by different bugs. 

 
Another example of a rule-based representation of correct and buggy knowledge is the LISP 

Tutor (Anderson and Reiser, 1985) which is based on the model tracing technique (Anderson 

et al., 1990).  Under the model tracing paradigm, the computer tutor monitors the student in a 

step-by-step fashion during problem solving and inferences from single problem solving 

steps to single rules.  In this way, the tutor can determine if the student is on a correct 

solution path or an incorrect one.  In the case of the latter, an attempt is made to match the 

incorrect solution path against a bug library in order to infer if the student is suffering from a 

known misconception.  Appropriate feedback is provided accordingly.  While model tracing 

prevents floundering on the part of the student, it discourages exploratory behaviour. 

 

There are many challenges to the buggy technique.  For example, there is the problem of bug 

migration (VanLehn, 1982) which is caused by the change of a bug into a different but 

related one and this makes the diagnosis of student’s actions even more difficult.  Also, the 

construction of bug libraries often involves extensive empirical studies including protocol 

analysis.  The high costs involved could be offset by its portability across student populations 

in a similar subject domain.  However, Payne and Squibb (1990) questioned the generality of 

bug libraries when they conducted a study which showed that the bug library constructed by 

Sleeman (1984) and Sleeman (1985) were minimally relevant for the two new student 

populations.  Some researchers have attempted to avoid collecting bugs through empirical 

observations by automating the generation of buggy knowledge (Baffes and Mooney, 1996), 

(Lee, 1996);  another good example is the Repair Theory (Brown and VanLehn, 1980) which 

is a generative theory of bugs, that is, a method of deriving bug libraries directly from correct 

procedures.  The usefulness of maintaining bug libraries was also questioned by Sleeman et 
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al (1989) who conducted a study in the tutoring of algebra and found that reteaching was as 

effective as remediating errors. 

 

2.4.5 Genetic Graph 
While the first four models described above capture a snapshot of the current knowledge of 

the student, the genetic graph (Goldstein, 1982) captures an evolutionary process of the 

student’s knowledge over time.  It is a type of semantic network which represents the 

expert’s conception of the domain.    

 

The nodes of the graph represent the student’s knowledge and the edges represent the 

expert’s view of how learning occurs between nodes.  A student’s learning behaviour is 

shown by a particular learning path in a sequence which corresponds to the genetic graph’s 

partial ordering and this learning path forms part of the student model. 

 

Here, student modelling is still an overlay technique where the student model is a subset of 

the domain knowledge.  The main difference between the standard overlay technique and the 

genetic graph is that the latter is not only concerned with maintaining what the student knows 

but also how his knowledge is acquired over time.  This is represented by the student’s 

learning path which evolves as he progresses in his learning.   

 

2.4.6 Bounded Model 
A bounded model (Elsom-Cook, 1988) can be considered a variation of an overlay model. 

This technique moves away from representing knowledge to working in terms of beliefs 

about the student’s knowledge.  The idea is that, rather than attempting to build an exact 

student model, the student’s knowledge is represented by fuzzy bounds.  By observing 

student behaviour, the system maintains a confidence interval around the lower and upper 

bounds of the student’s knowledge.  Standard machine learning techniques are used.   The 

lower and upper bounds are obtained through inductive reasoning.  Then, on the basis of the 

system’s domain knowledge, deductive reasoning is used to generate predictions and 

problems are generated to test these predictions.  Bounded models can be more tractable to 

build than exact models but subsequent remediation is less precise. 
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2.4.7 Constraint-based Model 
A constraint-based model (Ohlsson, 1994) features as being computationally simple.  It does 

not require large empirical studies for constructing a bug library, nor a runnable expert model 

or an ideal student model.  No computationally expensive inference algorithm is required – 

simple pattern matching is used. The domain knowledge is elicited through task analysis and 

is represented as a set of constraints that capture the central concepts of the domain.  The 

student model is the set of constraints which he violates.  These violated constraints become 

candidates for concepts which the student does not know and is used to guide remediation or 

feedback.  An example of this approach is the SQL Tutor (Mitrovic, 1998) which elicited 

from an expert around five hundred constraints. 

 

Constraint-based modelling does not prescribe a particular tutorial strategy.  It ignores the 

student’s problem solving strategy and is thus able to monitor free exploration and to 

recognise creative and novel solutions as correct.  Ohlsson (1994) coined the term radical 

strategy variability which claims that a student has several strategies at each moment in time, 

and he may switch between them on a problem-by-problem basis.  In the face of such 

inconsistencies or contradictory behaviour observed in student solutions, constraint-based 

modelling approach fared the best in tackling this problem while the bug library and machine 

learning techniques fared the worst. 

 

2.4.8 Machine Learning 
Machine learning is a technique of Artificial Intelligence which develops computational 

theories of learning processes and builds machines which learn.  Gilmore and Self (1988) 

examined the potential of machine learning for building student models.  A bottom-up 

approach is adopted which first identifies a solution path that leads to the final answer and 

then machine learning is applied to perform reconstructive diagnosis in order to construct a 

procedure that generates that path.  While this technique does not require empirical research 

to construct a bug library, the computational complexity involved can even be higher than 

that of the bug library technique. 

 

Examples include the Tutor of Logically Aided Construction or TALC Geometric Tutor 

(Desmoulins and van Labeke, 1996) which uses machine learning techniques to check the 
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correctness of student construction with respect to a teacher’s specification and the 

Automated Cognitive Modeler or ACM (Langley and Ohlsson, 1984) which tries to model 

behaviour & uses machine learning to construct a student model off-line.  ACM employs a 

bottom-up approach which invents a student model by searching the space of possible 

models, identifying a solution path that explains the performance and constructing a 

procedure that generates that path; the second step is done by ID3 machine learning method. 

 

2.4.9 Computerised Adaptive Testing 
Computerised adaptive testing or CAT (Wainer, 1990) is a recent arrival into the scene of 

student modelling.  With its roots in psychometric measurement, CAT is characterised by the 

efficiency and accuracy at inferring a student’s knowledge in a domain with the minimum 

number of problems.  The student is presented with problems of appropriate difficulty.  This 

has the advantage of reducing test anxiety, sustaining the motivation of students during 

testing, and more importantly, of reducing the overall testing time.  An interesting analogy 

between measurement within a tutoring system and psychometric measurement was made by 

Frederiksen and White (1990).  

 

Two major techniques of computerised adaptive testing have been particularly influential in 

their application in student modelling.  They are the Item Response Theory or IRT (Wainer 

and Mislevy, 1990) and the Knowledge Space Theory or KST (Falmagne et al., 1990).  

These are discussed in more detail in Sections 2.5.1 and 2.5.2.  CAT can be viewed as an 

overlay technique.  In the approach based on the two major techniques mentioned above, the 

domain knowledge is represented as a problem domain which contains problems or classes of 

problems for a particular area of syllabus.  For example, in the KST approach, the domain 

may be represented by a directed graph of nodes where each node represents a problem or a 

class of problems and the edges represent the relationship between the nodes.  The student 

model is a subset of the graph and represents the student’s knowledge as a particular path on 

the graph.  Other works have represented the domain knowledge to include not only 

problems or classes or problems but also concepts and skills.  Examples include granularity 

hierarchies (Collins et al., 1996) and curriculum hierarchies (Huang, 1996). 

 

The following section is devoted to discussing adaptive testing in detail. 
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2.5 Computerised Adaptive Testing 
Traditional fixed-length, pencil-and-paper fixed-item testing, or FIT for short, remains the 

predominant testing strategy in educational and training settings.  FIT involves the 

administration of a fixed set of questions to a student population.  An examinee1 is expected 

to answer all questions within a fixed period of time.  There is a predefined ordering of 

questions but an examinee does not need to answer in that order; he may skip questions and 

return to them later.  As this type of testing has to reach out to examinees of all capabilities 

within a population, therefore, there may be relatively few questions which are of the 

appropriate difficulty for any one examinee.  Questions may be too difficult for the weak 

examinee, or too easy for a good examinee.  As a consequence, large numbers of questions 

may be needed to obtain an acceptable degree of precision.  Also, questions are arranged in 

order of difficulty.  This may work well for a less proficient examinee as he will be able to 

answer the earlier questions which are easier before reaching the more difficult ones.  For a 

good examinee, however, he would have to wade through the easier ones before reaching the 

more challenging questions.  In both cases, there is a possibility of extraneous noise such as 

guesswork and careless slips.  For the less proficient student, anxiety may set in when he 

attempts to tackle the more difficult questions and he may attempt to solve them through 

guessing.  For a more proficient student, boredom may set in when he wades through the easy 

questions and this wastes time and may increase the possibility of noise mainly caused by 

careless errors or slips. 

 
For the same purposes, a useful variation would be for all examinees to take tests that are 

individually suited to their own abilities.  With the advent of more powerful and affordable  

desktop computers in the 1980s, it became possible to implement computerised adaptive 

testing, or CAT for short, in educational and training settings.  The strength of CAT lies in 

having to ask only enough questions in order to assess a student in a subject domain and in its 

ability to rank all examinees on the same continuum even when the examinees do not share 

any test items in common.  CAT is defined as a sequential form of individual testing in which 

successive items in the test are selected based on an algorithm which adapts the test to the 

specific characteristics of each examinee.  As mentioned earlier, the goal of CAT is to use the 

                                                           
1 The words ‘student’ and ‘examinee’ are used interchangeably. 
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least number of questions necessary to determine, with high accuracy, the level of 

performance of the examinee (Welch and Frick, 1993).  An examinee is given an easier 

problem to solve when he has answered the current one incorrectly, or a more difficult one 

when he has answered the current one correctly.  In this way, an examinee is presented with 

problems of appropriate difficulty throughout the test.  This careful tailoring and selection of 

problems not only result in greater accuracy of the assessment with only a handful of 

properly selected items but also reduces the overall testing time. 

 
An adaptive test is usually computerised, although a manual method may be used such as the 

self-scoring flexilevel test described by Frederic Lord in 1971, a description of which is given 

by Thissen and Mislevy (1990).  The main characteristics of CAT are: 
 
• The test can be taken at the time convenient to the examinee; there is no need for mass 

or group-administered testing, thus saving on physical space. 

• As each test is tailored to an examinee, no two tests need be identical for any two 

examinees and this minimises the possibility of copying. 

• Questions are presented on a computer screen one at a time. 

• Once an examinee keys in and confirms his answer, he is not able to change it. 

• The examinee is not allowed to skip questions nor is he allowed to return to a question 

which he has confirmed his answer to previously. 

• The examinee must answer the current question in order to proceed onto the next one.   

• The selection of each question and the decision to stop the test are dynamically 

controlled by the answers of the examinee. 

 
Examples of the use of CAT include three of the world's most widely used college and 

graduate admissions tests which are trading the pencil-and-paper formats for CAT 

(Educational Testing Service, 1999;Oseas-Europe, 2000).  These are Graduate Record 

Examinations (GRE®) General Test (GRE, 2000), the Graduate Management Admission 

Test GMAT® (GMAT, 2000), and the Test of English as a Foreign Language TOEFL® 

(TOEFL, 2000).  Other major moves include Microsoft® for the Microsoft® Certified 

Solution Developer (MCSD) credential (Microsoft, 2000), and COMPASS®/ESL which 

measures students' mathematics, reading, and writing skills on demand (COMPASS, 2000).  

Smaller scale examples include a commercial application called SWIFT in the domain of 

desktop computer applications (Gemini, 2000) and a computer tutor called Mathemagic in the 
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domain of mathematics (Parvate et al., 1998).   

 

A variation of CAT is self-adaptive testing, or SAT for short, where an examinee can 

exercise some control over the sequencing of problems.  The examinee, rather than a 

computerised algorithm, chooses the difficulty of the next problem to be presented (Rocklin, 

1994).  In a study carried out by Rocklin and O'Donnell (1987), SAT was compared against 

the more traditional FIT.  Participants completed a self-report of text anxiety and were 

randomly assigned to take one of the three tests of verbal ability.  Anxiety is associated with 

decrements in academic performance and is typified by a situation where a student claims to 

have mastered the course material before the test or examination but is unable to perform 

satisfactorily during the test, only to recall the material with complete clarity after it is too 

late (Covington and Omelich, 1987).  The study showed that SAT not only led to higher 

ability estimates but also minimised the effect of test anxiety without any overall loss of 

measurement precision. 

 

A more thorough study which compared all three testing procedures – FIT, CAT and SAT – 

was conducted by Vispoel et al. (1994).  In this study, three aspects of the tests were 

evaluated: (a) their measurement precision and efficiency, (b) the effects of several individual 

difference variables (test anxiety, verbal self-concept, computer usage, and computer anxiety) 

on ability estimates alone and in interaction with the test administration procedures, and (c) 

examinees’ attitudes about various features of the tests they took.  Volunteer college students 

were assigned to take a vocabulary test using one of the three methods of testing.  All the 

tests used the same large, well-calibrated item bank.  The results were interesting.  CAT was 

found to be more precise and efficient than SAT, which was in turn more precise and 

efficient than FIT.  SAT, however, yielded higher ability estimates than the other tests for 

individuals with lower verbal self-concepts.  Examinees indicated that they prefer tests in 

which they can have as much control and as much information as possible.  Taken 

collectively, these results indicate that no single test administration procedure simultaneously 

maximises precision, efficiency, validity, and examinee satisfaction.  As each testing 

procedure has its own benefits, some systems make use of more than one testing procedure.  

For example, the work of Frosini et al. (1998) combined both CAT and SAT in their creation 

of an automatic examiner in the domain of Pascal programming, where a SAT pre-exam 

determined the starting difficulty level of the CAT. 
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Despite its many advantages over FIT, CAT is not as widely used in the educational or 

training environments as would be expected.  A reason for it not to be readily embraced may 

be that it is still a relatively new approach when compared with the traditional FIT which 

have been the predominant testing strategy for generations.  Also, mass testing, a feature of 

FIT, is still favoured because it is a relatively cheaper form of test administration. 

 

Unlike ITSs, most CAT systems describe a subject syllabus in terms of test items or problems 

only, the main sources are likely to be from teachers, instructional materials and past class or 

exam questions.  A problem, as defined in the Oxford English Dictionary, is “a doubtful or 

difficult question; a matter of inquiry, discussion, or thought; a question that exercises the 

mind”.  Problems must be chosen very carefully (Marshall, 1990) as they determine the 

efficiency and effectiveness in carrying out assessment to determine what a learner knows, 

understands, and can do in order to further learning and performance.  Also, CAT makes 

more stringent demands on its component items than its FIT counterpart.  This is because its 

tests are relatively shorter, usually half as long as FIT but with the same degree of accuracy, 

and therefore each item is critical and must be well constructed.  The effect of a flawed item 

in CAT has much greater impact than one in FIT, mainly because not every examinee gets 

the same test so a flawed item may affect some examinees but not others – this compromises 

on test fairness.  In the next two sections, the two major approaches of CAT are described, 

based on two aspects – the building of the domain of test items and the problem progression 

strategy.  

 

 

2.5.1 Item Response Theory 
Item Response Theory (Wainer and Mislevy, 1990), or IRT, is a statistical framework in 

which examinees can be described by a set of ability scores that are predictive, linking actual 

performance on test items, item statistics and examinee abilities.  IRT was first proposed by 

Lord (1980) and is well explained by Wainer (1990).  There are web-based tutorials on IRT 

(Rudner, 1998).  True to the goal of CAT in general, IRT-based adaptive testing systems 

have been shown to significantly reduce testing time without sacrificing reliability of 

measurement (Weiss and Kingsbury, 1984). 
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Ideas from IRT have been very influential in student modelling and intelligent tutoring.  They 

have formed the basis of a system to assess student programming abilities (Syang and Dale, 

1993), they have influenced Huang’s content-balanced tests (Huang, 1996), and more 

recently, their influence can be seen in SIETTE which is a web-based adaptive testing system 

in the domain of European vegetable species (Ríos et al., 1999). 

 

2.5.1.1 Describing the Domain 
In the terminology of IRT, a domain of test problems or items is called an item pool.  Each 

item is associated with one or more of these parameters – the difficulty level, the 

discriminatory power and the guessing factor.  The difficulty level describes how difficult an 

item is, the discriminatory power describes how well the test item discriminates students of 

different proficiency while the guessing factor is the probability that a student can answer the 

item correctly by guessing.  

 

To ensure that it best fit the current student population to be tested on, an item pool must 

undergo content-balancing and item calibration.  Content-balancing is used to ensure no 

content area is over-tested or under-tested.  Item calibration is used to estimate values for the 

item parameters.  This process is expensive as it involves large-scale empirical studies, 

usually based on a minimum of 200 to 1000 or more students. An effort to avoid major 

empirical studies for item calibration is the work by Huang (1996) whose CBAT-2 algorithm 

uses a machine learning procedure to generate content-balanced questions based on a specific 

part of a course curriculum. 

 

2.5.1.2 The Problem Progression Strategy 
The problem progression or adaptive testing algorithm in IRT (Thissen and Mislevy, 1990) is 

given in Figure 8.  At the start of the test, the algorithm has an initial provisional proficiency 

estimate of the student and this is denoted by θ.  This specifies an initial item which is 

selected from the item pool.  The selected item is aimed at providing the most information 

about the student; the notion of the “most informative” item will be discussed later.  Once the 

student provides an answer for the selected item, a new proficiency estimate, θ�, is calculated 

together with its confidence level.  It is based on whether the student’s answer is correct or 

incorrect, the old θ and the item parameters.  If the confidence level of θ� reaches a 
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designated level, or when some predetermined number of items has been administered, the 

test terminates.  Otherwise another item is selected for the student, and the test continues.  

 

 

1. Begin with Provisional Proficiency Estimate

2.  Select & Display Optimal
Test Item

3.  Observe & Evaluate
Response

5.  Is Stopping Rule
Satisfied?

7.  End of
Battery? 8.  Administer Next Test

4.  Revise Proficiency
Estimate

6.  End of
Test

9.  Stop

  No

  Yes

    Yes

     No

 
Figure 8.  A Flowchart describing an Adaptive Test (Thissen and Mislevy, 1990) 

 

As mentioned earlier, an item does not need to be characterised by all three parameters.  For 

example, problems in CBAT-2 (Huang, 1996) are indexed by two parameters – difficulty 

level and guessing factor.  Therefore, depending on the number of parameters used, the 

confidence level or probability of θ� is calculated by any one of the three formulas where b is 

the difficulty level, a the discriminatory power and c is the guessing factor (Wainer and 

Mislevy, 1990).  These formulas are presented in Figure 9. 
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)(1
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P −−+
= θθ for one parameter.  Also called one parameter logistic 

                                                         model or 1-PL or Rasch model 

)(1
1)( bae

P −−+
= θθ for two parameters.  Also called 2-PL model 

)(1
1)( bae

ccP −−+
−+= θθ for three parameters.  Also called 3-PL model 

 

Figure 9.  Formulas for 1-PL, 2-PL and 3-PL models 
 

 
P(θ) is the probability of the examinee with proficiency θ responding correctly to an item.  As 

mentioned earlier, an item that is chosen is one which provides the most information about 

the student.  Items which offer the most information are those whose P(θ) equals or are close 

to 0.5.  The reasoning behind this is as follows:  If P(θ) is more than 0.5, say 0.85, then the 

test item would not be very informative because it is almost certain that the student would 

provide a correct response to that test item.  If  P(θ) is less than 0.5, say 0.1, then the test item 

is also not very informative as it can be fairly certain that the student would respond 

incorrectly.  If P(θ) is 0.5, then the test item is considered the most informative item as there 

would be an equal chance of the student answering correctly or incorrectly.   

 

Item characteristic curves or ICCs can represent the 1-PL, 2-PL and 3-PL models for 

different values of a, b and c, as shown in Figures 10, 11 and 12 respectively.  Appendix A 

presents more ICCs for the 2-PL and 3-PL models for values of b equal to 0 and -1.  A 

detailed account of each model is given by Wainer and Mislevy (1990).   Figure 10 shows 

three ICCs representing three different values of difficulty, b.  Figure 11 represents three 

ICCs for three different values of the discriminatory power, a, with the value of b constant at 

1.  Figure 12 represents three ICCS for three different values of a, with the values of b and c 

(the guessing factor) constant.  
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Figure 10.  Item Characteristic Curves for 1-PL Model at three levels of difficulty 
 

 

 

Figure 11.  Item Characteristic Curves for 2-PL Model (with difficulty level b=1) 
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Figure 12.  Item Characteristic Curves for 3-PL Model 
(with difficulty level b = 1 and guessing factor c = 0.2) 

 

Each item in the item pool is represented by an item characteristic curve or ICC which is 

determined empirically using an item calibration procedure.  As an example, assume that 

each item in an item pool is represented by any one of three curves in Figure 10.  If the 

student’s proficiency estimate θ is 0, then the probability of the student getting an item of 

difficulty level 0 (b = 0) correct is 0.5, the probability of him getting an item of b = 1 (a more 

difficult problem) correct  is about 0.28, and the probability of him getting an item of b = -1 

(an easier problem) correct is about 0.73.  As mentioned earlier, an item whose probability 

estimate is close to or equal to 0.5 is the one which provides the most information about the 

student and is thus chosen to be presented next to the student. 

 

 

2.5.2 Knowledge Space Theory 
Another strand of development in adaptive testing is based the Knowledge Space Theory, 

KST for short, (Doignon and Falmagne, 1985), (Falmagne et al., 1990).  Examples of 

applications include a web-based, domain-independent system called RATH (Hockemeyer 
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and Dietrich, 1999), a web-based system for the domain of mathematics called ALEKS 

(Doignon and Falmagne, 1998) and a general purpose system for testing and training called 

ADASTRA (Dowling et al., 1996).  

 

2.5.2.1 Describing the Domain 
As with IRT-based systems, the domain is defined by a collection of test items.  Here, a test 

item can represent not only a problem but also a class of problems, and the relationship 

between the test items are explicitly stated through prerequisite relationships.  Unlike IRT-

based systems which are unidimensional in that only one student trait (such as mastery of a 

topic) can be measured at one time, adaptive testing systems based on the KST can measure 

more than one trait and can represent a set of skills or problems mastered by the student.  

This set is known as a knowledge state.  The structure of the domain takes the form of a 

knowledge space which represents the area of the syllabus to be tested; the following 

example will explain the notion of a knowledge space.  

 

A body of knowledge is characterised by a set of items called the domain, say {a,b,c,d}.  This 

gives rise to 24 possible knowledge states: 

  

{}, {a}, {b}, {c}, {d},       

{a,b}, {a,c}, {a,d}, {b,c}, {b,d}, {c,d}, 

{a,b,c}, {a,b,d}, {a,c,d}, {b,c,d}, {a,b,c,d} 

 

A student’s knowledge state is defined as the set of items in the domain that the student is 

capable of solving.  For example, if a student has the knowledge state {a,b,d}, this means that 

he can solve items a, b and d.  Not all possible subsets of the domain are feasible knowledge 

states.  For example, if the student can solve item d, and that it is inferred that the student can 

also solve item a, then any knowledge state that contains item d must also contain item a.  

This means that knowledge states {d}, {b,d}, {c,d} and {b,c,d} are not feasible.  This means 

that a feasible knowledge state is one which contains not only all the items that the student 

has demonstrated mastery of, but also the items which can be inferred.  In effect, a feasible 

knowledge state describes the prerequisite relationships between items.  For example, in the 

knowledge state {a,d}, item a is a prerequisite of item d.  The collection of all feasible 

knowledge states is called the knowledge structure.  The knowledge structure must also 
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contain the null state {} which corresponds to the student who cannot solve any item, and the 

domain which corresponds to the student who can solve or master all items.   

 

When two subsets of items are knowledge states in a knowledge structure, then their union is 

also a state, that is, 

If K and K’ are states, then K U K’ is also a state 
 

 

This means that the collection of states is closed under union.  When a knowledge structure 

satisfies this condition, it is known as a knowledge space.  

 

In practice, feasible knowledge states are obtained through computer-aided procedures which 

systematically query human experts to obtain their personal knowledge structures (Dowling 

and Kaluscha, 1995) (Dowling, 1993) (Koppen, 1993) (Kambouri et al., 1994).  The result of 

such elicitation is a knowledge space which is a set of all feasible knowledge states.  These 

query procedures present assertions of the form below to the expert teacher for judgement 

and ask the teacher to either accept or reject each displayed assertion (Dowling and Kaluscha, 

1995): 

 

Imagine a student who does not master the items p1, �, pk.   

Is it then (practically certain) that this student does not master item q? 

 

The problem is that the number of possible assertions increases with the number of test items.  

For example, if there are 50 test items, then there are approximately 2.8 x 1016 possible 

assertions.  Not all these assertions need to be presented to the expert for judgement as 

judgements on assertions whose acceptance or rejection can be inferred logically from 

previous judgements can be omitted.  This was tried by Kambouri, Koppen, Villano and 

Falmagne in a study in which experts judged assertions on 50 examination questions 

concerning U.S. high school mathematics (Kambouri et al., 1994).  In this study, the experts 

judged between 1000 and 2500 assertions until all 2.8 x 1016 assertions were deduced as 

inferences.  
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2.5.2.2 The Problem Progression Strategy 
The knowledge space will serve as the core of a knowledge assessment system.  Once the 

domain is represented as a knowledge space, the adaptive testing strategy is then to locate as 

efficiently and as accurately as possible, a student’s knowledge state, which is a point in the 

knowledge space.  Problem progression works like this.  An item is selected.  Usually, some 

predictive probabilistic model is used to determine the sequence of items in a test (Villano, 

1992).  If a student has answered the item correctly (incorrectly), it can be inferred that he 

can (cannot) answer a prerequisite (parent) item and will thus not be asked to solve the latter.  

An item is a problem from a pool of similar problems, for example, problems which ‘add two 

fractions of common denominators’.  Inferences progressively prune the search space and at 

the end of the test, a student’s knowledge of the subject domain is represented by a 

knowledge state.  In an example given by Dowling and Kaluscha (1995), a knowledge space 

is represented as an AND/OR graph, as shown in Figure 13.  The nodes represent problems 

and the arcs state the prerequisite relationship between the nodes.   
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Figure 13.  Illustration of Prerequisite Relationships and the Assessment Algorithm 
 
 

Item b represents an AND node.  This means that if item b is answered correctly (mastered), 

then it can be inferred that both its prerequisites c and d are mastered.  Item e represents an 

OR node.  This means that if item e is mastered, it infers that all the test items in at least one 
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of its prerequisite subgraphs must be known.  These subgraphs are the one with the nodes g 

and h, or the one with the nodes f and h.   

 

Suppose item c is chosen and presented to the student and the student provides an incorrect 

answer.  From this incorrect response, it can be inferred that the student will not be able to 

solve problems a and b either, as c is a prerequisite of a and b.  Problems a and b are 

considered more difficult than c and are thus not presented to the student.  The next problem 

to be selected will be one which is not a or b, nor one which has a, b or c as its prerequisites.  

Suppose the next problem chosen is e and it is answered correctly.  This infers a correct 

answer to problem h, as h is a member of both subgraphs of the OR node, and h will be 

removed from the list of candidate problems to be presented.  Suppose d is presented next 

and is answered correctly, and g is presented next and is answered incorrectly.  This infers a 

correct answer to f.  The test stops and the student’s knowledge state is inferred as {d, e, f, h} 

which was reached with only four questions being presented out of a maximum of eight.  

 

 

2.6 Challenges in Student Modelling 
Student modelling remains a difficult task and represents one of the most challenging 

subfields of ITSs.   Some barriers to student modelling which result from the problem of 

inferring knowledge from learner’s behaviour are: 

 

• the environment contains a large amount of uncertainty and noise 

• the learner’s inference may be unsound and may be based on inconsistent knowledge 

• constructing explanations from behaviour is computationally intractable 

• learners are creative and inventive and frequently engage in unanticipated, novel 

behaviour that requires much sophistication to interpret 

• There is constant revision which the learner undergoes in his perceptions of the domain 

of study as the instructional interaction proceeds, a feature that presents a constantly 

moving target for the student modelling subsystem 

 

As student modelling is an essential component of an ITS, the difficulties associated with 

student modelling may be a major contributory factor for the relatively slow deployment of 
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ITSs into educational and training settings.  Also, the construction of ITSs, in particular the 

student modelling task, is a multidisciplinary endeavour and usually involves a team of 

computer programmers, domain experts and educational theorists.  Estimates of construction 

time indicate that 100 hours of development translates to 1 hour of instruction (Beck et al., 

1998).  There have been differing views on how the problem of student modelling should be 

tackled.  These are discussed in the following subsections. 

 

a. Shift Away from One-on-One Tutoring 

As student modelling seems to be an acute problem in a one-on-one tutoring environment, 

many researchers have turned to alternative paradigms for student-system interaction in the 

attempt to avoid the difficulty of doing student modelling.  These alternative solutions 

include collaborative learning, negotiated learning, guided discovery, discovery learning, 

situated learning and constructivism.  However, it is argued that each of these alternative 

approaches still has a need for student modelling (McCalla, 1992). 

 

b. Abandon the Idea of a Student Model 

Due to the difficulty associated with student modelling, even building a partial model is a 

challenge. Since student models are at best imprecise, it is argued that having no student 

model at all is better than an inaccurate one.  Therefore, some researchers have abandoned 

the student modelling problem altogether, claiming either that it is intractable or that it is 

unnecessary or that systems can be effective tutors without such a model (Gugerty, 1997).  

However, without a student model, an ITS would be doomed to follow a preset sequence of 

steps regardless of the impact of its actions on a student’s learning (Greer and McCalla, 

1991).  It would be like a human tutor who knows nothing about the individual learner, and 

therefore is unable to adjust instruction to changes in the learner’s behaviour (Holt et al., 

1994).   

 

While it is true that the ultimate goal of a completely accurate student modelling system will 

never be reached and is probably impossible in principle, student modelling is essential to 

effective intelligent tutoring as the very definition of an ITS as intelligent and individualised 

is intimately tied to its student modelling capabilities (McCalla, 1992).  Many key 

researchers like Self (1990) and McCalla (1992) have argued that no sensible interactions 

between a tutoring system and a student can happen without an accurate model or at least 
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generic knowledge of the student’s cognitive abilities.  McCalla (1992) stressed that student 

modelling is:  
 
“not about building exact cognitive models.  If it were, we would have to solve 

all the problems of cognitive science, and teach a machine to be a cognitive 

scientist, before we could build a student model.  We only need to model to the 

student the level of detail necessary for the teaching decisions we are able to take.  

If the tutor only has two choices of action, then the model only needs to be 

accurate enough to distinguish between them.”  

 
Self believes that a computer tutor can never have perfect knowledge of a student - some sort 

of approximation of the beliefs, knowledge, and goals of the student is the best that can be 

expected.  He also believes that this would suffice as there really is no need for a completely 

accurate student model since even human teachers do not have absolutely accurate 

perceptions of individual students and yet, they can still teach ‘effectively’ by employing 

their partial knowledge of student cognition to good effect, using both generic knowledge of 

stereotypical student and particular knowledge of individual students whom they are teaching 

(Self, 1974).   

 
A few recommendations on making student models more tractable were made along the four 

slogans (Self, 1990): 

• �Avoid guessing” - design the student-computer interactions such that information 

needed to build a student model is provided by the student rather than being inferred by 

the ITS from inadequate data. 

• �Don't diagnose what you can't treat� - link the proposed contents of the student model 

with specific instructional actions, ideally supported by educational evidence, in order to 

clarify what is really needed (and not needed) in the student model. 

• �Empathise with the student's beliefs, don't label them as bugs� - view the contents of 

student models as representing the learner’s beliefs about the world; the role of the ITS is 

then to assist the learner in elaborating those beliefs. 

• �Don't feign omniscience - adopt a �fallible collaborator� role� - develop ITSs which 

adopt a more collaborative role, rather than a directive one, for then the style correspond 

to a better philosophy of how knowledge is acquired (the fidelity of the student model is 

of less importance).  
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c. Increase Student Participation 

As pointed out earlier, the accuracy of the contents of student models can be increased by 

enabling the student to explicitly interact with the tutor to actively collaborate on building a 

student model (Self, 1990).  Another solution is to increase student control and participation 

in order to encourage reflection on the part of the student, by having inspectable student 

models which students can view and argue its accuracy.  Examples include the work on 

stereotypes and scrutable models (Kay, 2000), inspectable learner models (Paiva, 1995) and 

open learner modelling (Morales et al., 1999). 

 

d. Develop Standards 

As research in ITSs and student modelling matures, there is increasing work in developing 

standardised methods for constructing ITSs, in particular student models.  These include the 

use of authoring tools (Murray, 1999), ontologies (Mizoguchi, 2000;Mizoguchi and 

Bourdeau, 2000), an actor-based approach (Frasson et al., 1996), a component-based 

approach (Ritter et al., 1998), plug-in tutor agents (Ritter and Koedinger, 1996), and 

minimalist design technique (Gutwin et al., 2000).  

 

 

2.7 Dealing with Uncertainty 
In dealing with uncertainty, Bayesian Belief Networks, also known as belief networks and 

causal probabilistic networks, are fast becoming a popular approach in student modelling.   

 

A good introduction to Bayesian Belief Networks is provided by Jensen (1996), Charniak 

(1991), and, Russell and Norvig (1995).  A Bayesian Network is a directed acyclic graph that 

organises a body of knowledge in any given area by mapping out causal relationships 

between nodes and encoding them with prior probability values that represent the extent to 

which one node is likely to affect another.  The nodes represent assertions and an arc from a 

node A to a node B expresses that A is a cause of B.   
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Bayesian Belief Networks are based on the Bayes probability theorem (Bayes 1763): 

)|(
),|(*)|(),|( cEP

cHEPcHPcEHP =  

where the belief in the hypothesis H can be updated given the additional evidence E and the 

background context c.  The left-hand term, P(H|E,c) is known as the posterior probability or 

the probability of H after considering the effect of E on c.  The term P(H|c) is called the prior 

probability of H given c alone.  The term P(E|H,c) is called the likelihood and gives the 

probability of the evidence assuming the hypothesis H and the background information c is 

true.  Finally, the last term P(E|c) is independent of H and can be regarded as a normalizing 

or scaling factor.  A more detailed account is given by Niedermayer (1998). 

 

Bayesian Belief Networks can be used to represent a student model where each node 

represents a key element of the subject domain.  Prior probability values are usually obtained 

empirically.  With new evidence, such as a student’s response to a problem, an update 

algorithm (e.g. Pearl 1988; Neapolitan 1990) is run and each node is assigned a posterior 

probability value.  In the end, when there is no more new evidence, the posterior probability 

value of each node represents the mastery level of the student. 

 

An extensive survey of Bayesian student modelling is provided by Murray (1998).  Key 

efforts include the works of Collins et al. (1996), VanLehn and Martin (1997) and VanLehn 

and Niu (2001). 

 

 
2.8 Conclusion 
This chapter reviewed the literature on student modelling in intelligent tutoring systems.  In 

particular, it looked at major student modelling techniques which modelled domain-specific 

knowledge.  Problems associated with student modelling were discussed.   

 

The chapter then discussed computerised adaptive testing in more detail.  It first compared 

computerised adaptive testing with other testing strategies such as fixed-item testing and self-

adapted testing.  It presented two major approaches of computerised adaptive testing 
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commonly used in student modelling were described: IRT and KST.  For each approach, it 

was shown that the way in which the domain was structured had an influence on problem 

progression.  The review of these two techniques has direct implications for the design and 

construction of the knowledge components of SKATE.   

 

Firstly, it is the consideration of the basic unit which makes up the domain knowledge or test 

syllabus.  While the basic unit in the IRT and KST approaches is usually a problem or a class 

of problems, the basic unit of the domain knowledge component in an ITS is usually a 

description of a body of knowledge in terms of skills, concepts and problems.  In SKATE, 

this will be decided by the expert.  The IRT approach maintains large repositories of test 

items and an attractive option might be to categorise these as classes of problems, as was 

with the case of KST-based adaptive testing systems.  There is a need to generate problem 

instances from classes of problems, although this was not discussed in the KST approach.  

These issues are taken up in Chapter 3. 

 

Secondly, the structure of the domain is an important consideration.  The development of an 

IRT test requires a calibration exercise, which can benefit from a large sample size.  This is 

neither feasible nor affordable for SKATE when the aim is to conduct small-scale tests.  The 

KST approach looks like a reasonable candidate for incorporation in SKATE although it has 

always been discussed by its authors in connection with large (for example, fifty items) tests.  

This is taken up in Chapter 3. 

 

Thirdly, in problem progression, the key consideration is the selection of problems of 

appropriate difficulty at all times.  IRT employs a statistical model which is used iteratively 

after a student’s response in order to meet the stopping criteria or to select the next item.  

KST relies heavily on the explicit structure of the domain elicited from one or more experts 

and problem progression involves the pruning down of a set of candidate problems in the 

space at each iteration.  The issue of problem progression for SKATE is discussed in Chapter 

4. 

 

Lastly, the use of a student model is an important issue.  In the IRT and KST approaches, 

there is no explicit mention of the use of a student model to aid item selection and subsequent 

remediation.  In the IRT approach, a single proficiency estimate together with its confidence 
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level is used throughout testing to aid in test item selection and in stopping the test.  At the 

end of the test, this single estimate denotes the student’s proficiency in the subject domain.  

As SKATE is a student modelling framework, more information about the student’s mastery 

of the subject than just a single estimate is necessary.   For this reason, the KST approach 

might be more appropriate as it employs an overlay model where a knowledge state 

represents a subset of the problem domain and is a list of items mastered by the student. 
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Chapter 3.  

Knowledge Acquisition and Representation 

 

 

3.1 Introduction 
There are several problems to be confronted when adopting an expert emulation approach to 

designing an adaptive test.  Firstly, there is the problem of choosing a suitable expert.  

Secondly, there is a need for finding suitable knowledge acquisition techniques to aid the 

elicitation process.  Thirdly, there is a need for knowledge representation of the area of 

syllabus to be tested.  

 

This chapter first lays the foundation for knowledge acquisition by describing the context in 

which the research is conducted.  It includes a description of a small experiment called 

MATT which confirms that the expert teacher performs adaptive testing when assessing a 

student’s knowledge in a subject domain on a one-on-one interaction.  Knowledge 

acquisition techniques are discussed including the potential use of constraint logic 

programming in numeric domains. 

 

The chapter then discusses the results of knowledge elicitation in the construction of the 

domain knowledge which represents the test syllabus.  Other issues like identifying problem 
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solving skills, generating problems, diagnosing student answers and measuring problem 

difficulty are discussed.  It also shows how Constraint Logic Programming can be used for 

knowledge elicitation, knowledge representation, problem generation and answer evaluation.  

This versatility comes from the dual nature of logic programming.  The declarative aspect of 

clp(FD) facilitates the definition of classes of problems while the procedural aspect allows 

sample problems to be generated. 

 

 

3.2 Context 
This section describes the context in which expert emulation is carried out.  It describes the 

choice of experts, the type of students under study, the choice of domain, and the role of the 

expert in his interaction with his students. 

 

3.2.1 Choosing an Expert 
The task of finding a suitable expert is not an easy one.  Firstly, the expert must be willing to 

participate in the elicitation process (Lightfoot, 1999).  Secondly, there is the task of 

distinguishing a skilled tutor from a novice, in terms of experience in teaching and tutoring.  

For example, studies have shown that strategies of an expert differ from a novice in tasks 

such as problem categorisation (Chi et al., 1981) and tutoring (Glass et al., 1999).  For 

example, in a study conducted by Glass, Kim, Evens, Michael and Rovick on the CIRCSIM 

Tutor, it was found that expert tutors are more likely than novice tutors to query students for 

information as opposed to informing them directly.  

 

The validity of expert systems depends on the quality of the emulated expert. For the 

experimental work described in this thesis, an experienced teacher was selected as an expert.  

He has been in the teaching profession for over ten years and has taught Mathematics and 

Physics at various UK educational institutions.  He is accustomed to interacting with students 

in a classroom setting as well as on a one-to-one basis.  He has taught students from widely 

differing backgrounds and capabilities, ranging from gifted students to those with learning 

difficulties.  At the time of this study, the expert was teaching remedial mathematics to a 

population of male adults who are serving time at a local prison. 
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3.2.2 Type of Students 
The type of student population under study is a non-typical one.   This is a population of male 

adult prisoners who do not share many of the characteristics of conventional classroom 

students, but may tend to have more in common with adult learners engaged in distance 

learning.  The key characteristics of this type of population are: 

 

• the transient nature 

• diverse educational and cultural backgrounds  

• varying levels of prior knowledge in subject domain 

• generally low academic achievements 

• low motivation and confidence levels 

 

3.2.3 Choosing a Domain 
The mathematics curriculum for this student population is one that prepares the students for 

UK qualifications in City & Guilds (Key Skills), City & Guild (Number Power), and for 

GCSE level examinations.  In these courses, students must demonstrate the ability to solve 

mathematics problems given in instructional texts and apply problem solving skills to handle 

mathematical tasks in every day situations such as calculating tax, writing cheques, and 

working out bills such as electricity and gas. 

 

Mathematics has many applications in real-life situations and for this reason, it holds an 

important part in educational curriculum.  There is however usually a gap between the ability 

to solve classroom mathematics problems and the ability to use the same skills to solve real 

life mathematical tasks.  Cooper and Dunne (2000) conducted a study on six hundred 

students in the age group of 10-14 years old, of different social backgrounds and across the 

sexes and they found that while many children can solve classroom type mathematical 

problems, the same children could not apply their knowledge and skills to solve real life 

mathematical problems.  Deboys and Pitt (1988) believe that it is the role of mathematics 

teachers to ensure that students not only acquire proficiency in basic arithmetical 

computation but that they should understand the processes they are using and be able to apply 
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them constructively in unfamiliar situations. 

 

Interviewing the expert resulted in the partitioning of an area of syllabus and the focussing on 

a narrow domain of fraction additions in which to construct an adaptive test (Figure 14).  

Fractions is an important part of the mathematics curriculum and is a domain commonly used 

in intelligent tutoring research (for example, (Stern et al., 1996) (Nwana, 1993)) and in 

adaptive testing (Baumunk and Dowling, 1997).  This domain is an important one as it is the 

basis of many mathematical tasks in the City and Guild curriculum for the current student 

population.  From a student modelling point of view, this domain is small but rich enough to 

allow all sorts of student behaviour.  

 

 

Fractions Decimals Percentages

Subtract Fractions Add Fractions Multiply Fractions

2 Operands N Operands

Both operands not
in lowest form

Both operands in
lowest form

Only one operand
in lowest form

 
 

Figure 14.  Partitioning an Area of Syllabus 
 

 

3.2.4 Role of Expert 
Due to the transient nature of this type of student population, students enrol at different times.  

This makes the job of the teacher very difficult especially when there is a need to assess the 

mathematical knowledge level of each student upon enrolment before appropriate remedial 

help can be given.   
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In his current role, the expert provides remedial teaching to an average class size of twelve 

students.  He has four such classes.  One of the first tasks of the expert with a new student is 

to conduct an initial assessment of the student’s current knowledge level in mathematics.  

The transient nature of the student population means different enrolment times which suggest 

that students are assessed on their mathematical abilities at different times.  Assessment is one 

of the most important tasks in teaching and learning as it has a major impact on subsequent 

remedial help that is rendered (VanLehn and Martin, 1997).  By performing one at the start of 

a course can help the student to overcome isolation and to promote active learning (Taylor, 

1998).   At present, the initial assessment of the student’s state of knowledge in mathematics 

takes the form of a FIT which is made up of several topics such as fractions, percentages and 

decimals.  A student performs the test in the conventional pencil and paper setting.  His 

answer script is examined by the expert who identifies the areas of weakness.  This type of 

assessment, FIT, has several disadvantages, including the ones discussed in Section 2.5.    

First, designers of such tests have to ensure that the test is content-balanced, that is, each 

topic is represented and that no topic or subtopic is over tested or under tested.  If a test is not 

content-balanced, there is a possibility that one or more areas of weakness of the student may 

not be identified.  Secondly, the test is the same for each student and this introduces the 

possibility of noise, such as copying especially if there is more than one student performing 

the test at any one time. 

 

After assessment, the students carry out their own remediation with the help of text materials.  

A book by Llewellyn and Greer (1996) is heavily used.  The book is structured such that for 

each topic, there are subtopics where concepts are explained as expositions followed by a 

series of problems which are arranged in order of difficulty.  Each student works on his 

respective areas of weakness.  The expert advises the students on a manual adaptive 

remediation strategy.  The student is to attempt questions of moderate difficulty and if he 

finds these to be easy, he is to attempt the more difficult ones.  Conversely, if he finds them 

too difficult, he is to attempt the easier ones.  This strategy allows the student to further 

isolate, and at a finer detail, his areas of weakness. 

 

The expert then intervenes with remedial help on a one-on-one basis or in a group if more 

than one student has difficulty in a similar area.  He first explains the underlying concepts 

before attempting to teach procedural knowledge through a series of problems on the board.  
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This remediation strategy is reteaching and is rather coarse-grained in that it does not focus 

on specific student misconceptions.  The students then attempt to solve similar problems 

chosen by the expert.  In group teaching, students tended to understand at different rates and 

there is evidence of peer-to-peer tutoring where the better students help out their weaker 

peers. 

 

While there is evidence of a manual adaptive remediation strategy, there is no evidence of 

adaptive testing, manual or otherwise, as a strategy for assessing a student’s knowledge upon 

enrolment.  Although FIT features as the main assessment procedure, adaptive testing is an 

attractive alternative.  The following section presents a small experiment to observe an expert 

in his one-on-one assessment with students.  It was found that the expert conducted a manual 

form of adaptive testing. 

 

 

3.2.5 The MATT Experiment 

3.2.5.1 Aim of Experiment 
The MATT (Manual Adaptive TesTing) experiment is experiment was conducted to observe 

and establish if an adaptive form of testing was adopted by the expert in his one-on-one 

assessment of the state of knowledge of a student in a subject domain. 

 

3.2.5.2 Subjects 
Two school children were invited to participate in the experiment.  The two subjects are 

young children who are currently attending a local school and are following the UK National 

Curriculum.  The first subject is an eleven year old boy at Year 6.  The second subject is a ten 

year old girl at Year 5. 

 

3.2.5.3 Method  
The sessions were conducted in a home environment.  The chosen domain is fraction addition 

and subtraction in elementary mathematics.  The expert did not use any instructional 

materials or software tool to perform the test.  The expert had access to the problem solving 

strategy of the students.  These interactive sessions were observed by the knowledge engineer 

and are documented in Appendix B. 
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3.2.5.4 Findings 
The expert was observed to perform a manual form of adaptive testing.  The following 

observations were made.  

 

• Input bandwidth  

Human testers have many advantages over computers.  The expert could combine data 

from a wide variety of sources, such as voice effects or facial expressions, an “eureka” 

look, a puzzled expression, or a hesitant tone of voice (Wenger, 1987) (Holt et al., 

1994).  In addition, the expert had access to the ‘thinking aloud’ and problem-solving 

steps by the student.  All these data helped to shape the decision in problem selection 

and in starting, continuing and stopping the test. 

 

• Starting the Test with an “Easy” Question  

 The expert was concerned with maintaining the motivation and confidence of the subject 

at all times and was particularly concerned with the appropriate entry point in which to 

begin the test.  His choice of problems was influenced by the cues he picked from the 

student.  His strategy was to start the test with a problem of lower level of difficulty than 

the one he thinks the student is capable of solving, that is, with an easier portion of the 

syllabus.  For example, questions were selected differently for each of the two subjects 

as the first subject exuded confidence in mathematics while the second subject displayed 

anxiety in the test and a lack of confidence in mathematics in general. 

 

• Evidence of Redundant Questioning  

It was observed that the expert adopted a rather loose and ad hoc strategy in his selection 

of subsequent problems.  This is consistent with the findings of Putnam (1987) who 

observed that teachers use loose curriculum scripts rather than grain assessment.  For 

example, in assessing the knowledge of the first subject, the expert was particularly 

interested in assessing the mastery level of the subject in a particular skill, calculate 

lowest common denominator, but his choice of a problem, 4/3 + 5/4, did not discriminate 

against the use of the skill calculate common denominator (which could be achieved by 

multiplying the denominators).  There were about three ‘redundant’ problems before the 
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skill, calculate lowest common denominator, was specifically tested out. 

 

• Stopping the Test  

It was observed that the expert stopped testing when he found that further questioning 

would not reveal any new information about the student’s knowledge in the subject.  In 

the case of the first subject, all the problems presented had non-common denominators 

and because the subject showed that he was capable of solving them, the expert did not 

present him with ‘easier’ problems such as those with common denominators.  Likewise, 

the second subject was presented with problems of common denominators and because 

she had difficulty in solving them, she was never presented with ‘harder’ questions, such 

as those involving non-common denominators. 

 

• Diagnostic Strategy  

This is concerned with the diagnosis of student answers to problems.  The expert 

observed the problem solving steps of each student and modelled the student’s 

knowledge in terms of domain-specific knowledge such as problem solving strategies, 

and correct and incorrect knowledge.  The cognitive modelling strategy of the 

perturbation model also maintains the latter type of knowledge where the student’s 

knowledge can be described in terms of correct rules and mal rules.  By correct 

knowledge, this means that the expert was looking for a demonstration by the student of 

the relevant problem solving skills.  By incorrect knowledge, the expert was looking for 

common misconceptions; for example, the second subject demonstrated a common 

misconception where the denominators were added together to give a resultant 

denominator. 

 

• Remediation Strategy  

This is concerned with the remedial help given to the student after the test has taken 

place.  It is observed that the expert did not find it necessary to offer remedial help to the 

first subject as the student has demonstrated a mastery of the necessary problem solving 

skills.  As for the second subject, remediation took the form of reteaching of certain 

basic concepts of fractions and the problem solving steps of the problems which the 

student had displayed difficulty in solving.  
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• Student Model  

The type of information which was maintained by the expert about the student was 

observed to be both learner-related characteristics, such as motivation and confidence, 

and domain-specific knowledge, such as problem solving strategies, correct knowledge 

and misconceptions. 

 

 

3.2.5.5 Experiment Summary 
The above experiment confirmed that the expert adopts an adaptive form of testing when 

assessing student’s knowledge in a subject domain on a one-on-one basis.  The expert was 

observed to perform deep cognitive modelling of the student’s domain-specific knowledge 

in terms of problem solving strategies and correct and incorrect knowledge.  Despite this, 

his problem progression strategy for selecting subsequent questions was found to be rather 

loose, with many redundant questioning.  Also, his remediation strategy is coarse-grained 

reteaching and it did not justify the deep cognitive modelling effort he performed during 

test administration.  

 

 

3.3 Conventional Knowledge Acquisition Techniques 
Expert emulation involves expressing human knowledge and strategies in a computer system 

and is often referred to as the bottleneck problem (Murray, 2000).  Knowledge acquisition is 

a difficult and time-consuming process which involves many hours of interaction between the 

expert and the knowledge engineer.  There is also the problem of choosing the right tool for 

eliciting the appropriate knowledge type.   

 

A knowledge engineer has a choice over many knowledge acquisition techniques, such as 

concept analysis, unstructured interviewing, structured interviewing, domain and task 

analysis, process tracing and protocol analysis and simulations and automated tools (McGraw 

and Harbison-Briggs, 1989).  The choice of one technique over another depends on the type 

of knowledge which the knowledge engineer wishes to elicit from the expert. There is a 

mapping of types of knowledge to knowledge acquisition techniques (Table 1).  For example, 
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if the knowledge acquisition activity for a particular phase is to “identify general heuristics 

that are available on a conscious level”, the knowledge engineer would be seeking knowledge 

that is primarily declarative in nature.  Declarative knowledge is generally available in the 

short-term memory, which allows the domain expert to express it verbally.  

 

The choice of technique for this study is likely to be structured interviewing and task analysis 

as the types of knowledge to be elicited are likely to be declarative (domain knowledge and 

student model) and procedural (problem progression strategy).  

 
 

Knowledge Activity Suggested Technique 

Declarative knowledge Identifying general (conscious) heuristics Interviews 

Procedural Knowledge Identifying routine procedures/tasks Structured Interview 

Process Tracing 

Simulations 

Semantic Knowledge Identifying major concepts/vocabulary Repertory Grid 

Concept Sorting 

Semantic Knowledge Identifying decision making procedures and 

heuristics (unconscious) 

Task Analysis 

Process Tracing 

Episodic Knowledge Identifying analogical problem solving 

heuristics 

Simulations 

Process Tracing 

Table 1.  Correlating Knowledge Type and Acquisition Technique 
(McGraw and Harbison-Briggs, 1989) 

 
 

3.4 Constraint Logic Programming 
3.4.1 Background of Constraint Logic Programming 
Constraint Logic Programming, or CLP for short, has been heralded by ACM (Association 

for Computing Machinery) as one of the strategic directions in computing research (Marriott 

and Stuckey, 1998).  CLP provides a language for the description of relationships in the form 

of constraints and a mechanism to calculate a set of values which satisfy those constraints.  

Constraint programs are often written to provide optimal solutions to problems.  CLP comes 

under the paradigm of Constraint Solving which is a powerful paradigm that allows a natural 

representation of complex problems (Lassez, 1987).  
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Constraint Logic Programming is an extension of Logic Programming aimed at replacing the 

pattern matching mechanism of unification, as used in Prolog, by a more general operation 

called constraint satisfaction or constraint solving (Cohen, 1990) (Constraint Programming, 

2000).  Logic Programming is a language paradigm based on logic.  It shot to fame via the 

Prolog language as a consequence of the Japanese Fifth Generation project and the expert 

systems boom of the mid 1980s (Pountain, 1995).  Logic programming is characterised by 

two components: resolution and unification.  Resolution is an inference step used to prove the 

validity of predicate calculus formulas expressed as clauses while unification is the matching 

of terms used in a resolution step (Cohen, 1996).  Prolog is based on first-order predicate 

logic and the objects that it manipulates are pure symbols with no intrinsic meaning.  

Execution of Prolog program proceeds by searching a database of such facts to find those 

values that will satisfy a user’s query, using a process called unification based on syntactic 

identify.  Since Prolog tries to find the set of all solutions to a query, during this search many 

dead-ends may get explored and then abandoned by backtracking to an earlier state and 

trying a different branch.  For complex problems, this search process can take up both space 

and time, which can lead to inefficiency. 

 

Although a relatively young paradigm, the use of CLP in industry since its inception in the 

late 1980s has resulted in many successful real-life applications.  CLP is especially well 

suited to solving problems in scheduling. Examples include container port scheduling 

(Abbott, 1995) and nurse scheduling (Darmoni et al., 2000).  The history and background of 

constraint programming is usefully summarised by Marriott and Stuckey (1998).  Constraint 

programming modules are available for a range of programming platforms.  Examples 

include Prolog II and Prolog III (Jaffar and Lassez, 1987), CHIP, clp(R) and clp(FD). 

 

Constraint Logic Programming provides a language for the description of relationships in the 

form of constraints and a mechanism to calculate a set of values which satisfy those 

constraints.  The basic components of a problem are stated as constraints while the problem 

as a whole is represented by putting the various constraints together as rules.  A problem is 

defined in terms of its variables and in terms of the constraints that must be solved by these 

variables.  Two types of constraints exist – domain constraints and relational constraints.  

Domain constraints refer to constraints on the range of values each variable can take while 
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relational constraints refer to constraints placed on the relationship between the variables.   

Solutions to such problems can be found by using the constraints to detect impossible 

combination of values and arriving at an optimum solution. 

 

CLP has been particularly geared to solving Constraint Satisfaction Problems, or CSPs.  A 

Constraint Satisfaction Problem consists of a set of variables, each of which has a discrete 

and finite set of possible values, and a set of constraints between the variable which specify 

which combinations of values are allowed and which are not.  Variables may have integer or 

symbolic domains.  A solution to a CSP is a set of variable-value assignments which satisfies 

all the constraints.  It involves network consistency check algorithms (Tsang, 1993), 

constraint propagation, and backtracking search.  In essence, the algorithms increase the 

efficiency of the search by looking ahead, and actively using the constraints to prune the 

search space, thus minimising backtracking.  Optimisation is based on a form of branch and 

bound, that is, as soon as a solution is found, a further constraint is added to the effect that the 

value of the optimising criterion must be less than the value just found.  This causes the 

system to backtrack until a better solution is found.  When no further solution can be found 

the optimum value is known.     

 

A significant advantage of CLP over the standard implementation of Prolog is that CLP can 

perform arithmetic with uninstantiated variables.  As a simple example, consider this code 

fragment which can be used to calculate the integer side lengths of right angle triangles: 

 

domain([X,Y,Z], 1, 99), 

Z*Z  #= X*X + Y*Y, 

X #< Y, 

labeling([], [X,Y,Z]). 

 
 

The first line introduces a list of variables, and specifies that they may take values in the 

range between 1 and 99.  The second line presents the Pythagorean constraint.  The "#" 

symbol is used to indicate a relational constraint.  The third line constrains X to be less than 

Y.  This usefully eliminates solutions which differ only in the ordering of X and Y; for 

example, we do not need both 3,4,5 and 4,3,5 as solutions.  The final line initiates a search 



Chapter 3. Knowledge Acquisition and Representation  56 

  

for solutions for X, Y and Z.  The way this search is carried out is controlled by the first 

argument of "labeling".  This is the constrain and generate methodology: first, the constraints 

are applied, then a solution is generated by labeling.  The empty list symbol, [], indicates that 

the default strategy is to be used.  A backtracking search is used, which explores the domains 

in ascending order.  When compiled and run, this code will provide values for all three 

variables, X, Y, and Z.  Given that all these input variables were uninstantiated at the start, 

Prolog would not have been able to produce any instantiations unless only one variable was 

not instantiated.  

 

3.4.2 Constraint Logic Programming as a Tool for Knowledge Acquisition 
A type of constraint logic programming, clp(FD), for knowledge acquisition is used in this 

study.  Clp(FD) or constraint logic programming over finite domains (Carlsson et al., 1997) 

is a particular implementation of constraint logic programming that is integrated with 

SICStus Prolog, a commercially available Prolog system developed and distributed by the 

Swedish Institute of Computer Science (SICStus, 2002).  This implementation is used for the 

practical work of this thesis.   

 

As clp(FD) is particularly suited to representing constraint problems with a finite number of 

discrete solutions.  It has a range of built-in procedures for search for optimal solutions.  It 

also has applications in knowledge acquisition. Knowledge acquisition is the process of 

acquiring knowledge from human experts which is entered into a computer and organised for 

use in an expert system.  It is essentially made up of two processes – knowledge elicitation 

and knowledge representation.  Clp(FD) is used to represent classes of arithmetic problems, 

and it is also used in the knowledge elicitation process.  

 

Clp(FD) may be actively used by the interviewer when conducting knowledge elicitation  

interviews.  The teacher, who is the target of the emulation, is not expected to write 

constraints, though is more than likely to take an interest in them.  During discussions, which 

involve the production of example problems, the interviewer enters the necessary constraints, 

or modifies existing constraints, to describe the particular class of problem under discussion. 

The set of constraints is then solved interactively to produce example problems.  These allow 

the interviewer to obtain confirmation of what had been elicited and form the basis of further 

rounds of discussion and modification.  For most classes of problems, it is not feasible to 
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expect the teacher to inspect every example.  This means that unexpected and undesirable 

examples may be not be revealed during this knowledge elicitation process.  Traditional 

program testing and additional knowledge elicitation sessions are needed to reduce the 

probability of errors.  

 

Using clp(FD), domains can be enlarged or restricted, and constraints can be added or 

removed.  It is easy to represent both the mathematical structures of problems and it is also 

easy to control the choice of numeric values incorporated in problems.  As with all 

knowledge elicitation, good preparation by the interviewer is extremely valuable.  This can 

conveniently take the form of developing some speculative constraints, but this should not be 

allowed to influence the interviews.  The aim of emulating the expert must be paramount. 

Although the technique is used here for simple arithmetic problems, it could also be applied 

to a much wider range of problems involving the manipulation of a finite number of 

categories.  

 

The following section discusses the elicitation of the domain knowledge and the role of 

clp(FD) in knowledge elicitation, knowledge representation, problem generation and answer 

evaluation. 

 

 
3.5 Domain Knowledge Representation 
Knowledge representation is the task of writing down, in some language or communicative 

medium descriptions or pictures that correspond in some salient way to the world or a state of 

the world.  In Artificial Intelligence, this is concerned with writing down descriptions of the 

world in which an intelligent machine might be embedded in such a way that the machine can 

come to new conclusions about its world by manipulating these symbolic representations 

(Levesque, 1986).  Techniques such as semantic networks, frames, and rules have been used 

for this purpose.  For many ITSs, a body of knowledge has been described in terms of skills, 

concepts and problems.  Examples include a granularity hierarchy (McCalla et al., 1992), a 

curriculum hierarchy (Huang, 1996), a curriculum tree (Chan, 1992), a topic network (Beck 

et al., 1997) and a skills graph (Mao and Lin, 1992).  For many CAT systems, a test syllabus 

has been described in terms of problems (such as IRT systems) or classes of problems (such 

as KST systems). 
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3.6 Eliciting the Domain Knowledge 
Having decided on the area of syllabus to be tested, for example fraction additions in this 

study, the next step is to elicit the strategy of the expert in describing the component or basic 

item of the domain knowledge.  Through interviewing, it was revealed that the expert’s 

approach involves an exhaustive review of all classes of problems within a test syllabus.  

This indirectly handles the task of content-balancing, commonly associated with IRT-based 

systems, as an exhaustive declaration of problem types implies that no area within the 

domain is under or over tested.  Clp(FD) was used by the interviewer when conducting 

knowledge acquisition interviews.  For example, after discussing example problems with the 

expert, the interviewer used clp(FD) to represent these problems and to generate as many 

example problems.  The result is a domain of problems categorised according to their features 

and response types.  This is discussed in following sections.  

 

3.6.1 Categorising Problems 
There are different ways of categorising problems.  For example, studies have shown that 

competent or expert problem solvers could readily categorise word problems and they tend to 

categorise problems differently from novices and this is because experts hold a richer body 

of  knowledge about the subject matter (Chi et al., 1981).  In this study, the expert has chosen 

to categorise problems into several classes according to features such as common or non-

common denominators and the range of possible values of numerators and denominators, 

based on the expression: 
 

N1/D1 + N2/D2 = N/D 

 
This strategy in categorising problems can be represented by constraints.  Clp(FD) provides a 

declarative and executable means of describing such specifications, and can be made 

sufficiently convenient for it to be used on the fly during a knowledge elicitation session 

involving the expert and the knowledge engineer. Such software facilitates the capture of 

descriptions of classes of problems and also descriptions of possible responses of a student to 

those problems.  These executable descriptions can be used to generate examples which can 

form the basis of several rounds of discussion between the expert and the knowledge 

engineer.  An example is given in the following code fragment which was used during 

knowledge elicitation. 
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?- use_module(library(clpfd)). 
 
generate_problems(N1,D1,N2,D2,N,D):- 
    domain([N1, N2], 1,8), 
    domain([D1, D2], 2,9), 
    domain([N,D],1,10), 
    labeling([], [N1,D1,N2,D2,N,D]),  
    N1/D1 + N2/D2 =:= N/D. 
 

 
The first three clauses of the generate_problems predicate are domain constraints which 

dictate the range of possible integer values which can be taken by any variable.  Constraint 

solving is achieved by the labeling predicate which will initiate a search for solutions for all 

the variables in the arithmetic expression N1/D1 + N2/D2 = N/D. 

 
A solution from the execution of the above code is:   

 
N1 = 1, D1 = 2, N2 = 1, D2 = 2, N = 2, D = 2 

 
or 

2
2

2
1

2
1 =+ , which satisfies the constraints.  More solutions or problem instances can be 

generated, for example, 
4
3

4
1

2
1 =+  and 

10
7

5
1

2
1 =+ .  

 
The expert segregated these different instantiations of problems into classes of problems.  

The result, as shown in Figure 15, is a declaration of an exhaustive list of problem classes 

which represents the different configurations of problems in the domain of fraction addition 

of two operands.  The clp(FD) representation of the problem classes is given in Appendix C. 
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PT1:   Add two proper fractions with common denominators 
PT2:   Add two improper fractions with common denominators 
PT3:   Add a proper fraction and an improper fraction with common denominators 
PT4:   Add two proper fractions of different denominators which are multiples of one another 
PT5:  Add two improper fractions of different denominators which are multiples of one another 
PT6:  Add a proper and an improper fraction of different denominators and are multiples of one another 
PT7:  Add two proper fractions of different denominators which are not multiples of one another 

PT8:   Add two improper fractions of different denominators which are not multiples of one another 

PT9:  Add a proper fraction and an improper fraction of different denominators and are not multiples 
 

Figure 15.  Classes of Problems 
 

The use of constraints for describing classes of problems is similar to the efforts by 

Hirashima et al (1996) who constructed a pool of Physics word problems - equivalent 

problems, partial problems and specialised problems - by eliciting from human tutors and 

practice materials.  They did not, however, mention the use of any specific constraint 

language.  The use of constraints in this study can also be compared with that of Ohlsson’s 

constraint-based student modelling technique (Ohlsson, 1994).  Like our approach, Ohlsson 

represented domain knowledge as a set of constraints, but while our approach uses 

constraints to describe the explicit features of each problem class, Ohlsson uses constraints to 

detect erroneous student answers.  He uses a representational format called state constraints. 

A state constraint is an ordered pair <Cr,Cs> where Cr, the relevance condition, identifies the 

class of problem states for which the constraint is relevant, and Cs, the satisfaction condition, 

identifies the class of (relevant) states in which the constraint is satisfied.  Each member of 

the pair can be thought of as a conjunction of features or properties of a problem state.  

Consider the problem of adding two fractions.  For example, the idea that fractions have to 

have equal denominators before they can be added can be expressed in state constraint form 

as: 

if the problem is n1/d1 + n2/d2 and if  n =  n1 + n2,  

then it had better be the case that d1 = d2 or else something is wrong 

 



Chapter 3. Knowledge Acquisition and Representation  61 

  

The relevance conditions are n1/d1 + n2/d2 and n = n1 + n2.  The first condition is relevant 

only when one is adding fractions.  The second condition is relevant only when the 

denominators are equal.  The satisfaction condition, d1 = d2, is satisfied only if the relevance 

conditions are true.  State constraints are elicited from experts and captured the central 

concepts of the domain.  Any violated constraints represent the student’s erroneous behaviour 

and are used to guide subsequent remediation.   

 

Another difference is that Ohlsson’s approach is mainly declarative such that the domain and 

student model are not executable.  Our approach goes a step further by using constraint 

solving, thus making the domain and student model executable; the advantages of this 

strategy are discussed in Section 3.6.3 and Chapter 4 respectively.  

 

 

3.6.2 Categorising Responses 
The expert identified a list of answer or response types that are possible with the current 

domain, as shown below: 

 

 

RT1:  Proper fraction in its simplest form (e.g. 1/2) 

RT2:  Whole number = 1 (e.g. 3/3) 

RT3:  Proper fraction which can be simplified further (e.g. 6/8) 

RT4:  Improper fraction in its simplest form (e.g. 4/3) 

RT5:  Improper fraction which can be simplified further (e.g. 10/6) 

RT6:  Whole number > 1 (e.g. 8/2) 
 

Figure 16.  Types of Possible Responses 
 

It was found through rapid prototyping that not all response types could be generated for 

each problem class of Figure 15.  For example, the problem class “Add two improper 

fractions with common denominators” could never yield a proper fraction as a response type.  

A list of possible response types is given in Figure 16.  The set of problem classes can be 

further classified according to their possible response types.  This is given in Appendix D. 
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3.6.3 Domain Representation in clp(FD) 
Once the description of a class of problems and their appropriate responses is treated as a set 

of constraints – domain and relational – it must be satisfied by every example of that class 

and this is achieved through constraint solving.  Classes of problems with possible response 

types make up the problem domain as constraint logic programs. Each problem class consists 

of a set of variables, a statement of the domain constraints that determine the range of integer 

values that each variable can hold, and a statement of the relational constraints that hold 

between the variables.  For example, if the expert wanted to represent a class of problems of 

type PT1 and he wanted to use single digit integers, this can be represented as the following 

code fragment in clp(FD): 

 

 
domain([N1, N2], 1, 8),               % Single digit integers 
domain([D1, D2], 2, 9), 
N1 #<  D1,   % First operand - proper fraction 
N2 #<  D2,   % Second operand - proper fraction 
D1 #= D2.   % A common denominator 

 
 

The expert can also specify a response type.  For example, he may want to specify a response 

type as a proper fraction, that is, RT1 (see Figure 16).  This can be achieved through the 

constraint: 

N #< D 

where N and D can be specified to take any integer value from 1 to 99.  These constraints can 

be added to the previous code fragment, thus: 

 

 
domain([N1, N2], 1, 8),              % Single digit integers  
domain([D1, D2], 2, 9),  
domain([N,D], 1, 99),    % Possible values for the answer 
N1 #<  D1,   % First operand - proper fraction  
N2 #<  D2,   % Second operand - proper fraction 
D1 #= D2,   % A common denominator 
N #< D.    % Answer must be a proper fraction 

 
 

Likewise, if the intention was to have a result that is an improper fraction, the constraint 

N#<D can be replaced by N #> D.   
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As a more complete example, consider the following interview excerpt: 

 

Expert: If I have a student who displays a dislike for mathematics and little 

confidence in general, I would want to ensure that I do not start with a 

difficult question.  I would use single-digit integers (domain constraint) 

and start the test with a simple problem which involves the addition of 

two proper fractions of a common denominator, in their lowest form, 

which would yield another proper fraction in its lowest form.  This way, 

only one skill is needed, that is, the student needs only to add the 

fractions without having to bring it to its lowest form.  For example, I 

would give him 1/3 + 1/3 and not 1/8 +1/8.” 

 

From this excerpt, the knowledge engineer first identifies the domain and relational 

constraints.  A class of problems which satisfy these constraints can be built and be 

represented in clp(FD), as shown in Figure 17.  A solution from the execution of the code is: 

 
N1 = 1, D1 = 3, N2 = 1, D2 = 3, N = 2, D = 3 

 

which can be formatted as 
3
2

3
1

3
1 =+ , which satisfies the constraints. More problem instances 

can be generated, for example, 
5
3

5
2

5
1 =+  and 

9
5

9
4

9
1 =+ .  

 

The problem class represented in Figure 17 corresponds to problem type PT1_RT1 given in 

Appendix D which is the addition of two proper fractions with common denominators with a 

response type of a proper fraction in its simplest form.  Each problem class given in 

Appendix D can be represented as a constraint logic program.  The use of the clp(FD) 

formalism in this way gives rise to an executable problem domain which facilitates problem 

generation and the evaluation of student answers.  Unlike many student modelling systems, 

these two routines do not need to be coded separately; they are discussed in the following 

subsections. 
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?- use_module(library(clpfd)). 
qt(N1,D1,N2,D2,N,D):- 
   domain([N1,D1,N2,D2], 1,9),    % Single digit integer numerators 
   domain([N,D],1,99),                   % Possible values for answer 
   N1 #< D1,                                   % First operand - proper fraction 
   N2 #< D2,                                    % Second operand - proper fraction 
   D1 #= D2,                                    % A common denominator 
   D #= D1,                                      % Same denominator in solution 
   N #< D,            % Answer is a proper fraction  
   labeling([],[N1,D1,N2,D2, N,D]),         %Generate values   
   \+ cancel(N1,D1,_,_),                  % First operand in lowest form 
   \+ cancel(N2,D2,_,_),                  % Second operand in lowest form 
   \+ cancel(N,D,_,_),                      % Answer in lowest form 
   N1/D1 + N2/D2 =:= N/D.           % Arithmetic expression 
%  
% Skill:  Cancel fraction e.g. N/D into lowest form X/Y e.g. 63/81 gives 7/9 
cancel(N,D,X,Y) :- 
   domain([N,D,X,Y,F], 1,99),      % F is the highest common factor 
   F*X #= N, 
   F*Y #= D, 
   maximize(labeling([], [F,X,Y]), F), 
   F \== 1.                                       % To ensure cancel fraction has taken place 
 

Figure 17.  A Problem Class and a corresponding Response Type 
 

3.6.3.1 Problem Generation 
Problems can be generated on the fly by executing a problem class.  This is achieved through 

constraint solving, as illustrated in the example in Figure 17.  An advantage is that, unlike 

IRT systems, there is no need to maintain huge repositories of test items or problems.  

 

There are two uses of this facility – during knowledge acquisition and during the delivery of 

the adaptive test.  During knowledge acquisition which involves the production of example 

problems, the knowledge engineer enters the necessary constraints, or modifies existing ones, 

to describe the particular class of problem under discussion.  The set of constraints is then 

solved interactively to generate example problems.  During the delivery of an adaptive test, 

one or more problems can be generated from a problem class and response type.  Although 

constraint programs are often written to provide optimal solutions to problems, their use can 

be to generate multiple solutions, in this case, to generate more than one problem for a 

specific problem class.  In adaptive testing, this has the advantage of ensuring that no two 

tests look identical thus reducing the possibility of copying.  
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3.6.3.2 Evaluating Student Answers 
The use of clp(FD) has another advantage when a diagnostic approach is required to evaluate 

student answers to problems.  It allows a “shallow” type of diagnosis where a student’s final 

answer is evaluated as correct or incorrect. When a problem is generated, an answer to the 

problem is also generated.  During diagnosis, this answer is checked against that of the 

student.  This type of diagnosis will provide information on what problems have been 

successfully or unsuccessfully attempted.  It differs from deep cognitive modelling in that the 

student’s solution path or final answer is not inspected to reveal detailed domain-specific 

information such as the student’s problem solving strategy and misconceptions.  

 

 

3.7 Eliciting Other Information 
Other pieces of information were also elicited from the expert.  These are the identification of 

problem solving skills for the current domain and the expert’s strategy in measuring problem 

difficulty. 

 

3.7.1 Categorising Problem Solving Skills 
The expert identified the following problem solving skills which are commonly used in 

solving problems in the current domain. 

 
• Add equivalent fractions 

• Cancel fraction 

• Make proper 

• Find the lowest common multiple 

• Find equivalent fractions 

 
Multiple solution paths may exist for any problem and the skills used in one solution path 

may differ from those used in another solution path.  Also, students usually devise their own 

problem solving strategy and may not use all the skills expected to be applied to solve a 

problem.  An example is given in the MATT experiment described previously where the first 

subject was asked to solve ¾ + ½.  The expert had expected the student to use the skills find 

common denominator, find equivalent fraction and make proper, but instead the student used 

the skills number facts, sum whole numbers and add equivalent fraction.   
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Each of the problem solving skills listed above could be represented in clp(FD).  For 

example, the cancel fraction skill can be represented in the following clp(FD) code fragment.   

 

 
% Simplify the fraction N/D into its lowest form to give X/Y 
 % Example:  63/81 gives 7/9 
 cancel_fraction(N,D,X,Y) :- 
  domain([N,D,X,Y,F], 1,99), 
  F*X #= N, 
  F*Y #= D, 
  maximize(labeling([], F,X,Y]), F). 
 
 

However, the use of clp(FD) here is optional and the skill can be coded in any other 

procedural or declarative language such as Prolog.  This is because an optimal use of 

constraint logic programming would be when none of variables are instantiated.  The 

cancel_fraction predicate would normally be invoked with the input parameters, N and D, 

already instantiated to integer values.  The variable F is the common factor to be cancelled. 

This is specified by the two relational constraints.  The final line initiates a search for 

solutions for X, Y and F.  The way this search is carried out is controlled by the first 

argument of labeling.  The empty list symbol, [], indicates that the default strategy is to be 

used, that is a backtracking search which explores the domains in ascending order.  The 

maximize predicate in the final line ensures that the largest value of F will be found.  

 

 

3.7.2 Measuring Problem Difficulty 
One of the main advantages of adaptive testing over fixed-item testing is the significant 

reduction in the test length, and consequently, in the testing time (Ríos et al., 1999).  This is 

facilitated by the ability to present a problem of appropriate difficulty to the student at the 

right time.   Problem difficulty can be measured at either one of two stages – prior to or 

during test delivery.   

 

The measure of problem difficulty prior to test delivery is perhaps the more common 

approach.  A simple strategy is to rank the difficulty of a problem as proportional to the 

number of identifiable skills required to solve it (Beck et al.1997).  The skills are not ranked 

in order of difficulty.  Lee (1996) highlighted that this strategy of measuring problem 
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difficulty by the number of skills is just one of the many factors.  Others that might be used 

include: 

 
• Number of steps required to solve the problem.  This may differ from the number of 

skills required to solve the problem as a skill may be used more than once. 

• Student�s familiarity with the problem.  If a student recognises a problem (Davis, 1984), 

he is more likely to be able to solve it correctly even if the problem is considered a 

difficult one.  This is especially relevant in situations where tutoring has been conducted 

based on past examples (Renkl, 1997; Ross and Kennedy, 1990; Chi et al., 1989). 

 
The measure of problem difficulty can also be captured empirically.  Response time can be 

used to calculate the total elapsed time between problem presentation and response.  The 

rationale behind this is that difficult questions require more processing time to solve.  Lee 

(1996) identified an item difficulty ratio which is a ratio of the number of respondents 

answering correctly to the total number of responses to the problem.  Another strategy is to 

calibrate a set of problems for a population of students such that a problem is considered 

easy if a high percentage of the population can solve it, or difficult if only a small percentage 

can solve it.  This is the approach undertaken by IRT designers.  However, this is based on a 

rather straightforward assumption that a question answered correctly is easy while that 

answered wrongly is difficult.   

 
Some argued that the measure should indicate how much cognitive effort is required from the 

student (Lee, 1996).  This is because a problem may be considered difficult due to it being 

poorly phrased or misleading, rather than requiring the student to understand difficult 

concepts or perform complex calculations.  Once the problems is rephrased or clarified, it 

may be easily solved.  On the other hand, difficult problems might be answered correctly for 

reasons other than thoughtful replies; for example, there may be clues in the question which 

point to the correct answer.  An interesting observation by Beck et al. (1997) is that some 

students rate the difficulty of problems on surface features.  For example, they may find 

problems with single-digit integers easier to solve than those with two or more digits, 

although these problems may require the same set of problem solving skills.   For instance, 

students found the problem 2/3 + 4/3 easier to solve than the problem 17/18 + 19/18 although 

both these problems require the application of the same skill. 
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The strategy of measuring problem difficulty prior to test delivery leads to the creation of a 

database of problems, each attached with a measure of difficulty.  The expert in this study 

employs this strategy and is similar to that of Beck (1997) where each problem is attached a 

difficulty level proportional to the number of skills needed to be applied. 

 

A less common but effective approach is to measure problem difficulty during test 

administration.  This approach supports the notion that different students may rate the 

difficulty of problems differently.   Examples include SIETTE (Ríos et al., 1999)  and 

CBAT-2 (Huang 1996).   Certain item parameters are identified, such as the number of times 

a question has been posed to the student, and, the correctness of a student’s response to the 

present question.  These item parameter values are updated after every student’s response to a 

question and are used to recalculate the student’s new proficiency level and the difficulty 

level of each remaining question in the database.  The system updates the temporary student 

model and uses this information to guide the test.  Once the test terminates, the temporary 

student model becomes the student’s current knowledge.  

 
 
3.8 Conclusion 
This chapter first provided a foundation in which to carry out knowledge acquisition.  It 

introduced the problem domain of elementary arithmetic with fraction additions and has 

discussed the teaching background of the teacher who is the “expert” in the expert systems 

aspect of the thesis.  It also described an observational study of the expert’s assessment 

techniques which paid particular attention to the issue of “adaptability”.   

 

The chapter then showed how knowledge acquisition can be supported by software to 

produce both a declarative description of classes of problems and an executable procedure 

which can evaluate student answers and produce sample problems.  These samples can be 

used as part of the knowledge acquisition process to refine the representation of a problem 

domain, and they can also be used in the ultimate delivery of an adaptive test.  The chapter 

discussed the use of software support for describing problem solving skills which may be 

used to categorise problems.  This ability is relevant to the task of estimating the difficulty of 

a problem and this, in turn, is relevant to the sequence in which problems are presented 

during tests. 
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Chapter 4.  
Initial Experiments: Creating a Student 

Model and Problem Progression in 

Adaptive Testing 

 

 

4.1 Introduction 
This chapter discusses the experiments in creating a student model and a problem progression 

strategy in SKATE.  It first discusses the usefulness of a student model for adaptive testing 

and seeks to determine the contents of such a model.  It bases its decision on the findings of 

two experiments, such as the remediation strategy of the expert after testing and concludes 

with the choice to maintain domain-specific information about the student, in terms of what 

is believed to be mastered and a record of successful and unsuccessful attempts at problems.  

A clp(FD) representation means that the overlay student model is executable and is useful for 

predicting a student’s performance and for generating problems during remediation. 

 

The chapter next presents two distinct strategies for problem progression based on expert 

emulation.  The first experiment is the development of a computer-aided procedure to 

systematically query an expert to extract a test item sequence called BT.  The second 

experiment describes a knowledge elicitation exercise which captures the expert’s testing 

strategy called XP, which is based on his measure of problem difficulty by the number of 
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skills needed to solve a problem. 

 

 

4.2 The Use of a Student Model 
A student model may contain domain-specific information and learner-specific characteristics 

about a student.  As mentioned in Chapter 2, the former type of information is still more 

commonly maintained in a student model mainly because of the difficulty with capturing the 

latter type of information.  In adaptive testing, the type of information that is maintained 

about the student is also mainly domain-specific and such information is used to select the 

next problem, or to determine when to stop the test, or to guide subsequent remediation.  For 

example, IRT systems maintains information about a student as a single proficiency estimate 

together with a confidence level while KST systems maintains student information as a 

knowledge state which is a set of problems, problem classes or skills which the student has 

displayed mastery of.   

 

Domain-specific information about the student is commonly captured through an analysis of 

student responses to problems (Brusilovskiy, 1994).  This may be achieved in different ways: 

 

a. Characterising final answers 

 This is the simplest form of diagnosis which involves the characterising of a student’s 

final answer to a problem as correct or incorrect, without inspecting the answer in detail 

or accessing the intermediate steps of the student.  There is a trade-off between accuracy 

and speed and it is the most common diagnostic strategy of adaptive testing systems.  An 

answer is treated as incorrect even if it is, upon closer inspection, partially correct.  The 

measure of mastery of the skills associated with the problem can be increased for a 

correct response, or decreased for an incorrect response.  If an ITS employs a 

perturbation model, then the cause of an incorrect response can be determined by a 

perturbation in either the student model or the buggy library.  The advantage of this 

strategy is its robustness in the face of bug migration and radical strategy variability as it 

is not affected by inconsistent behaviour or multiple problem solving strategies of the 

student.  
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b. Analysing problem solving steps 

 Analysing a student’s problem solving steps or solution paths provides additional 

information about the student’s cognitive processes and avoids having to infer from 

large search spaces or deal with the problem of combinatorial explosion.  The task is to 

observe the student’s problem solving steps of known problems, either online or offline.  

The analysis of the student’s actions of unknown problems is not discussed here but is 

the most complex form of analysis; an example is WEST (Burton and Brown, 1985) 

which uses the differential modelling technique.  The analysis of solution paths of 

known problems is usually made possible because an ITS usually maintains procedural 

knowledge.  Examples include GUIDON (Clancey, 1979) which observes medical 

students during problem solving, and the LISP Tutor (Anderson and Reiser, 1985) and 

FITS (Nwana, 1993), both of which maintain a set of correct procedures as well as 

buggy rules to monitor students during problem solving by the model tracing technique.   

 

c. Deducing from final answers 

This involves deducing a student’s solution path from a final answer.  For example, if 

there is an executable student model as an overlay model and a buggy model, it can be 

used to simulate the problem solving steps of the student, from the final answer by using 

a set of correct and incorrect knowledge elements to entire procedures.  Examples 

include DEBUGGY (Brown and Burton, 1978), PROUST (Soloway and Johnson, 1984) 

and ACM (Langley and Ohlsson, 1984).  However, there is no guarantee that the 

inferred solution path represents the true problem solving strategy of the student, as 

there is the possibility of idiosyncratic behaviour (Nwana, 1993) and radical strategy 

variability (Ohlsson, 1994) on the part of the student.   

 

The first type of diagnosis reveals domain-specific information in terms of existing 

knowledge and gaps in knowledge while the second and third types capture information in 

terms of problem solving strategies and misconceptions.  The following subsection describes 

an experiment carried out to diagnose student answers to problems in two modes – 

characterising final  answers and analysing problem solving steps.  The diagnosis was carried 

out manually by the expert.  The findings reveal that the second mode provides more detailed 

domain-specific information about the student than the first mode.  
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4.2.1 The DSA Experiment 

4.2.1.1 Aim of Experiment 
The aim of the DSA (Diagnosing Student Answers) experiment is to compare two different 

modes of diagnosis.  Both modes yield domain-specific information about each student in a 

subject domain.  The first mode is a simple form of diagnosis which inspects final answers 

and characterises each answer as correct or incorrect. The second mode performs a detailed 

diagnosis or deep cognitive modelling of the student answers by examining all the working or 

problem solving steps leading up to final answers.     

 

4.2.1.2 Subjects 
The test was presented to twelve inmates who are part of the student population described in 

Section 3.2.2. 

 

4.2.1.3 Method 
A pencil-and-paper fixed-item test was presented to the subjects; a copy of the test is given in 

Appendix E.  It covers the topic of fraction additions and consists of thirty-five questions 

which represent all the problem classes listed in Appendix D.  The questions are arranged in 

an order of difficulty: solve a problem requiring a basic skill such as calculate lowest 

common denominator, add two fractions with common denominators, add two fractions with 

different denominators.  Table 4 in Appendix F shows each question corresponding to a 

problem class and a set of problem solving skills which can be applied to solve the question.  

The first eleven questions asked specific basic skills, such as cancel fraction, and do not 

correspond to any problem class declared in Appendix D. 

 

No time limit was imposed on completing the test and the students were not allowed to 

confer with one another.  They were instructed to write down their intermediate problem 

solving steps on the answer scripts.  The test was invigilated by the expert, who is their 

teacher, in a formal classroom setting.  The answer scripts were collected after the test and 

inspected by the expert in the two modes of diagnosis. 
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4.2.1.4 Findings 
The results of the two modes of diagnosis are given in Table 5 and Table 6 of Appendix F.   

Both modes reveal the evidence of  “downward consistency” which is a term coined to mean 

that if a student has successfully answered questions which have required more than one 

problem solving skill, say {a,b,d}, then it was observed that he could also successfully 

answer questions which required fewer but similar skills, say {a} or {a,b}.  For example, the 

students who have answered question 5 correctly (which required skills a and b) have also 

answered question 1 correctly (which required skill a).  “Downward consistency” was also 

observed by Marshall (1981).  It has an important implication in that the number of candidate 

problems to be selected can be reduced.   

 

The second mode reveals more detailed domain-specific information than the first mode, 

such as noise and misconceptions.  These are discussed below. 

 
• A correct final answer may be due to copying  
Although the students were instructed to display their problem solving steps for each question, there 

were varying degrees of working shown.  Some presented full workings while others presented either 

partial workings with some missing steps or no working at all.  If a correct final answer to a problem 

was accompanied by full working, this implies that the student has successfully solved the problem 

and that he has mastered the relevant skills needed for that problem.  When no working is given, a 

correct final answer may imply that the student has copied.  There is therefore a possibility of noisy 

data caused by copying.  Evidence of this possibility can be found in the answers of subject I for 

questions 24 to 35 where the subject did not show any working to any of these problems but provided 

a correct final answer for each of them.  One of the skills required in each of these questions was 

calculate lowest common denominator.  If “downward consistency” was true, then the subject should 

be able to answer some earlier but easier problems (questions 6 to 9) which have required the use of 

only one skill, that is, calculate lowest common denominator.  However, when the subject did not 

successfully solve these easier problems, it implied that he had copied. 
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• A correct final answer may be due to guesswork 

A possibility of a final answer being categorised as correct but is in fact incorrect may be caused by 

another type of noise, that is, guesswork.  There is no evidence of this type of noise in this experiment, 

but is worth mentioning here. 
 
• A correct final answer may be due to a misconception or stable error 

Another possibility that is not evident in this experiment but is also worth mentioning is a situation 

where a correct answer may be caused by a misconception or stable error (VanLehn, 1990).  An 

example is provided by Borasi (1994) where a student was asked to solve 16/64 and he provided the 

correct final answer as ¼.  No working was provided by the student but a correct response implies that 

the student has successfully used the skill, cancel fraction.   However, when the student was asked to 

solve another problem 18/84 and he provided the answer 1/4, it became clear that he did not use the 

skill cancel fraction and this drew suspicion to the earlier problem of 16/64, which the student had 

‘successfully’ solved.  It then became obvious that the student had applied a misconception by 

cancelling a common digit from the numerator and denominator.  This influenced subsequent remedial 

help which dealt at a more basic level, that is, at the concept of a fraction, rather than providing help 

with the skill, cancel fraction. 
 
• A wrong final answer may be partially correct  

A closer inspection of the final answers revealed that some were partially correct.  For example, the 

answers to question 5 of subject E and to question 19 of subject G were found to be partially correct 

and it was evident that they did not apply the skill cancel fraction.  This implies a lack of mastery of 

this particular skill.  Another example can be found in the answers to question 17 and 20 of subject I 

where he did not apply the required skill make proper. 
 
• A wrong final answer may be due to misunderstanding of question 

There is also a possibility of a wrong answer being caused by a misunderstanding of the 

question.  This might have been the case with the answers to questions 10 and 11 by subject 

D and this may be due to a poorly phrased question, as discussed earlier by Lee (1996).  

Although subsequent remedial help may focus on the skills required to solve these problems, 

it may be the case where the questions needed to be rephrased or clarified for them to be 

easily solved.  
 
• A wrong final answer may be due to careless slips 

It is not difficult for a teacher to detect a careless slip from other types of noisy data such as 

guesswork or copying as this inspection usually takes place in relation to the student’s 

answers to previous problems.  Examples of careless slips can be found in the answers to 
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questions 29 and 33 by subjects F and J respectively.  These subjects can be classified as 

‘good’ students as they have successfully solved the majority of the test questions.  A 

possible reason for careless slips may be that the students had to wade through the easier 

problems before reaching the more difficult ones, and slips may occur due to boredom or 

demotivation.  Another possible cause may be forgetting due to cognitive overload which 

may interfere with the process of problem solving and lead to errors (Sweller, 1988) 

(Kashihara et al., 1994).  
 
• A wrong final answer may belong to a question which was not attempted at all 

A blank answer is usually characterised as incorrect.  This may be due to test anxiety, 

demotivation, or that the student has run out of time.  A good example can be found in the 

answers of subject B who “gave up” after the fifth question and provided a correct answer to 

only the first question. 
 
• A wrong final answer may be caused by a misconception 

Just as a correct final answer may actually conceal a misconception, a wrong final answer may reveal 

one or more misconceptions.  A misconception may be represented by a mal rule.  What distinguishes 

a misconception is the uniform pattern of problem solving to one or more problems which leads to a 

wrong answer. Upon a closer inspection of student answers, a list of possible mal rules was found as 

follows: 

 
 
mr1 add denominators for the resultant denominator (for common denominator problems) 
mr2 add numerators for resultant numerator and added denominators for resultant 

denominator (for non-common denominator problems) 
mr3  add numerators but subtract denominators (for non-common denominator problems) 
mr4 add numerators and multiplied denominators (for non-common denominator problems) 

 

Figure 18.  A List of Mal Rules 
 

In a perturbation model approach, the mal rules would form part of the bug library and be 

used to detect misconceptions in student answers.   

 

4.2.1.5 Experiment Summary 
This experiment compared two types of diagnosis.  A detailed diagnosis of student answers 

provided more domain-specific information about the student than one which merely 

characterises each answer as correct or incorrect.  A detailed diagnosis revealed the student’s 



Chapter 4. Initial Experiments:Creating a Student Model and Problem Progression in Adaptive Testing  76 

  

problem solving strategies, misconceptions and noisy data such as guesswork, careless slips 

and copying.  This has implications in the way subsequent remedial help is rendered.  

 

 

4.3 Contents of the Student Model in SKATE 
This section discusses the factors which influence the type of information to be maintained in 

a student model of SKATE.  It draws from the findings of the MATT and DSA experiments 

described in Section 3.2.5 and Section 4.2.1 respectively.   

 
Findings from the MATT experiment show that the expert maintains a detailed model of the 

student during adaptive testing.  Such information included domain-specific information, 

such as correct and incorrect knowledge, and learner-related characteristics, such as 

confidence and anxiety.  Domain-specific information about the student was specially useful 

during adaptive testing to select subsequent problems and to stop the test, and after testing to 

provide appropriate remedial help.  Learner-related characteristics were specially useful to 

kick-start the test with a problem of appropriate difficulty.  Findings from the DSA 

experiment show that deep cognitive modelling provided more information about the 

student’s cognitive state than a ‘shallow’ form.   

 
Despite these findings which suggest a detailed student model in terms of domain-specific 

knowledge, such as misconceptions, and learner-related characteristics, such as confidence, 

there are other findings from the two experiments and factors which influence the final 

decision, which is, to include domain-specific knowledge in terms of what he knows.  The 

reasons are discussed as follows. 
 



Chapter 4. Initial Experiments:Creating a Student Model and Problem Progression in Adaptive Testing  77 

  

• Loose strategy in problem selection 

 In the MATT experiment, it was observed that despite having access to detailed 

information about the student, the expert did not use the information as effectively as he 

could have when he employed a rather loose strategy in selecting subsequent questions. 

Also, there was evidence of redundant questioning.  This may mean that the expert did 

not maintain a detailed model of the students’ performance, or it may just have been 

evidence of human fallibility.  It is important to emphasise that this is the strategy of the 

current expert, and not necessarily one that is used by human testers in general.  This 

also highlights a possible weakness in knowledge acquisition. The human expert may 

have made use of extraneous data such as signs of student confidence or anxiety.  Even 

if such data was used by the expert human tester, it would not have been possible to 

exploit it during this project.  
 
• Access to student’s answers to problems 

A solution to a problem given by a student presents the raw materials for diagnosis.  For 

most adaptive testing systems, it is usual for students to key in only final answers to 

problems, or to select an answer from a multiple-choice question (Rudner, 1998).  The 

degree of detail that is required from a student in terms of answers to problems depends 

on the type of diagnosis that is carried out.  For example, if the diagnostic element in 

SKATE requires details on misconceptions, then a student is expected to enter the 

solution path leading to a final answer.  However, as was evident in the DSA 

experiment, students may provide different degrees of working despite being instructed 

to display the full working for each question.  Therefore a diagnostic module would need 

to be robust enough to handle not only idiosyncratic answers but should be able to work 

on different degrees of working given.  An alternative is to allow the student to provide a 

final answer only and to use, like ACM, a machine learning algorithm to work 

backwards from a final answer to infer a solution path.  Limitations of such an approach 

have been discussed earlier. 

 
• Task of Constructing a Bug library 

The ability to perform deep diagnosis usually entails the construction and maintenance 

of a bug library.  As discussed earlier, despite the costly and time-consuming effort in 

conducting large empirical studies, it is not exempt from the possibility of misdiagnosis, 

bug migration and the non-generality of bug libraries. 



Chapter 4. Initial Experiments:Creating a Student Model and Problem Progression in Adaptive Testing  78 

  

 
• Subsequent Remediation 

In the DSA experiment, it was pointed out that the level of detail of diagnostic 

information will influence subsequent remediation.  However, the remediation strategy 

of the expert is reteaching, as highlighted in Section 3.2.4 and in the MATT experiment 

(Section 3.2.5).  Even in its coarse-grained approach, reteaching is found in some studies 

to be as effective as remediating errors (Sleeman et al., 1989).  Also, Self’s slogan of 

“don’t diagnose what you cannot treat” (Self, 1990) can be interpreted to mean that the 

degree of diagnosis on student answers should be proportional to the degree of 

subsequent remediation or treatment.  This implies that if reteaching is the remediation 

strategy, then a simple form of diagnosis which characterises student answers as correct 

or incorrect is sufficient. 

 

From the arguments presented above, the student model in SKATE can be represented as an 

overlay model and an interaction history component.  An overlay model maintains a record of 

the problem classes which the student has successfully attempted, and an interaction history 

component keeps a record of the student’s successful and unsuccessful attempts to problems. 

 

Like the representation of the problem domain, the overlay student model is executable.  This 

is particularly useful for predictive purposes. For example, before a problem is presented to 

the student, it can be matched against the student model.  If a match is found, it can be 

inferred that the student can solve the new problem.  It cannot, however, simulate a student’s 

behaviour at problem solving.  An executable model is also useful during remediation where 

a similar problem can be generated from any problem classes contained within the model and 

be used as practice exercises for the student. 

 

 

4.4 The Progression Problem  
The issue of progression has been a primary concern in the literature of intelligent tutoring 

and adaptive testing.  In intelligent tutoring, progression involves navigating from one topic 

to another, or to a problem, or to an exposition, while in adaptive testing, progression is 

usually in terms of moving from one problem to another, or of meeting the stopping criteria.  

In both cases, the domain (Halff, 1988) must be structured well enough for the pedagogical 
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module (Anderson, 1988c) or the testing module to make use of.  As mentioned previously, a 

possible drawback is the huge efforts, usually empirical, involved in structuring the domain.  

For example, bug libraries (Brown and Burton, 1978) and IRT-based test item pools (Wainer, 

1990) both require data from large and across different student populations to overcome the 

problem of non-generality.  Also, some domains are constructed with such complexity, for 

example granularity hierarchies (McCalla et al., 1992), that it may hinder the transfer to other 

subject domains and the acceptance by end-users such as teachers. 

 

Stochastic methods feature in many problem progression efforts.  For example, Marshall 

(1981), vanderLinden (1998), Villano (1992) and Collins et al. (1996) use Bayesian 

inferencing (Jensen, 1996) (Charniak, 1991) while Huang (1996) employed a probability 

model based on the IRT.  Non-stochastic efforts include the perturbation model approach 

where problem progression works by first detecting any misconception in a student’s answer 

and matching this misconception against a bug library before presenting a problem to 

confirm the misconception; an example is the FITS Tutor (Nwana, 1993).  Other pieces of 

information about the student, such as acquisition and retention factors (Beck et al., 

1997;Stern et al., 1996), have also been useful in controlling problem progression. 
 

The approach undertaken in this study attempts to avoid some of the major drawbacks of the 

above techniques, such as large empirical studies and the complexity of domain knowledge 

construction, by featuring on expert emulation to construct the testing strategy.  Two 

approaches are presented.  The first is an algorithm which is designed to investigate the 

possibility of side-stepping the task of describing the structure of a domain by using expert 

system knowledge acquisition techniques to elicit from an expert tutor the actual sequence of 

questions to be used in an adaptive test.  A main feature is a query procedure which provides 

an authoring environment for the expert’s strategy to be captured.  The second explores an 

elicitation approach based on an analysis of “skills” that a student of a particular problem 

domain needed in order to successfully solve problems.  Although both methods make use of 

the state-space search paradigm, they are in fact a formalisation of the non-theoretically 

motivated strategy of a human tutor whose knowledge and skills were worthy of emulation.  
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4.5 Direct Elicitation of Test Item Sequencing  
This section describes a query algorithm for eliciting the test item sequencing strategy of the 

expert.  A manual query approach is tried and this is followed by a computer-aided approach.   

 

4.5.1 Manual Querying An Expert  

4.5.1.1  Aim of Experiment 
The aim of this experiment is to examine the feasibility of a manual approach in eliciting the 

test item sequencing strategy of the expert.     

 

4.5.1.2  Method 
The expert was given a set of test items and had access to example problems which were 

generated for each test item.  His task was to sequence the set of test items for starting, 

continuing and stopping the test.  In this example, six test items made up the problem domain 

(Figure 19) which is a smaller set of problem classes than the one presented in Figure 15. 

Each test item represents a problem class.  

 

a.   Add two proper fractions with common denominators 
b.  Add two improper fractions with common denominators 
c.  Add a proper fraction and an improper fraction with common denominators 
d.  Add two proper fractions of different denominators  
e.  Add two improper fractions of different denominators  
f.  Add a proper fraction and an improper fraction of different denominators 
 

Figure 19.  A Set of Test Items 
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The interview was conducted along a systematic line of questioning: 

�Suppose the student has provided a wrong (correct) answer to a problem 

class X, what would you ask him next?�   

 

This differs from the style of querying adopted by Kambouri et al. (1994) as described in 

Section 2.5.2.1.  

 

4.5.1.3  Results 
The elicited testing sequence takes the form of a binary tree structure (Figure 20).  Each node 

represents a problem class while the arcs dictate the sequence from one node to another, 

depending on a student’s correct or incorrect response.   
 

Figure 20.  Manually Elicited Test Item Sequence as a Binary Tree 
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4.5.1.4  Comments  
The manual approach was tested for a small set of test items but it is envisaged that this 

method will break down with increasing number of test items; five to eight test items seem 

feasible.  For example, there is the possibility of noise in terms of contradictions on the part 

of the expert and the possibility of redundancy in the tree as many paths will share common 

sequences.  An alternative approach is a computer-aided query procedure; this is described in 

the next section. 

 

 

4.5.2 Computer-aided Elicitation 
A computer-aided approach that facilitates the elicitation of the problem progression strategy 

of the expert is described.  It has two features – a query procedure which systematically 

elicits the test item sequence from the expert, and a delivery procedure which allows the 

expert to review and confirm his strategy.  The query procedure can be used to author the 

adaptive testing component of SKATE where the resultant binary tree called BT can be used 

by the delivery procedure to function as the adaptive testing strategy of SKATE. 

 

4.5.2.1 The Query Procedure 
The query procedure is designed to systematically query the expert in his problem 

progression strategy and the line of questioning is similar to that of the manual approach 

described in the previous section.  The algorithm for the query procedure is as follows.   

 

Let A be the set of test items {a,b,c,d,e}.    

a. When constructing a new binary tree, display A. 

b. Expert chooses an item from A and this becomes the entry node for starting the adaptive 

test. 

c. Expert selects a node from which to expand.  He selects an item following a correct 

response, and another following an incorrect response, or a leaf node to indicate a 

terminating condition. 

d. Update branch with new node. 

e. Update list of all possible items for expert to choose from. 

f. Repeat from c. until no test items are left.  
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In the example given in Figure 20, each path through the binary tree starts at a and ends in a 

leaf node.  Each path corresponds to a possible adaptive test.  So, the possible tests are: 
 
a 

a,f,e 

a,f,c 

a,f,c,d 

a,f,c,d,b 

 
and the possible outcomes, each is associated with a remediation programme, are: 

 
a, fail 

a, succeed, f, succeed, e, succeed 

a, succeed, f, succeed, e, fail 

a, succeed, f, fail, c, fail 

a, succeed, f, fail, c, succeed, d, succeed 

a, succeed, f, fail, c, succeed, d, fail, b, fail 

a, succeed, f, fail, c, succeed, d, fail, b, succeed 

 

4.5.2.2 The Delivery Procedure – the BT algorithm 
The expert can review and confirm the newly elicited problem progression strategy via a 

delivery procedure.  The query and delivery procedures can be run iteratively until the expert 

is satisfied that the testing sequence is consistent with his strategy.  The testing strategy is 

called BT.  The delivery procedure has an additional function of delivering the test during 

student modelling.  The test is administered by traversing the resultant binary tree.  The 

algorithm of the delivery procedure is as follows: 
 

a. make the root of the tree the current node. 

b. if the current node is a terminal node, display remedial advice, stop test. 

c. ask the question associated with the current node. 

d. evaluate the answer provided by the student. 

e. if the answer is correct, make the left-hand node the current node. 

f. if the answer is incorrect, make the right-hand node the current node. 

g. repeat from b. 
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4.5.2.3 Comments  
The computer-aided query procedure may be seen as an improvement over the manual 

approach in that it can easily keep track of what test items have been used.  Such information 

is useful not only in tailoring the querying process but also in detecting any noise in terms of 

contradictions from the expert.  However, the number of possible questions increases with 

the number of test items and this may increase the possibility of contradictory behaviour on 

the part of the expert.  This was a problem faced also by Kambouri et al. (1994), as described 

in Section 2.5.2.1, where experts judged between 1000 and 2500 questions for a 50-item 

problem domain and it was already considered an improvement over the 2.8x1016  possible 

questions. 

 

A student model can be maintained to keep diagnostic information about the student and 

facilitate subsequent remediation.  The delivery procedure can be augmented by a diagnostic 

module to record the path taken by a student through the binary tree of problem classes.  For 

example, a path can be one of the possible outcomes described earlier and each leaf node of 

the binary tree is a remedial programme.  The binary tree is a means of mapping each student 

onto a programme. 

 

 

4.6 Problem Progression based on Problem Solving Skills 
This section describes the elicitation of the test item sequence of the expert based on the 

expert’s measure of problem difficulty (see Section 3.7.2).  The strategy called XP is an 

alternative to the one proposed in the previous section. 

 

4.6.1 Aim of Experiment 
The aim of the experiment is to elicit a strategy in problem progression based on the expert’s 

assertion that the difficulty of a problem can be measured by the number of problem solving 

skills needed to solve the problem.  The expert has taken the assumption that all the skills 

under consideration are of the same level of difficulty. 
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4.6.2 Method 
Knowledge elicitation took the form of interviewing and task analysis and was carried out 

using the domain of fraction additions with five problem solving skills (see Section 3.7.1).  

The general approach derived from the interviews with the expert is as follows.  Sets of 

problems requiring a specific number of skills to be used by the student are formed.  The sets 

are labelled with a number.  For example, in Figure 21, the node with a number, say 3, 

denotes a set of problems which each requires specifically three skills to be solved.  A 

process rather like a binary search is used to investigate a student’s ability.  Having 

established either competence or incompetence at set n, the next set of problems to be 

investigated are set mid way between n and max (for competence) and n and min (for 

incompetence) where max and min are the largest and smallest labels.  The process is 

repeated with revised values for max and min as appropriate.  The exploration of problems in 

a particular set is explained by the example in the next section, with max equals 5 skills.  The 

strategy of the expert was also captured for different values of max.   

 
4.6.3 Example 
The example was extracted from a knowledge elicitation session.  In Figure 21, the adaptive 

test begins at node 3 that contains problems each of which can be solved by three skills. 

 

 
Figure 21.  Problem Progression for a Domain of Five Skills 
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Problem progression from node to node, that is from one level of difficulty to another,  works 

like this.  If the student gets more incorrect than correct answers to problems within that 

category, he moves onto node 2 which contains problems each of which can be solved by 

exactly two skills.  Conversely, if he gets more correct answers within node 3, he will move 

onto node 4 which contains problems each of which can be solved by exactly four skills. 

 

Problem progression within a node works like this.  If there are a set of five skills, {a,b,c,d,e}, 

then at node 3, say, there are nCr possible combinations of skills, that is: 

 

nCr  =  !)!(
!

rrn
n

−
 

 

or 5C3 or 10 possible combinations of skills: {[a,b,c], [a,b,d], [a,b,e], [a,c,d], [a,c,e], [a,d,e], 

[b,c,d], [b,c,e], [b,d,e], [c,d,e]}.  For example, the combination [a,b,c] would involve a set of 

problems which each require all the skills a, b and c to be used.   Some combinations may not 

yield a problem.  For example, there may be no problems associated with combination [a,d,e]. 

 

As a skill can appear more than once in different combinations, the expert decided to give 

priority to those skills which have been asked the least. This criteria was enforced by the 

knowledge engineer through the use of weights where weights were introduced to each 

combination to enable the selection of the next best combination.  The following criteria were 

imposed for calculating the weight of each candidate set: 

 

• If a skill has been not been asked yet, it carries a weight of 2 

• If a skill has already been asked once, it carries a weight of 1 

• If a skill has been asked more than once, it carries no weight 

 

Based on the weighting criteria, the following example shows how problems, each of which 

requiring a combination of three skills, were presented to the student. 
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a. Select the first set amongst the list of candidate combinations, in this case, [a,b,c].  

Calculate the scores of the other combinations, based on the above rules. 

 [a,b,c] [a,b,d] [a,b,e] [a,c,d] [a,c,e] [a,d,e] [b,c,d] [b,c,e] [b,d,e] [c,d,e] 

1 * 4 4 4 4 5 4 4 5 5 

 
b. Select the first set with the highest score.  Combination [a,d,e] is chosen and the scores of 

the other combinations are recalculated. 

 [a,b,c] [a,b,d] [a,b,e] [a,c,d] [a,c,e] [a,d,e] [b,c,d] [b,c,e] [b,d,e] [c,d,e] 

1 * 4 4 4 4 5 4 4 5 5 

2 - 2 2 2 2 * 3 3 3 3 

 
c. Combination [b,c,d] becomes the next best choice and is thus chosen. 

 [a,b,c] [a,b,d] [a,b,e] [a,c,d] [a,c,e] [a,d,e] [b,c,d] [b,c,e] [b,d,e] [c,d,e] 

1 * 4 4 4 4 5 4 4 5 5 

2 - 2 2 2 2 * 3 3 3 3 

3 - 0 1 0 1 - * 1 1 1 

 
d. Combination [a,b,e] becomes the next best choice and is chosen. 

 [a,b,c] [a,b,d] [a,b,e] [a,c,d] [a,c,e] [a,d,e] [b,c,d] [b,c,e] [b,d,e] [c,d,e] 

1 * 4 4 4 4 5 4 4 5 5 

2 - 2 2 2 2 * 3 3 3 3 

3 - 0 1 0 1 - * 1 1 1 

4 - 0 * 0 0 0 0 0 0 0 
 

e. As there are no more candidate sets, no more problems are presented.  

 

In the above example, it shows that out of the ten possible combinations, only problems of 

combinations [a,b,c], [a,d,e], [b,c,d] and [a,b,e] were chosen.    
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Progression to the next node depends on the student’s performance at the current node.  If the 

student had provided any incorrect responses, he would be assigned ‘easier’ problems; in this 

case, this means progression to node 2, where he would be presented with problems requiring 

exactly two skills.  The whole process is repeated for problems requiring exactly two skills.  

Conversely, if the student had answered all the problems at the current node 3 correctly, then 

he would assign ‘harder’ problems (node 4) each of which requires exactly four skills.   

 

It must be noted that it is possible that not every combination would yield a problem. 

 

4.6.4 Comments 

• Pruning the search space within a node  

Pruning the search space within a node takes place in two ways.  Firstly, not all the generated 

combinations will yield a valid problem.  Secondly, the weighting criteria are used to constrain 

the choice of future problems.  Constraining future choices in this way is similar to the 

inferences used by Kambouri et al. (1994) to reduce the number of knowledge states, or the 

technique described in the previous section to reduce the amount of effort needed to construct 

a binary tree of test.  In this way, the intuitively attractive idea of not repeatedly gathering 

information about the same skills can be operationalised.  

 

• Pruning the search space from one node to another 

The expert took the view that if a student has solved a ‘harder’ problem, it can be implied that 

he could solve an ‘easier’ problem. In this way, the set of candidate problems could be pruned 

further.  For example, if a student has successfully solved problems requiring three skills say, 

then he need not be presented with problems requiring a lesser number of similar skills.  This 

conforms with the notion of “downward consistency” (Section 4.2.1.4).   

 

• The Use of a Student Model  

Throughout the adaptive testing, a record of the student’s performance is maintained as an 

interaction history component of the student model.  The student model is constantly being 

updated throughout the adaptive testing to record the problems which the student has already 

tackled, and this information was used to guide the selection of future problems and 

subsequent remediation. 
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4.7 Conclusion 
The chapter discussed the experiments leading to the creation of a student model and a 

problem progression strategy for SKATE.   The findings of two experiments led to the choice 

to maintain domain-specific information about the student in terms of an overlay model and 

interaction history module.  The clp(FD) representation of the overlay model meant that it is 

executable and is useful for predicting a student’s performance and for generating problems 

to aid remediation.  In problem progression, two options for the design of a module to control 

the sequence of test items in an adaptive test were presented.  The first experiment 

demonstrated the scope for computer assistance in knowledge elicitation while the second 

experiment adopted a skills-based approach based on the expert’s measure of problem 

difficulty.  The two strategies made use of a student model for diagnosis and remediation and 

in selecting an approach suitable for SKATE, testing systems associated with student 

modelling are preferred to those developed for summative testing purposes only, such as 

IRT-based systems. 
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Chapter 5.  

 Design and Implementation 

 

5.1 Introduction 
The elicitation carried out in the last three chapters resulted in the construction of the three 

main knowledge components of SKATE, namely the domain knowledge, the student model 

and the adaptive testing strategy.  Two testing strategies, XP and BT, were elicited from the 

human expert. 

 

This chapter discusses the contents of the student model and the domain knowledge in 

relation to XP (see Section 4.6), which was the preferred testing strategy of the domain 

expert.  Fraction addition was the example domain used throughout the study but the 

proposed architecture should be able to support other topics in mathematics.  The design of 

each component is the result of the aim to produce adaptive tests that are both efficient and 

acceptable to teaching professionals.  Each component has been strongly influenced by 

interaction with a domain expert.  This is described in a section on “Origins of the Design” 

which follows a general overview of the structure of the model. Subsequent sections are 

devoted to describing each of the main components of the model. 
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5.2 Origins of the Design 
The process of Knowledge Acquisition has been described in Chapter 3.  Since the domain 

expert is the authority for both the domain knowledge and the testing strategy, he is the major 

influence on the student modelling architecture.  The approach based on emulation to 

adaptive testing was, by design, entirely under the control of the expert.  Although the subject 

matter of the research, “fractional arithmetic”, is well understood, this does not mean that 

there is only one way in which domain knowledge can be represented.  The way in which this 

emerged, with an emphasis on specific manipulative skills, and a concern that skill 

combinations should be the only measure of problem difficulty and that problem difficulty 

should be central to testing, again reflected the influence of the domain expert.  This means 

that there is no reason to suppose that an identical testing strategy and domain modelling 

would emerge were the work to be repeated with a different expert.  But some elements of 

the model would be constant, and more significantly, the approach to constructing the model 

would remain the same. 

 

The domain expert’s characterisation of fractional arithmetic in terms of specific 

manipulative skills leads directly to the design of the student model.  It is the ability to 

exercise skills in problems at a certain level of difficulty that represents a student’s 

competence.  The student model in SKATE, for this particular domain, consists, at any time 

during the testing process, of those skill combinations that the testing strategy indicates are 

within the ability range of the student.  Implicit in the expert’s approach to testing is an 

assumption of a hierarchy of competence.  This means that if a student can exercise the set of 

skills {a,b,c} to solve a problem, then it follows that the student can exercise any subset of 

those skills, so that there is no need to explicitly test for competence with those subsets.  

However, competence with {a,b,c} has no implication for competence with proper super sets.  

It is this hierarchical assumption that motivated the expert’s testing strategy, and a way of 

summarising the ability of a student in terms of the maximum size of the set of skills in 

which he had demonstrated competence.  
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5.3 SKATE – A Student Modelling Architecture 
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Figure 22.  The Architecture of SKATE with XP testing strategy 

 
The architecture of SKATE was first introduced in Chapter 1.  A more detailed architecture is 

given in Figure 22, with XP as the kernel of the SKATE model.  The student modeller 

orchestrates the student modeling process.  First, the difficulty selection module is invoked to 

determine the level of difficulty of the first problem to be presented.  With the assigned 

difficulty level, the problem selection module selects a problem from the problems bank in 

the domain knowledge component.  The problem is presented to the student via a simple 

interface.  The student’s response is passed to the answer evaluation module, which 

compares the student’s response with that of the system.  The verdict is recorded in the 

interaction history module by the update module.  A predetermined number of problems 
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within the assigned difficulty level are presented to the student, one at a time, with no 

duplicates of problems or skill combinations.  Once this is exhausted, the cycle repeats with 

subsequent selection of difficulty level being determined by how the student fared in 

answering the set of questions at the current difficulty level.  The test stops at a difficulty 

level which indicates the student’s level of attainment.  

 

 
5.4 The Adaptive Testing Strategy 
The main functions of XP are described in more detail.    

 
• Difficulty Selection 

This is a binary chop algorithm to determine progression from one level of difficulty to 

the next.  Problem difficulty is proportional to the number of skills needed to solve the 

problem.  All skills are considered to be equally difficult (see Section 3.7.2).  The rule 

used to determine movement from one level to the next is strict. The student has to 

demonstrate competence by solving all the problems presented at the assigned difficulty 

level.   He is only allowed to progress to a higher difficulty level if he has provided more 

correct answers than wrong ones at the present level. The number of questions at each 

level was determined by the domain expert during the Knowledge Acquisition process. 

Conversely, if he has more wrong answers than right ones, a lower difficulty level is 

assigned where he will be presented with problems requiring fewer skills to be applied. 

 
 

• Problem Selection 

The selection is based on matching a combination of skills to a problem.  This approach 

requires the presentation of problems of varying number and combination of skills.  As 

an example, say there are five problem solving skills for a domain under study, 

[a,b,c,d,e], and the present difficulty level is 2, then all two skill problems in the question 

bank become candidates for selection.  No problem is presented more than once.  Also, 

any problem which requires the same combination of skills, that is, the same skills in the 

same order to be exercised, is removed.  For example, if there are three problems, q1, q2 

and q3, which require the same order of skills to be applied, say [b,c], then q2 and q3 no 

longer become candidates for selection.  
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• Answer Evaluation 

The answer from the student, in response to a problem, is checked against that of the 

system.  The system’s answers to problems are recorded in the problems bank.   If a 

match is found, it returns the verdict as ‘correct’, otherwise the verdict ‘wrong’ is 

returned.  

  
• Update 

The update module records in the interaction history module, details of each student’s 

attempts on problems presented to him.  The details include the student’s answer, the 

system’s verdict and the combination of skills which the system believes the student has 

exercised.  At the end of the test, the update module summarises which skills the student 

is believed to have mastered and this is recorded in the overlay student model.   

 

 

5.4.1 Parameters of XP 
The parameters under which XP operates are described. 

 
a. Number of problems per combination of skills 

When XP determines a set of skills out of nCr possible combinations of skills (see Section 

4.6.3), a problem matching that combination is chosen from the problems database and 

presented to the student.  There is usually at least one problem for any combination of 

skills.  XP currently requires the presentation of only one problem per combination of 

skills. 
 

b. Progression of difficulty level 

Each student starts the test at the same level of difficulty.  With the version of the binary 

chop algorithm currently adopted by XP, as discussed in Section 4.6, progression from 

one level of difficulty to the next is calculated by rounding up to the nearest integer, the 

value of the midpoint between the present level of difficulty and the highest or lowest 

level of difficulty, depending on whether progression is to easier or more difficult 

problems.  For example, in a six-skill problem domain, the starting level of difficulty is 4, 

which is the rounded up value of the midpoint between 1 and 6.  If the student proceeds 

to easier problems, the next difficulty level will be 3.  
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c. Threshold level of success 

A student progresses to a higher (lower) difficulty level when he provides more correct 

(incorrect) answers to problems than incorrect (correct) ones at the present level of 

difficulty.   The difference between the number of correct and wrong answers may be no 

greater than 1. 

 

d. No intervention 

XP performs student modelling via problem presentation.  Unlike the more generic types 
of Intelligent Tutoring Systems, it does not intervene to offer hints or explanation. 

 

e. Low Bandwidth 

Like PROUST (Soloway and Johnson, 1984), XP has access to student’s final answers 

only, and not intermediate steps or solution paths.  This is different from performance 

assessment that includes data on student problem solving behaviour as well as their 

answers, as described by Linn, Baker and Bunbar (1991) in VanLehn & Niu (2001).  

With such low bandwidth of information, XP performs knowledge tracing and not model 

tracing. 

 

f. No Memory of previously answered questions  

XP has no memory of previously answered questions.  It does not have the mechanism of 

reviewing previously answered questions to check for any inconsistencies, which could 

arise from noisy data such as careless slips or lucky guesses.  This is further discussed in 

Section 6.6. 

 

g. One solution path per problem  

There may be more than one solution path leading to the correct final answer of a 

problem.  XP currently stores one solution path per problem.  A solution path is 

represented as an ordered combination of skills which can be exercised to arrive at the 

correct final answer.  

 

Different versions of XP can be created by altering one or more of the above parameters.  

This is taken up in Sections 6.7 and 6.8.  
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5.5 Domain Knowledge 
Domain knowledge in SKATE is concerned with problem solving skills and problems.  It is 

the problem solving skills as exhibited by students that are the object of the adaptive tests.  

The next subsections describe the problem solving skills relevant to the subject domain under 

study and a typography of problems derived from the exercise of skills. 

 

 

5.5.1 Problem Solving Skills 
The problem solving skills identified during knowledge acquisition and discussed in Section 

3.7.1 can be further reclassified as the following: 

 

• makeVulgar  

This skill transforms a mixed fraction into an improper fraction, or returns proper and 

improper fractions unchanged. 

• makeCommon 

This skill manipulates fractions to give a common denominator. 

• checkAndAdd 

This skill adds two proper fractions of a common denominator. 

• cancel  

This skill removes common factors from the numerator and denominator of a fraction 

and the resultant is a fraction is in its lowest form. 

• makeProper 

This skill transforms an improper fraction into a mixed fraction.  

• makeWhole 

This skill provides a whole number, 1 or 0, by applying the makeProper skill to 

fractions such as 3/3 and 0/3. 

 

The reclassification allows the introduction of a three-phase structure, Prepare-Add-Tidy, 

which are the three phases involved in solving fraction addition problems.  The set of 

problem solving skills is represented in SKATE as the predicate, skills(N, L), where N is the 
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total number of skills identified for the topic under study and L is the list of identifiable skills.  

An example for the current subject domain is: 
 

 skills(6, [makeVulgar, makeCommon, checkAndAdd, cancel, makeProper, makeWhole]). 

  

Each problem solving skill can be categorised into the respective phase as follows: 

 

Prepare Add Tidy  
makeVulgar 
makeCommon 

checkAndAdd 
 

cancel 
makeProper 
makeWhole 

 

For example, to solve the problem 1/12 + 1/6 requires the use of the makeCommon skill in 

the Prepare phase to transform the task to 1/12 + 2/12.  The checkAndAdd skill in the Add 

phase can then be exercised to yield 3/12.  Using the cancel skill in the Tidy phase, this can 

be transformed to 1/4.  Each phase can contain one or more skills.  It is assumed that a skill is 

used in not more than one phase.    

 

It will be shown in Section 6.3 how the three-phase structure is used to describe the overlay 

or buggy student model of a simulated student.  

  

 

5.5.2 Problems 
Having represented a set of problem solving skills, the XP algorithm requires problems to be 

characterised by the opportunity they provide for the exercise of the skills.  Problems can be 

either predicates that generate problems, similar to the approach of the BT algorithm (Section 

4.5.2), or can be hand-coded by a human assessor, as was the case with the DSA experiment 

(Section 4.2.1).  Each problem is passed through a rule-based problem solver to produce the 

final correct answer and the corresponding set of skills needed to solve the problem.  A 

sample of problems is given in Appendix H where each problem is represented by the 

predicate: 
 

question(N, Cp, T, P, Ap)  

 

where N is the difficulty level representing N number of skills needed to solve question P of 
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type T, by using a combination of skills, Cp.  The combination Cp is the set of skills provided 

by the problem solver.  The system’s correct answer is Ap.  Examples are: 

 
question(2,[c,e], q_ce_6, fr(7/5,2/5), fr(1:4/5)). 

question(3,[a,c,e], q_ace_1, fr(1:1/5,2/5), fr(1:3/5)). 

 

Problem progression within a difficulty level was described in Section 4.6.3.   There may be 

no problem associated with certain nCr combinations of skills.  For example, there is no 

fraction addition problems associated with the six-skill combination [makeVulgar, 

makeCommon, checkAndAdd, cancel, makeProper, makeWhole].  If this occurs, SKATE will 

proceed to another combination.   

 

The following subsections address the generation of different problems, characterised by the 

number of skills required to solve them. 

 

 

5.5.2.1 One Skill Problems 
There are some problems that can be completely solved with one skill, namely checkAndAdd 

in the Add phase.  Examples are 1/3 + 1/3 = 2/3 and 3/5 + 1/5 = 4/5.  The characteristics of 

such problems are common denominators, the sum of the numerators is less than the 

denominator and the sum of numerators and denominators do not have common factors, that 

is, they are prime numbers.  

 
 

5.5.2.2 Two Skills Problems 
Examples of valid two skill combinations are [checkAndAdd, cancel], [checkAndAdd, 

makeProper], and [makeCommon, checkAndAdd].  If we allow the cancel skill to be used 

outside the Tidy phase, we could allow 2/6 + 1/3 which can be transformed, using the cancel 

skill, into 1/3 + 1/3, before applying checkAndAdd to arrive at 2/3.   

 
Examples of two skill combination problems using checkAndAdd and cancel are: 

 
   1/6 + 1/6 = 2/6 = 1/3 

 3/8 + 1/8 = 4/8 = 1/2 
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The characteristics of such problems are common denominators, the sum of numerators is 

less than the denominator and the sum of numerators and denominators has a common factor. 

 
Examples of two skill combination problems using checkAndAdd and makeProper are: 

 
 2/3 + 2/3 = 4/3 = 1:1/3 

 5/6 + 2/6 = 7/6 = 1:1/6 

 7/5 +2/5  = 9/5 = 1:4/5 

 
The characteristics are common denominators, the sum of numerators is less than the 

denominator and the sum of numerators and denominators does not have a common factor. 

 
Examples of two skill combination problems using makeCommon and checkAndAdd are: 

 
1/3 + 1/5 = 5/15 + 3/15 = 8/15 

 5/8 + 1/6 = 15/24 + 4/24 = 19/24  

 
The characteristics of such problems are no common denominator, the sum of numerators is 

less than the denominator, and the sum of numerators modulo the denominator and the 

denominators does not have a common factor. 

 

5.5.2.3 Three Skills Problems 
Valid three skill problems are [makeCommon, checkAndAdd, Cancel], [makeCommon, 

checkAndAdd, makeProper], [checkAndAdd, makeProper, makeWhole] and  [makeVulgar, 

checkAndAdd, makeProper].   

 
Examples of problems using skills makeCommon, checkAndAdd and cancel are:  

 
 1/12 + 1/6 = 1/12 + 2/12 = 3/12 = 1/4 

 2/15 + 1/5 = 2/15 + 3/15 = 5/15 = 1/3 

 3/15 + 2/5 = 3/15 + 6/15 = 9/15 = 2/3   

 

The characteristics of such problems are no common denominator and the sum of fractions is 

always less than 1.   
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Examples of problems using skills makeCommon, checkAndAdd and makeProper are: 
 

 4/5 + 3/4 = 16/20 + 15/20  = 31/20 = 1:11/20 

 5/6 + 1/3 = 5/6 + 2/6  = 7/6 = 1:1/6 

 6/7 + 3/8 = 48/56 + 21/56 = 69/56 = 1:13/56 

 6/7 + 5/8 = 48/56 + 35/56 = 83/56 = 1:27/56 

 5/8 + 4/5 = 25/40 + 32/40 = 57/40 = 1:17/40 

 5/8 + 5/6 = 15/24 + 20/24 = 35/24 = 1:11/24 

 3/8 + 5/6 = 9/24 + 20/24  = 29/24 = 1:5/24 

 8/9 + 3/5 = 40/45 + 27/45 = 67/45 = 1:22/45 

 

The characteristics of these problems are no common denominator, the sum is always greater 

than 1, and the numerator and denominator of the factional part of sum have no common 

factor.   

 

Examples of problems using skills checkAndAdd, makeWhole, makeProper  are: 

 
 4/5 + 1/5 = 5/5 = 1:0/5 = 1      

 1/2 + 1/2 = 2/2 = 1:0/2 = 1 

 

Characteristics of such problems are common denominators and the sum is 1. 

 

Examples of problems using skills makeVulgar, checkAndAdd, makeProper are:  

 
 1:1/5 + 2/5 = 6/5 + 2/5 = 8/5 = 1:3/5  

 2: 3/7 + 2/7 = 17/7 + 2/7 = 19/7 = 2:5/7 

 

Characteristics of these problems are common denominators, at least one operand is greater 

than 1 and the numerator and the denominator of the factional part of sum have no common 

factor. 
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5.5.2.4 Four Skills Problems 
Valid four skill combinations are [makeVulgar, checkAndAdd, makeProper, makeWhole], 

[makeCommon,checkAndAdd,makeProper,cancel],[makeVulgar, checkAndAdd, makeProper, 

cancel], [makeVulgar, makeCommon, checkAndAdd, makeProper].   

  

Examples of problems using skills makeVulgar, checkAndAdd, makeProper, makeWhole are:  

 
1:1/3 + 2/3 = 4/3 + 2/3 = 6/3  = 2: 0/3 = 2 

 1:1/5 + 3/5 = 6/5 + 4/5 = 10/5 = 2:0/5 = 2 

 

Characteristics of these problems are at least one operand is greater than 1, common 

denominators and the numerator and the denominator of the factional part of sum must be a 

multiple of the denominator. 

 

Examples of problems using skills makeCommon, checkAndAdd, cancel and makeProper are: 

 
3/8 + 5/6 = 18/48 + 40/48= 58/48 = 29/24 = 1:5/24 

 4/5 + 3/10 = 40/50 + 15/50 = 55/50 = 11/10  = 1:1/10 

 7/8 + 3/4 = 28/32 + 24/32 = 52/32 = 13/8  = 1:5/8 

 

Characteristics of such problems include operands less than 1, sum is always greater than 1 

and the common denominator is greater than the lowest common denominator.  

  

Examples of problems using skills makeVulgar, checkAndAdd, cancel and makeProper are: 

 
 1:1/8 + 1:3/8 = 9/8 + 11/8 = 20/8 = 5/2 = 2:1/2 

 1:1/6 + 2:1/6 = 7/6 + 13/6 = 20/6 = 10/3 = 3:1/3 

 

Characteristics of such problems are at least one operand is greater than 1, common 

denominators and the numerator and the denominator of the factional part of sum must have a 

common factor. 
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Examples of problems using skills makeVulgar, makeCommon, checkAndAdd, makeProper 

are: 

 
 1:3/8 + 1/2 = 11/8 + 1/2 = 11/8 + 4/8 = 15/8 = 1:7/8 

 1/5 + 1:5/7 = 1/5 + 12/7 = 7/35 + 60/35 = 67/35 = 1:32/35 

 

Characteristics of these problems are at least one operand is greater than 1 and the 

denominators are relatively prime. 

 

5.5.2.5 Five Skills Problems 
Valid five skill problems are [makeVulgar,makeCommon,checkAndAdd,cancel makeProper,].  

An example is: 

 
 1/3 + 1:5/6 = 1/3 + 11/6 = 6/18 + 33/18 = 39/18 = 13/6 = 2:1/6 

 

Characteristics of such problems are that an operand is greater than 1, the denominators are 

not the same and the numerator and the denominator of the factional part of sum must have a 

common factor. 

 

 

5.6 The Student Model 
The student model contains the system’s beliefs of the student’s level of knowledge of the 

subject domain.  These are inferred from the interaction with the student during the test and 

are made up of two types of domain-specific information: 

 
• an overlay model which is a set of problem solving skills that the system believes the 

student has mastered.  It can be a subset or the whole set of the problem solving skills 

identified in the subject domain.  

 
• an interaction history which is the set of problems presented to the student together with 

the system’s verdicts of the student’s answers, the difficulty level and the combination of 

skills provided by the problem solver.  This is represented as the predicate, 

visited(N,Cp,T,P,V),  where N is the difficulty level, Cp the combination of skills which 

the system believes the student has exercised to solve problem P of type T.  The 
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parameter Cp is the same as Cp of the questions/5 predicate described in Section 5.5.2.  

The system’s evaluation of the student’s answer is represented as V.  An example is given 

below. 

 
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct). 
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), wrong). 
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), wrong). 
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), wrong). 
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong). 
visited(2, [b,c], q_bc_1, fr(1/2,1/5), correct). 
visited(2, [c,d], q_cd_1, fr(4/9,2/9), wrong). 
visited(2, [c,e], q_ce_1, fr(5/7,6/7), wrong). 
visited(1, [c], q_c_1, fr(1/3,1/3), correct).  
 

Figure 23.  A Fragment of the Interaction History Module 
 

The above fragment shows successfully and unsuccessfully exercised sets of skills at 

different levels of difficulty.  During student modelling, the visited/5 predicate is checked for 

two purposes.  Firstly, it is to ensure that the same problem or combination is not presented 

more than once.  Secondly, it is used to determine progression to the next level.  In the above 

illustration, as the student has produced more incorrect than correct answers at level 3, he 

proceeds to a lower level of difficulty, that is, 2. 

 

Other types of information can be derived from the visited/5 predicate, as will be discussed in 

the next chapter.   

 

 

5.7 Conclusion 
This chapter described the student modelling architecture, SKATE.  It is based on the 

information acquired from an expert teacher of elementary arithmetic. The underlying 

domain knowledge relates to a particular view of the topic by a particular person. The 

approach to adaptability developed in SKATE is not the only technique used by the domain 

expert.  It has the advantage that it can be used as a basis for a series of experiments that 

charts the consequence of a range of minor variations.  An account is given of such a range of 

experiments using a simulation of student performance to follow through the consequences of 

such changes in the next chapter.  
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Chapter 6.  

 Experiment and Analysis 

 

 

6.1 Introduction 

Effective evaluation of educational software requires trials with students.  A common but 
time-consuming approach is to have a human assessor analysing verbal and written protocols 
of human students who were solving a large number of problems.  An alternative way is to 
perform evaluation using simulation.  It is a convenient way of exploring the workings of an 
adaptive testing strategy where it is possible to make comparisons at various levels of student 
performance, between students at various predetermined ability levels. 
 
This chapter presents an evaluation of the XP testing strategy or assessor, as it shall be called 
in this chapter, through the use of simulated students.  A three-phase structure, Prepare-Add-
Tidy, designed in the previous chapter, is used to describe a simulated student.  An added 
feature is the introduction of malrules into the three-phase structure.  The results from the 
evaluation of XP are analysed and compared with those of a sequential file, called ST.  By 
varying the parameters of XP, the performance of XP was re-evaluated and compared with 
ST.  
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The chapter is structured in the following way.  The evaluation strategy is described.  This is 
followed by a description on how evaluation is being carried out and a discussion on 
experimental results.  The varying parameters of XP are described followed by an evaluation 
of the performance of the different versions of XP.  
 

 
6.2 The Evaluation Strategy 
A method for evaluating a student modelling strategy is to develop a model of a student, use 

it to predict its performance and to check to see if the prediction is accurate. This was the 

method undertaken by Anderson et al. (1995) in the evaluation of the LISP Tutor and by 

Shute (1995) in evaluating the SMART student modelling system.  More recently, VanLehn 

& Niu (2001) presented an evaluation of the ANDES assessor through the use of a set of 

simulated students which was generated to depict varying conditions in which to test the 

performance of the assessor. 

 

A simulated student is a computer model of a human student (VanLehn, Ohlsson & Nason 

1994).  It assumes the traits and characteristics of a human student, which are in this study, 

confined to overlay or buggy knowledge with no conative or affective characteristics.  

VanLehn, Ohlsson & Nason (1994) identified three main applications of student simulation.  

There are tutor training systems, collaborative learning and formative evaluations.  An 

example is a three-agent learning situation (Chan & Baskin 1990) where interaction takes 

place between a computer tutor, a human learner and a simulated learning companion.  The 

simulated learning companion can also take the form of a ‘troublemaker’. 

 

Like the work of VanLehn & Niu (2001), simulated students are used in this study in place of 

human students mainly for the ease of performing an evaluation on a student modelling 

system.  In their work, a set of solution graphs of Physics problems is converted into 

Bayesian Belief Networks (or BBN).  A problem solver of ANDES generates the solution 

graphs.  A simulated student is generated by randomly deleting rules from the BBN, thus 

modelling the fact that different students have different knowledge.  The reduced BBN is 

then used to solve problems.  The problem solving actions are recorded and passed to the 

ANDES assessor, which predicts the mastery level of each rule.  The assessor is deemed 

accurate if it assigned the deleted rules a low posterior probability of mastery and the other 

rules a high probability.    
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There are many advantages of using simulated students.  Firstly, a simulated student can be 

readily created by assuming as many or as few traits, which means that its competence is 

known.  This makes it easy to determine the accuracy of the assessor in its prediction of the 

simulated student’s competence.  Secondly, an ideal setting for any computerised adaptive 

testing is one in which its students do not suffer from anxiety which could distort the 

accuracy of the test.  This setting could be achieved more easily through the use of simulated 

students than a test setting of real students. 

 

Evaluation is carried out in the following way.  Different types of students are simulated.  A 

set of problems, in the domain of fraction additions, is prepared and solved by each simulated 

student, creating a series of log files.  Each log file is assessed in a series of runs by an 

assessor which infers the mastery of skills of each student.  The following steps in the 

evaluation are identified as: 

 

1. Creating simulated students  

2. Generating Logfiles 

3. Running the assessor 

 

Figure 24 shows the process of evaluation.  A set of simulated students called Sam is created, 

each equipped with a problem solver and an overlay or buggy student model.  Each student is 

required to solve all the questions in the problems bank and their attempts are recorded in 

logfiles.  The logfiles are then used by the assessors to infer an overlay student model and to 

create a student interaction history for each student.  It is useful to note that the assessors are 

run in ‘batch’ mode, and not interactively with each simulated student.  Each inferred overlay 

student model of ST and XP is matched against the overlay model, and not buggy 

knowledge, of the corresponding simulated student.  The accuracy of the assessor is rated by 

the number of matches that can be found.  A more precise measurement of the performance 

of the assessor is conducted by analysing each student interaction history.   
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Figure 24.  The Evaluation Strategy 

 

The following sections describe the evaluation steps in more detail. 

 

 

6.3 Creating Simulated Students 
As mentioned earlier, a simulated student consists of two parts - a problem solver and an 

overlay or buggy student model.  The task of the problem solver is to solve problems using 

the overlay or buggy student model.  The student model is built on a three-phase, Prepare-

Add-Tidy, structure.  This format, introduced in Section 5.5.1, allows different types of 

students to be simulated.  In this study, five types of students are simulated.  They are Sam1, 

Sam2, Sam3, Sam4 and Sam5.  They will be described in the following subsections.   

 

Different simulated students can be created by instantiating from any type of student listed 

above.   In this study, 28 such students are simulated and their student models represented as 

Prolog predicates, as shown in Appendix G.  The format is:  

 
simStudents(S, [S-Ls]) 

 
where S is the name of the simulated student and Ls is a list of mastered skills and/or 

malrules.  Ls is made up of three parts corresponding to the three-phase structure of a 
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simulated student.   

 

The assumption is that no forgetting or learning takes place during assessment.  This is 

similar to ANDES (VanLehn and Niu 2001).  For example, if a student knows all the relevant 

skills, he will exercise them as required during problem solving. 

 

6.3.1 Sam1 Student Type – knows all the skills 
This type of student knows all the relevant skills in the subject domain and can correctly 

apply them in order to solve a problem.  He may not need to exercise all the skills at one time 

to solve a problem.  Also, apart from mastering all the skills, he must be able to execute them 

in an appropriate order for successful operation.  For example, if sam1a and sam1c are two 

simulated students who know all the relevant skills but in a different order from one another: 

 
simStudents(sam1a,[[sam1a-[[makeVulgar,makeCommon],[checkAndAdd],[cancel,makeProper, makeWhole]]]]). 

simStudents(sam1c,[[sam1c-[[makeVulgar,makeCommon],[checkAndAdd],[makeProper,makeWhole,cancel]]]]). 

 

This may have an effect on problem solving.  For example, sam1a may be able to produce 

the correct answer for a question while sam1c may not.  

 

6.3.2 Sam2 Student Type – gaps in knowledge 
This type of student has gaps in his knowledge of the subject domain.  This means that there 

are one or more skills he does not know or has not yet mastered.  He solves problems using 

the skills that he knows.  An example is sam2a who knows all the skills except the 

makeCommon skill: 

 
simStudents(sam2a,[[sam2a-[[makeVulgar],[checkAndAdd],[cancel,makeProper,makeWhole]]]]). 

 

6.3.3 Sam3 Student Type - malrules 
This type of student has some buggy knowledge or malrules.  Malrules or misconceptions are 

rules, perhaps invented by the pupil, which appear effective but in fact work only under 

certain conditions (Hall 2002).  An example is sam3a who has mislearned the cancel skill 

and stored this as a malrule called malCancel: 

 
simStudents(sam3a,[[sam3a-[[makeVulgar,makeCommon],[checkAndAdd],[malCancel, makeProper, makeWhole]]]]). 
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6.3.4 Sam4 Student Type – lucky guesses 
This type of student can make lucky guesses which to the assessor, are synonymous to 

copying.  He may have gaps in his knowledge, like Sam2, or malrules, like Sam3, but 

somehow manages to produce correct final answers to questions which require the 

application of certain skills that he has not mastered or has misconceptions on.  An example 

of Sam4 type of student is sam4a: 

 
simStudents(sam4a, [[sam4a-[[makeCommon],[checkAndAdd],[]]]]). 

 

Student sam4a has an identical overlay model to sam2f.  In this study, the logfiles of sam4a, 

sam4b and sam4c were created by ‘tweaking’ the logfile of sam2f to simulate lucky guesses.  

The logfiles of sam4d and sam4e were created by ‘tweaking’ the logfiles of sam2a and 

sam2c respectively.   

 

6.3.5 Sam5 Student Type – careless slips 
This type of student knows all the relevant skills necessary for solving problems correctly but 

makes the occasional careless slip.  When a student produces a wrong answer to a question 

which requires the application of skills that the student is believed to have mastered, this may 

be caused by a careless slip.  An example of this type of student is sam5a: 

 
simStudents(sam5a, [[sam5a-[[makeVulgar, makeCommon],[checkAndAdd],[cancel, makeProper, makeWhole]]]]). 

 

Student sam5a has an identical overlay model to sam1a.  In this study, the logfiles of sam5a 

and sam5b were created by ‘tweaking’ the logfile of sam1a to simulate careless slips.  The 

logfiles of sam5c and sam5d were created by ‘tweaking’ the logfiles of sam1c and sam2b 

respectively.   

 

 

6.4 Generating Logfiles 
The next step in the evaluation process is to generate logfiles which record the attempts of 

each simulated student at all the problems in the problems bank.  A total of 68 problems were 

created, as shown in Appendix H, with the predicate, question(N, Cp, T, P, Ap), that was 

described in Section 5.5.2. 
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The question/5 predicate stores not only the questions but also the assessor’s solutions to the 

questions, in terms of the combinations of skills used (Cp) and the final correct answers (Ap).   

 

Each of the 28 students solves all 68 problems and their logfiles are contained in Appendix I.  

A fragment of the logfile of sam2f is given in Figure 25.  Student sam2f, as we recall, has 

gaps in his knowledge and only knows the makeCommon and checkAndAdd skills. 

 

 
simStudents([[sam2f-[[makeCommon],[checkAndAdd],[]]]]). 
 
% a makeVulgar 
% b makeCommon 
% c checkAndAdd 
% d cancel 
% e makeProper 
% f makeWhole  
 
sam(sam2f,[c],q_c_1,fr(1/3,1/3),fr(2/3),ok). 
sam(sam2f,[c],q_c_2,fr(3/5,1/5),fr(4/5),ok). 
sam(sam2f,[b,c],q_bc_1,fr(1/2,1/5),fr(7/10),ok). 
sam(sam2f,[b,c],q_bc_2,fr(1/3,1/5),fr(8/15),ok). 
sam(sam2f,[b,c],q_bc_3,fr(5/8,1/6),fr(38/48),no). 
sam(sam2f,[c],q_cd_1,fr(4/9,2/9),fr(6/9),no). 
sam(sam2f,[c],q_cd_2,fr(12/64,4/64),fr(16/64),no). 
sam(sam2f,[c],q_cd_3,fr(9/24,3/24),fr(12/24),no). 
sam(sam2f,[c],q_cd_4,fr(9/16,3/16),fr(12/16),no). 
sam(sam2f,[c],q_cd_5,fr(1/6,1/6),fr(2/6),no). 
sam(sam2f,[c],q_cd_6,fr(3/8,1/8),fr(4/8),no). 
sam(sam2f,[c],q_ce_1,fr(5/7,6/7),fr(11/7),no). 
sam(sam2f,[c],q_ce_2,fr(4/7,8/7),fr(12/7),no). 
sam(sam2f,[c],q_ce_3,fr(8/5,6/5),fr(14/5),no). 
 

Figure 25.  Sample of a generated logfile 
 

  
In the sample, it can be seen that the student’s attempt at each problem is represented by the 

predicate: 

 
sam(S, Cs, T, P, As, V) 

 

where S is the simulated student who applied a combination of skills, Cs, in order to solve 

problem P of type T.  The student’s final answer, As, is evaluated against Ap, the assessor’s 

answer to the same problem.  A verdict, V, is returned where ‘ok’ means the student has 
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provided a correct answer and ‘no’ means the answer was wrong.  The combination of skills, 

Cs, is the student’s solution path which shows the set of skills he has exercised in his attempt 

to solve problem P.  It may be different from Cp, the assessor’s combination of skills used for 

the same problem. 

 

 

6.5 Running the XP and ST Assessors  
The generated logfiles are passed to the ST and XP assessors.  ST needs information from the 

logfiles on each student’s attempt at every problem in the question bank, while XP requires 

information on each student’s attempts on selected problems only.  The acquired information 

is used to infer an overlay student model and a student interaction history.  

 

It must be noted that for each simulated student, ST and XP have access to the S, T, P, As and 

V values of the sam(S, Cs, T, P, As, V) predicate described earlier, but not the following pieces 

of information: 

 

• The overlay or buggy model.  This is the Ls variable of the simStudents(S, [S-Ls]) 

predicate described in Section 6.3.   

 

• The solution path or combination of skills exercised for each problem.  This is the 

Cs variable of the sam(S, Cs, T, P, As, V) predicate. This simulates the setting that the 

assessor has no access to the student’s intermediate steps during problem solving.  

Whenever a student successfully solves a problem, the assessor will assume that the 

student has applied all the skills in the combination, Cp, which is the assessor’s 

combination of skills used to solve the same problem.   

 

Figure 26 are the results from running XP for sam2e, using information from the generated 

logfiles.  The results of all 28 simulated students from running XP and ST are compiled in 

Appendices J and K respectively.   
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% XP ADAPTIVE TEST output xp_2e 
  
% a makeVulgar 
% b makeCommon 
% c checkAndAdd 
% d cancel 
% e makeProper 
% f makeWhole 
 
Student =  
[[sam2e-[[makeVulgar,makeCommon],[checkAndAdd],[cancel,makeProper]]]] 
 
 
Selected Node : 4 
 
Visited list : 
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct). 
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), wrong). 
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), wrong). 
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), correct). 
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), wrong). 
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), correct). 
 
 
Selected Node : 3 
 
Visited list : 
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct). 
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), wrong). 
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), wrong). 
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), correct). 
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), wrong). 
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), correct). 
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct). 
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct). 
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct). 
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct). 
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong). 
 
 
% Summary - XP1 ADAPTIVE TEST output  
 
problems_presented(11,68). 
opportunities_presented([(a,4),(b,5),(c,11),(d,7),(e,8),(f,4)]). 
opportunities_correctly_applied([(a,3),(b,4),(c,7),(d,4),(e,6),(f,0)]). 

Figure 26.  Running XP on Student sam2e  
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The following pieces of information can be obtained from running the assessors: 

 
• Student’s attempts at problems 

This is a record of the student’s attempt at each question and is represented by the 

visited/5 predicate, as described in Section 5.6. 

 
• Number of problems presented 

This is the number of problems presented to the student out a total number of possible 

problems.  It is represented as the problems_presented(X,Y) predicate, where X is the 

number of problems presented during the test and Y is the total number of problems in 

the problems bank.  As is typical with computerised adaptive testing, the XP assessor 

will always present fewer questions than ST.  In the above example, XP presented sam2e 

with 11 problems, that is, 57 problems less than ST.  

 
• Number of opportunities presented 

This is the number of opportunities presented to the student in which a particular skill can 

be exercised.  It is represented by the opportunities_presented(P) predicate where P 

contains a list of skills with the corresponding number of opportunities each skill could 

be applied.   

 
• Number of opportunities correctly applied  

This is the number of opportunities a particular skill appears to be correctly applied or 

exercised by a student.  It is represented by the opportunities_correctly_applied(A) 

predicate where A contains a list of skills with the corresponding number of opportunities 

each skill is believed to be correctly applied.  It represents the inferred overlay student 

model. 

 
• Progression of Difficulty Level 

The visited/5 clauses show the progress of the student from one level of difficulty to 

another.  In the example, sam2e started at level 4 and proceeded to level 3 before the test 

stopped.  The student did not proceed to a level lower than 3 because he produced more 

correct answers than wrong ones at current level 3.  
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• Highest Level of Difficulty 

A student’s level of attainment, in terms of problem difficulty, is demonstrated by his 

ability to solve problems of the highest difficulty level possible.  In the illustration given 

in Figure 26, sam2e has demonstrated that he is able to solve problems requiring the 

exercise of three skills.  This information is useful for remedial purposes and can also be 

used to select the starting point if the test is administered again.   

 

 

6.6 Comparing XP and ST Assessors  
The results from running the assessors were that every skill had a numeric value.  In broad 

terms, if the assessor was accurate, then each mastered skill of the simulated student should 

have a value greater than 1 while each unmastered skill should be assigned the value 0.  The 

inferred overlay student model for each simulated student can be compared with the 

corresponding overlay, and not buggy, knowledge of the student.  Information on the former 

is given by the predicate opportunities_correctly_applied(A), as described in the previous 

section, while information on the latter is given by the predicate simStudents(S, [S-Ls]), as 

described in Section 6.3 and Appendix G.   

 

As an example, consider the results of running XP for student sam2e, as shown in given in 

Figure 26, where the value of S-L of simStudents(S, [S-Ls]) is: 

 
 sam2e-[[makeVulgar,makeCommon],[checkAndAdd],[cancel,makeProper]] 

 
or 

 
 sam2e-[[a,b],[c],[d,e]] 

 
and the inferred overlay model is given as: 

 
 opportunities_correctly_applied([(a,3),(b,4),(c,7),(d,4),(e,6),(f,0)]). 

 

XP is deemed accurate as it successfully identified the mastered skills of sam2e as a,b,c,d,e, 

where all the values of the skills are greater than 1, and the unmastered skill as f, whose value is 

0. 
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For a more detailed measure of performance, three measures are used: 

 

• Accuracy on mastered skills.  This measures how good the assessor is at identifying 

the simulated student’s mastered skills.  It equals the number of times the mastered 

skills are correctly predicted divided by the number of opportunities those skills are 

presented.  A mastered skill is correctly predicted if it is correctly applied or 

exercised by the student. 

 

• Accuracy on unmastered skills.  This measures how good the assessor is at 

identifying the simulated student’s unmastered skills.  It equals the number of times 

the unmastered skills are predicted correctly divided by the number of opportunities 

those skills are presented.  An unmastered skill is correctly predicted if the student 

wrongly exercises it. 

 

• Overall Accuracy of Assessor.  This measures how good the assessor is at 

identifying the simulated student’s mastered and unmastered skills.  It equals the sum 

of the times the mastered and unmastered skills are correctly predicted divided by the 

sum of the opportunities these skills are presented.   

 

As an example, consider the two samples given in Table 2 and Table 3 for student sam2f who 

has gaps in his knowledge of the subject domain.  His mastered skills are the ones that are 

shaded.  These samples are tabulated from the results after running XP and ST, as discussed 

in the previous section and given in Appendices J and K.  The tabulated results for other 

simulated students, after running XP and ST, are compiled in Appendix O.   
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Skills Total no.of 

opportunities 

No. of 

opportunities 

presented 

No. of 

opportunities 

correctly 

applied 

No. of 

opportunities 

wrongly 

applied 

Accuracy 

on 

mastered 

skill 

Accuracy on 

unmastered 

skill 

a. makeVulgar 14 4 1 3 - 0.75 

b. makeCommon 37 6 1 5 0.17 - 

c. checkAndAdd 68 15 3 12 0.20 - 

d. cancel 44 8 0 8 - 1.00 

e. makeProper 45 9 1 8 - 0.89 

f.  makeWhole 11 4 0 4 - 1.00 

Total: 219 46 6 40     

Average:     0.18 0.91 

Table 2.  Tabulated Results of sam2f after running XP 

 
Skills Total no.of 

opportunities 

No. of 

opportunities 

presented 

No. of times 

correctly 

answered 

No. of times 

wrongly 

answered 

Accuracy 

on 

mastered 

skill 

Accuracy 

on 

unmastered 

skill 

a. makeVulgar 14 14 4 10 - 0.71 

b. makeCommon 37 37 3 34 0.08 - 

c. checkAndAdd 68 68 8 60 0.12 - 

d. cancel 44 44 0 44 - 1.00 

e. makeProper 45 45 4 41 - 0.91 

f.  makeWhole 11 11 0 11 - 1.00 

Total: 219 219 19 200     

Average:     0.10 0.91 

                                          Table 3.  Tabulated Results of sam2f after running ST 
 

The second column ‘Total no. of opportunities� represents the maximum number of times 

each skill can be presented.  It is the accumulation of the number the times each skill appears 

in the skills combination of every question in the question bank given in Appendix H.  In the 

above example, the total number of opportunities for all six skills to be presented is 219.  XP 

requires only 46 opportunities, or 21%, of a total of 219 opportunities while ST requires all 

219 opportunities.   



Chapter 6.  Experiment and Analysis  117 

  

 

The accuracy of XP in identifying a mastered skill of sam2f, say makeCommon, is 0.17, and 

is calculated as the number of opportunities the skill is correctly applied (column 4) divided 

by the number of opportunities the skill is presented (column 3).  The accuracy of XP in 

identifying a unmastered skill of sam2f, say makeProper, is 0.89, and is calculated as the 

number of opportunities the skill is wrongly applied (column 5) divided by the number of 

opportunities the skill is presented (column 3).   

 

In studying the results of sam2f above, ST and XP performed well in assessing the 

unmastered skills of sam2f but were not accurate in their prediction of the student’s mastered 

skills.  Upon closer observation, XP performed marginally better than ST, despite having 

presented far fewer problems than ST.   

 

There is, however, a limitation to this method of measurement.  There may an occasion when 

a student has a mastered skill but may have produced an incorrect answer to a problem which 

had required the application of the mastered skill.  This could be caused by the presence of 

one or more unmastered skills which led to the eventual incorrectness of the final answer.  

This is not obvious as the assessor only evaluates final answers as correct or wrong; it has no 

access to the intermediate steps of the student’s solution.  As an example, consider the 

makeCommon skill in Table 2.  It can be seen that although this skill is one which is mastered 

by the student, given a total of 6 opportunities, the student is seen to have correctly applied 

this skill only once.  This could be caused by the possibility that the problems presented may 

require the application of unmastered skills, such as makeVulgar, cancel, makeProper or 

makeWhole. 

 

The tabulated results of Appendix O which present the performance of XP and ST in 

assessing the different types of students can also be shown as bar charts.  Figure 27 compares 

XP and ST in their accuracy in assessing mastered skills, while Figure 28 compares their 

performance in assessing unmastered skills.   In Figure 28, information on Sam1 type of 

students is absent.  This is because this type of students does not have unmastered skills.  The 

overall performance of XP and ST in assessing both mastered and unmastered skills is shown 

in Figure 29.   
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Figure 27.  Comparing XP and ST – Accuracy of Mastered Skills 

 

In assessing mastered skills, as shown in Figure 27, ST fared considerably better than XP in 

inferring the mastered skills of Sam1 type who knows all the skills and Sam5 type with 

careless slips.   There are only marginal differences in their accuracy in assessing Sam2 type 

who has gaps and Sam3 type with malrules.  XP performed considerably better than ST in 

assessing Sam4 type of students with lucky guesses. 
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Figure 28.  Comparing XP and ST – Accuracy of Unmastered Skills 
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In assessing unmastered skills, as shown in Figure 28, XP and ST fared equally well for Sam2 and 

Sam3 types.  ST was better than XP in its prediction of unmastered skills of Sam4 type but fared 

worse than XP in assessing Sam5 type of students. 
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Figure 29.  Comparing XP and ST – Overall Accuracy 

 

In terms of overall accuracy, as shown in Figure 29, XP is better in assessing the mastered 

and unmastered skills of students who knew the skills (Sam1) or have gaps in their 

knowledge (Sam2) than it is with students with noisy data such as malrules, lucky guesses or 

careless slips.  ST performed best in its assessment of students who knew all the skills 

(Sam1) and those with careless slips (Sam5).  It performed only marginally better than XP in 

assessing students with gaps in their knowledge (Sam2) but was marginally worse than XP in 

assessing students with malrules (Sam3) and those with lucky guesses (Sam4). 

 

A possible reason for XP’s low accuracy in assessing students with noisy data is that it is not 

capable of detecting inconsistencies in student answers.  It is relatively easier for a human 

assessor to detect such inconsistencies, as discussed in the DSA experiment of Section 4.2.1, 

especially when the assessor has access to student problem solving steps as well as final 

answers.  As an example, consider student sam3a who has a malrule, mg or malCancel, 

which is a misconception of the cancel skill.  His attempts at some questions in which he 

exercised the malrule are given below: 
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sam(sam3a,[c,mg],q_cd_2,fr(12/64,4/64),fr(1/4),ok). 
sam(sam3a,[c,mg],q_cd_3,fr(9/24,3/24),fr(1/4),no). 
sam(sam3a,[c,mg],q_cd_4,fr(9/16,3/16),fr(2/6),no). 
 

 
The student used mg to solve question q_cd_2 successfully, but not the next two questions.  

This malrule was described by Borasi (1994) in Section 4.2.1.4 where the student eliminates 

similar digits from the numerator and denominator.  The addition of the two fractions in the 

first question gives 16/64 and the student applied the malrule mg which led to the correct 

answer, 1/4.  However, when he attempted to apply the same malrule to next two questions, 

his answers were incorrect.  The application of the malrule is ‘masked’ in the first answer but 

not in the second or the third.  As the XP assessor has no memory of previously answered 

questions, it was not able to detect such inconsistencies. 

 

The question that arises is whether XP can detect inconsistencies without performance 

assessment or model tracing.  This may be achieved with a procedure that reviews or inspects 

all the final answers of the student at the end of the test in order to check for inconsistencies.  

For example, if a student consistently produces wrong answers to questions which require the 

application of a certain skill, then it can be inferred that the student does not know that 

certain skill.  However, if his behaviour is inconsistent, then this presents an avenue for 

checking for the possibility of noisy data such as malrule application, lucky guesses or 

careless slips.  The characteristics of each possibility must be known precisely in order to 

distinguish one from the other.   

 

Inconsistent behaviour could also be caused by the student using a different solution path or a 

different set of skills to the one predicted by the assessor.  This possibility could be reduced if 

each problem in the problems bank is saddled, wherever possible, with more than one 

possible solution path or combination of skills.  The assessor can then be equipped with a 

heuristic function which checks for all possible causes for inconsistent behaviour and settles 

on the most probable one. 

 

Another shortcoming of XP arises because it has been implemented for evaluation by 

simulation.  If it were used in classroom tests, because it would present identical tests to two, 

it is hard to distinguish a good student from one who copies from him.   To resolve this, 

problems could be selected at random.  
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6.7 Varying the Parameters of XP 
Many variations of XP could be studied.  The previous section described the performance of 

XP based on the values of its parameters identified in Section 5.4.1.  This section investigates 

the effects of varying some parameters of XP on its accuracy in assessing the mastered and 

unmastered skills of the different types of students.  The selected parameters are:  

 
a. Number of problems per combination of skills 

XP currently requires the presentation of only one problem per skills combination.  A 

variation is to increase this to two problems per combination. 

 
b. Progression of Difficulty Level 

The progression from one level of difficulty to another is described in Section 5.4.1.  As 

an example, consider the results of sam1a after running XP (Appendix J).  The student 

started the test at difficulty level 4, and as he consistently produced correct answers, he 

progressed to level 5 and then to level 6, although at this level, there were no problems in 

the database that matched a six-skill combination.  In the case of sam2f who knew only 

two out of six skills and produced more incorrect answers than correct ones, progress was 

from level 4 to level 3, then to level 2 and level 1.  A variation is to calculate the 

midpoint by rounding down, instead of rounding up, to the nearest integer.  For a good 

student like sam1a, progress will then be from level 3 to level 5 and then level 6.  For a 

weak student like sam2f, progress will be then from level 3 to level 1.  If at level 1, sam2f 

produces more correct answers than wrong ones, he will proceed to level 2 where he will 

be presented with problems requiring the exercise of two skills and the test stops. 

 
c. Threshold level of success 

A student progresses from one difficulty level to another based on how he fared at the 

current level.  For example, if 10 problems were presented and 6 were answered 

correctly, the student progresses to a higher level of difficulty.  A variation is to raise this 

threshold to 0.75, which means that the student needs to answer correctly at least 8 

problems out of 10 if he is to be allowed to progress to a higher difficulty level; 

otherwise he will be presented with easier problems at a lower difficulty level. 

 
The next section discusses the results from running variations of the XP assessor. 
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6.8 Running Variations of XP  

Variations of XP were created, namely XP1, XP2 and XP3, based on changes to the three 
parameters suggested in the previous section.  XP1 incorporates a variation to the first 
parameter that is presenting two problems per combination of skills.  XP2 incorporates 
variations to the first and second parameters, where the latter involves recalculating the next 
difficulty level as rounding down to the nearest integer, the midpoint between two difficulty 
levels.  XP3 represents variations to all three parameters, where the last parameter involves 
raising the threshold of success to 0.75.   The three newly created versions of XP were run 
and the results of selected students are tabulated in Appendices L, M and N.    

 

A summary of results, which compares the performance of the five assessors, is given in 
Appendix P.  The results can also be represented as bar charts.  Figure 30 shows the chart for 
overall accuracy at assessing mastered and unmastered skills.   
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Figure 30.  Comparing Assessors – Overall Accuracy 
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The following observations were made in relation to the varying parameters introduced in the 

previous section: 

 
• Accuracy is not proportional to the number of questions presented 

An increase in the number of questions presented, from 1 per skills combination to 2, 

does not seem to have an effect on accuracy.  This can be inferred by comparing XP and 

XP1.  For example, apart from Sam5 students, there was no evidence of increased 

accuracy with the doubling of questions posed to the student.   

 
• Increased accuracy with changing progression of difficulty level 

There was an improvement in accuracy with the introduction of a different navigation of 

test difficulty.  This is evident by comparing the performance of XP2 to XP1. 

 
• Marginal increase in accuracy with a higher threshold of success 

Performance only improved marginally with the introduction of a higher threshold of 

success which dictated progression to another level of difficulty.  This can be seen by 

comparing XP2 and XP3.  With Sam1 type, there was no increase in accuracy. 

 

Figure 31 compares the performance of the different assessors in their prediction of mastered 

skills.   Apart from increased accuracy for Sam5 students with careless slips, performance did 

not improve with the presentation of more problems, from XP to XP1.  In fact, accuracy 

depreciated significantly in assessing the mastered skills of Sam4 type of students with lucky 

guesses.  There is however a significant increase in accuracy with the introduction of a 

changed progression of difficulty level.   There is a marginal increase in accuracy for most 

assessors with the introduction of a higher threshold of success.  ST fared well in assessing 

the mastered skills of Sam1 and Sam5 types of students but it performed worse than its 

counterparts in assessing the mastered skills of the other types of students.   

 

Figure 32 compares the performance of the different assessors in their prediction of 

unmastered skills.   As can be seen from the figure, data for Sam1 type is absent and this is 

because this type of students has no unmastered skills.  On the whole, apart from its 

assessment of Sam5 type, ST fared better than the other assessors in assessing unmastered 

skills.  The introduction of the varying parameters seems to have an adverse effect on the 

performance of the assessors.   
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Figure 31.  Comparing Assessors - Accuracy of Mastered Skills 
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Figure 32.  Comparing Assessors – Accuracy of Unmastered Skills 
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6.9 Conclusion 
This chapter presented an evaluation strategy as a means of measuring the performance of an 

adaptive testing strategy, XP, under varying conditions provided through the use of simulated 

students.   Three steps were identified in the evaluation and these led to an inferred overlay 

student model and a student interaction history for each simulated student.  Each inferred 

overlay student model is compared with the overlay model of a simulated student.  A more 

detailed measure of performance was proposed which measured the accuracy of the assessor 

in identifying mastered and unmastered skills.  The results were compared with those of a 

sequential testing strategy, ST. 

 

The XP assessor was good at differentiating a student who knows all the relevant skills in the 

subject domain from one who had gaps in his knowledge, but it was not good at making fine 

distinctions between students with mal rules, lucky guesses or careless slips.   

 

Variations of the assessment were studied.  The values of three numerical parameters of XP 

were readjusted in order to detect improvement in accuracy.  It was observed that an increase 

in the number of questions presented and an increase in threshold level of success had little 

impact while changing the navigation of test difficulty improved accuracy.   

 

An important finding is that adaptive testing can perform as well, and in some cases even 

better, than sequential testing.  No single assessor was found to be good at inferring the 

mastered and unmastered skills of all student types.  On the whole, XP3 fared the best in 

assessing all student types, except Sam5 type of students with careless slips, where it came 

second place to ST.  A possible scope for expansion involves further tuning XP3 by varying a 

variety of parameters and revaluating its performance. 
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Chapter 7.  

 Conclusions  
 

 

This thesis has discussed computerised adaptive testing in the context of Intelligent Tutoring 

Systems and student modelling.  It has explored the scope for exploiting the Expert Systems 

technique of knowledge acquisition in the construction of adaptive tests.  In particular, the 

thesis shows how software-aided knowledge acquisition can make a contribution to syllabus 

description and to determining the sequence in which questions should be presented to 

students.  The thesis also discusses the delivery of adaptive tests. 

 

This chapter presents a summary of this work.  It highlights the main contributions of the 

thesis and discusses the scope for future work. 

 

 

7.1 Summary 
Chapter 1 addressed the motivation and aim of the research.  It presented the idea that 

teachers, working in a small and familiar domain, may have good adaptive testing strategies 

for assessing the student’s state of knowledge in a subject domain.  It proposed an expert 

emulation approach to designing and constructing adaptive tests with the ultimate aim of 
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incorporating the results of elicitation in a student modelling architecture called SKATE.  

 

Student modelling and student testing have similar aims and may use similar techniques.  

Chapter 2 presented a review of literature on student modelling in intelligent tutoring 

systems.  It examined the different techniques and challenges of student modelling and 

discussed the relationship of adaptive testing to student modelling.  The implications of the 

review on the design of SKATE are highlighted especially in the construction of the domain 

and the student model.   It further discussed computerised adaptive testing in the light of 

other testing strategies and presented two common approaches in adaptive test design and 

construction, namely the Item Response Theory and the Knowledge Space Theory.  The 

former seems an extremely effective means of conducting summative testing but has little 

application to formative testing while the latter concerns itself more with formative testing.  

The implications of the review on the design of SKATE are highlighted especially in the 

structuring of the domain and in the issue of problem progression. 

 

The first part of Chapter 3 is devoted to a discussion of preliminary topics to provide a 

foundation for knowledge acquisition work described in subsequent chapters.  It introduced 

the problem domain of elementary arithmetic with fraction additions and discussed the 

teaching role of the teacher who is the “expert” in the expert systems aspect of the thesis.  It 

described an observational study of the expert’s assessment techniques which paid particular 

attention to the issue of “adaptability” and highlighted the possibility of using knowledge 

acquisition support software based on constraint logic programming, clp(FD).  The second 

part of Chapter 3 described the results of elicitation in the construction of a problem domain 

which describes a test syllabus. This work discussed the successful application of clp(FD) as 

a tool for knowledge elicitation, knowledge representation and rapid prototyping.  The 

description of a problem domain in terms of constraint logic programs allows it to be 

executable and this facilitates the evaluation of student answers and the generation of 

problems for use during knowledge acquisition and test delivery.  
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Chapter 4 discussed experiments in creating a student model and problem progression 

strategy in adaptive testing.  In determining the contents of a student model for adaptive 

testing, findings of two experiments were used to aid in the decision where the student model 

will maintain domain-specific information about the student as an overlay model and an 

interaction history module.  The clp(FD) representation of the overlay model meant that it is 

executable and this is useful for predicting student performance in problem solving and for 

generating problems to aid remediation.  The crucial element in adaptive testing is the 

selection and progression of questions and the determination of the stopping place.  Chapter 4 

further described two experiments which elicited the problem progression strategy of the 

expert.  The first method involves a computer-aided query procedure which systematically 

elicits the task of problem sequencing.  The use of such software makes the potentially 

tedious process acceptable to experts.  The result is a binary-tree algorithm called BT.  The 

second method presents an alternative strategy of problem progression which is based on the 

expert’s measure of problem difficulty.  This resulted in the design of a skills-based 

algorithm called XP. 

 

Chapter 5 described the student modelling architecture, SKATE.  It is based on the 

information acquired from an expert teacher of elementary arithmetic. The underlying 

domain knowledge relates to a particular view of the topic by a particular person. The 

approach to adaptability developed in SKATE is not the only technique used by the domain 

expert.  It has the advantage that it can be used as a basis for a series of experiments that 

charts the consequence of a range of minor variations.  An account is given of such a range of 

experiments using a simulation of student performance to follow through the consequences of 

such changes in the next chapter.  

 

Chapter 6 describes an evaluation strategy carried out to measure the performance of XP 

provided through the use of simulated students.  Different types of students were simulated – 

students who knows all the skills, students who have gaps in their knowledge, students with 

malrules, students making lucky guesses and students making careless slips.  The results 

from the evaluation were compared with those of a sequential testing strategy, ST.  It was 

found that XP fared relatively well, despite presenting far fewer questions to the student than 

ST.  Variations of XP were created and evaluated against XP and ST. 
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7.2 Publications 
Several of the ideas discussed in this thesis have given rise to conference and workshop 

presentations.  These have not been cited in the thesis but are listed in Appendix Q. 

 

 

7.3 Main Contributions 
This thesis takes the idea of adaptive testing, that were initiated by ‘Item Response’ theorists 

such as Lord (1980) and Weiss and Kingsbury (1984), who were psychometricians, and 

shows how that idea can contribute to the work of the Intelligent Tutoring Systems 

researchers.  To do this, it was necessary to relate adaptive testing to the central concept of 

Intelligent Tutoring Systems, namely the student model that was introduced by John Self in 

1974. It was also necessary to develop implementation techniques, since computer 

development and delivery are obviously essential for intelligent tutoring. Of course, 

psychometricians are also concerned with computing (Doignon and Falmagne, 1985), and 

indeed computers are the obvious medium for the delivery of adaptive tests.  However, the 

focus of the work of psychometricians in this area is on the development of mass tests where 

reliable statistical quality control assurance can be provided (Weiss and Kingsbury, 1984).  In 

contrast, the emphasis of the Intelligent Tutoring community has been on the individual 

student, and this thesis has thus been concerned with the economical way of developing and 

delivering adaptive tests for individuals and small groups of students.  

 

The main contribution of the thesis is embedded in the design of a student modelling 

architecture called SKATE, which is intended for the development, delivery and evaluation 

of adaptive tests.  SKATE is composed of many of the components that are to be expected in 

an Intelligent Tutoring System, but with the pedagogic or tutoring model replaced by a test 

delivery model. The experimental problem domain for SKATE had a considerable influence 

on its design. By choosing to work with the algebra of integer fractions, it was necessary to 

find computationally flexible ways of representing arithmetic problems which were limited to 

a subset that teachers, tutors and text book authors think suitable for their students.  Since 

Constraint Logic Programming (CLP) permits a statement of integer domains, and since it 
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interfaces seamlessly with Prolog, it is an obvious choice for representing the test material. 

But the representation of the problem domain in an intelligent tutoring system influences 

most other components, and so CLP affected the design on most components in SKATE.  In 

addition to the domain model, these components are the student model and the test delivery 

model. They are discussed in the following sections and a critical assessment is made of the 

contribution to the current state of research in adaptive testing and intelligent tutoring 

systems, and the relationship of SKATE to the broader question of ‘learning’. 

 

7.3.1 The Domain Model  
The use of constraints in domain models is not new.  Ohlsson (1994) and Mitrovic (1998) 

used constraints to model an envelope of possibilities, which is actions or interpretations, in a 

particular domain that can be used to map a student’s performance onto a range of pedagogic 

corrective strategies.  In the SKATE model, constraints are used to model problems and not 

student behaviours.  Further, there is no place in an adaptive test for corrective strategies.  

The action that follows either success or failure with a test item is determined by a separate 

testing strategy and is independent of the details of the way in which a student completes a 

test item.  

 

However, even though the representation of the testing strategy does not make use of CLP, it 

was used as a means of facilitating the knowledge elicitation process used to arrive at a 

strategy.  Section 3.6 describes an interactive process that relies on the generation of sample 

problems coded as CLP program fragments to elicit an order in which problems should be 

presented. The feature of CLP that is exploited here is its ability to simultaneously represent 

both a narrowly defined class of problems and particular examples of that class. 

 

CLP does not compete directly with other techniques used for domain representation in 

Intelligent Tutoring Systems. It is an extension of the expressive power of logic as well as an 

algorithm for solving constraint problems. So it may be used to facilitate and extend a 

representation technique, or it may find a place in tandem with some other techniques. The 

two standard techniques of Intelligent Tutoring Systems are the mal-rule or buggy technique 

used to represent student misconception, and the automatic problem solving technique used 

to represent a student’s search path from problem presentation to solution.  Both of these 

combine elements of a student model as well as the domain model, and are discussed below. 
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Brown and Burton (1978) use mal rules in their classic DEBUGGY system that is discussed 

in Section 2.4 and which, like SKATE, deals with arithmetic problems. Its domain 

representation could be extended by CLP.  CLP facilitates the representation of discrete 

domains, and operation that can be performed on them, and it is as easy to represent the use 

of an incorrect, or buggy operator, as a correct one.  Consider the example used by Ohlsson 

(1994), of the elementary mistake of summing fractions by summing the numerators to give 

the numerator of the result, and summing the denominators to give the denominator of the 

result. This can be represented by the following fragment: 

 

 

 

 

 
This not only exactly models the “buggy” operator, but can be solved to deliver erroneous 

summations. 

 

The widely used alternative approach to domain and student modelling, usually referred to as 

the Machine Learning Approach (Section 2.4.8), does not stand to benefit from the use of 

CLP in the same direct way but they may be used together.  This approach relies on the exact 

modelling of one or more solution paths.  Although it is possible to exercise some control 

over CLP’s constraint satisfaction algorithms, there is no mechanism for controlling this in 

sufficient detail to model a human protocol.  So in SKATE, a backward-chaining problem 

solver is used to analyse problems in terms of problem-solving skills needed for a solution.  

This information is used for problem assessment as part of one of the delivery algorithms 

(Section 5.5.2).  The strength of CLP lies in its ability to model problems, rather than 

problem domains, where the solution or sets of partial solutions are more significant than the 

solution path. Its potential for use in mal rules or buggy rules though not studied in this thesis 

should be worth further investigation. 

 

BuggyAdd(N1,D1,N2,D2,N3,D3) :- 
 
domain([N1,D1,N2,D2,N3,D3],1,9),         % Single digit integers 
N1 #<  D1,                                % First operand - proper fraction 
N2 #<  D2,                                % Second operand - proper fraction 
N3 #= N1 + N2,   % Sum the numerators 
D3 #= D1 + D2.    % Sum the denominators 
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7.3.2 The Student Model  
The student model used in SKATE records a student’s progress through a series of test items. 

Such a model, which relies on the representations in the domain model, is called an overlay 

model.  It records a student’s success or failure for each test item and also records those 

features of a test that are relevant for determining the “next” test item to be presented.  

Information about a student’s competence has to be inferred from this record of results, so 

competence or the lack of competence is characterised in terms of the characteristics of test 

items.  

 

From the adaptive test perspective, the crucial decision is always what test item should be 

presented next. Two aspects need to be discussed. One is the reliability of item results; the 

other is determining which test item should be delivered next in order for the maximum 

information about the student’s ability to be gathered with the smallest number of test items.  

It is in answering the former question that other researchers have used Bayesian statistics; see 

for example the ANDES system (VanLehn and Niu, 2001).  This approach is compatible with 

the CLP based domain model of SKATE, but would require information to indicate how to 

update a probability hypothesis in the light of the result of a test item. This information is not 

available within SKATE, and decisions about the progression through test items are dealt 

within the delivery module, which is discussed below. 

 

7.3.3 The Test Delivery Model  
There are two broad approaches that have been used for determining the order in which the 

questions that constitute an adaptive test are asked.  These are the statistical approach, such as 

Item Response Theory (Wainer and Mislevy, 1990) and the Knowledge Space approach 

(Doignon and Falmagne, 1985). These are discussed in Chapter 2.  The statistical approach 

studies patterns of behaviour of population samples in order to discover the patterns of co-

occurrence of success or failure. The Knowledge Space approach relies on a semantic 

analysis of a problem domain. This can be carried out directly, by looking for a semantic 

ordering of prerequisites (Dowling and Kaluscha, 1995) or by the use of knowledge 

acquisition from educational experts (Koppen, 1993; Kambouri et al. 1994).   

 

This thesis uses two variants of the knowledge acquisition approach.  Section 4.5 discusses a 
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technique for knowledge acquisition directed to determining a specified sequence of classes 

of test items, and Section 4.6 discusses a more abstract approach. The former is only suitable 

for small tests, since the knowledge acquisition process is quickly swamped by combinatorial 

explosion of possible test paths. The second approach, the XP strategy, is independent of the 

size of the test. The XP strategy focuses on the mastery of specific “micro-skills” needed to 

solve particular problems. Its limitation is that it treats all identifiable skills as equally 

significant and equally prone to error.  However, the strategy is independent of the number of 

number of problem classes, and so scales without problem.  The worse case delivery 

performance is proportional to the log to base two of the number of problem class clusters 

used. 

 

There is a growing body of research in this area.  McCalla et al. (1992) have studied the 

issues of levels of detail, or granularity; Hirashima et al. (1996) have used a notion of the 

simplification of problems, though this has been in the context of tutoring rather than testing.  

Work that has been carried out with the intent of developing tests has focused on the 

representation of problems.  Work carried out that has been concerned with tutoring has not 

shared this focus, and is more concerned with sequencing the introduction of skills and 

concepts. This is an area in which more research is needed in order to improve the accuracy 

and coverage of adaptive tests. 

 

When XP was evaluated using simulated students, its assessment of different types of 

students was found to be comparable to that of sequential testing (Section 6.6) and it was 

found that the accuracy of XP could be further fine-tuned by varying its parameters (Sections 

5.4.1 and 6.7). The problem with using simulated students is that the simulation is based on 

the same “knowledge base” as the adaptive test or intelligent tutoring system that is being 

evaluated.  Exactly the same assumptions that underlie the adaptive test or intelligent tutoring 

system also inform the construction of the simulated students. This clearly limits what can be 

learned from simulation experiments.  But as mentioned above, simulation may find a role in 

“fine tuning” the parameters of a test, or estimating the number of interactions required when 

using an intelligent tutoring system. 
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7.3.4 Learning  
SKATE has no assumptions about learning: it is only concerned with testing. However, the 

interpretation of a test result is sensitive to assumptions about:  

 

• whether or not learning takes place during the testing process; 

• the ambiguity that arises when there are several ways of solving a problem; and, 

• the complexity of assessing a skill use, when the skill can only be demonstrated in 

conjunction with other skills. 

 

However, it is not just SKATE that has this sort of problem. Van Lehn and Niu’s BBN 

system (2001), bug libraries, (Brown and Burton, 1978) and machine learning techniques 

such as ACM (Langley and Ohlsson, 1984) all suffer from radical strategy variability 

(Section 2.4.7), since a student can have several strategies in use at any moment in time, and 

may switch between them on a problem-by-problem basis.   

 

SKATE presents a quick means of assessment that helps the student identify straightaway the 

skills that he needs to reinforce learning on, and focus on learning this aspect.  It assumes that 

if a student has any unmastered skill, this will surface by constant questioning.  The careful 

placing of questions will minimise the possibility of student using different solutions and not 

necessarily those skills.  In this way, SKATE supports many learning theories.  Perhaps the 

closest is the Information Processing learning theory (Miller 1956).  There are two concepts 

in this learning theory framework – chunking and information processing.  Chunking is first 

advocated where the student holds several pieces or chunks of information in his short-term 

memory (encoding or retention).  In the current domain of study, a chunk can be a problem 

solving skill.  Next, the student is presented with a problem.  At this stage, information 

processing takes place, where the student retrieves relevant chunks and applies one or more 

skills in order to solve the problem.   

 

Assessment is, and will remain, closely associated with teaching and learning.  Evaluating the 

progress of a student is a vital part of both tutoring and teaching systems.  The state of 

knowledge of a student in a subject domain is best assessed when he is not anxious.  

Computerised adaptive testing promises an effective and accurate strategy.   This thesis 
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presented a feasible approach to creating small-scale tests with the hope that this software-

supported technique will eventually find its way in educational and training settings in class 

rooms and elsewhere.   

 

 

7.4 Further Work  
Adaptive testing has been developed independently of tutoring systems, and it has been 

mainly used for large-scale summative evaluation. This thesis has been concerned with 

developing a range of techniques which, amongst other things, are applicable in small-scale 

testing. They are useful particularly for transient student populations or for students engaging 

in lifelong learning with gaps in their knowledge. But the same techniques are applicable as 

alternatives to fixed length tests in normal classroom teaching.  Research needs to be 

undertaken, which would benefit from collaboration with textbook authors and publishers as 

well as with classroom teachers, to evaluate this possibility.  The present work has only 

investigated the use of CLP to represent arithmetic problems.  Though there are many 

potential applications in the field of mathematics and related subjects, it should be fruitful to 

explore the application in all those areas of management science, engineering, planning and 

design that have presented constraint satisfaction problems. 

 

A second area of application is in conjunction with, or integrated with, an ITS system.  Here 

SKATE could be used for pre-testing before proper tutoring begins, much like a pretest for 

SIETTE (Arroyo et al. 2001) and SMART (Shute 1995).   There is interesting work to be 

undertaken here which would involve the integration of the testing needed for example for 

the detection of misconceptions on the one hand and performative competence on the other.  

 

There is a more interesting possibility, which is suggested by the nature of CLP, whose 

constraint solving algorithm automatically provides a family of problems and solutions from 

a description of a class of problems. This is the potential for the generation of test items from 

a complete representation of domain of an intelligent tutoring system. This would require a 

pedagogic model that would provide a structure for tutorial topics,  problem classes and 

tutorial information in an explicit fashion so that the progression problem of adaptive testing 

could be solved by drawing on the same material used for sequencing tutorial strategies.  
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Appendix A. Item Characteristic Curves  

This appendix contains item characteristic curves for the 2-PL and 3-PL models for different 
values of a, b and c.  Item characteristic curves were discussed in Section 2.5.1. 

 

Figure 33.  2-PL Item Characteristic Curves (b=0) 
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Figure 34.  2-PL Item Characteristic Curves (b=-1) 

 

Figure 35.  2-PL Item Characteristic Curves (b=0, c=0.2) 
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Item Characteristic Curves for the 3-PL model (with 
difficulty level b = 0, c = 0.2)
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Appendix  B.  Manual Adaptive Testing 

 

This appendix contains two interactive sessions which took place between the expert and two 
students on a one-on-one basis.  This was discussed in Section 3.2.5. 
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Subject 1:  An 11 year old student on the UK National Curriculum, Year 6 

  
Task/Observation Problem posed Student’s response 
Start the test 
Teacher’s impression of student through cues: 
student seems confident 
 
 
 
 
 
The student has used a different strategy to the one 
predicted by the teacher.  The teacher had expected 
the student to add ½ and ¾ to arrive at an improper 
fraction before converting it to a proper fraction and 
adding the whole number to the other whole 
numbers. 
 
Student used the skills number facts, sum whole 
numbers and add equivalent fractions but not the 
expected skills of find common denominator, find 
equivalent fraction and make proper. 
 
The teacher is also aware that the skill cancel 
fraction has not been tried yet.  He expects student to 
demonstrate mastery in the skills find common 
denominator,  find equivalent fractions and make 
proper.  This influences the choice for the next 
problem 
 
 
 
 
 
 
 
Teacher thinks: “Can the student really solve 
fractions with different denominators.  Did he apply 
LCM or did he just get the product of the 
denominators to get a common denominator.  My 
previous question does not reveal this, so I will pose 
the next one” 
 
 
 
 
 
 
 
 
 
 

 
 
 
2 ½ + 3 ¾  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4/3 + 5/4 
 
Can you break it 
down further? 
 
 
 
 
 
 
 
 
 
7/2 + 8/3 – 6/5 
 
 
 
 
 
 
 
 
 
 

 
 
 
Thinking aloud:  ¾ = ½ + ¼, so 
½ + ½ = 1.  Add that to the 
whole numbers gives 6.  The 
remaining fraction is ¼, so the 
answer is 6 ¼ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16/12 + 15/12 = 31/12 
 
Struggles and wrote 2 r 7 / 12 
and then 27/12 and then 2 7/12 
 
 
 
 
 
 
Struggles to get LCM for 3 
numbers 
2 3      5 
4     6      10 
6     9      15 
8    12     20 
10   15    25 
12    18    30 
14     21    35…..and said LCM 
= 4, then thought again 
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Teacher intervenes with a simpler problem 

 
8/3 – 6/5 
 

 
40/15 – 18/15 = 22/15 = 1 7/15 
{solves successfully then 
resumes to solve previous 
problem} 
 
105/30 + 80/30 – 36/30 = 
149/30 = 4 29/30 

Again, teacher’s choice of question did not test for 
the ability of the student to use LCM, so another 
question was devised 
 
 
 
 
 
The skill cancel fraction has not been tested, so I will 
give a specific question on it 
 
 
 
Stop the test 
Verdict:  Student has demonstrated mastery in all 
skills and can handle fraction addition and 
subtraction up to 3 operands 
 

 
 
4/3 – 1/6 + 5/4 
 
 
 
 
 
What if the 
answer was 2 
3/12, can you 
break that down 
any further 

 
 
{Thinks aloud} 
LCM = 24, now can I make it 
any lower…..12 
16/12 – 2/12 + 15/12 = 29/12  
= 2 5/12 
 
 
 
 
2 ¼  
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Subject 2:  A 10 year old student on the UK National Curriculum, Year 5 

 
Task/Observation Problem posed Student’s response 
Start the test 
Teacher’s impression of student through cues: 
student looking math anxious, therefore start test 
with very easy problem 
 
Student has added both numerator and 
denominator – a clear misunderstanding of the 
concept of fraction addition 
 
Give a simpler problem 
 
Student has displayed the same misconception 
 
Give another problem 
 
Stop the test 
Verdict:  Student has demonstrated 
misunderstanding of the concept of fraction 
addition.  Remedial help should take the form of 
visual display e.g. pieces of a pizza, to 
demonstrate the idea of fractions and then 
fraction addition 

 
 
 
2/3 + 3/4 
 
 
 
 
 
2/5 + 3/5 
 
 
 
1/4 + 2/4 
 
 
 
 
 
 
 
 
 

 
 
 
5/7 
 
 
 
 
 
5/10 
 
 
 
3/8 
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Appendix C. Clp(fd) Representation of Problem Classes  

This appendix contains a clp(FD) representation of the problem classes for the domain of 

fraction additions.  Each procedure can be executed to generate one or more example 

problem or problem instances.  This was discussed in Section 3.6.1. 
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Question Type PT1: Add Two Proper fractions of common denominator 
?- use_module(library(clpfd)). 
% Invoke all possible answer types for N1/D1 + N2/D2 = N/D 
pt1(N1,D1,N2,D2,N,D):- 
   domain([N1,D1,N2,D2], 1,9),   % Single digit integers for numerators 
  domain([N,D],1,99),   % Possible values for answer 
   N1 #< D1,     % First operand - proper fraction 
   N2 #< D2,    % Second operand - proper fraction 
   D1 #= D2,    % A common denominator 
   D #= D1,    % Same denominator in solution  
   labeling([], [N1,D1,N2,D2, N,D]),  % Generate values for all variables 
   \+ cancel(N1,D1,_,_),   % First operand in simplest form 
   \+ cancel(N2,D2,_,_),   % Second operand in simplest form 
   N1/D1 + N2/D2 =:= N/D.   % Arithmetic expression 
 
 
 
Question Type PT2: Add a Proper fraction and an Improper fraction of a common denominator 
?- use_module(library(clpfd)). 
% Invoke all possible answer types for N1/D1 + N2/D2 = N/D 
pt2(N1,D1,N2,D2,N,D):- 
    domain([N1,D1,N2,D2], 1,9),  % Single digit integers for numerators 
    domain([N,D],1,99),     % Possible values for answer 
    N1 #< D1,         % First operand - proper fraction 
    N2 #> D2,     % Second operand - improper fraction 
    D1 #= D2,     % A common denominator 
    D #= D1,          % Same denominator in solution  
    labeling([], [N1,D1,N2,D2, N,D]),   %Generate values for all variables 
 \+ cancel(N1,D1,_,_),    % First operand in simplest form 
 \+ cancel(N2,D2,_,_),    % Second operand in simplest form 
 N1/D1 + N2/D2 =:= N/D.    % Arithmetic expression 
 
 
 
Question Type PT3: Add two improper fractions  of a common denominator 
?- use_module(library(clpfd)). 
% Invoke all possible answer types for N1/D1 + N2/D2 = N/D 
pt3(N1,D1,N2,D2,N,D):- 
      domain([N1,N2], 1,8),     % Single digit integers for numerators 
     domain([D1,D2], 2, 9),  % Single digits, start at 2 to avoid 1 in denominator 
    domain([N,D],1,99),   % Possible values for answer 
    N1 #> D1,     % First operand - improper fraction 
    N2 #> D2,    % Second operand - improper fraction 
   D1 #= D2,    % A common denominator 
    D #= D1,    % Same denominator in solution  
    labeling([], [N1,D1,N2,D2, N,D]), %Generate values for all variables 
    \+ cancel(N1,D1,_,_),   % First operand in simplest form 
    \+ cancel(N2,D2,_,_),   % Second operand in simplest form 
    N1/D1 + N2/D2 =:= N/D.   % Arithmetic expression 
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Question Type PT4: Add two proper fractions of different denominators where the  
        denominators are multiples of one another 
?- use_module(library(clpfd)). 
% Invoke all possible answer types for N1/D1 + N2/D2 = N/D 
pt4(N1,D1,N2,D2,N,D):- 
   domain([N1,N2], 1,8),    % Single digit integers for numerators 
   domain([D1,D2], 2, 9), % Single digit integers, start at 2 to avoid 1 in denominator 
   domain([N,D,LCM],1,50),  % Possible values for answer 
   N1 #< D1,    % First operand - proper fraction 
   N2 #< D2,   % Second operand - proper fraction 
   D1 #\= D2,   % Different denominators 
   D #= LCM,    % Denominator in answer is the LCM 
   labeling([], [N1,D1,N2,D2, N,D]),  % Generate values for all variables 
   lcm(D1,D2,LCM),   % Calculate LCM 
   \+ cancel(N1,D1,_,_),   % First operand in simplest form 
   \+ cancel(N2,D2,_,_),   % Second operand in simplest form 
   cancel(D1,D2,_,_),      % Denominators are multiples of one another 
   N1/D1 + N2/D2 =:= N/D.    % Arithmetic expression 
 
 
 
Question Type PT5: Add a Proper and an Improper fraction of different denominators where  
         the denominators are multiples of one another 
?- use_module(library(clpfd)). 
% Invoke all possible answer types for N1/D1 + N2/D2 = N/D 
pt5(N1,D1,N2,D2,N,D):- 
   domain([N1,N2], 1,8),   % Single digit integers for numerators 
   domain([D1,D2], 2, 9), % Single digit integers, start at 2 to avoid 1 in denominator 
   domain([N,D],1,50),  % Possible values for answer 
   N1 #< D1,    % First operand - proper fraction 
   N2 #> D2,   % Second operand - improper fraction 
   D1 #\= D2,   % Different denominators 
   D #= LCM,   % Denominator in answer is the LCM 
   labeling([], [N1,D1,N2,D2, N,D]), % Generate values for all variables 
   lcm(D1,D2,LCM),  % Calculate LCM 
   \+ cancel(N1,D1,_,_),  % First operand in simplest form 
   \+ cancel(N2,D2,_,_),  % Second operand in simplest form 
   cancel(D1,D2,_,_),  %Denominators are multiples of one another 
   N1/D1 + N2/D2 =:= N/D.  % Arithmetic expression 
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Question Type PT6: Add Two Improper fractions of different denominators where the  
         denominators are multiples of one another 
?- use_module(library(clpfd)). 
% Invoke all possible answer types for N1/D1 + N2/D2 = N/D 
pt6(N1,D1,N2,D2,N,D):- 
   domain([N1,N2], 1,8),    % Single digit integers for numerators 
   domain([D1,D2], 2, 9),   % Single digit integers, start at 2 
     % to avoid 1 in denominator 
   domain([N,D],1,50),  % Possible values for answer 
   N1 #> D1,     % First operand - improper fraction 
   N2 #> D2,   % Second operand - improper fraction 
  D1 #\= D2,    % Different denominators 
  D #= LCM,   % Denominator in answer is the LCM 
   labeling([], [N1,D1,N2,D2, N,D]), % Generate values for all variables 
   lcm(D1,D2,LCM),  % Calculate LCM 
   \+ cancel(N1,D1,_,_),  % First operand in simplest form 
   \+ cancel(N2,D2,_,_),  % Second operand in simplest form 
  cancel(D1,D2,_,_),  % Denominators are multiples of one another 
   N1/D1 + N2/D2 =:= N/D.  % Arithmetic expression 
 
 
 
Question Type PT7: Add two proper fractions  of different denominators where the  
        denominators are not multiples of one another 
?- use_module(library(clpfd)). 
% Invoke all possible answer types for N1/D1 + N2/D2 = N/D 
pt7(N1,D1,N2,D2,N,D):- 
   domain([N1,N2], 1,8),    % Single digit integers for numerators 
   domain([D1,D2], 2, 9),  % Single digit integers, start at 2 to avoid 1 in denominator 
   domain([N,D,LCM],1,50),  % Possible values for answer 
   N1 #< D1,    % First operand - proper fraction 
   N2 #< D2,   % Second operand - proper fraction 
   D1 #\= D2,   % Different denominators 
   D #= LCM,   % Denominator in answer is the LCM 
   labeling([], [N1,D1,N2,D2, N,D]), % Generate values for all variables 
   lcm(D1,D2,LCM),   % Calculate LCM 
   \+ cancel(N1,D1,_,_),  % First operand in simplest form 
   \+ cancel(N2,D2,_,_),  % Second operand in simplest form 
   \+ cancel(D1,D2,_,_),  % Denominators are not multiples of one another 
   N1/D1 + N2/D2 =:= N/D.  % Arithmetic expression 
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Question Type PT8: Add a proper fraction and an improper fraction of different where the  
        denominators are not multiples of one another 
?- use_module(library(clpfd)). 
% Invoke all possible answer types for N1/D1 + N2/D2 = N/D 
pt8(N1,D1,N2,D2,N,D):- 
   domain([N1,N2], 1,8),    % Single digit integers for numerators 
   domain([D1,D2], 2, 9), % Single digit integers, start at 2 to avoid 1 in denominator 
   domain([N,D,LCM],1,50),  % Possible values for answer 
   N1 #< D1,    % First operand - proper fraction 
   N2 #> D2,   % Second operand - improper fraction 
   D1 #\= D2,   % Different denominators 
   D #= LCM,   % Denominator in answer is the LCM 
   labeling([], [N1,D1,N2,D2, N,D]), % Generate values for all variables 
   lcm(D1,D2,LCM),  % Calculate LCM 
   \+ cancel(N1,D1,_,_),  % First operand in simplest form 
   \+ cancel(N2,D2,_,_),  % Second operand in simplest form 
   \+ cancel(D1,D2,_,_),  % Denominators are not multiples of one another 
   N1/D1 + N2/D2 =:= N/D.  % Arithmetic expression 
 
Question Type PT9: Add two improper fractions of different denominators where the  
         denominators are not multiples of one another 
?- use_module(library(clpfd)). 
% Invoke all possible answer types for N1/D1 + N2/D2 = N/D 
pt9(N1,D1,N2,D2,N,D):- 
   domain([N1,N2], 1,8),   % Single digit integers for numerators 
   domain([D1,D2], 2, 9), % Single digit integers, start at 2 to avoid 1 in denominator 
   domain([N,D,LCM],1,50), % Possible values for answer 
   N1 #> D1,    % First operand - improper fraction 
   N2 #> D2,   % Second operand - improper fraction 
   D1 #\= D2,   % Different denominators 
   D #= LCM,   % Denominator in answer is the LCM 
   labeling([], [N1,D1,N2,D2, N,D]), % Generate values for all variables 
   lcm(D1,D2,LCM),  % Calculate LCM 
   \+ cancel(N1,D1,_,_),  % First operand in simplest form 
   \+ cancel(N2,D2,_,_),  % Second operand in simplest form 
   \+ cancel(D1,D2,_,_),  % Denominators are not multiples of one another 
   N1/D1 + N2/D2 =:= N/D.  % Arithmetic expression 
 
% COMMON PREDICATES 
cancel(N,D,X,Y) :-   % Cancel fraction e.g. N/D into lowest form X/Y 
 domain([N,D,X,Y,F], 1,99),    % F is the highest common factor 
 F*X #= N,    
 F*Y #= D, 
 maximize(labeling([], [F,X,Y]), F), 
 F \== 1.    % To ensure cancel fraction has taken place 
lcm(D1,D2, LCM) :-    % Calculate LCM Lowest Common Multiple 
        Prod is D1*D2,  gcd(D1,D2,GCD), 
        LCM is Prod//GCD. 
gcd(X,X,X).    % calculate greatest common denominator 
gcd(X,Y,D) :- X<Y, Y1 is Y-X, gcd(X,Y1,D). 
gcd(X,Y,D) :- Y<X, gcd(Y,X,D).
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Appendix D. Problem Classes of Fraction Additions  

This appendix contains a list of problem classes characterised by possible response types for 

the domain of fraction additions.  This was discussed in Section 3.6.2. 

 

Problem Class PT1: Add Two Proper Fractions with Common Denominators 
PT1_RT1:  PT1 where response type is a proper fraction in simplest form 
PT1_RT2:  PT1 where response type is a whole number 1 

PT1_RT3:  PT1 where response type is a proper fraction not in simplest form 
PT1_RT4:  PT1 where response type is an improper fraction in simplest form 

PT1_RT5:  PT1 where response type is an improper fraction not in simplest form 

 

Problem Class PT2: Add Two Improper Fractions with Common Denominators 
PT2_RT4:  PT2 where response type is an improper fraction in simplest form 
PT2_RT5:  PT2 where response type is an improper fraction not in simplest form 

PT2_RT6:  PT2 where response type is a whole number greater than 1 

 

Problem Class PT3:  Add a Proper Fraction and an Improper Fraction with Common 
Denominators 
PT3_RT4:  PT3 where response type is an improper fraction in simplest form 
PT3_RT5:  PT3 where response type is an improper fraction not in simplest form 

PT3_RT6:  PT3 where response type is a whole number greater than 1 
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Problem Class PT4: Add Two Proper Fractions of Different Denominators which are 
multiples of one another 
PT4_RT1:  PT4 where response type is a proper fraction in simplest form 
PT4_RT3:  PT4 where response type is a proper fraction not in simplest form 
PT4_RT4:  PT4 where response type is an improper fraction in simplest form 

PT4_RT5:  PT4 where response type is an improper fraction not in simplest form 

 

Problem Class PT5: Add Two Improper Fractions of Different Denominators which are 
multiples of one another 
PT5_RT4:  PT5 where response type is an improper fraction in simplest form 

PT5_RT5:  PT5 where response type is an improper fraction not in simplest form 

 

Problem Class PT6: Add a Proper Fraction and an Improper Fraction of Different 
Denominators which are multiples of one another 
PT6_RT4:  PT6 where response type is an improper fraction in simplest form 

PT6_RT5:  PT6 where response type is an improper fraction not in simplest form 

 

Problem Class PT7: Add Two Proper Fractions of Different Denominators which are 
not multiples of one another 
PT7_RT1:  PT7 where response type is a proper fraction in simplest form 
PT7_RT4:  PT7 where response type is an improper fraction in simplest form 

 

Problem Class PT8: Add Two Improper Fractions of Different Denominators which are 
not multiples of one another 
PT8_RT4:  PT8 where response type is an improper fraction in simplest form 

 

Problem Class PT9: Add a Proper Fraction and an Improper Fraction of Different 
Denominators which are not multiples of one another 
PT9_RT4:  PT9 where response type is an improper fraction in simplest form 
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Appendix E. Fixed-Item Test in Fraction Additions 

This appendix contains a fixed-item test which was administered to students.  This was 
discussed in Section 4.2.1.3. 
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Assessment Test Paper 
 

Date:  ____________  Time now : ___________ 

 

Please answer all questions.  At the start, please state the current time.  When you 

finish, please state the new time on the last page. 

 

Write down your working at all times. 
 

1. Simplify the following fractions into its lowest form 

Q1. =4
2

         

Q2. =8
8

           

Q3.  =5
10

          

Q4.   =3
7

          

Q5.   =4
10

          

 

 

2. Find the Least Common Denominator for each pair of numbers.  If you can’t, then 

just give a common denominator for each pair.   

 

Q6.    3  and   4  =          

 

Q7.    5   and 7   =          

 

Q8.    6  and   8  =         

 

Q9.    4  and  6  =         
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3. Find an equivalent fraction for each of  the following.  For example,    4
2

2
1 =  

Q10.    =4
3

 

Q11.     =3
7

 

 

 

4. The following questions are addition of fractions. Please answer each question and 

give the answer in its lowest form.  For example: 

 

3
1

6
2

6
1

6
1 ==+      2

1
4
2

4
6

4
3

4
3 11 ===+     13

3
3
1

3
2 ==+  

 

Please show your working, if any, at all times in the space provided and write your 

answer in the box. 

     Working      Answer 

 

Q12.   =+ 3
1

3
1

 

 

 

 

 

Q13.   =+ 7
2

7
5
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     Working      Answer 

 

Q14.   =+ 9
2

9
4

 

 

 

 

Q15.   =+ 7
6

7
5

 

 

 

 

Q16.   =+ 9
4

9
8

 

 

 

 

Q17.    =+ 7
8

7
4

 

 

      

 

Q18.   =+ 8
9

8
5

 

 

 

 

Q19.   =+ 3
5

3
1
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     Working      Answer 

 

Q20.   =+ 5
6

5
8

 

 

 

 

Q21.   =+ 4
5

4
5

 

 

      

 

Q22.   =+ 2
5

2
3

 

 

 

Q23.   =+ 4
1

2
1

 

 

 

 

 

Q24.   =+ 8
1

6
5

 

 

 

 

Q25.   =+ 6
1

2
1
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     Working      Answer 

 

Q26.   =+ 4
3

8
3

 

 

 

 

Q27.   =+ 6
5

3
2

 

 

 

 

Q28.   =+ 4
7

8
1

 

 

 

 

Q29.   =+ 6
7

2
1

 

 

 

 

Q30.   =+ 6
7

3
5

 

 

 

 

Q31.   =+ 6
7

3
4
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     Working      Answer 

Q32.   =+ 5
1

2
1

 

 

 

 

 

Q33.   =+ 5
3

3
2

 

 

 

 

Q34.   =+ 3
7

2
1

 

 

 

 

Q35.   =+ 5
8

2
5

 

 

 

 

 

 

 

End of Test 

 

Please write the time now:________  
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Appendix F. Diagnosing Student Answers  

This appendix presents the diagnosis of student answers in two modes – evaluating final 
answers and inspecting intermediate steps.  This was discussed in Section 4.2.1.4.  Table 4 
shows each question corresponding to a problem class and a set of problem solving skills 
which are expected to be used to solve a problem of a class.  The skills are labelled in the 
following way:  
 
a:   add equivalent fractions        
b:   cancel or simplify fraction into lowest form 
c:   make proper  
d:   find common multiple or lowest common multiple  
e:   find equivalent fraction 
 
Table 5 shows the results of the first mode of diagnosis and Table 6 shows the results of the 
second mode of diagnosis.  In both tables, labels A to L correspond to each of the twelve 
students who undertook the test while labels Q1 to Q35 correspond to the test of thirty-five 
questions which is given in Appendix E.  The following legend is used: 

 
1 correct 
0 incorrect 
w incorrect 
na  not attempted 
cbnw correct but no working given 
cbmsw correct but missed some working 
cs possible careless slip 
sc possible copying 
pc partially correct 
mq possible misunderstanding of question 
mr1 added denominators for the resultant denominator (for common denominator problems) 
mr2 for non-common denominator problems, added numerators for resultant numerator and added 

denominators for resultant denominator  
mr3  add numerators but subtract denominators (for non-common denominator problems) 
mr4 added numerators and multiplied denominators (for non-common denominator problems) 
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Question Problem Class Skills likely to be applied 
Q1  b 

Q2  b 

Q3  b 

Q4  c 

Q5  b,c 

Q6  d 

Q7  d 

Q8  d 

Q9  d 

Q10  e 

Q11  e 

Q12 PT1_RT1 a 

Q13 PT1_RT2 a,b 

Q14 PT1_RT3 a,b 

Q15 PT1_RT4 a,c 

Q16 PT1_RT5 a,b,c 

Q17 PT2_RT4 a,c 

Q18 PT2_RT5 a,b,c 

Q19 PT2_RT6 a,b 

Q20 PT3_RT4 a,c 

Q21 PT3_RT5 a,b,c 

Q22 PT3_RT6 a,b 

Q23 PT4_RT1 a,d,e 

Q24 PT4_RT1 a,d,e 

Q25 PT4_RT3 a,b,d,e 

Q26 PT4_RT4 a,c,d,e 

Q27 PT4_RT5 a,b,c,d,e 

Q28 PT5_RT4 a,c,d,e 

Q29 PT5_RT5 a,b,c,d,e 

Q30 PT6_RT4 a,c,d,e 

Q31 PT6_RT5 a,b,c,d,e 

Q32 PT7_RT1 a,d,e 

Q33 PT7_RT4 a,c,d,e 

Q34 PT8_RT4 a,c,d,e 

Q35 PT9_RT4 a,c,d,e 

      Table 4.  Test Questions categorised by Problem Class and Skills  

 



Appendix F. Diagnosing Student Answers  159   

  

 A B C D E F G H I J K L 
Q1 1 1 1 1 1 1 1 1 1 1 1 1 
Q2 1 0 1 1 1 1 1 1 1 1 1 1 
Q3 0 0 1 1 1 1 1 0 1 1 1 1 
Q4 0 0 0 1 0 1 1 1 1 1 1 1 
Q5 0 0 0 1 0 1 1 1 1 1 1 1 
Q6 0 0 1 0 1 1 1 1 0 1 1 1 
Q7 0 0 1 0 1 1 1 1 0 1 1 1 
Q8 0 0 1 0 0 1 1 1 0 1 1 1 
Q9 0 0 0 0 0 1 1 1 0 1 1 1 
Q10 1 0 0 0 0 1 0 1 1 1 1 1 
Q11 0 0 0 0 0 0 0 1 0 1 1 1 
Q12 0 0 1 1 1 1 0 1 1 1 1 1 
Q13 0 0 1 1 1 1 1 1 1 1 1 1 
Q14 0 0 0 1 1 1 1 1 1 1 1 1 
Q15 0 0 0 1 1 1 1 1 1 1 1 1 
Q16 0 0 0 1 1 1 1 1 1 1 1 1 
Q17 0 0 0 1 1 1 1 1 0 1 1 1 
Q18 0 0 0 0 1 1 1 1 1 1 1 1 
Q19 0 0 0 1 1 1 0 1 1 1 1 1 
Q20 0 0 0 1 1 1 1 1 0 1 1 1 
Q21 0 0 0 1 1 1 0 1 1 0 1 1 
Q22 0 0 0 1 1 1 1 1 1 1 1 1 
Q23 0 0 0 1 1 1 1 1 1 1 1 1 
Q24 0 0 0 0 0 1 1 1 1 1 1 1 
Q25 0 0 0 0 0 1 1 1 1 1 1 1 
Q26 0 0 0 0 0 1 1 1 1 1 1 1 
Q27 0 0 0 0 0 1 1 1 1 1 1 1 
Q28 0 0 0 0 0 1 1 1 1 1 1 1 
Q29 0 0 0 0 0 0 1 1 1 1 1 1 
Q30 0 0 0 0 0 1 1 1 1 1 1 1 
Q31 0 0 0 0 0 0 1 1 1 1 1 1 
Q32 0 0 0 0 0 0 1 1 1 1 1 1 
Q33 0 0 0 0 0 0 1 1 1 0 1 1 
Q34 0 0 0 0 0 0 1 1 1 1 1 1 
Q35 0 0 0 0 0 0 1 1 1 1 1 1 

Table 5.  Evaluating Final Answers only 
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 A B C D E F G H I J K L 
Q1 1 1 1 1 1 1 1 1 1 1 1 1 
Q2 1 w 1 1 1 1 1 1 1 1 1 1 
Q3 na w 1 1 1 1 1 w 1 1 1 1 
Q4 na w W 1 w 1 1 1 1 1 1 1 
Q5 na w W 1 pc 1 1 1 1 1 1 1 
Q6 w na 1 na 1 1 1 1 w 1 1 1 
Q7 w na 1 na 1 1 1 1 w 1 1 1 
Q8 w na 1 na w 1 1 1 w 1 1 1 
Q9 w na W na w 1 1 1 w 1 1 1 
Q10 1 na W mq w 1 w 1 1 1 1 1 
Q11 na na W mq w w w 1 w 1 1 1 
Q12 mr1 na 1 1 1 1 w 1 1 1 1 1 
Q13 mr1 na 1 1 1 1 1 1 1 1 1 1 
Q14 mr1 na W 1 1 1 1 1 1 1 1 1 
Q15 mr1 na W 1 1 1 cbnw 1 1 1 1 1 
Q16 mr1 na W 1 1 1 cbnw 1 cbmsw 1 1 1 
Q17 mr1 na W 1 1 1 cbnw 1 pc 1 1 1 
Q18 na na W cs 1 1 cbmsw 1 cbmsw 1 1 1 
Q19 na na W 1 1 1 pc 1 1 1 1 1 
Q20 na na W 1 1 1 1 1 pc 1 1 1 
Q21 na na W 1 1 1 na 1 1 w 1 1 
Q22 na na W 1 1 1 1 1 1 1 1 1 
Q23 na na W cbnw cbnw 1 1 1 1 1 1 1 
Q24 na na W w w 1 1 1 cbnw/sc 1 1 1 
Q25 na na W w w 1 1 1 cbnw/sc 1 1 1 
Q26 na na W mr2 w 1 1 1 cbnw/sc 1 1 1 
Q27 na na W mr2 w 1 1 1 cbnw/sc 1 1 1 
Q28 na na W mr2 w 1 1 1 cbnw/sc 1 1 1 
Q29 na na W mr2 mr3 cs 1 1 cbnw/sc 1 1 1 
Q30 na na W mr2 mr3 1 1 1 cbnw/sc 1 1 1 
Q31 na na W mr2 mr3 na 1 1 cbnw/sc 1 1 1 
Q32 na na W mr2 mr4 na 1 1 cbnw/sc 1 1 1 
Q33 na na W mr2 mr4 na 1 1 cbnw/sc cs 1 1 
Q34 Na na W mr2 mr4 na 1 1 cbnw/sc 1 1 1 
Q35 Na na W mr2 mr4 na 1 1 cbnw/sc 1 1 1 

Table 6.   Inspecting Solution Paths and Final Answers



Appendix G.  Simulated Students  161   

  

Appendix G. Simulated Students 

This appendix presents two pieces of information.  Firstly, a list of instances of simulated 
students of Sam1, Sam2, Sam3, Sam4 and Sam5 types, as discussed in Section 6.3, is 
presented in Table 7 and Table 8.  The last three columns of the tables list the names of the 
output files generated from running the steps of the evaluation - “generate logfiles” and 
“running the assessor”, as described in Sections 6.4 and 6.5 respectively.   
 
The second piece of information is a list of the instantiations of the simulated students – see 
Figure 36.   The instantiations are represented as a Prolog predicate, simStudents(X,Y), where 
X is the name of the simulated student and Y is a three-phase structure, Prepare-Add-Tidy, 
where each phase contains one or more mastered skill or malrule.   
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Type Student Prepare Phase Process Phase Tidy Phase Logfiles Run XP  Run ST  

sam1a  makeVulgar, makeCommon checkAndAdd cancel, makeProper, makeWhole log1a xp_1a st_1a 

sam1b makeCommon, makeVulgar checkAndAdd cancel, makeProper, makeWhole log1b xp _1b st _1b 

sam1c makeVulgar, makeCommon checkAndAdd makeProper, makeWhole,cancel log1c xp _1c st _1c 

sam1d makeVulgar, makeCommon checkAndAdd makeWhole,cancel, makeProper log1d xp _1d st _1d 

sam1e makeVulgar, makeCommon checkAndAdd cancel, makeWhole makeProper log1e xp _1e st _1e 

sam1f makeCommon, makeVulgar checkAndAdd makeProper, makeWhole,cancel log1f xp _1f st _1f 

sam1g makeCommon, makeVulgar checkAndAdd makeWhole,cancel, makeProper log1g xp _1g st _1g 

Sam1 

(knows all 

the skills) 

sam1h makeCommon, makeVulgar checkAndAdd cancel, makeWhole makeProper log1h xp _1h st _1h 

sam2a makeVulgar checkAndAdd cancel, makeProper, makeWhole log2a xp _2a st _2a 

sam2b makeCommon checkAndAdd cancel, makeProper, makeWhole log2b xp _2b st _2b 

sam2c makeVulgar, makeCommon checkAndAdd makeProper, makeWhole log2c xp _2c st _2c 

sam2d makeVulgar, makeCommon checkAndAdd cancel, makeWhole log2d xp _2d st _2d 

sam2e makeVulgar, makeCommon checkAndAdd cancel, makeProper log2e xp _2e st _2e 

Sam2 

(gaps in 

knowledge) 

sam2f makeCommon checkAndAdd - log2f xp _2f st _2f 

Table 7.  Simulated Students with overlay knowledge 
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Type Student Prepare Phase Process Phase Tidy Phase Logfiles Run XP  Run ST  

sam3a makeVulgar, makeCommon checkAndAdd malCancel, makeProper, makeWhole log3a xp_ 3a st _ 3a 

sam3b makeVulgar, makeCommon malAdd1 cancel, makeProper, makeWhole log3b xp _ 3b st _ 3b 

sam3c MakeVulgar malAdd2 cancel, makeProper, makeWhole log3c xp _3c st _3c 

sam3d MakeVulgar malAdd3 cancel, makeProper, makeWhole log3d xp _ 3d st _ 3d 

Sam3 

(malrules) 

sam3e makeVulgar malAdd1 malCancel, makeProper, makeWhole log3e xp _ 3e st _ 3e 

sam4a makeCommon  checkAndAdd - log4a xp _ 4a st _ 4a 

sam4b makeCommon  checkAndAdd - log4b xp _ 4b st _ 4b 

sam4c makeCommon  checkAndAdd - log4c xp _ 4c st _ 4c 

sam4d makeVulgar checkAndAdd cancel, makeProper, makeWhole log4d xp _4d st _4d 

Sam4 

(guesses) 

sam4e makeVulgar, makeCommon checkAndAdd makeProper, makeWhole log4e xp _4e st _4e 

sam5a makeVulgar, makeCommon checkAndAdd cancel, makeProper, makeWhole log5a xp _ 5a st _ 5a 

sam5b makeVulgar, makeCommon checkAndAdd cancel, makeProper, makeWhole log5b xp _ 5b st _ 5b 

sam5c makeVulgar, makeCommon checkAndAdd makeProper, makeWhole,cancel log5c xp _5c st _5c 

Sam5 

(slips) 

sam5d MakeCommon checkAndAdd cancel, makeProper, makeWhole log5d xp _5d st _5d 

Table 8.  Simulated Students with noisy data
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/* simStudents(X,Y) where X is the simulated student and Y is the three-phase structure of student X */ 

% Sam1 - students who knows all the relevant skills - differing orders 

simStudents(sam1a, [[sam1a-[[makeVulgar, makeCommon],[checkAndAdd],[cancel, makeProper, makeWhole]]]]). 

simStudents(sam1b, [[sam1b-[[makeCommon, makeVulgar],[checkAndAdd],[cancel, makeProper, makeWhole]]]]). 

simStudents(sam1c, [[sam1c-[[makeVulgar, makeCommon],[checkAndAdd],[makeProper, makeWhole, cancel]]]]). 

simStudents(sam1d, [[sam1d-[[makeVulgar, makeCommon],[checkAndAdd],[makeWhole, cancel, makeProper]]]]). 

simStudents(sam1e, [[sam1e-[[makeVulgar, makeCommon],[checkAndAdd],[cancel, makeWhole, makeProper]]]]). 

simStudents(sam1f, [[sam1f-[[makeCommon,makeVulgar],[checkAndAdd],[makeProper, makeWhole, cancel]]]]). 

simStudents(sam1g, [[sam1g-[[makeCommon,makeVulgar],[checkAndAdd],[makeWhole, cancel, makeProper]]]]). 

simStudents(sam1h, [[sam1h-[[makeCommon,makeVulgar],[checkAndAdd],[cancel, makeWhole, makeProper]]]]). 

% Sam2 - students with gaps in knowledge  

simStudents(sam2a, [[sam2a-[[makeVulgar],[checkAndAdd],[cancel,makeProper,makeWhole]]]]). 

simStudents(sam2b, [[sam2b-[[makeCommon],[checkAndAdd],[cancel, makeProper, makeWhole]]]]). 

simStudents(sam2c, [[sam2c-[[makeVulgar, makeCommon],[checkAndAdd],[makeProper, makeWhole]]]]). 

simStudents(sam2d, [[sam2d-[[makeVulgar, makeCommon],[checkAndAdd],[cancel, makeWhole]]]]). 

simStudents(sam2e, [[sam2e-[[makeVulgar, makeCommon],[checkAndAdd],[cancel, makeProper]]]]). 

simStudents(sam2f, [[sam2f-[[makeCommon],[checkAndAdd],[]]]]). 

% Sam3 - students with malrules 

simStudents(sam3a,[[sam3a-[[makeVulgar, makeCommon],[checkAndAdd],[malCancel, makeProper, makeWhole]]]]). 

simStudents(sam3b,[[sam3b-[[makeVulgar, makeCommon],[malAdd1],[cancel, makeProper, makeWhole]]]]). 

simStudents(sam3c,[[sam3c-[[makeVulgar],[malAdd2],[cancel, makeProper, makeWhole]]]]). 

simStudents(sam3d,[[sam3d-[[makeVulgar],[malAdd3],[cancel, makeProper, makeWhole]]]]). 

simStudents(sam3e,[[sam3e-[[makeVulgar],[malAdd1],[malCancel, makeProper, makeWhole]]]]). 

% Sam4 - students with lucky guesses  

simStudents(sam4a,[[sam4a-[[makeCommon],[checkAndAdd],[]]]]). 

simStudents(sam4b,[[sam4b-[[makeCommon],[checkAndAdd],[]]]]). 

simStudents(sam4c,[[sam4c-[[makeCommon],[checkAndAdd],[]]]]). 

simStudents(sam4d,[[sam4d-[[ makeVulgar],[checkAndAdd],[cancel,makeProper, makeWhole]]]]). 

simStudents(sam4e,[[sam4e-[[ makeVulgar,makeCommon],[checkAndAdd],[makeProper, makeWhole]]]]). 

% Sam5 - students with careless slips  

simStudents(sam5a,[[sam5a-[[makeVulgar,makeCommon],[checkAndAdd],[cancel,makeProper, makeWhole]]]]). 

simStudents(sam5b,[[sam5b-[[makeVulgar,makeCommon],[checkAndAdd],[cancel,makeProper, makeWhole]]]]).  

simStudents(sam5c,[[sam5c-[[makeVulgar,makeCommon],[checkAndAdd],[cancel,makeProper, makeWhole]]]]).  

simStudents(sam5d,[[sam5d-[[makeCommon],[checkAndAdd],[cancel,makeProper, makeWhole]]]]).  

                                    Figure 36.  Prolog Instantiations of Simulated Students 
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Appendix H.  Set of Fraction Additions Problems 

This appendix contains a database of 68 problems in fraction additions used during the 
evaluation of the XP assessor, as discussed in Sections 6.4 and 6.5.  Some of the questions 
are drawn from the DSA experiment (Section 4.2.1).  
 

 

1 skill problems: 

question(1,[c], q_c_1, fr(1/3,1/3), fr(2/3)). 
question(1,[c], q_c_2, fr(3/5,1/5), fr(4/5)). 
 
2 skill problems: 
question(2,[b,c], q_bc_1, fr(1/2,1/5), fr(7/10)). 
question(2,[b,c], q_bc_2, fr(1/3,1/5), fr(8/15)). 
question(2,[b,c], q_bc_3, fr(5/8,1/6), fr(19/24)). 
question(2,[c,d], q_cd_1, fr(4/9,2/9), fr(2/3)). 
question(2,[c,d], q_cd_2, fr(12/64,4/64), fr(1/4)). 
question(2,[c,d], q_cd_3, fr(9/24,3/24), fr(1/2)). 
question(2,[c,d], q_cd_4, fr(9/16,3/16), fr(3/4)). 
question(2,[c,d], q_cd_5, fr(1/6,1/6), fr(1/3)). 
question(2,[c,d], q_cd_6, fr(3/8,1/8), fr(1/2)). 
question(2,[c,e], q_ce_1, fr(5/7,6/7), fr(1:4/7)). 
question(2,[c,e], q_ce_2, fr(4/7,8/7), fr(1:5/7)). 
question(2,[c,e], q_ce_3, fr(8/5,6/5), fr(2:4/5)). 
question(2,[c,e], q_ce_4, fr(2/3,2/3), fr(1:1/3)). 
question(2,[c,e], q_ce_5, fr(5/6,2/6), fr(1:1/6)). 
question(2,[c,e], q_ce_6, fr(7/5,2/5), fr(1:4/5)). 
 
3 skill problems: 
question(3,[a,c,e], q_ace_1, fr(1:1/5,2/5), fr(1:3/5)). 
question(3,[a,c,e], q_ace_2, fr(2:3/7,2/7), fr(2:5/7)). 
question(3,[a,c,e], q_ace_3, fr(1:1/5,3/5), fr(1:4/5)). 
question(3,[b,c,d], q_bcd_1, fr(1/2,1/4), fr(3/4)). 
question(3,[b,c,d], q_bcd_2, fr(5/6,1/8), fr(23/24)). 
question(3,[b,c,d], q_bcd_3, fr(1/2,1/6), fr(2/3)). 
question(3,[b,c,d], q_bcd_4, fr(1/12,1/6), fr(1/4)). 
question(3,[b,c,d], q_bcd_5, fr(2/15,1/5), fr(1/3)). 
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question(3,[b,c,e], q_bce_1, fr(2/3,3/5), fr(1:4/15)). 
question(3,[b,c,e], q_bce_2, fr(1/2,7/3), fr(2:5/6)). 
question(3,[b,c,e], q_bce_3, fr(5/2,8/5), fr(4:1/10)). 
question(3,[b,c,e], q_bce_4, fr(4/5,3/4), fr(1:11/20)). 
question(3,[b,c,e], q_bce_5, fr(5/6,1/3), fr(1:1/6)). 
question(3,[b,c,e], q_bce_6, fr(6/7,3/8), fr(1:13/56)). 
question(3,[b,c,e], q_bce_7, fr(6/7,5/8), fr(1:27/56)). 
question(3,[b,c,e], q_bce_8, fr(5/8,4/5), fr(1:17/40)). 
question(3,[b,c,e], q_bce_9, fr(5/8,5/6), fr(1:11/24)). 
question(3,[b,c,e], q_bce_10, fr(3/8,5/6), fr(1:5/24)). 
question(3,[b,c,e], q_bce_11, fr(8/9,3/5), fr(1:22/45)). 
question(3,[c,d,e], q_cde_1, fr(5/8,9/8), fr(1:3/4)). 
question(3,[c,d,e], q_cde_2, fr(8/9,4/9), fr(1:1/3)). 
question(3,[c,d,e], q_cde_3, fr(5/4,5/4), fr(2:1/2)). 
question(3,[c,d,f], q_cdf_1, fr(5/7,2/7), fr(1)). 
question(3,[c,d,f], q_cdf_2, fr(4/5,1/5), fr(1)). 
question(3,[c,d,f], q_cdf_3, fr(1/2,1/2), fr(1)). 
question(3,[c,d,f], q_cdf_4, fr(4/5,1/5), fr(1)). 
question(3,[c,d,f], q_cdf_5, fr(1/2,1/2), fr(1)). 
 
4 skill problems: 
question(4,[a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), fr(3:4/15)). 
question(4,[a,b,c,e], q_abce_2, fr(2:1/2,7/3), fr(4:5/6)). 
question(4,[a,b,c,e], q_abce_3, fr(1/4,2:1/8), fr(2:3/8)). 
question(4,[a,b,c,e], q_abce_4, fr(1:3/8,1/2), fr(1:7/8)). 
question(4,[a,b,c,e], q_abce_5, fr(1/5,1:5/7), fr(1:32/35)). 
question(4,[a,c,e,f], q_acef_1, fr(1:1/3,2/3), fr(2)). 
question(4,[a,c,e,f], q_acef_2, fr(1:1/5,4/5), fr(2)). 
question(4,[c,d,e,f], q_cdef_1, fr(1/3,5/3), fr(2)). 
question(4,[c,d,e,f], q_cdef_2, fr(3/2,5/2), fr(4)). 
question(4,[b,c,d,e], q_bcde_1, fr(3/8,3/4), fr(1:1/8)). 
question(4,[b,c,d,e], q_bcde_2, fr(2/3,5/6), fr(1:1/2)). 
question(4,[b,c,d,e], q_bcde_3, fr(1/8,7/4), fr(1:7/8)). 
question(4,[b,c,d,e], q_bcde_4, fr(1/2,7/6), fr(1:2/3)). 
question(4,[b,c,d,e], q_bcde_5, fr(5/3,7/6), fr(2:5/6)). 
question(4,[b,c,d,e], q_bcde_6, fr(4/3,7/6), fr(2:1/2)). 
question(4,[b,c,d,e], q_bcde_7, fr(3/8,5/6), fr(1:5/24)). 
question(4,[b,c,d,e], q_bcde_8, fr(4/5,3/10), fr(1:1/10)). 
question(4,[b,c,d,e], q_bcde_9, fr(7/8,3/4), fr(1:5/8)). 
question(4,[b,c,d,f], q_bcdf_1, fr(3/6,2/4), fr(1)). 
question(4,[b,c,d,f], q_bcdf_2, fr(5/10,4/8), fr(1)). 
question(4,[a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), fr(2:1/2)). 
question(4,[a,c,d,e], q_acde_2, fr(1:1/6,2:1/6), fr(3:1/3)). 
 
 
5 skill problems: 
question(5,[a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), fr(2:1/6)). 
question(5,[a,b,c,d,e], q_abcde_2, fr(1/4,2:1/12), fr(2:1/3)). 
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Appendix I.  Generated Logfiles 

This appendix contains a selected list of logfiles, generated for different student types.  This was 
described in Section 6.4.  The logfiles use the following legend to represent the different skills 
and malrules:  
 
a makeVulgar 
b makeCommon 
c checkAndAdd 
d cancel 
e makeProper 
f makeWhole 
mg malCancel 
mh malAdd1 
mi malAdd2 
mj malAdd3 
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Logfile:  log1a 
 
simStudents([[sam1a-[[makeVulgar,makeCommon],[checkAndAdd],[cancel,makeProper,makeWhole]]]]). 
 
sam(sam1a,[c],q_c_1,fr(1/3,1/3),fr(2/3),ok). 
sam(sam1a,[c],q_c_2,fr(3/5,1/5),fr(4/5),ok). 
sam(sam1a,[b,c],q_bc_1,fr(1/2,1/5),fr(7/10),ok). 
sam(sam1a,[b,c],q_bc_2,fr(1/3,1/5),fr(8/15),ok). 
sam(sam1a,[b,c,d],q_bc_3,fr(5/8,1/6),fr(19/24),ok). 
sam(sam1a,[c,d],q_cd_1,fr(4/9,2/9),fr(2/3),ok). 
sam(sam1a,[c,d],q_cd_2,fr(12/64,4/64),fr(1/4),ok). 
sam(sam1a,[c,d],q_cd_3,fr(9/24,3/24),fr(1/2),ok). 
sam(sam1a,[c,d],q_cd_4,fr(9/16,3/16),fr(3/4),ok). 
sam(sam1a,[c,d],q_cd_5,fr(1/6,1/6),fr(1/3),ok). 
sam(sam1a,[c,d],q_cd_6,fr(3/8,1/8),fr(1/2),ok). 
sam(sam1a,[c,e],q_ce_1,fr(5/7,6/7),fr(1:4/7),ok). 
sam(sam1a,[c,e],q_ce_2,fr(4/7,8/7),fr(1:5/7),ok). 
sam(sam1a,[c,e],q_ce_3,fr(8/5,6/5),fr(2:4/5),ok). 
sam(sam1a,[c,e],q_ce_4,fr(2/3,2/3),fr(1:1/3),ok). 
sam(sam1a,[c,e],q_ce_5,fr(5/6,2/6),fr(1:1/6),ok). 
sam(sam1a,[c,e],q_ce_6,fr(7/5,2/5),fr(1:4/5),ok). 
sam(sam1a,[a,c,e],q_ace_1,fr(1:1/5,2/5),fr(1:3/5),ok). 
sam(sam1a,[a,c,e],q_ace_2,fr(2:3/7,2/7),fr(2:5/7),ok). 
sam(sam1a,[a,c,e],q_ace_3,fr(1:1/5,3/5),fr(1:4/5),ok). 
sam(sam1a,[b,c,d],q_bcd_1,fr(1/2,1/4),fr(3/4),ok). 
sam(sam1a,[b,c,d],q_bcd_2,fr(5/6,1/8),fr(23/24),ok). 
sam(sam1a,[b,c,d],q_bcd_3,fr(1/2,1/6),fr(2/3),ok). 
sam(sam1a,[b,c,d],q_bcd_4,fr(1/12,1/6),fr(1/4),ok). 
sam(sam1a,[b,c,d],q_bcd_5,fr(2/15,1/5),fr(1/3),ok). 
sam(sam1a,[b,c,e],q_bce_1,fr(2/3,3/5),fr(1:4/15),ok). 
sam(sam1a,[b,c,e],q_bce_2,fr(1/2,7/3),fr(2:5/6),ok). 
sam(sam1a,[b,c,e],q_bce_3,fr(5/2,8/5),fr(4:1/10),ok). 
sam(sam1a,[b,c,e],q_bce_4,fr(4/5,3/4),fr(1:11/20),ok). 
sam(sam1a,[b,c,d,e],q_bce_5,fr(5/6,1/3),fr(1:1/6),ok). 
sam(sam1a,[b,c,e],q_bce_6,fr(6/7,3/8),fr(1:13/56),ok). 
sam(sam1a,[b,c,e],q_bce_7,fr(6/7,5/8),fr(1:27/56),ok). 
sam(sam1a,[b,c,e],q_bce_8,fr(5/8,4/5),fr(1:17/40),ok). 
sam(sam1a,[b,c,d,e],q_bce_9,fr(5/8,5/6),fr(1:11/24),ok). 
sam(sam1a,[b,c,d,e],q_bce_10,fr(3/8,5/6),fr(1:5/24),ok). 
sam(sam1a,[b,c,e],q_bce_11,fr(8/9,3/5),fr(1:22/45),ok). 
sam(sam1a,[c,d,e],q_cde_1,fr(5/8,9/8),fr(1:3/4),ok). 
sam(sam1a,[c,d,e],q_cde_2,fr(8/9,4/9),fr(1:1/3),ok). 
sam(sam1a,[c,d,e],q_cde_3,fr(5/4,5/4),fr(2:1/2),ok). 
sam(sam1a,[c,d,f],q_cdf_1,fr(5/7,2/7),fr(1),ok). 
sam(sam1a,[c,d,f],q_cdf_2,fr(4/5,1/5),fr(1),ok). 
sam(sam1a,[c,d,f],q_cdf_3,fr(1/2,1/2),fr(1),ok). 
sam(sam1a,[c,d,f],q_cdf_4,fr(4/5,1/5),fr(1),ok). 
sam(sam1a,[c,d,f],q_cdf_5,fr(1/2,1/2),fr(1),ok). 
sam(sam1a,[a,b,c,e],q_abce_1,fr(1:2/3,1:3/5),fr(3:4/15),ok). 
sam(sam1a,[a,b,c,e],q_abce_2,fr(2:1/2,7/3),fr(4:5/6),ok). 
sam(sam1a,[a,b,c,d,e],q_abce_3,fr(1/4,2:1/8),fr(2:3/8),ok). 
sam(sam1a,[a,b,c,d,e],q_abce_4,fr(1:3/8,1/2),fr(1:7/8),ok). 
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sam(sam1a,[a,b,c,e],q_abce_5,fr(1/5,1:5/7),fr(1:32/35),ok). 
sam(sam1a,[a,c,d,e,f],q_acef_1,fr(1:1/3,2/3),fr(2),ok). 
sam(sam1a,[a,c,d,e,f],q_acef_2,fr(1:1/5,4/5),fr(2),ok). 
sam(sam1a,[c,d,e,f],q_cdef_1,fr(1/3,5/3),fr(2),ok). 
sam(sam1a,[c,d,e,f],q_cdef_2,fr(3/2,5/2),fr(4),ok). 
sam(sam1a,[b,c,d,e],q_bcde_1,fr(3/8,3/4),fr(1:1/8),ok). 
sam(sam1a,[b,c,d,e],q_bcde_2,fr(2/3,5/6),fr(1:1/2),ok). 
sam(sam1a,[b,c,d,e],q_bcde_3,fr(1/8,7/4),fr(1:7/8),ok). 
sam(sam1a,[b,c,d,e],q_bcde_4,fr(1/2,7/6),fr(1:2/3),ok). 
sam(sam1a,[b,c,d,e],q_bcde_5,fr(5/3,7/6),fr(2:5/6),ok). 
sam(sam1a,[b,c,d,e],q_bcde_6,fr(4/3,7/6),fr(2:1/2),ok). 
sam(sam1a,[b,c,d,e],q_bcde_7,fr(3/8,5/6),fr(1:5/24),ok). 
sam(sam1a,[b,c,d,e],q_bcde_8,fr(4/5,3/10),fr(1:1/10),ok). 
sam(sam1a,[b,c,d,e],q_bcde_9,fr(7/8,3/4),fr(1:5/8),ok). 
sam(sam1a,[b,c,d,f],q_bcdf_1,fr(3/6,2/4),fr(1),ok). 
sam(sam1a,[b,c,d,f],q_bcdf_2,fr(5/10,4/8),fr(1),ok). 
sam(sam1a,[a,c,d,e],q_acde_1,fr(1:1/8,1:3/8),fr(2:1/2),ok). 
sam(sam1a,[a,c,d,e],q_acde_2,fr(1:1/6,2:1/6),fr(3:1/3),ok). 
sam(sam1a,[a,b,c,d,e],q_abcde_1,fr(1/3,1:5/6),fr(2:1/6),ok). 
sam(sam1a,[a,b,c,d,e],q_abcde_2,fr(1/4,2:1/12),fr(2:1/3),ok). 
 
 

Logfile:  log2e 
 
simStudents([[sam2e-[[makeVulgar,makeCommon],[checkAndAdd],[cancel,makeProper]]]]). 
 
sam(sam2e,[c],q_c_1,fr(1/3,1/3),fr(2/3),ok). 
sam(sam2e,[c],q_c_2,fr(3/5,1/5),fr(4/5),ok). 
sam(sam2e,[b,c],q_bc_1,fr(1/2,1/5),fr(7/10),ok). 
sam(sam2e,[b,c],q_bc_2,fr(1/3,1/5),fr(8/15),ok). 
sam(sam2e,[b,c,d],q_bc_3,fr(5/8,1/6),fr(19/24),ok). 
sam(sam2e,[c,d],q_cd_1,fr(4/9,2/9),fr(2/3),ok). 
sam(sam2e,[c,d],q_cd_2,fr(12/64,4/64),fr(1/4),ok). 
sam(sam2e,[c,d],q_cd_3,fr(9/24,3/24),fr(1/2),ok). 
sam(sam2e,[c,d],q_cd_4,fr(9/16,3/16),fr(3/4),ok). 
sam(sam2e,[c,d],q_cd_5,fr(1/6,1/6),fr(1/3),ok). 
sam(sam2e,[c,d],q_cd_6,fr(3/8,1/8),fr(1/2),ok). 
sam(sam2e,[c,e],q_ce_1,fr(5/7,6/7),fr(1:4/7),ok). 
sam(sam2e,[c,e],q_ce_2,fr(4/7,8/7),fr(1:5/7),ok). 
sam(sam2e,[c,e],q_ce_3,fr(8/5,6/5),fr(2:4/5),ok). 
sam(sam2e,[c,e],q_ce_4,fr(2/3,2/3),fr(1:1/3),ok). 
sam(sam2e,[c,e],q_ce_5,fr(5/6,2/6),fr(1:1/6),ok). 
sam(sam2e,[c,e],q_ce_6,fr(7/5,2/5),fr(1:4/5),ok). 
sam(sam2e,[a,c,e],q_ace_1,fr(1:1/5,2/5),fr(1:3/5),ok). 
sam(sam2e,[a,c,e],q_ace_2,fr(2:3/7,2/7),fr(2:5/7),ok). 
sam(sam2e,[a,c,e],q_ace_3,fr(1:1/5,3/5),fr(1:4/5),ok). 
sam(sam2e,[b,c,d],q_bcd_1,fr(1/2,1/4),fr(3/4),ok). 
sam(sam2e,[b,c,d],q_bcd_2,fr(5/6,1/8),fr(23/24),ok). 
sam(sam2e,[b,c,d],q_bcd_3,fr(1/2,1/6),fr(2/3),ok). 
sam(sam2e,[b,c,d],q_bcd_4,fr(1/12,1/6),fr(1/4),ok). 
sam(sam2e,[b,c,d],q_bcd_5,fr(2/15,1/5),fr(1/3),ok). 
sam(sam2e,[b,c,e],q_bce_1,fr(2/3,3/5),fr(1:4/15),ok). 
sam(sam2e,[b,c,e],q_bce_2,fr(1/2,7/3),fr(2:5/6),ok). 
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sam(sam2e,[b,c,e],q_bce_3,fr(5/2,8/5),fr(4:1/10),ok). 
sam(sam2e,[b,c,e],q_bce_4,fr(4/5,3/4),fr(1:11/20),ok). 
sam(sam2e,[b,c,d,e],q_bce_5,fr(5/6,1/3),fr(1:1/6),ok). 
sam(sam2e,[b,c,e],q_bce_6,fr(6/7,3/8),fr(1:13/56),ok). 
sam(sam2e,[b,c,e],q_bce_7,fr(6/7,5/8),fr(1:27/56),ok). 
sam(sam2e,[b,c,e],q_bce_8,fr(5/8,4/5),fr(1:17/40),ok). 
sam(sam2e,[b,c,d,e],q_bce_9,fr(5/8,5/6),fr(1:11/24),ok). 
sam(sam2e,[b,c,d,e],q_bce_10,fr(3/8,5/6),fr(1:5/24),ok). 
sam(sam2e,[b,c,e],q_bce_11,fr(8/9,3/5),fr(1:22/45),ok). 
sam(sam2e,[c,d,e],q_cde_1,fr(5/8,9/8),fr(1:3/4),ok). 
sam(sam2e,[c,d,e],q_cde_2,fr(8/9,4/9),fr(1:1/3),ok). 
sam(sam2e,[c,d,e],q_cde_3,fr(5/4,5/4),fr(2:1/2),ok). 
sam(sam2e,[c,d],q_cdf_1,fr(5/7,2/7),fr(1/1),no). 
sam(sam2e,[c,d],q_cdf_2,fr(4/5,1/5),fr(1/1),no). 
sam(sam2e,[c,d],q_cdf_3,fr(1/2,1/2),fr(1/1),no). 
sam(sam2e,[c,d],q_cdf_4,fr(4/5,1/5),fr(1/1),no). 
sam(sam2e,[c,d],q_cdf_5,fr(1/2,1/2),fr(1/1),no). 
sam(sam2e,[a,b,c,e],q_abce_1,fr(1:2/3,1:3/5),fr(3:4/15),ok). 
sam(sam2e,[a,b,c,e],q_abce_2,fr(2:1/2,7/3),fr(4:5/6),ok). 
sam(sam2e,[a,b,c,d,e],q_abce_3,fr(1/4,2:1/8),fr(2:3/8),ok). 
sam(sam2e,[a,b,c,d,e],q_abce_4,fr(1:3/8,1/2),fr(1:7/8),ok). 
sam(sam2e,[a,b,c,e],q_abce_5,fr(1/5,1:5/7),fr(1:32/35),ok). 
sam(sam2e,[a,c,d,e],q_acef_1,fr(1:1/3,2/3),fr(2:0/1),no). 
sam(sam2e,[a,c,d,e],q_acef_2,fr(1:1/5,4/5),fr(2:0/1),no). 
sam(sam2e,[c,d,e],q_cdef_1,fr(1/3,5/3),fr(2:0/1),no). 
sam(sam2e,[c,d,e],q_cdef_2,fr(3/2,5/2),fr(4:0/1),no). 
sam(sam2e,[b,c,d,e],q_bcde_1,fr(3/8,3/4),fr(1:1/8),ok). 
sam(sam2e,[b,c,d,e],q_bcde_2,fr(2/3,5/6),fr(1:1/2),ok). 
sam(sam2e,[b,c,d,e],q_bcde_3,fr(1/8,7/4),fr(1:7/8),ok). 
sam(sam2e,[b,c,d,e],q_bcde_4,fr(1/2,7/6),fr(1:2/3),ok). 
sam(sam2e,[b,c,d,e],q_bcde_5,fr(5/3,7/6),fr(2:5/6),ok). 
sam(sam2e,[b,c,d,e],q_bcde_6,fr(4/3,7/6),fr(2:1/2),ok). 
sam(sam2e,[b,c,d,e],q_bcde_7,fr(3/8,5/6),fr(1:5/24),ok). 
sam(sam2e,[b,c,d,e],q_bcde_8,fr(4/5,3/10),fr(1:1/10),ok). 
sam(sam2e,[b,c,d,e],q_bcde_9,fr(7/8,3/4),fr(1:5/8),ok). 
sam(sam2e,[b,c,d],q_bcdf_1,fr(3/6,2/4),fr(1/1),no). 
sam(sam2e,[b,c,d],q_bcdf_2,fr(5/10,4/8),fr(1/1),no). 
sam(sam2e,[a,c,d,e],q_acde_1,fr(1:1/8,1:3/8),fr(2:1/2),ok). 
sam(sam2e,[a,c,d,e],q_acde_2,fr(1:1/6,2:1/6),fr(3:1/3),ok). 
sam(sam2e,[a,b,c,d,e],q_abcde_1,fr(1/3,1:5/6),fr(2:1/6),ok). 
sam(sam2e,[a,b,c,d,e],q_abcde_2,fr(1/4,2:1/12),fr(2:1/3),ok). 
 

Logfile:  log2f 
 
simStudents([[sam2f-[[makeCommon],[checkAndAdd],[]]]]). 
 
sam(sam2f,[c],q_c_1,fr(1/3,1/3),fr(2/3),ok). 
sam(sam2f,[c],q_c_2,fr(3/5,1/5),fr(4/5),ok). 
sam(sam2f,[b,c],q_bc_1,fr(1/2,1/5),fr(7/10),ok). 
sam(sam2f,[b,c],q_bc_2,fr(1/3,1/5),fr(8/15),ok). 
sam(sam2f,[b,c],q_bc_3,fr(5/8,1/6),fr(38/48),no). 
sam(sam2f,[c],q_cd_1,fr(4/9,2/9),fr(6/9),no). 
sam(sam2f,[c],q_cd_2,fr(12/64,4/64),fr(16/64),no). 
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sam(sam2f,[c],q_cd_3,fr(9/24,3/24),fr(12/24),no). 
sam(sam2f,[c],q_cd_4,fr(9/16,3/16),fr(12/16),no). 
sam(sam2f,[c],q_cd_5,fr(1/6,1/6),fr(2/6),no). 
sam(sam2f,[c],q_cd_6,fr(3/8,1/8),fr(4/8),no). 
sam(sam2f,[c],q_ce_1,fr(5/7,6/7),fr(11/7),no). 
sam(sam2f,[c],q_ce_2,fr(4/7,8/7),fr(12/7),no). 
sam(sam2f,[c],q_ce_3,fr(8/5,6/5),fr(14/5),no). 
sam(sam2f,[c],q_ce_4,fr(2/3,2/3),fr(4/3),no). 
sam(sam2f,[c],q_ce_5,fr(5/6,2/6),fr(7/6),no). 
sam(sam2f,[c],q_ce_6,fr(7/5,2/5),fr(9/5),no). 
sam(sam2f,[c],q_ace_1,fr(1:1/5,2/5),fr(1:3/5),ok). 
sam(sam2f,[c],q_ace_2,fr(2:3/7,2/7),fr(2:5/7),ok). 
sam(sam2f,[c],q_ace_3,fr(1:1/5,3/5),fr(1:4/5),ok). 
sam(sam2f,[b,c],q_bcd_1,fr(1/2,1/4),fr(6/8),no). 
sam(sam2f,[b,c],q_bcd_2,fr(5/6,1/8),fr(46/48),no). 
sam(sam2f,[b,c],q_bcd_3,fr(1/2,1/6),fr(8/12),no). 
sam(sam2f,[b,c],q_bcd_4,fr(1/12,1/6),fr(18/72),no). 
sam(sam2f,[b,c],q_bcd_5,fr(2/15,1/5),fr(25/75),no). 
sam(sam2f,[b,c],q_bce_1,fr(2/3,3/5),fr(19/15),no). 
sam(sam2f,[b,c],q_bce_2,fr(1/2,7/3),fr(17/6),no). 
sam(sam2f,[b,c],q_bce_3,fr(5/2,8/5),fr(41/10),no). 
sam(sam2f,[b,c],q_bce_4,fr(4/5,3/4),fr(31/20),no). 
sam(sam2f,[b,c],q_bce_5,fr(5/6,1/3),fr(21/18),no). 
sam(sam2f,[b,c],q_bce_6,fr(6/7,3/8),fr(69/56),no). 
sam(sam2f,[b,c],q_bce_7,fr(6/7,5/8),fr(83/56),no). 
sam(sam2f,[b,c],q_bce_8,fr(5/8,4/5),fr(57/40),no). 
sam(sam2f,[b,c],q_bce_9,fr(5/8,5/6),fr(70/48),no). 
sam(sam2f,[b,c],q_bce_10,fr(3/8,5/6),fr(58/48),no). 
sam(sam2f,[b,c],q_bce_11,fr(8/9,3/5),fr(67/45),no). 
sam(sam2f,[c],q_cde_1,fr(5/8,9/8),fr(14/8),no). 
sam(sam2f,[c],q_cde_2,fr(8/9,4/9),fr(12/9),no). 
sam(sam2f,[c],q_cde_3,fr(5/4,5/4),fr(10/4),no). 
sam(sam2f,[c],q_cdf_1,fr(5/7,2/7),fr(7/7),no). 
sam(sam2f,[c],q_cdf_2,fr(4/5,1/5),fr(5/5),no). 
sam(sam2f,[c],q_cdf_3,fr(1/2,1/2),fr(2/2),no). 
sam(sam2f,[c],q_cdf_4,fr(4/5,1/5),fr(5/5),no). 
sam(sam2f,[c],q_cdf_5,fr(1/2,1/2),fr(2/2),no). 
sam(sam2f,[b,c],q_abce_1,fr(1:2/3,1:3/5),fr(2:19/15),no). 
sam(sam2f,[b,c],q_abce_2,fr(2:1/2,7/3),fr(2:17/6),no). 
sam(sam2f,[b,c],q_abce_3,fr(1/4,2:1/8),fr(2:12/32),no). 
sam(sam2f,[b,c],q_abce_4,fr(1:3/8,1/2),fr(1:14/16),no). 
sam(sam2f,[b,c],q_abce_5,fr(1/5,1:5/7),fr(1:32/35),ok). 
sam(sam2f,[c],q_acef_1,fr(1:1/3,2/3),fr(1:3/3),no). 
sam(sam2f,[c],q_acef_2,fr(1:1/5,4/5),fr(1:5/5),no). 
sam(sam2f,[c],q_cdef_1,fr(1/3,5/3),fr(6/3),no). 
sam(sam2f,[c],q_cdef_2,fr(3/2,5/2),fr(8/2),no). 
sam(sam2f,[b,c],q_bcde_1,fr(3/8,3/4),fr(36/32),no). 
sam(sam2f,[b,c],q_bcde_2,fr(2/3,5/6),fr(27/18),no). 
sam(sam2f,[b,c],q_bcde_3,fr(1/8,7/4),fr(60/32),no). 
sam(sam2f,[b,c],q_bcde_4,fr(1/2,7/6),fr(20/12),no). 
sam(sam2f,[b,c],q_bcde_5,fr(5/3,7/6),fr(51/18),no). 
sam(sam2f,[b,c],q_bcde_6,fr(4/3,7/6),fr(45/18),no). 
sam(sam2f,[b,c],q_bcde_7,fr(3/8,5/6),fr(58/48),no). 
sam(sam2f,[b,c],q_bcde_8,fr(4/5,3/10),fr(55/50),no). 
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sam(sam2f,[b,c],q_bcde_9,fr(7/8,3/4),fr(52/32),no). 
sam(sam2f,[b,c],q_bcdf_1,fr(3/6,2/4),fr(24/24),no). 
sam(sam2f,[b,c],q_bcdf_2,fr(5/10,4/8),fr(80/80),no). 
sam(sam2f,[c],q_acde_1,fr(1:1/8,1:3/8),fr(2:4/8),no). 
sam(sam2f,[c],q_acde_2,fr(1:1/6,2:1/6),fr(3:2/6),no). 
sam(sam2f,[b,c],q_abcde_1,fr(1/3,1:5/6),fr(1:21/18),no). 
sam(sam2f,[b,c],q_abcde_2,fr(1/4,2:1/12),fr(2:16/48),no). 
 

Logfile:  log3a 
 
simStudents([[sam3a-[[makeVulgar,makeCommon],[checkAndAdd],[malCancel,makeProper,makeWhole]]]]). 
 
sam(sam3a,[c],q_c_1,fr(1/3,1/3),fr(2/3),ok). 
sam(sam3a,[c],q_c_2,fr(3/5,1/5),fr(4/5),ok). 
sam(sam3a,[b,c],q_bc_1,fr(1/2,1/5),fr(7/10),ok). 
sam(sam3a,[b,c],q_bc_2,fr(1/3,1/5),fr(8/15),ok). 
sam(sam3a,[b,c],q_bc_3,fr(5/8,1/6),fr(38/48),no). 
sam(sam3a,[c],q_cd_1,fr(4/9,2/9),fr(6/9),no). 
sam(sam3a,[c,mg],q_cd_2,fr(12/64,4/64),fr(1/4),ok). 
sam(sam3a,[c,mg],q_cd_3,fr(9/24,3/24),fr(1/4),no). 
sam(sam3a,[c,mg],q_cd_4,fr(9/16,3/16),fr(2/6),no). 
sam(sam3a,[c],q_cd_5,fr(1/6,1/6),fr(2/6),no). 
sam(sam3a,[c],q_cd_6,fr(3/8,1/8),fr(4/8),no). 
sam(sam3a,[c,e],q_ce_1,fr(5/7,6/7),fr(1:4/7),ok). 
sam(sam3a,[c,e],q_ce_2,fr(4/7,8/7),fr(1:5/7),ok). 
sam(sam3a,[c,e],q_ce_3,fr(8/5,6/5),fr(2:4/5),ok). 
sam(sam3a,[c,e],q_ce_4,fr(2/3,2/3),fr(1:1/3),ok). 
sam(sam3a,[c,e],q_ce_5,fr(5/6,2/6),fr(1:1/6),ok). 
sam(sam3a,[c,e],q_ce_6,fr(7/5,2/5),fr(1:4/5),ok). 
sam(sam3a,[a,c,e],q_ace_1,fr(1:1/5,2/5),fr(1:3/5),ok). 
sam(sam3a,[a,c,e],q_ace_2,fr(2:3/7,2/7),fr(2:5/7),ok). 
sam(sam3a,[a,c,e],q_ace_3,fr(1:1/5,3/5),fr(1:4/5),ok). 
sam(sam3a,[b,c],q_bcd_1,fr(1/2,1/4),fr(6/8),no). 
sam(sam3a,[b,c],q_bcd_2,fr(5/6,1/8),fr(46/48),no). 
sam(sam3a,[b,c],q_bcd_3,fr(1/2,1/6),fr(8/12),no). 
sam(sam3a,[b,c],q_bcd_4,fr(1/12,1/6),fr(18/72),no). 
sam(sam3a,[b,c],q_bcd_5,fr(2/15,1/5),fr(25/75),no). 
sam(sam3a,[b,c,e],q_bce_1,fr(2/3,3/5),fr(1:4/15),ok). 
sam(sam3a,[b,c,e],q_bce_2,fr(1/2,7/3),fr(2:5/6),ok). 
sam(sam3a,[b,c,e],q_bce_3,fr(5/2,8/5),fr(4:1/10),ok). 
sam(sam3a,[b,c,e],q_bce_4,fr(4/5,3/4),fr(1:11/20),ok). 
sam(sam3a,[b,c,e],q_bce_5,fr(5/6,1/3),fr(1:3/18),no). 
sam(sam3a,[b,c,e],q_bce_6,fr(6/7,3/8),fr(1:13/56),ok). 
sam(sam3a,[b,c,e],q_bce_7,fr(6/7,5/8),fr(1:27/56),ok). 
sam(sam3a,[b,c,e],q_bce_8,fr(5/8,4/5),fr(1:17/40),ok). 
sam(sam3a,[b,c,e],q_bce_9,fr(5/8,5/6),fr(1:22/48),no). 
sam(sam3a,[b,c,e],q_bce_10,fr(3/8,5/6),fr(1:10/48),no). 
sam(sam3a,[b,c,e],q_bce_11,fr(8/9,3/5),fr(1:22/45),ok). 
sam(sam3a,[c,e],q_cde_1,fr(5/8,9/8),fr(1:6/8),no). 
sam(sam3a,[c,e],q_cde_2,fr(8/9,4/9),fr(1:3/9),no). 
sam(sam3a,[c,e],q_cde_3,fr(5/4,5/4),fr(2:2/4),no). 
sam(sam3a,[c],q_cdf_1,fr(5/7,2/7),fr(7/7),no). 
sam(sam3a,[c],q_cdf_2,fr(4/5,1/5),fr(5/5),no). 
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sam(sam3a,[c],q_cdf_3,fr(1/2,1/2),fr(2/2),no). 
sam(sam3a,[c],q_cdf_4,fr(4/5,1/5),fr(5/5),no). 
sam(sam3a,[c],q_cdf_5,fr(1/2,1/2),fr(2/2),no). 
sam(sam3a,[a,b,c,e],q_abce_1,fr(1:2/3,1:3/5),fr(3:4/15),ok). 
sam(sam3a,[a,b,c,e],q_abce_2,fr(2:1/2,7/3),fr(4:5/6),ok). 
sam(sam3a,[a,b,c,e],q_abce_3,fr(1/4,2:1/8),fr(2:12/32),no). 
sam(sam3a,[a,b,c,e],q_abce_4,fr(1:3/8,1/2),fr(1:14/16),no). 
sam(sam3a,[a,b,c,e],q_abce_5,fr(1/5,1:5/7),fr(1:32/35),ok). 
sam(sam3a,[a,c,e],q_acef_1,fr(1:1/3,2/3),fr(2:0/3),no). 
sam(sam3a,[a,c,e],q_acef_2,fr(1:1/5,4/5),fr(2:0/5),no). 
sam(sam3a,[c,e],q_cdef_1,fr(1/3,5/3),fr(2:0/3),no). 
sam(sam3a,[c,e],q_cdef_2,fr(3/2,5/2),fr(4:0/2),no). 
sam(sam3a,[b,c,e],q_bcde_1,fr(3/8,3/4),fr(1:4/32),no). 
sam(sam3a,[b,c,e],q_bcde_2,fr(2/3,5/6),fr(1:9/18),no). 
sam(sam3a,[b,c,e],q_bcde_3,fr(1/8,7/4),fr(1:28/32),no). 
sam(sam3a,[b,c,e],q_bcde_4,fr(1/2,7/6),fr(1:8/12),no). 
sam(sam3a,[b,c,e],q_bcde_5,fr(5/3,7/6),fr(2:15/18),no). 
sam(sam3a,[b,c,e],q_bcde_6,fr(4/3,7/6),fr(2:9/18),no). 
sam(sam3a,[b,c,e],q_bcde_7,fr(3/8,5/6),fr(1:10/48),no). 
sam(sam3a,[b,c,e],q_bcde_8,fr(4/5,3/10),fr(1:5/50),no). 
sam(sam3a,[b,c,e],q_bcde_9,fr(7/8,3/4),fr(1:20/32),no). 
sam(sam3a,[b,c],q_bcdf_1,fr(3/6,2/4),fr(24/24),no). 
sam(sam3a,[b,c],q_bcdf_2,fr(5/10,4/8),fr(80/80),no). 
sam(sam3a,[a,c,e],q_acde_1,fr(1:1/8,1:3/8),fr(2:4/8),no). 
sam(sam3a,[a,c,e],q_acde_2,fr(1:1/6,2:1/6),fr(3:2/6),no). 
sam(sam3a,[a,b,c,e],q_abcde_1,fr(1/3,1:5/6),fr(2:3/18),no). 
sam(sam3a,[a,b,c,e],q_abcde_2,fr(1/4,2:1/12),fr(2:16/48),no). 
 
 

Logfile:  log4a 
 
simStudents([[sam4a-[[makeCommon],[checkAndAdd],[]]]]). 
 
sam(sam4a,[c],q_c_1,fr(1/3,1/3),fr(2/3),ok). 
sam(sam4a,[c],q_c_2,fr(3/5,1/5),fr(4/5),ok). 
sam(sam4a,[b,c],q_bc_1,fr(1/2,1/5),fr(7/10),ok). 
sam(sam4a,[b,c],q_bc_2,fr(1/3,1/5),fr(8/15),ok). 
sam(sam4a,[b,c],q_bc_3,fr(5/8,1/6),fr(38/48),no). 
sam(sam4a,[c],q_cd_1,fr(4/9,2/9),fr(2/3),ok).  %tweaked 
sam(sam4a,[c],q_cd_2,fr(12/64,4/64),fr(1/4),ok).  %tweaked 
sam(sam4a,[c],q_cd_3,fr(9/24,3/24),fr(12/24),no). 
sam(sam4a,[c],q_cd_4,fr(9/16,3/16),fr(12/16),no). 
sam(sam4a,[c],q_cd_5,fr(1/6,1/6),fr(2/6),no). 
sam(sam4a,[c],q_cd_6,fr(3/8,1/8),fr(4/8),no). 
sam(sam4a,[c],q_ce_1,fr(5/7,6/7),fr(1:4/7),ok).  %tweaked 
sam(sam4a,[c],q_ce_2,fr(4/7,8/7),fr(1:5/7),ok).  %tweaked 
sam(sam4a,[c],q_ce_3,fr(8/5,6/5),fr(14/5),no). 
sam(sam4a,[c],q_ce_4,fr(2/3,2/3),fr(4/3),no). 
sam(sam4a,[c],q_ce_5,fr(5/6,2/6),fr(7/6),no). 
sam(sam4a,[c],q_ce_6,fr(7/5,2/5),fr(9/5),no). 
sam(sam4a,[c],q_ace_1,fr(1:1/5,2/5),fr(1:3/5),ok). 
sam(sam4a,[c],q_ace_2,fr(2:3/7,2/7),fr(2:5/7),ok). 
sam(sam4a,[c],q_ace_3,fr(1:1/5,3/5),fr(1:4/5),ok). 
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sam(sam4a,[b,c],q_bcd_1,fr(1/2,1/4),fr(3/4),ok).  %tweaked 
sam(sam4a,[b,c],q_bcd_2,fr(5/6,1/8),fr(23/24),ok).  %tweaked 
sam(sam4a,[b,c],q_bcd_3,fr(1/2,1/6),fr(8/12),no). 
sam(sam4a,[b,c],q_bcd_4,fr(1/12,1/6),fr(18/72),no). 
sam(sam4a,[b,c],q_bcd_5,fr(2/15,1/5),fr(25/75),no). 
sam(sam4a,[b,c],q_bce_1,fr(2/3,3/5),fr(1:4/15),ok).  %tweaked 
sam(sam4a,[b,c],q_bce_2,fr(1/2,7/3),fr(2:5/6),ok).  %tweaked 
sam(sam4a,[b,c],q_bce_3,fr(5/2,8/5),fr(41/10),no). 
sam(sam4a,[b,c],q_bce_4,fr(4/5,3/4),fr(31/20),no). 
sam(sam4a,[b,c],q_bce_5,fr(5/6,1/3),fr(21/18),no). 
sam(sam4a,[b,c],q_bce_6,fr(6/7,3/8),fr(69/56),no). 
sam(sam4a,[b,c],q_bce_7,fr(6/7,5/8),fr(83/56),no). 
sam(sam4a,[b,c],q_bce_8,fr(5/8,4/5),fr(57/40),no). 
sam(sam4a,[b,c],q_bce_9,fr(5/8,5/6),fr(70/48),no). 
sam(sam4a,[b,c],q_bce_10,fr(3/8,5/6),fr(58/48),no). 
sam(sam4a,[b,c],q_bce_11,fr(8/9,3/5),fr(67/45),no). 
sam(sam4a,[c],q_cde_1,fr(5/8,9/8),fr(1:3/4),ok).  %tweaked 
sam(sam4a,[c],q_cde_2,fr(8/9,4/9),fr(1:1/3),ok).  %tweaked 
sam(sam4a,[c],q_cde_3,fr(5/4,5/4),fr(10/4),no). 
sam(sam4a,[c],q_cdf_1,fr(5/7,2/7),fr(1),ok).   %tweaked 
sam(sam4a,[c],q_cdf_2,fr(4/5,1/5),fr(1),ok).   %tweaked 
sam(sam4a,[c],q_cdf_3,fr(1/2,1/2),fr(2/2),no). 
sam(sam4a,[c],q_cdf_4,fr(4/5,1/5),fr(5/5),no). 
sam(sam4a,[c],q_cdf_5,fr(1/2,1/2),fr(2/2),no). 
sam(sam4a,[b,c],q_abce_1,fr(1:2/3,1:3/5),fr(3:4/15),ok). %tweaked 
sam(sam4a,[b,c],q_abce_2,fr(2:1/2,7/3),fr(4:5/6),ok).  %tweaked 
sam(sam4a,[b,c],q_abce_3,fr(1/4,2:1/8),fr(2:12/32),no). 
sam(sam4a,[b,c],q_abce_4,fr(1:3/8,1/2),fr(1:14/16),no). 
sam(sam4a,[b,c],q_abce_5,fr(1/5,1:5/7),fr(1:32/35),ok). 
sam(sam4a,[c],q_acef_1,fr(1:1/3,2/3),fr(2),ok).  %tweaked 
sam(sam4a,[c],q_acef_2,fr(1:1/5,4/5),fr(2),ok).  %tweaked 
sam(sam4a,[c],q_cdef_1,fr(1/3,5/3),fr(2),ok).  %tweaked 
sam(sam4a,[c],q_cdef_2,fr(3/2,5/2),fr(4),ok).  %tweaked 
sam(sam4a,[b,c],q_bcde_1,fr(3/8,3/4),fr(1:1/8),ok).  %tweaked 
sam(sam4a,[b,c],q_bcde_2,fr(2/3,5/6),fr(1:1/2),ok).  %tweaked 
sam(sam4a,[b,c],q_bcde_3,fr(1/8,7/4),fr(60/32),no). 
sam(sam4a,[b,c],q_bcde_4,fr(1/2,7/6),fr(20/12),no). 
sam(sam4a,[b,c],q_bcde_5,fr(5/3,7/6),fr(51/18),no). 
sam(sam4a,[b,c],q_bcde_6,fr(4/3,7/6),fr(45/18),no). 
sam(sam4a,[b,c],q_bcde_7,fr(3/8,5/6),fr(58/48),no). 
sam(sam4a,[b,c],q_bcde_8,fr(4/5,3/10),fr(55/50),no). 
sam(sam4a,[b,c],q_bcde_9,fr(7/8,3/4),fr(52/32),no). 
sam(sam4a,[b,c],q_bcdf_1,fr(3/6,2/4),fr(1),ok).  %tweaked 
sam(sam4a,[b,c],q_bcdf_2,fr(5/10,4/8),fr(1),ok).  %tweaked 
sam(sam4a,[c],q_acde_1,fr(1:1/8,1:3/8),fr(2:1/2),ok).  %tweaked 
sam(sam4a,[c],q_acde_2,fr(1:1/6,2:1/6),fr(3:1/3),ok).  %tweaked 
sam(sam4a,[b,c],q_abcde_1,fr(1/3,1:5/6),fr(2:1/6),ok). %tweaked 
sam(sam4a,[b,c],q_abcde_2,fr(1/4,2:1/12),fr(2:1/3),ok). %tweaked 
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Logfile:  log5a 
 
simStudents([[sam1a-[[makeVulgar,makeCommon],[checkAndAdd],[cancel,makeProper,makeWhole]]]]). 
 
sam(sam1a,[c],q_c_1,fr(1/3,1/3),fr(2/3),ok). 
sam(sam1a,[c],q_c_2,fr(3/5,1/5),fr(x),no).   %tweaked 
sam(sam1a,[b,c],q_bc_1,fr(1/2,1/5),fr(7/10),ok). 
sam(sam1a,[b,c],q_bc_2,fr(1/3,1/5),fr(8/15),ok). 
sam(sam1a,[b,c,d],q_bc_3,fr(5/8,1/6),fr(19/24),ok). 
sam(sam1a,[c,d],q_cd_1,fr(4/9,2/9),fr(x),no).  %tweaked 
sam(sam1a,[c,d],q_cd_2,fr(12/64,4/64),fr(1/4),ok). 
sam(sam1a,[c,d],q_cd_3,fr(9/24,3/24),fr(1/2),ok). 
sam(sam1a,[c,d],q_cd_4,fr(9/16,3/16),fr(3/4),ok). 
sam(sam1a,[c,d],q_cd_5,fr(1/6,1/6),fr(1/3),ok). 
sam(sam1a,[c,d],q_cd_6,fr(3/8,1/8),fr(1/2),ok). 
sam(sam1a,[c,e],q_ce_1,fr(5/7,6/7),fr(x),no).   %tweaked 
sam(sam1a,[c,e],q_ce_2,fr(4/7,8/7),fr(1:5/7),ok). 
sam(sam1a,[c,e],q_ce_3,fr(8/5,6/5),fr(2:4/5),ok). 
sam(sam1a,[c,e],q_ce_4,fr(2/3,2/3),fr(1:1/3),ok). 
sam(sam1a,[c,e],q_ce_5,fr(5/6,2/6),fr(1:1/6),ok). 
sam(sam1a,[c,e],q_ce_6,fr(7/5,2/5),fr(1:4/5),ok). 
sam(sam1a,[a,c,e],q_ace_1,fr(1:1/5,2/5),fr(x),no).  %tweaked 
sam(sam1a,[a,c,e],q_ace_2,fr(2:3/7,2/7),fr(2:5/7),ok). 
sam(sam1a,[a,c,e],q_ace_3,fr(1:1/5,3/5),fr(1:4/5),ok). 
sam(sam1a,[b,c,d],q_bcd_1,fr(1/2,1/4),fr(3/4),ok). 
sam(sam1a,[b,c,d],q_bcd_2,fr(5/6,1/8),fr(23/24),ok). 
sam(sam1a,[b,c,d],q_bcd_3,fr(1/2,1/6),fr(2/3),ok). 
sam(sam1a,[b,c,d],q_bcd_4,fr(1/12,1/6),fr(1/4),ok). 
sam(sam1a,[b,c,d],q_bcd_5,fr(2/15,1/5),fr(1/3),ok). 
sam(sam1a,[b,c,e],q_bce_1,fr(2/3,3/5),fr(x),no).  %tweaked 
sam(sam1a,[b,c,e],q_bce_2,fr(1/2,7/3),fr(2:5/6),ok). 
sam(sam1a,[b,c,e],q_bce_3,fr(5/2,8/5),fr(4:1/10),ok). 
sam(sam1a,[b,c,e],q_bce_4,fr(4/5,3/4),fr(1:11/20),ok). 
sam(sam1a,[b,c,d,e],q_bce_5,fr(5/6,1/3),fr(1:1/6),ok). 
sam(sam1a,[b,c,e],q_bce_6,fr(6/7,3/8),fr(1:13/56),ok). 
sam(sam1a,[b,c,e],q_bce_7,fr(6/7,5/8),fr(1:27/56),ok). 
sam(sam1a,[b,c,e],q_bce_8,fr(5/8,4/5),fr(1:17/40),ok). 
sam(sam1a,[b,c,d,e],q_bce_9,fr(5/8,5/6),fr(1:11/24),ok). 
sam(sam1a,[b,c,d,e],q_bce_10,fr(3/8,5/6),fr(1:5/24),ok). 
sam(sam1a,[b,c,e],q_bce_11,fr(8/9,3/5),fr(1:22/45),ok). 
sam(sam1a,[c,d,e],q_cde_1,fr(5/8,9/8),fr(1:3/4),ok). 
sam(sam1a,[c,d,e],q_cde_2,fr(8/9,4/9),fr(1:1/3),ok). 
sam(sam1a,[c,d,e],q_cde_3,fr(5/4,5/4),fr(2:1/2),ok). 
sam(sam1a,[c,d,f],q_cdf_1,fr(5/7,2/7),fr(1),ok). 
sam(sam1a,[c,d,f],q_cdf_2,fr(4/5,1/5),fr(1),ok). 
sam(sam1a,[c,d,f],q_cdf_3,fr(1/2,1/2),fr(1),ok). 
sam(sam1a,[c,d,f],q_cdf_4,fr(4/5,1/5),fr(1),ok). 
sam(sam1a,[c,d,f],q_cdf_5,fr(1/2,1/2),fr(1),ok). 
sam(sam1a,[a,b,c,e],q_abce_1,fr(1:2/3,1:3/5),fr(3:4/15),ok). 
sam(sam1a,[a,b,c,e],q_abce_2,fr(2:1/2,7/3),fr(4:5/6),ok). 
sam(sam1a,[a,b,c,d,e],q_abce_3,fr(1/4,2:1/8),fr(2:3/8),ok). 
sam(sam1a,[a,b,c,d,e],q_abce_4,fr(1:3/8,1/2),fr(1:7/8),ok). 
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sam(sam1a,[a,b,c,e],q_abce_5,fr(1/5,1:5/7),fr(1:32/35),ok). 
sam(sam1a,[a,c,d,e,f],q_acef_1,fr(1:1/3,2/3),fr(2),ok). 
sam(sam1a,[a,c,d,e,f],q_acef_2,fr(1:1/5,4/5),fr(2),ok). 
sam(sam1a,[c,d,e,f],q_cdef_1,fr(1/3,5/3),fr(2),ok). 
sam(sam1a,[c,d,e,f],q_cdef_2,fr(3/2,5/2),fr(4),ok). 
sam(sam1a,[b,c,d,e],q_bcde_1,fr(3/8,3/4),fr(1:1/8),ok). 
sam(sam1a,[b,c,d,e],q_bcde_2,fr(2/3,5/6),fr(1:1/2),ok). 
sam(sam1a,[b,c,d,e],q_bcde_3,fr(1/8,7/4),fr(1:7/8),ok). 
sam(sam1a,[b,c,d,e],q_bcde_4,fr(1/2,7/6),fr(1:2/3),ok). 
sam(sam1a,[b,c,d,e],q_bcde_5,fr(5/3,7/6),fr(2:5/6),ok). 
sam(sam1a,[b,c,d,e],q_bcde_6,fr(4/3,7/6),fr(2:1/2),ok). 
sam(sam1a,[b,c,d,e],q_bcde_7,fr(3/8,5/6),fr(1:5/24),ok). 
sam(sam1a,[b,c,d,e],q_bcde_8,fr(4/5,3/10),fr(1:1/10),ok). 
sam(sam1a,[b,c,d,e],q_bcde_9,fr(7/8,3/4),fr(1:5/8),ok). 
sam(sam1a,[b,c,d,f],q_bcdf_1,fr(3/6,2/4),fr(1),ok). 
sam(sam1a,[b,c,d,f],q_bcdf_2,fr(5/10,4/8),fr(1),ok). 
sam(sam1a,[a,c,d,e],q_acde_1,fr(1:1/8,1:3/8),fr(2:1/2),ok). 
sam(sam1a,[a,c,d,e],q_acde_2,fr(1:1/6,2:1/6),fr(3:1/3),ok). 
sam(sam1a,[a,b,c,d,e],q_abcde_1,fr(1/3,1:5/6),fr(2:1/6),ok). 
sam(sam1a,[a,b,c,d,e],q_abcde_2,fr(1/4,2:1/12),fr(2:1/3),ok).
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Appendix J.  Running XP Adaptive Test  

This appendix contains the results from running XP for a selected list of simulated students.  
This was described in Section 6.5.  The following legend to represent the different skills:  
 
a makeVulgar 
b makeCommon 
c checkAndAdd 
d cancel 
e makeProper 
f makeWhole 
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% XP ADAPTIVE TEST output xp_1a 
  
Student=[[sam1a-[[makeVulgar,makeCommon],[checkAndAdd],[cancel,makeProper,makeWhole]]]] 
 
Selected Node : 4 
Visited list : 
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct). 
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), correct). 
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), correct). 
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), correct). 
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), correct). 
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), correct). 
 
Selected Node : 5 
Visited list : 
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct). 
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), correct). 
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), correct). 
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), correct). 
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), correct). 
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), correct). 
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct). 
 
Selected Node : 6 
Visited list : 
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct). 
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), correct). 
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), correct). 
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), correct). 
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), correct). 
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), correct). 
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct). 
 
% Summary - XP ADAPTIVE TEST output  
problems_presented(7,68). 
opportunities_presented([(a,4),(b,4),(c,7),(d,5),(e,6),(f,3)]). 
opportunities_correctly_applied([(a,4),(b,4),(c,7),(d,5),(e,6),(f,3)]). 
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% XP ADAPTIVE TEST output xp_2e 
 
Student = [[sam2e-[[makeVulgar,makeCommon],[checkAndAdd],[cancel,makeProper]]]] 
 
Selected Node : 4 
Visited list : 
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct). 
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), wrong). 
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), wrong). 
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), correct). 
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), wrong). 
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), correct). 
 
 
Selected Node : 3 
Visited list : 
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct). 
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), wrong). 
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), wrong). 
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), correct). 
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), wrong). 
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), correct). 
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct). 
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct). 
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct). 
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct). 
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong). 
 
 
% Summary - XP1 ADAPTIVE TEST output  
problems_presented(11,68). 
opportunities_presented([(a,4),(b,5),(c,11),(d,7),(e,8),(f,4)]). 
opportunities_correctly_applied([(a,3),(b,4),(c,7),(d,4),(e,6),(f,0)]). 
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% XP ADAPTIVE TEST output xp_2f 
  
Student = [[sam2f-[[makeCommon],[checkAndAdd],[]]]] 
 
Selected Node : 4 
Visited list : 
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), wrong). 
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), wrong). 
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), wrong). 
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), wrong). 
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), wrong). 
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), wrong). 
 
 
Selected Node : 3 
Visited list : 
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), wrong). 
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), wrong). 
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), wrong). 
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), wrong). 
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), wrong). 
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), wrong). 
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct). 
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), wrong). 
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), wrong). 
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), wrong). 
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong). 
 
Selected Node : 2 
Visited list : 
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), wrong). 
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), wrong). 
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), wrong). 
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), wrong). 
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), wrong). 
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), wrong). 
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct). 
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), wrong). 
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), wrong). 
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), wrong). 
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong). 
visited(2, [b,c], q_bc_1, fr(1/2,1/5), correct). 
visited(2, [c,d], q_cd_1, fr(4/9,2/9), wrong). 
visited(2, [c,e], q_ce_1, fr(5/7,6/7), wrong). 
 
Selected Node : 1 
Visited list : 
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), wrong). 
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), wrong). 
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), wrong). 
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), wrong). 
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), wrong). 
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visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), wrong). 
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct). 
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), wrong). 
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), wrong). 
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), wrong). 
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong). 
visited(2, [b,c], q_bc_1, fr(1/2,1/5), correct). 
visited(2, [c,d], q_cd_1, fr(4/9,2/9), wrong). 
visited(2, [c,e], q_ce_1, fr(5/7,6/7), wrong). 
visited(1, [c], q_c_1, fr(1/3,1/3), correct). 
 
% Summary - XP1 ADAPTIVE TEST output  
problems_presented(15,68). 
opportunities_presented([(a,4),(b,6),(c,15),(d,8),(e,9),(f,4)]). 
opportunities_correctly_applied([(a,1),(b,1),(c,3),(d,0),(e,1),(f,0)]). 

 

 

% XP ADAPTIVE TEST output xp_3a 
  
Student = [[sam3a-[[makeVulgar,makeCommon],[checkAndAdd],[malCancel,makeProper,makeWhole]]]] 
 
Selected Node : 4 
Visited list : 
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct). 
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), wrong). 
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), wrong). 
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), wrong). 
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), wrong). 
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), wrong). 
 
Selected Node : 3 
Visited list : 
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct). 
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), wrong). 
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), wrong). 
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), wrong). 
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), wrong). 
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), wrong). 
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct). 
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), wrong). 
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct). 
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), wrong). 
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong). 
 
Selected Node : 2 
Visited list : 
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct). 
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), wrong). 
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), wrong). 
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), wrong). 
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), wrong). 
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), wrong). 
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visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct). 
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), wrong). 
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct). 
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), wrong). 
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong). 
visited(2, [b,c], q_bc_1, fr(1/2,1/5), correct). 
visited(2, [c,d], q_cd_1, fr(4/9,2/9), wrong). 
visited(2, [c,e], q_ce_1, fr(5/7,6/7), correct). 
 
% Summary - XP1 ADAPTIVE TEST output  
problems_presented(14,68). 
opportunities_presented([(a,4),(b,6),(c,14),(d,8),(e,9),(f,4)]). 
opportunities_correctly_applied([(a,2),(b,3),(c,5),(d,0),(e,4),(f,0)]). 
 
 
% XP ADAPTIVE TEST output xp_4a 
 
Student = [[sam4a-[[makeCommon],[checkAndAdd],[]]]] 
 
Selected Node : 4 
Visited list : 
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct). 
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), correct). 
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), correct). 
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), correct). 
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), correct). 
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), correct). 
 
Selected Node : 5 
Visited list : 
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct). 
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), correct). 
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), correct). 
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), correct). 
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), correct). 
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), correct). 
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct). 
 
Selected Node : 6 
Visited list : 
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct). 
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), correct). 
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), correct). 
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), correct). 
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), correct). 
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), correct). 
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct). 
 
% Summary - XP1 ADAPTIVE TEST output  
problems_presented(7,68). 
opportunities_presented([(a,4),(b,4),(c,7),(d,5),(e,6),(f,3)]). 
opportunities_correctly_applied([(a,4),(b,4),(c,7),(d,5),(e,6),(f,3)]). 
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% XP ADAPTIVE TEST output xp_5a 
 
Student = [[sam5a-[[makeVulgar,makeCommon],[checkAndAdd],[cancel,makeProper,makeWhole]]]] 
 
Selected Node : 4 
Visited list : 
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct). 
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), correct). 
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), correct). 
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), correct). 
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), correct). 
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), correct). 
 
Selected Node : 5 
Visited list : 
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct). 
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), correct). 
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), correct). 
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), correct). 
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), correct). 
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), correct). 
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct). 
 
Selected Node : 6 
Visited list : 
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct). 
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), correct). 
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), correct). 
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), correct). 
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), correct). 
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), correct). 
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct). 
 
 
% Summary - XP1 ADAPTIVE TEST output  
problems_presented(7,68). 
opportunities_presented([(a,4),(b,4),(c,7),(d,5),(e,6),(f,3)]). 
opportunities_correctly_applied([(a,4),(b,4),(c,7),(d,5),(e,6),(f,3)]).
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Appendix K. Running ST Sequential Test 

This appendix contains the results from running ST for a selected list of simulated students.  
This was described in Section 6.5.  The following legend to represent the different skills:  
 
a makeVulgar 
b makeCommon 
c checkAndAdd 
d cancel 
e makeProper 
f makeWhole 
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% ST ADAPTIVE TEST output st_1a 
 
Student = [[sam1a-[[makeVulgar,makeCommon],[checkAndAdd],[cancel,makeProper,makeWhole]]]] 
 
visited(q_c_1, [c], ok). 
visited(q_c_2, [c], ok). 
visited(q_bc_1, [b,c], ok). 
visited(q_bc_2, [b,c], ok). 
visited(q_bc_3, [b,c,d], ok). 
visited(q_cd_1, [c,d], ok). 
visited(q_cd_2, [c,d], ok). 
visited(q_cd_3, [c,d], ok). 
visited(q_cd_4, [c,d], ok). 
visited(q_cd_5, [c,d], ok). 
visited(q_cd_6, [c,d], ok). 
visited(q_ce_1, [c,e], ok). 
visited(q_ce_2, [c,e], ok). 
visited(q_ce_3, [c,e], ok). 
visited(q_ce_4, [c,e], ok). 
visited(q_ce_5, [c,e], ok). 
visited(q_ce_6, [c,e], ok). 
visited(q_ace_1, [a,c,e], ok). 
visited(q_ace_2, [a,c,e], ok). 
visited(q_ace_3, [a,c,e], ok). 
visited(q_bcd_1, [b,c,d], ok). 
visited(q_bcd_2, [b,c,d], ok). 
visited(q_bcd_3, [b,c,d], ok). 
visited(q_bcd_4, [b,c,d], ok). 
visited(q_bcd_5, [b,c,d], ok). 
visited(q_bce_1, [b,c,e], ok). 
visited(q_bce_2, [b,c,e], ok). 
visited(q_bce_3, [b,c,e], ok). 
visited(q_bce_4, [b,c,e], ok). 
visited(q_bce_5, [b,c,d,e], ok). 
visited(q_bce_6, [b,c,e], ok). 
visited(q_bce_7, [b,c,e], ok). 
visited(q_bce_8, [b,c,e], ok). 
visited(q_bce_9, [b,c,d,e], ok). 
visited(q_bce_10, [b,c,d,e], ok). 
visited(q_bce_11, [b,c,e], ok). 
visited(q_cde_1, [c,d,e], ok). 
visited(q_cde_2, [c,d,e], ok). 
visited(q_cde_3, [c,d,e], ok). 
visited(q_cdf_1, [c,d,f], ok). 
visited(q_cdf_2, [c,d,f], ok). 
visited(q_cdf_3, [c,d,f], ok). 
visited(q_cdf_4, [c,d,f], ok). 
visited(q_cdf_5, [c,d,f], ok). 
visited(q_abce_1, [a,b,c,e], ok). 
visited(q_abce_2, [a,b,c,e], ok). 
visited(q_abce_3, [a,b,c,d,e], ok). 
visited(q_abce_4, [a,b,c,d,e], ok). 
visited(q_abce_5, [a,b,c,e], ok). 
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visited(q_acef_1, [a,c,d,e,f], ok). 
visited(q_acef_2, [a,c,d,e,f], ok). 
visited(q_cdef_1, [c,d,e,f], ok). 
visited(q_cdef_2, [c,d,e,f], ok). 
visited(q_bcde_1, [b,c,d,e], ok). 
visited(q_bcde_2, [b,c,d,e], ok). 
visited(q_bcde_3, [b,c,d,e], ok). 
visited(q_bcde_4, [b,c,d,e], ok). 
visited(q_bcde_5, [b,c,d,e], ok). 
visited(q_bcde_6, [b,c,d,e], ok). 
visited(q_bcde_7, [b,c,d,e], ok). 
visited(q_bcde_8, [b,c,d,e], ok). 
visited(q_bcde_9, [b,c,d,e], ok). 
visited(q_bcdf_1, [b,c,d,f], ok). 
visited(q_bcdf_2, [b,c,d,f], ok). 
visited(q_acde_1, [a,c,d,e], ok). 
visited(q_acde_2, [a,c,d,e], ok). 
visited(q_abcde_1, [a,b,c,d,e], ok). 
visited(q_abcde_2, [a,b,c,d,e], ok). 
 
 
 
% Summary - ST Sequential Test output  
problems_presented(68,68). 
opportunities_presented([(a,14),(b,37),(c,68),(d,44),(e,45),(f,11)]). 
opportunities_correctly_applied([(a,14),(b,37),(c,68),(d,44),(e,45),(f,11)]). 
 
 
% ST ADAPTIVE TEST output st_2e 
 
Student = [[sam2e-[[makeVulgar,makeCommon],[checkAndAdd],[cancel,makeProper]]]] 
 
visited(q_c_1, [c], ok). 
visited(q_c_2, [c], ok). 
visited(q_bc_1, [b,c], ok). 
visited(q_bc_2, [b,c], ok). 
visited(q_bc_3, [b,c,d], ok). 
visited(q_cd_1, [c,d], ok). 
visited(q_cd_2, [c,d], ok). 
visited(q_cd_3, [c,d], ok). 
visited(q_cd_4, [c,d], ok). 
visited(q_cd_5, [c,d], ok). 
visited(q_cd_6, [c,d], ok). 
visited(q_ce_1, [c,e], ok). 
visited(q_ce_2, [c,e], ok). 
visited(q_ce_3, [c,e], ok). 
visited(q_ce_4, [c,e], ok). 
visited(q_ce_5, [c,e], ok). 
visited(q_ce_6, [c,e], ok). 
visited(q_ace_1, [a,c,e], ok). 
visited(q_ace_2, [a,c,e], ok). 
visited(q_ace_3, [a,c,e], ok). 
visited(q_bcd_1, [b,c,d], ok). 
visited(q_bcd_2, [b,c,d], ok). 
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visited(q_bcd_3, [b,c,d], ok). 
visited(q_bcd_4, [b,c,d], ok). 
visited(q_bcd_5, [b,c,d], ok). 
visited(q_bce_1, [b,c,e], ok). 
visited(q_bce_2, [b,c,e], ok). 
visited(q_bce_3, [b,c,e], ok). 
visited(q_bce_4, [b,c,e], ok). 
visited(q_bce_5, [b,c,d,e], ok). 
visited(q_bce_6, [b,c,e], ok). 
visited(q_bce_7, [b,c,e], ok). 
visited(q_bce_8, [b,c,e], ok). 
visited(q_bce_9, [b,c,d,e], ok). 
visited(q_bce_10, [b,c,d,e], ok). 
visited(q_bce_11, [b,c,e], ok). 
visited(q_cde_1, [c,d,e], ok). 
visited(q_cde_2, [c,d,e], ok). 
visited(q_cde_3, [c,d,e], ok). 
visited(q_cdf_1, [c,d,f], no). 
visited(q_cdf_2, [c,d,f], no). 
visited(q_cdf_3, [c,d,f], no). 
visited(q_cdf_4, [c,d,f], no). 
visited(q_cdf_5, [c,d,f], no). 
visited(q_abce_1, [a,b,c,e], ok). 
visited(q_abce_2, [a,b,c,e], ok). 
visited(q_abce_3, [a,b,c,d,e], ok). 
visited(q_abce_4, [a,b,c,d,e], ok). 
visited(q_abce_5, [a,b,c,e], ok). 
visited(q_acef_1, [a,c,d,e,f], no). 
visited(q_acef_2, [a,c,d,e,f], no). 
visited(q_cdef_1, [c,d,e,f], no). 
visited(q_cdef_2, [c,d,e,f], no). 
visited(q_bcde_1, [b,c,d,e], ok). 
visited(q_bcde_2, [b,c,d,e], ok). 
visited(q_bcde_3, [b,c,d,e], ok). 
visited(q_bcde_4, [b,c,d,e], ok). 
visited(q_bcde_5, [b,c,d,e], ok). 
visited(q_bcde_6, [b,c,d,e], ok). 
visited(q_bcde_7, [b,c,d,e], ok). 
visited(q_bcde_8, [b,c,d,e], ok). 
visited(q_bcde_9, [b,c,d,e], ok). 
visited(q_bcdf_1, [b,c,d,f], no). 
visited(q_bcdf_2, [b,c,d,f], no). 
visited(q_acde_1, [a,c,d,e], ok). 
visited(q_acde_2, [a,c,d,e], ok). 
visited(q_abcde_1, [a,b,c,d,e], ok). 
visited(q_abcde_2, [a,b,c,d,e], ok). 
 
 
% Summary - ST Sequential Test output  
problems_presented(68,68). 
opportunities_presented([(a,14),(b,37),(c,68),(d,44),(e,45),(f,11)]). 
opportunities_correctly_applied([(a,12),(b,35),(c,57),(d,33),(e,41),(f,0)]). 
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% ST ADAPTIVE TEST output st_2f 
 
Student = [[sam2f-[[makeCommon],[checkAndAdd],[]]]] 
 
visited(q_c_1, [c], ok). 
visited(q_c_2, [c], ok). 
visited(q_bc_1, [b,c], ok). 
visited(q_bc_2, [b,c], ok). 
visited(q_bc_3, [b,c,d], no). 
visited(q_cd_1, [c,d], no). 
visited(q_cd_2, [c,d], no). 
visited(q_cd_3, [c,d], no). 
visited(q_cd_4, [c,d], no). 
visited(q_cd_5, [c,d], no). 
visited(q_cd_6, [c,d], no). 
visited(q_ce_1, [c,e], no). 
visited(q_ce_2, [c,e], no). 
visited(q_ce_3, [c,e], no). 
visited(q_ce_4, [c,e], no). 
visited(q_ce_5, [c,e], no). 
visited(q_ce_6, [c,e], no). 
visited(q_ace_1, [a,c,e], ok). 
visited(q_ace_2, [a,c,e], ok). 
visited(q_ace_3, [a,c,e], ok). 
visited(q_bcd_1, [b,c,d], no). 
visited(q_bcd_2, [b,c,d], no). 
visited(q_bcd_3, [b,c,d], no). 
visited(q_bcd_4, [b,c,d], no). 
visited(q_bcd_5, [b,c,d], no). 
visited(q_bce_1, [b,c,e], no). 
visited(q_bce_2, [b,c,e], no). 
visited(q_bce_3, [b,c,e], no). 
visited(q_bce_4, [b,c,e], no). 
visited(q_bce_5, [b,c,d,e], no). 
visited(q_bce_6, [b,c,e], no). 
visited(q_bce_7, [b,c,e], no). 
visited(q_bce_8, [b,c,e], no). 
visited(q_bce_9, [b,c,d,e], no). 
visited(q_bce_10, [b,c,d,e], no). 
visited(q_bce_11, [b,c,e], no). 
visited(q_cde_1, [c,d,e], no). 
visited(q_cde_2, [c,d,e], no). 
visited(q_cde_3, [c,d,e], no). 
visited(q_cdf_1, [c,d,f], no). 
visited(q_cdf_2, [c,d,f], no). 
visited(q_cdf_3, [c,d,f], no). 
visited(q_cdf_4, [c,d,f], no). 
visited(q_cdf_5, [c,d,f], no). 
visited(q_abce_1, [a,b,c,e], no). 
visited(q_abce_2, [a,b,c,e], no). 
visited(q_abce_3, [a,b,c,d,e], no). 
visited(q_abce_4, [a,b,c,d,e], no). 
visited(q_abce_5, [a,b,c,e], ok). 
visited(q_acef_1, [a,c,d,e,f], no). 
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visited(q_acef_2, [a,c,d,e,f], no). 
visited(q_cdef_1, [c,d,e,f], no). 
visited(q_cdef_2, [c,d,e,f], no). 
visited(q_bcde_1, [b,c,d,e], no). 
visited(q_bcde_2, [b,c,d,e], no). 
visited(q_bcde_3, [b,c,d,e], no). 
visited(q_bcde_4, [b,c,d,e], no). 
visited(q_bcde_5, [b,c,d,e], no). 
visited(q_bcde_6, [b,c,d,e], no). 
visited(q_bcde_7, [b,c,d,e], no). 
visited(q_bcde_8, [b,c,d,e], no). 
visited(q_bcde_9, [b,c,d,e], no). 
visited(q_bcdf_1, [b,c,d,f], no). 
visited(q_bcdf_2, [b,c,d,f], no). 
visited(q_acde_1, [a,c,d,e], no). 
visited(q_acde_2, [a,c,d,e], no). 
visited(q_abcde_1, [a,b,c,d,e], no). 
visited(q_abcde_2, [a,b,c,d,e], no). 
 
% Summary - ST Sequential Test output  
problems_presented(68,68). 
opportunities_presented([(a,14),(b,37),(c,68),(d,44),(e,45),(f,11)]). 
opportunities_correctly_applied([(a,4),(b,3),(c,8),(d,0),(e,4),(f,0)]). 
 
 
% ST ADAPTIVE TEST output st_3a 
 
Student = [[sam3a-[[makeVulgar,makeCommon],[checkAndAdd],[malCancel,makeProper,makeWhole]]]] 
 
visited(q_c_1, [c], ok). 
visited(q_c_2, [c], ok). 
visited(q_bc_1, [b,c], ok). 
visited(q_bc_2, [b,c], ok). 
visited(q_bc_3, [b,c,d], no). 
visited(q_cd_1, [c,d], no). 
visited(q_cd_2, [c,d], ok). 
visited(q_cd_3, [c,d], no). 
visited(q_cd_4, [c,d], no). 
visited(q_cd_5, [c,d], no). 
visited(q_cd_6, [c,d], no). 
visited(q_ce_1, [c,e], ok). 
visited(q_ce_2, [c,e], ok). 
visited(q_ce_3, [c,e], ok). 
visited(q_ce_4, [c,e], ok). 
visited(q_ce_5, [c,e], ok). 
visited(q_ce_6, [c,e], ok). 
visited(q_ace_1, [a,c,e], ok). 
visited(q_ace_2, [a,c,e], ok). 
visited(q_ace_3, [a,c,e], ok). 
visited(q_bcd_1, [b,c,d], no). 
visited(q_bcd_2, [b,c,d], no). 
visited(q_bcd_3, [b,c,d], no). 
visited(q_bcd_4, [b,c,d], no). 
visited(q_bcd_5, [b,c,d], no). 
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visited(q_bce_1, [b,c,e], ok). 
visited(q_bce_2, [b,c,e], ok). 
visited(q_bce_3, [b,c,e], ok). 
visited(q_bce_4, [b,c,e], ok). 
visited(q_bce_5, [b,c,d,e], no). 
visited(q_bce_6, [b,c,e], ok). 
visited(q_bce_7, [b,c,e], ok). 
visited(q_bce_8, [b,c,e], ok). 
visited(q_bce_9, [b,c,d,e], no). 
visited(q_bce_10, [b,c,d,e], no). 
visited(q_bce_11, [b,c,e], ok). 
visited(q_cde_1, [c,d,e], no). 
visited(q_cde_2, [c,d,e], no). 
visited(q_cde_3, [c,d,e], no). 
visited(q_cdf_1, [c,d,f], no). 
visited(q_cdf_2, [c,d,f], no). 
visited(q_cdf_3, [c,d,f], no). 
visited(q_cdf_4, [c,d,f], no). 
visited(q_cdf_5, [c,d,f], no). 
visited(q_abce_1, [a,b,c,e], ok). 
visited(q_abce_2, [a,b,c,e], ok). 
visited(q_abce_3, [a,b,c,d,e], no). 
visited(q_abce_4, [a,b,c,d,e], no). 
visited(q_abce_5, [a,b,c,e], ok). 
visited(q_acef_1, [a,c,d,e,f], no). 
visited(q_acef_2, [a,c,d,e,f], no). 
visited(q_cdef_1, [c,d,e,f], no). 
visited(q_cdef_2, [c,d,e,f], no). 
visited(q_bcde_1, [b,c,d,e], no). 
visited(q_bcde_2, [b,c,d,e], no). 
visited(q_bcde_3, [b,c,d,e], no). 
visited(q_bcde_4, [b,c,d,e], no). 
visited(q_bcde_5, [b,c,d,e], no). 
visited(q_bcde_6, [b,c,d,e], no). 
visited(q_bcde_7, [b,c,d,e], no). 
visited(q_bcde_8, [b,c,d,e], no). 
visited(q_bcde_9, [b,c,d,e], no). 
visited(q_bcdf_1, [b,c,d,f], no). 
visited(q_bcdf_2, [b,c,d,f], no). 
visited(q_acde_1, [a,c,d,e], no). 
visited(q_acde_2, [a,c,d,e], no). 
visited(q_abcde_1, [a,b,c,d,e], no). 
visited(q_abcde_2, [a,b,c,d,e], no). 
 
% Summary - ST Sequential Test output  
problems_presented(68,68). 
opportunities_presented([(a,14),(b,37),(c,68),(d,44),(e,45),(f,11)]). 
opportunities_correctly_applied([(a,6),(b,13),(c,25),(d,1),(e,20),(f,0)]). 
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% ST ADAPTIVE TEST output st_4a 
 
Student = [[sam4a-[[makeCommon],[checkAndAdd],[]]]] 
 
visited(q_c_1, [c], ok). 
visited(q_c_2, [c], ok). 
visited(q_bc_1, [b,c], ok). 
visited(q_bc_2, [b,c], ok). 
visited(q_bc_3, [b,c,d], no). 
visited(q_cd_1, [c,d], ok). 
visited(q_cd_2, [c,d], ok). 
visited(q_cd_3, [c,d], no). 
visited(q_cd_4, [c,d], no). 
visited(q_cd_5, [c,d], no). 
visited(q_cd_6, [c,d], no). 
visited(q_ce_1, [c,e], ok). 
visited(q_ce_2, [c,e], ok). 
visited(q_ce_3, [c,e], no). 
visited(q_ce_4, [c,e], no). 
visited(q_ce_5, [c,e], no). 
visited(q_ce_6, [c,e], no). 
visited(q_ace_1, [a,c,e], ok). 
visited(q_ace_2, [a,c,e], ok). 
visited(q_ace_3, [a,c,e], ok). 
visited(q_bcd_1, [b,c,d], ok). 
visited(q_bcd_2, [b,c,d], ok). 
visited(q_bcd_3, [b,c,d], no). 
visited(q_bcd_4, [b,c,d], no). 
visited(q_bcd_5, [b,c,d], no). 
visited(q_bce_1, [b,c,e], ok). 
visited(q_bce_2, [b,c,e], ok). 
visited(q_bce_3, [b,c,e], no). 
visited(q_bce_4, [b,c,e], no). 
visited(q_bce_5, [b,c,d,e], no). 
visited(q_bce_6, [b,c,e], no). 
visited(q_bce_7, [b,c,e], no). 
visited(q_bce_8, [b,c,e], no). 
visited(q_bce_9, [b,c,d,e], no). 
visited(q_bce_10, [b,c,d,e], no). 
visited(q_bce_11, [b,c,e], no). 
visited(q_cde_1, [c,d,e], ok). 
visited(q_cde_2, [c,d,e], ok). 
visited(q_cde_3, [c,d,e], no). 
visited(q_cdf_1, [c,d,f], ok). 
visited(q_cdf_2, [c,d,f], ok). 
visited(q_cdf_3, [c,d,f], no). 
visited(q_cdf_4, [c,d,f], no). 
visited(q_cdf_5, [c,d,f], no). 
visited(q_abce_1, [a,b,c,e], ok). 
visited(q_abce_2, [a,b,c,e], ok). 
visited(q_abce_3, [a,b,c,d,e], no). 
visited(q_abce_4, [a,b,c,d,e], no). 
visited(q_abce_5, [a,b,c,e], ok). 
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visited(q_acef_1, [a,c,d,e,f], ok). 
visited(q_acef_2, [a,c,d,e,f], ok). 
visited(q_cdef_1, [c,d,e,f], ok). 
visited(q_cdef_2, [c,d,e,f], ok). 
visited(q_bcde_1, [b,c,d,e], ok). 
visited(q_bcde_2, [b,c,d,e], ok). 
visited(q_bcde_3, [b,c,d,e], no). 
visited(q_bcde_4, [b,c,d,e], no). 
visited(q_bcde_5, [b,c,d,e], no). 
visited(q_bcde_6, [b,c,d,e], no). 
visited(q_bcde_7, [b,c,d,e], no). 
visited(q_bcde_8, [b,c,d,e], no). 
visited(q_bcde_9, [b,c,d,e], no). 
visited(q_bcdf_1, [b,c,d,f], ok). 
visited(q_bcdf_2, [b,c,d,f], ok). 
visited(q_acde_1, [a,c,d,e], ok). 
visited(q_acde_2, [a,c,d,e], ok). 
visited(q_abcde_1, [a,b,c,d,e], ok). 
visited(q_abcde_2, [a,b,c,d,e], ok). 
 
 
 
% Summary - ST Sequential Test output  
problems_presented(68,68). 
opportunities_presented([(a,14),(b,37),(c,68),(d,44),(e,45),(f,11)]). 
opportunities_correctly_applied([(a,12),(b,15),(c,34),(d,20),(e,22),(f,8)]). 
 
 
% ST ADAPTIVE TEST output st_5a 
 
Student = [[sam5a-[[makeVulgar,makeCommon],[checkAndAdd],[cancel,makeProper,makeWhole]]]] 
 
visited(q_c_1, [c], ok). 
visited(q_c_2, [c], no). 
visited(q_bc_1, [b,c], ok). 
visited(q_bc_2, [b,c], ok). 
visited(q_bc_3, [b,c,d], ok). 
visited(q_cd_1, [c,d], no). 
visited(q_cd_2, [c,d], ok). 
visited(q_cd_3, [c,d], ok). 
visited(q_cd_4, [c,d], ok). 
visited(q_cd_5, [c,d], ok). 
visited(q_cd_6, [c,d], ok). 
visited(q_ce_1, [c,e], no). 
visited(q_ce_2, [c,e], ok). 
visited(q_ce_3, [c,e], ok). 
visited(q_ce_4, [c,e], ok). 
visited(q_ce_5, [c,e], ok). 
visited(q_ce_6, [c,e], ok). 
visited(q_ace_1, [a,c,e], no). 
visited(q_ace_2, [a,c,e], ok). 
visited(q_ace_3, [a,c,e], ok). 
visited(q_bcd_1, [b,c,d], ok). 
visited(q_bcd_2, [b,c,d], ok). 
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visited(q_bcd_3, [b,c,d], ok). 
visited(q_bcd_4, [b,c,d], ok). 
visited(q_bcd_5, [b,c,d], ok). 
visited(q_bce_1, [b,c,e], no). 
visited(q_bce_2, [b,c,e], ok). 
visited(q_bce_3, [b,c,e], ok). 
visited(q_bce_4, [b,c,e], ok). 
visited(q_bce_5, [b,c,d,e], ok). 
visited(q_bce_6, [b,c,e], ok). 
visited(q_bce_7, [b,c,e], ok). 
visited(q_bce_8, [b,c,e], ok). 
visited(q_bce_9, [b,c,d,e], ok). 
visited(q_bce_10, [b,c,d,e], ok). 
visited(q_bce_11, [b,c,e], ok). 
visited(q_cde_1, [c,d,e], ok). 
visited(q_cde_2, [c,d,e], ok). 
visited(q_cde_3, [c,d,e], ok). 
visited(q_cdf_1, [c,d,f], ok). 
visited(q_cdf_2, [c,d,f], ok). 
visited(q_cdf_3, [c,d,f], ok). 
visited(q_cdf_4, [c,d,f], ok). 
visited(q_cdf_5, [c,d,f], ok). 
visited(q_abce_1, [a,b,c,e], ok). 
visited(q_abce_2, [a,b,c,e], ok). 
visited(q_abce_3, [a,b,c,d,e], ok). 
visited(q_abce_4, [a,b,c,d,e], ok). 
visited(q_abce_5, [a,b,c,e], ok). 
visited(q_acef_1, [a,c,d,e,f], ok). 
visited(q_acef_2, [a,c,d,e,f], ok). 
visited(q_cdef_1, [c,d,e,f], ok). 
visited(q_cdef_2, [c,d,e,f], ok). 
visited(q_bcde_1, [b,c,d,e], ok). 
visited(q_bcde_2, [b,c,d,e], ok). 
visited(q_bcde_3, [b,c,d,e], ok). 
visited(q_bcde_4, [b,c,d,e], ok). 
visited(q_bcde_5, [b,c,d,e], ok). 
visited(q_bcde_6, [b,c,d,e], ok). 
visited(q_bcde_7, [b,c,d,e], ok). 
visited(q_bcde_8, [b,c,d,e], ok). 
visited(q_bcde_9, [b,c,d,e], ok). 
visited(q_bcdf_1, [b,c,d,f], ok). 
visited(q_bcdf_2, [b,c,d,f], ok). 
visited(q_acde_1, [a,c,d,e], ok). 
visited(q_acde_2, [a,c,d,e], ok). 
visited(q_abcde_1, [a,b,c,d,e], ok). 
visited(q_abcde_2, [a,b,c,d,e], ok). 
 
% Summary - ST Sequential Test output  
problems_presented(68,68). 
opportunities_presented([(a,14),(b,37),(c,68),(d,44),(e,45),(f,11)]). 
opportunities_correctly_applied([(a,13),(b,36),(c,63),(d,43),(e,42),(f,11)]). 
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Appendix L. Running XP1 Adaptive Test 

This appendix contains the results from running XP1 for a selected list of simulated students, as 
described in Section 6.8.  The following legend to represent the different skills:  
 
a makeVulgar 
b makeCommon 
c checkAndAdd 
d cancel 
e makeProper 
f makeWhole 
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% XP1 ADAPTIVE TEST output xp1_1a 
  
Student = [[sam1a-[[makeVulgar,makeCommon],[checkAndAdd],[cancel,makeProper,makeWhole]]]] 
 
Selected Node : 4 
Visited list : 
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct). 
visited(4, [a,b,c,e], q_abce_2, fr(2:1/2,7/3), correct). 
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), correct). 
visited(4, [a,c,e,f], q_acef_2, fr(1:1/5,4/5), correct). 
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), correct). 
visited(4, [c,d,e,f], q_cdef_2, fr(3/2,5/2), correct). 
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), correct). 
visited(4, [b,c,d,e], q_bcde_2, fr(2/3,5/6), correct). 
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), correct). 
visited(4, [b,c,d,f], q_bcdf_2, fr(5/10,4/8), correct). 
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), correct). 
visited(4, [a,c,d,e], q_acde_2, fr(1:1/6,2:1/6), correct). 
 
Selected Node : 5 
Visited list : 
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct). 
visited(4, [a,b,c,e], q_abce_2, fr(2:1/2,7/3), correct). 
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), correct). 
visited(4, [a,c,e,f], q_acef_2, fr(1:1/5,4/5), correct). 
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), correct). 
visited(4, [c,d,e,f], q_cdef_2, fr(3/2,5/2), correct). 
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), correct). 
visited(4, [b,c,d,e], q_bcde_2, fr(2/3,5/6), correct). 
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), correct). 
visited(4, [b,c,d,f], q_bcdf_2, fr(5/10,4/8), correct). 
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), correct). 
visited(4, [a,c,d,e], q_acde_2, fr(1:1/6,2:1/6), correct). 
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct). 
visited(5, [a,b,c,d,e], q_abcde_2, fr(1/4,2:1/12), correct). 
 
Selected Node : 6 
Visited list : 
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct). 
visited(4, [a,b,c,e], q_abce_2, fr(2:1/2,7/3), correct). 
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), correct). 
visited(4, [a,c,e,f], q_acef_2, fr(1:1/5,4/5), correct). 
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), correct). 
visited(4, [c,d,e,f], q_cdef_2, fr(3/2,5/2), correct). 
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), correct). 
visited(4, [b,c,d,e], q_bcde_2, fr(2/3,5/6), correct). 
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), correct). 
visited(4, [b,c,d,f], q_bcdf_2, fr(5/10,4/8), correct). 
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), correct). 
visited(4, [a,c,d,e], q_acde_2, fr(1:1/6,2:1/6), correct). 
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct). 
visited(5, [a,b,c,d,e], q_abcde_2, fr(1/4,2:1/12), correct). 
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% Summary - XP1 ADAPTIVE TEST output xp1_1a 
problems_presented(14,68). 
opportunities_presented([(a,8),(b,8),(c,14),(d,10),(e,12),(f,6)]). 
opportunities_correctly_applied([(a,8),(b,8),(c,14),(d,10),(e,12),(f,6)]). 
 
 
% XP1 ADAPTIVE TEST output xp1_2e 
 
Student = [[sam2e-[[makeVulgar,makeCommon],[checkAndAdd],[cancel,makeProper]]]] 
 
Selected Node : 4 
Visited list : 
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct). 
visited(4, [a,b,c,e], q_abce_2, fr(2:1/2,7/3), correct). 
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), wrong). 
visited(4, [a,c,e,f], q_acef_2, fr(1:1/5,4/5), wrong). 
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), wrong). 
visited(4, [c,d,e,f], q_cdef_2, fr(3/2,5/2), wrong). 
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), correct). 
visited(4, [b,c,d,e], q_bcde_2, fr(2/3,5/6), correct). 
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), wrong). 
visited(4, [b,c,d,f], q_bcdf_2, fr(5/10,4/8), wrong). 
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), correct). 
visited(4, [a,c,d,e], q_acde_2, fr(1:1/6,2:1/6), correct). 
 
Selected Node : 3 
Visited list : 
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct). 
visited(4, [a,b,c,e], q_abce_2, fr(2:1/2,7/3), correct). 
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), wrong). 
visited(4, [a,c,e,f], q_acef_2, fr(1:1/5,4/5), wrong). 
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), wrong). 
visited(4, [c,d,e,f], q_cdef_2, fr(3/2,5/2), wrong). 
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), correct). 
visited(4, [b,c,d,e], q_bcde_2, fr(2/3,5/6), correct). 
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), wrong). 
visited(4, [b,c,d,f], q_bcdf_2, fr(5/10,4/8), wrong). 
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), correct). 
visited(4, [a,c,d,e], q_acde_2, fr(1:1/6,2:1/6), correct). 
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct). 
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct). 
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct). 
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), correct). 
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct). 
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct). 
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct). 
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), correct). 
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong). 
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), wrong). 
 
% Summary - XP1 ADAPTIVE TEST output xp1_2e 
problems_presented(22,68). 
opportunities_presented([(a,8),(b,10),(c,22),(d,14),(e,16),(f,8)]). 
opportunities_correctly_applied([(a,6),(b,8),(c,14),(d,8),(e,12),(f,0)]). 
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% XP1 ADAPTIVE TEST output xp1_2f 
 
Student = [[sam2f-[[makeCommon],[checkAndAdd],[]]]] 
 
Selected Node : 4 
Visited list : 
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), wrong). 
visited(4, [a,b,c,e], q_abce_2, fr(2:1/2,7/3), wrong). 
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), wrong). 
visited(4, [a,c,e,f], q_acef_2, fr(1:1/5,4/5), wrong). 
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), wrong). 
visited(4, [c,d,e,f], q_cdef_2, fr(3/2,5/2), wrong). 
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), wrong). 
visited(4, [b,c,d,e], q_bcde_2, fr(2/3,5/6), wrong). 
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), wrong). 
visited(4, [b,c,d,f], q_bcdf_2, fr(5/10,4/8), wrong). 
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), wrong). 
visited(4, [a,c,d,e], q_acde_2, fr(1:1/6,2:1/6), wrong). 
 
 
Selected Node : 3 
Visited list : 
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), wrong). 
visited(4, [a,b,c,e], q_abce_2, fr(2:1/2,7/3), wrong). 
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), wrong). 
visited(4, [a,c,e,f], q_acef_2, fr(1:1/5,4/5), wrong). 
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), wrong). 
visited(4, [c,d,e,f], q_cdef_2, fr(3/2,5/2), wrong). 
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), wrong). 
visited(4, [b,c,d,e], q_bcde_2, fr(2/3,5/6), wrong). 
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), wrong). 
visited(4, [b,c,d,f], q_bcdf_2, fr(5/10,4/8), wrong). 
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), wrong). 
visited(4, [a,c,d,e], q_acde_2, fr(1:1/6,2:1/6), wrong). 
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct). 
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct). 
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), wrong). 
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), wrong). 
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), wrong). 
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), wrong). 
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), wrong). 
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), wrong). 
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong). 
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), wrong). 
 
Selected Node : 2 
Visited list : 
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), wrong). 
visited(4, [a,b,c,e], q_abce_2, fr(2:1/2,7/3), wrong). 
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), wrong). 
visited(4, [a,c,e,f], q_acef_2, fr(1:1/5,4/5), wrong). 
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), wrong). 
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visited(4, [c,d,e,f], q_cdef_2, fr(3/2,5/2), wrong). 
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), wrong). 
visited(4, [b,c,d,e], q_bcde_2, fr(2/3,5/6), wrong). 
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), wrong). 
visited(4, [b,c,d,f], q_bcdf_2, fr(5/10,4/8), wrong). 
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), wrong). 
visited(4, [a,c,d,e], q_acde_2, fr(1:1/6,2:1/6), wrong). 
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct). 
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct). 
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), wrong). 
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), wrong). 
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), wrong). 
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), wrong). 
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), wrong). 
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), wrong). 
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong). 
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), wrong). 
visited(2, [b,c], q_bc_1, fr(1/2,1/5), correct). 
visited(2, [b,c], q_bc_2, fr(1/3,1/5), correct). 
visited(2, [c,d], q_cd_1, fr(4/9,2/9), wrong). 
visited(2, [c,d], q_cd_2, fr(12/64,4/64), wrong). 
visited(2, [c,e], q_ce_1, fr(5/7,6/7), wrong). 
visited(2, [c,e], q_ce_2, fr(4/7,8/7), wrong). 
 
Selected Node : 1 
Visited list : 
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), wrong). 
visited(4, [a,b,c,e], q_abce_2, fr(2:1/2,7/3), wrong). 
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), wrong). 
visited(4, [a,c,e,f], q_acef_2, fr(1:1/5,4/5), wrong). 
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), wrong). 
visited(4, [c,d,e,f], q_cdef_2, fr(3/2,5/2), wrong). 
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), wrong). 
visited(4, [b,c,d,e], q_bcde_2, fr(2/3,5/6), wrong). 
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), wrong). 
visited(4, [b,c,d,f], q_bcdf_2, fr(5/10,4/8), wrong). 
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), wrong). 
visited(4, [a,c,d,e], q_acde_2, fr(1:1/6,2:1/6), wrong). 
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct). 
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct). 
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), wrong). 
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), wrong). 
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), wrong). 
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), wrong). 
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), wrong). 
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), wrong). 
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong). 
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), wrong). 
visited(2, [b,c], q_bc_1, fr(1/2,1/5), correct). 
visited(2, [b,c], q_bc_2, fr(1/3,1/5), correct). 
visited(2, [c,d], q_cd_1, fr(4/9,2/9), wrong). 
visited(2, [c,d], q_cd_2, fr(12/64,4/64), wrong). 
visited(2, [c,e], q_ce_1, fr(5/7,6/7), wrong). 
visited(2, [c,e], q_ce_2, fr(4/7,8/7), wrong). 



Appendix L. Running XP1 Adaptive Test   199 

  

visited(1, [c], q_c_1, fr(1/3,1/3), correct). 
visited(1, [c], q_c_2, fr(3/5,1/5), correct). 
 
% Summary - XP1 ADAPTIVE TEST output xp1_2f 
problems_presented(30,68). 
opportunities_presented([(a,8),(b,12),(c,30),(d,16),(e,18),(f,8)]). 
opportunities_correctly_applied([(a,2),(b,2),(c,6),(d,0),(e,2),(f,0)]). 
 
 
% XP1 ADAPTIVE TEST output xp1_3a 
 
Student = [[sam3a-[[makeVulgar,makeCommon],[checkAndAdd],[malCancel,makeProper,makeWhole]]]] 
 
Selected Node : 4 
Visited list : 
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct). 
visited(4, [a,b,c,e], q_abce_2, fr(2:1/2,7/3), correct). 
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), wrong). 
visited(4, [a,c,e,f], q_acef_2, fr(1:1/5,4/5), wrong). 
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), wrong). 
visited(4, [c,d,e,f], q_cdef_2, fr(3/2,5/2), wrong). 
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), wrong). 
visited(4, [b,c,d,e], q_bcde_2, fr(2/3,5/6), wrong). 
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), wrong). 
visited(4, [b,c,d,f], q_bcdf_2, fr(5/10,4/8), wrong). 
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), wrong). 
visited(4, [a,c,d,e], q_acde_2, fr(1:1/6,2:1/6), wrong). 
 
Selected Node : 3 
Visited list : 
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct). 
visited(4, [a,b,c,e], q_abce_2, fr(2:1/2,7/3), correct). 
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), wrong). 
visited(4, [a,c,e,f], q_acef_2, fr(1:1/5,4/5), wrong). 
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), wrong). 
visited(4, [c,d,e,f], q_cdef_2, fr(3/2,5/2), wrong). 
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), wrong). 
visited(4, [b,c,d,e], q_bcde_2, fr(2/3,5/6), wrong). 
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), wrong). 
visited(4, [b,c,d,f], q_bcdf_2, fr(5/10,4/8), wrong). 
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), wrong). 
visited(4, [a,c,d,e], q_acde_2, fr(1:1/6,2:1/6), wrong). 
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct). 
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct). 
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), wrong). 
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), wrong). 
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct). 
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct). 
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), wrong). 
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), wrong). 
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong). 
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), wrong). 
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Selected Node : 2 
Visited list : 
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct). 
visited(4, [a,b,c,e], q_abce_2, fr(2:1/2,7/3), correct). 
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), wrong). 
visited(4, [a,c,e,f], q_acef_2, fr(1:1/5,4/5), wrong). 
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), wrong). 
visited(4, [c,d,e,f], q_cdef_2, fr(3/2,5/2), wrong). 
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), wrong). 
visited(4, [b,c,d,e], q_bcde_2, fr(2/3,5/6), wrong). 
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), wrong). 
visited(4, [b,c,d,f], q_bcdf_2, fr(5/10,4/8), wrong). 
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), wrong). 
visited(4, [a,c,d,e], q_acde_2, fr(1:1/6,2:1/6), wrong). 
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct). 
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct). 
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), wrong). 
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), wrong). 
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct). 
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct). 
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), wrong). 
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), wrong). 
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong). 
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), wrong). 
visited(2, [b,c], q_bc_1, fr(1/2,1/5), correct). 
visited(2, [b,c], q_bc_2, fr(1/3,1/5), correct). 
visited(2, [c,d], q_cd_1, fr(4/9,2/9), wrong). 
visited(2, [c,d], q_cd_2, fr(12/64,4/64), correct). 
visited(2, [c,e], q_ce_1, fr(5/7,6/7), correct). 
visited(2, [c,e], q_ce_2, fr(4/7,8/7), correct). 
 
% Summary - XP1 ADAPTIVE TEST output xp1_3a 
problems_presented(28,68). 
opportunities_presented([(a,8),(b,12),(c,28),(d,16),(e,18),(f,8)]). 
opportunities_correctly_applied([(a,4),(b,6),(c,11),(d,1),(e,8),(f,0)]). 
 
 
% XP1 ADAPTIVE TEST output xp1_4a 
 
Student = [[sam4a-[[makeCommon],[checkAndAdd],[]]]] 
 
Selected Node : 4 
Visited list : 
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct). 
visited(4, [a,b,c,e], q_abce_2, fr(2:1/2,7/3), correct). 
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), correct). 
visited(4, [a,c,e,f], q_acef_2, fr(1:1/5,4/5), correct). 
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), correct). 
visited(4, [c,d,e,f], q_cdef_2, fr(3/2,5/2), correct). 
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), correct). 
visited(4, [b,c,d,e], q_bcde_2, fr(2/3,5/6), correct). 
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), correct). 
visited(4, [b,c,d,f], q_bcdf_2, fr(5/10,4/8), correct). 
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), correct). 
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visited(4, [a,c,d,e], q_acde_2, fr(1:1/6,2:1/6), correct). 
 
Selected Node : 5 
Visited list : 
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct). 
visited(4, [a,b,c,e], q_abce_2, fr(2:1/2,7/3), correct). 
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), correct). 
visited(4, [a,c,e,f], q_acef_2, fr(1:1/5,4/5), correct). 
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), correct). 
visited(4, [c,d,e,f], q_cdef_2, fr(3/2,5/2), correct). 
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), correct). 
visited(4, [b,c,d,e], q_bcde_2, fr(2/3,5/6), correct). 
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), correct). 
visited(4, [b,c,d,f], q_bcdf_2, fr(5/10,4/8), correct). 
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), correct). 
visited(4, [a,c,d,e], q_acde_2, fr(1:1/6,2:1/6), correct). 
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct). 
visited(5, [a,b,c,d,e], q_abcde_2, fr(1/4,2:1/12), correct). 
 
Selected Node : 6 
Visited list : 
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct). 
visited(4, [a,b,c,e], q_abce_2, fr(2:1/2,7/3), correct). 
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), correct). 
visited(4, [a,c,e,f], q_acef_2, fr(1:1/5,4/5), correct). 
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), correct). 
visited(4, [c,d,e,f], q_cdef_2, fr(3/2,5/2), correct). 
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), correct). 
visited(4, [b,c,d,e], q_bcde_2, fr(2/3,5/6), correct). 
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), correct). 
visited(4, [b,c,d,f], q_bcdf_2, fr(5/10,4/8), correct). 
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), correct). 
visited(4, [a,c,d,e], q_acde_2, fr(1:1/6,2:1/6), correct). 
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct). 
visited(5, [a,b,c,d,e], q_abcde_2, fr(1/4,2:1/12), correct). 
 
% Summary - XP1 ADAPTIVE TEST output xp1_4a 
problems_presented(14,68). 
opportunities_presented([(a,8),(b,8),(c,14),(d,10),(e,12),(f,6)]). 
opportunities_correctly_applied([(a,8),(b,8),(c,14),(d,10),(e,12),(f,6)]). 
 
 
% XP1 ADAPTIVE TEST output xp1_5a 
 
Student = [[sam5a-[[makeVulgar,makeCommon],[checkAndAdd],[cancel,makeProper,makeWhole]]]] 
 
Selected Node : 4 
Visited list : 
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct). 
visited(4, [a,b,c,e], q_abce_2, fr(2:1/2,7/3), correct). 
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), correct). 
visited(4, [a,c,e,f], q_acef_2, fr(1:1/5,4/5), correct). 
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), correct). 
visited(4, [c,d,e,f], q_cdef_2, fr(3/2,5/2), correct). 
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visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), correct). 
visited(4, [b,c,d,e], q_bcde_2, fr(2/3,5/6), correct). 
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), correct). 
visited(4, [b,c,d,f], q_bcdf_2, fr(5/10,4/8), correct). 
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), correct). 
visited(4, [a,c,d,e], q_acde_2, fr(1:1/6,2:1/6), correct). 
 
Selected Node : 5 
Visited list : 
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct). 
visited(4, [a,b,c,e], q_abce_2, fr(2:1/2,7/3), correct). 
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), correct). 
visited(4, [a,c,e,f], q_acef_2, fr(1:1/5,4/5), correct). 
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), correct). 
visited(4, [c,d,e,f], q_cdef_2, fr(3/2,5/2), correct). 
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), correct). 
visited(4, [b,c,d,e], q_bcde_2, fr(2/3,5/6), correct). 
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), correct). 
visited(4, [b,c,d,f], q_bcdf_2, fr(5/10,4/8), correct). 
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), correct). 
visited(4, [a,c,d,e], q_acde_2, fr(1:1/6,2:1/6), correct). 
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct). 
visited(5, [a,b,c,d,e], q_abcde_2, fr(1/4,2:1/12), correct). 
 
Selected Node : 6 
Visited list : 
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct). 
visited(4, [a,b,c,e], q_abce_2, fr(2:1/2,7/3), correct). 
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), correct). 
visited(4, [a,c,e,f], q_acef_2, fr(1:1/5,4/5), correct). 
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), correct). 
visited(4, [c,d,e,f], q_cdef_2, fr(3/2,5/2), correct). 
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), correct). 
visited(4, [b,c,d,e], q_bcde_2, fr(2/3,5/6), correct). 
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), correct). 
visited(4, [b,c,d,f], q_bcdf_2, fr(5/10,4/8), correct). 
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), correct). 
visited(4, [a,c,d,e], q_acde_2, fr(1:1/6,2:1/6), correct). 
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct). 
visited(5, [a,b,c,d,e], q_abcde_2, fr(1/4,2:1/12), correct). 
 
% Summary - XP1 ADAPTIVE TEST output xp1_5a 
problems_presented(14,68). 
opportunities_presented([(a,8),(b,8),(c,14),(d,10),(e,12),(f,6)]). 
opportunities_correctly_applied([(a,8),(b,8),(c,14),(d,10),(e,12),(f,6)]). 
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Appendix M. Running XP2 Adaptive Test 

This appendix contains the results from running XP2 for a selected list of simulated students, as 
described in Section 6.8.  The following legend to represent the different skills:  
 
a makeVulgar 
b makeCommon 
c checkAndAdd 
d cancel 
e makeProper 
f makeWhole 
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% XP2 ADAPTIVE TEST output xp2_1a 

  
Student = [[sam1a-[[makeVulgar,makeCommon],[checkAndAdd],[cancel,makeProper,makeWhole]]]] 
 
Selected Node : 3 
Visited list : 
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct). 
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct). 
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct). 
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), correct). 
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct). 
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct). 
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct). 
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), correct). 
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), correct). 
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), correct). 
 
Selected Node : 5 
Visited list : 
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct). 
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct). 
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct). 
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), correct). 
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct). 
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct). 
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct). 
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), correct). 
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), correct). 
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), correct). 
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct). 
visited(5, [a,b,c,d,e], q_abcde_2, fr(1/4,2:1/12), correct). 
 
Selected Node : 6 
Visited list : 
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct). 
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct). 
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct). 
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), correct). 
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct). 
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct). 
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct). 
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), correct). 
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), correct). 
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), correct). 
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct). 
visited(5, [a,b,c,d,e], q_abcde_2, fr(1/4,2:1/12), correct). 
 
% Summary - XP2 ADAPTIVE TEST output  
problems_presented(12,68). 
opportunities_presented([(a,4),(b,6),(c,12),(d,8),(e,8),(f,2)]). 
opportunities_correctly_applied([(a,4),(b,6),(c,12),(d,8),(e,8),(f,2)]). 
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% XP2 ADAPTIVE TEST output xp2_2e 
  
Student = [[sam2e-[[makeVulgar,makeCommon],[checkAndAdd],[cancel,makeProper]]]] 
 
Selected Node : 3 
Visited list : 
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct). 
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct). 
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct). 
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), correct). 
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct). 
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct). 
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct). 
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), correct). 
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong). 
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), wrong). 
 
Selected Node : 5 
Visited list : 
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct). 
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct). 
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct). 
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), correct). 
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct). 
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct). 
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct). 
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), correct). 
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong). 
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), wrong). 
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct). 
visited(5, [a,b,c,d,e], q_abcde_2, fr(1/4,2:1/12), correct). 
 
Selected Node : 6 
Visited list : 
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct). 
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct). 
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct). 
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), correct). 
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct). 
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct). 
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct). 
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), correct). 
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong). 
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), wrong). 
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct). 
visited(5, [a,b,c,d,e], q_abcde_2, fr(1/4,2:1/12), correct). 
 
% Summary - XP2 ADAPTIVE TEST output  
problems_presented(12,68). 
opportunities_presented([(a,4),(b,6),(c,12),(d,8),(e,8),(f,2)]). 
opportunities_correctly_applied([(a,4),(b,6),(c,10),(d,6),(e,8),(f,0)]). 
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% XP2 ADAPTIVE TEST output xp2_2f 
 
Student = [[sam2f-[[makeCommon],[checkAndAdd],[]]]] 
 
Selected Node : 3 
Visited list : 
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct). 
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct). 
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), wrong). 
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), wrong). 
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), wrong). 
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), wrong). 
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), wrong). 
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), wrong). 
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong). 
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), wrong). 
 
Selected Node : 1 
Visited list : 
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct). 
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct). 
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), wrong). 
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), wrong). 
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), wrong). 
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), wrong). 
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), wrong). 
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), wrong). 
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong). 
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), wrong). 
visited(1, [c], q_c_1, fr(1/3,1/3), correct). 
visited(1, [c], q_c_2, fr(3/5,1/5), correct). 
 
Selected Node : 2 
Visited list : 
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct). 
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct). 
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), wrong). 
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), wrong). 
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), wrong). 
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), wrong). 
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), wrong). 
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), wrong). 
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong). 
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), wrong). 
visited(1, [c], q_c_1, fr(1/3,1/3), correct). 
visited(1, [c], q_c_2, fr(3/5,1/5), correct). 
visited(2, [b,c], q_bc_1, fr(1/2,1/5), correct). 
visited(2, [b,c], q_bc_2, fr(1/3,1/5), correct). 
visited(2, [c,d], q_cd_1, fr(4/9,2/9), wrong). 
visited(2, [c,d], q_cd_2, fr(12/64,4/64), wrong). 
visited(2, [c,e], q_ce_1, fr(5/7,6/7), wrong). 
visited(2, [c,e], q_ce_2, fr(4/7,8/7), wrong). 
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% Summary - XP2 ADAPTIVE TEST output  
problems_presented(18,68). 
opportunities_presented([(a,2),(b,6),(c,18),(d,8),(e,8),(f,2)]). 
opportunities_correctly_applied([(a,2),(b,2),(c,6),(d,0),(e,2),(f,0)]). 
 
 
% XP2 ADAPTIVE TEST output xp2_3a 
 
Student = [[sam3a-[[makeVulgar,makeCommon],[checkAndAdd],[malCancel,makeProper,makeWhole]]]] 
 
Selected Node : 3 
Visited list : 
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct). 
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct). 
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), wrong). 
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), wrong). 
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct). 
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct). 
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), wrong). 
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), wrong). 
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong). 
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), wrong). 
 
Selected Node : 1 
Visited list : 
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct). 
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct). 
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), wrong). 
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), wrong). 
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct). 
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct). 
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), wrong). 
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), wrong). 
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong). 
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), wrong). 
visited(1, [c], q_c_1, fr(1/3,1/3), correct). 
visited(1, [c], q_c_2, fr(3/5,1/5), correct). 
 
Selected Node : 2 
Visited list : 
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct). 
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct). 
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), wrong). 
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), wrong). 
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct). 
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct). 
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), wrong). 
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), wrong). 
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong). 
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), wrong). 
visited(1, [c], q_c_1, fr(1/3,1/3), correct). 
visited(1, [c], q_c_2, fr(3/5,1/5), correct). 
visited(2, [b,c], q_bc_1, fr(1/2,1/5), correct). 
visited(2, [b,c], q_bc_2, fr(1/3,1/5), correct). 
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visited(2, [c,d], q_cd_1, fr(4/9,2/9), wrong). 
visited(2, [c,d], q_cd_2, fr(12/64,4/64), correct). 
visited(2, [c,e], q_ce_1, fr(5/7,6/7), correct). 
visited(2, [c,e], q_ce_2, fr(4/7,8/7), correct). 
 
% Summary - XP2 ADAPTIVE TEST output  
problems_presented(18,68). 
opportunities_presented([(a,2),(b,6),(c,18),(d,8),(e,8),(f,2)]). 
opportunities_correctly_applied([(a,2),(b,4),(c,11),(d,1),(e,6),(f,0)]). 
 
 
% XP2 ADAPTIVE TEST output xp2_4a 
 
Student = [[sam4a-[[makeCommon],[checkAndAdd],[]]]] 
 
Selected Node : 3 
Visited list : 
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct). 
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct). 
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct). 
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), correct). 
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct). 
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct). 
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct). 
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), correct). 
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), correct). 
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), correct). 
 
Selected Node : 5 
Visited list : 
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct). 
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct). 
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct). 
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), correct). 
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct). 
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct). 
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct). 
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), correct). 
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), correct). 
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), correct). 
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct). 
visited(5, [a,b,c,d,e], q_abcde_2, fr(1/4,2:1/12), correct). 
 
Selected Node : 6 
Visited list : 
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct). 
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct). 
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct). 
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), correct). 
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct). 
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct). 
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct). 
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), correct). 
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), correct). 
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visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), correct). 
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct). 
visited(5, [a,b,c,d,e], q_abcde_2, fr(1/4,2:1/12), correct). 
 
% Summary - XP2 ADAPTIVE TEST output  
problems_presented(12,68). 
opportunities_presented([(a,4),(b,6),(c,12),(d,8),(e,8),(f,2)]). 
opportunities_correctly_applied([(a,4),(b,6),(c,12),(d,8),(e,8),(f,2)]). 
 
 
% XP2 ADAPTIVE TEST output xp2_5a 
  
Student = [[sam5a-[[makeVulgar,makeCommon],[checkAndAdd],[cancel,makeProper,makeWhole]]]] 
 
Selected Node : 3 
Visited list : 
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), wrong). 
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct). 
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct). 
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), correct). 
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), wrong). 
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct). 
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct). 
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), correct). 
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), correct). 
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), correct). 
 
Selected Node : 5 
Visited list : 
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), wrong). 
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct). 
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct). 
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), correct). 
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), wrong). 
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct). 
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct). 
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), correct). 
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), correct). 
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), correct). 
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct). 
visited(5, [a,b,c,d,e], q_abcde_2, fr(1/4,2:1/12), correct). 
 
Selected Node : 6 
Visited list : 
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), wrong). 
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct). 
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct). 
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), correct). 
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), wrong). 
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct). 
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct). 
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), correct). 
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), correct). 
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), correct). 
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visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct). 
visited(5, [a,b,c,d,e], q_abcde_2, fr(1/4,2:1/12), correct). 
 
% Summary - XP2 ADAPTIVE TEST output  
problems_presented(12,68). 
opportunities_presented([(a,4),(b,6),(c,12),(d,8),(e,8),(f,2)]). 
opportunities_correctly_applied([(a,3),(b,5),(c,10),(d,8),(e,6),(f,2)]). 
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Appendix N. Running XP3 Adaptive Test 

This appendix contains the results from running XP3 for a selected list of simulated students, as 
described in Section 6.8.  The following legend to represent the different skills:  
 
a makeVulgar 
b makeCommon 
c checkAndAdd 
d cancel 
e makeProper 
f makeWhole 
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% XP3 ADAPTIVE TEST output xp3_1a 
 
Student = [[sam1a-[[makeVulgar,makeCommon],[checkAndAdd],[cancel,makeProper,makeWhole]]]] 
 
Selected Node : 3 
Visited list : 
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct). 
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct). 
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct). 
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), correct). 
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct). 
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct). 
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct). 
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), correct). 
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), correct). 
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), correct). 
 
Selected Node : 5 
Visited list : 
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct). 
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct). 
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct). 
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), correct). 
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct). 
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct). 
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct). 
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), correct). 
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), correct). 
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), correct). 
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct). 
visited(5, [a,b,c,d,e], q_abcde_2, fr(1/4,2:1/12), correct). 
 
Selected Node : 6 
Visited list : 
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct). 
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct). 
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct). 
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), correct). 
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct). 
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct). 
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct). 
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), correct). 
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), correct). 
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), correct). 
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct). 
visited(5, [a,b,c,d,e], q_abcde_2, fr(1/4,2:1/12), correct). 
 
% Summary - XP3 ADAPTIVE TEST output xp3_1a 
problems_presented(12,68). 
opportunities_presented([(a,4),(b,6),(c,12),(d,8),(e,8),(f,2)]). 
opportunities_correctly_applied([(a,4),(b,6),(c,12),(d,8),(e,8),(f,2)]). 
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% XP3 ADAPTIVE TEST output xp3_2e 
  
Student = [[sam2e-[[makeVulgar,makeCommon],[checkAndAdd],[cancel,makeProper]]]] 
 
Selected Node : 3 
Visited list : 
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct). 
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct). 
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct). 
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), correct). 
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct). 
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct). 
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct). 
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), correct). 
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong). 
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), wrong). 
 
Selected Node : 5 
Visited list : 
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct). 
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct). 
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct). 
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), correct). 
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct). 
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct). 
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct). 
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), correct). 
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong). 
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), wrong). 
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct). 
visited(5, [a,b,c,d,e], q_abcde_2, fr(1/4,2:1/12), correct). 
 
Selected Node : 6 
Visited list : 
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct). 
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct). 
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct). 
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), correct). 
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct). 
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct). 
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct). 
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), correct). 
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong). 
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), wrong). 
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct). 
visited(5, [a,b,c,d,e], q_abcde_2, fr(1/4,2:1/12), correct). 
 
% Summary - XP3 ADAPTIVE TEST output xp3_2e 
problems_presented(12,68). 
opportunities_presented([(a,4),(b,6),(c,12),(d,8),(e,8),(f,2)]). 
opportunities_correctly_applied([(a,4),(b,6),(c,10),(d,6),(e,8),(f,0)]). 
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% XP3 ADAPTIVE TEST output xp3_2f 
 
Student = [[sam2f-[[makeCommon],[checkAndAdd],[]]]] 
 
 
Selected Node : 3 
Visited list : 
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct). 
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct). 
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), wrong). 
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), wrong). 
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), wrong). 
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), wrong). 
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), wrong). 
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), wrong). 
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong). 
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), wrong). 
 
Selected Node : 1 
Visited list : 
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct). 
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct). 
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), wrong). 
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), wrong). 
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), wrong). 
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), wrong). 
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), wrong). 
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), wrong). 
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong). 
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), wrong). 
visited(1, [c], q_c_1, fr(1/3,1/3), correct). 
visited(1, [c], q_c_2, fr(3/5,1/5), correct). 
 
Selected Node : 2 
Visited list : 
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct). 
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct). 
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), wrong). 
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), wrong). 
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), wrong). 
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), wrong). 
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), wrong). 
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), wrong). 
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong). 
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), wrong). 
visited(1, [c], q_c_1, fr(1/3,1/3), correct). 
visited(1, [c], q_c_2, fr(3/5,1/5), correct). 
visited(2, [b,c], q_bc_1, fr(1/2,1/5), correct). 
visited(2, [b,c], q_bc_2, fr(1/3,1/5), correct). 
visited(2, [c,d], q_cd_1, fr(4/9,2/9), wrong). 
visited(2, [c,d], q_cd_2, fr(12/64,4/64), wrong). 
visited(2, [c,e], q_ce_1, fr(5/7,6/7), wrong). 
visited(2, [c,e], q_ce_2, fr(4/7,8/7), wrong). 
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% Summary - XP3 ADAPTIVE TEST output xp3_2f 
problems_presented(18,68). 
opportunities_presented([(a,2),(b,6),(c,18),(d,8),(e,8),(f,2)]). 
opportunities_correctly_applied([(a,2),(b,2),(c,6),(d,0),(e,2),(f,0)]). 
 
 
% XP3 ADAPTIVE TEST output xp3_3a 
  
Student = [[sam3a-[[makeVulgar,makeCommon],[checkAndAdd],[malCancel,makeProper,makeWhole]]]] 
 
Selected Node : 3 
Visited list : 
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct). 
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct). 
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), wrong). 
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), wrong). 
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct). 
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct). 
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), wrong). 
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), wrong). 
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong). 
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), wrong). 
 
Selected Node : 1 
Visited list : 
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct). 
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct). 
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), wrong). 
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), wrong). 
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct). 
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct). 
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), wrong). 
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), wrong). 
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong). 
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), wrong). 
visited(1, [c], q_c_1, fr(1/3,1/3), correct). 
visited(1, [c], q_c_2, fr(3/5,1/5), correct). 
 
Selected Node : 2 
Visited list : 
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct). 
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct). 
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), wrong). 
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), wrong). 
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct). 
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct). 
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), wrong). 
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), wrong). 
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong). 
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), wrong). 
visited(1, [c], q_c_1, fr(1/3,1/3), correct). 
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visited(1, [c], q_c_2, fr(3/5,1/5), correct). 
visited(2, [b,c], q_bc_1, fr(1/2,1/5), correct). 
visited(2, [b,c], q_bc_2, fr(1/3,1/5), correct). 
visited(2, [c,d], q_cd_1, fr(4/9,2/9), wrong). 
visited(2, [c,d], q_cd_2, fr(12/64,4/64), correct). 
visited(2, [c,e], q_ce_1, fr(5/7,6/7), correct). 
visited(2, [c,e], q_ce_2, fr(4/7,8/7), correct). 
 
% Summary - XP3 ADAPTIVE TEST output xp3_3a 
problems_presented(18,68). 
opportunities_presented([(a,2),(b,6),(c,18),(d,8),(e,8),(f,2)]). 
opportunities_correctly_applied([(a,2),(b,4),(c,11),(d,1),(e,6),(f,0)]). 
 
 
% XP3 ADAPTIVE TEST output xp3_4a 
  
Student = [[sam4a-[[makeCommon],[checkAndAdd],[]]]] 
 
Selected Node : 3 
Visited list : 
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct). 
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct). 
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct). 
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), correct). 
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct). 
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct). 
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct). 
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), correct). 
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), correct). 
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), correct). 
 
Selected Node : 5 
Visited list : 
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct). 
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct). 
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct). 
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), correct). 
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct). 
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct). 
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct). 
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), correct). 
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), correct). 
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), correct). 
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct). 
visited(5, [a,b,c,d,e], q_abcde_2, fr(1/4,2:1/12), correct). 
 
Selected Node : 6 
Visited list : 
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct). 
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct). 
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct). 
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), correct). 
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct). 
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct). 
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visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct). 
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), correct). 
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), correct). 
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), correct). 
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct). 
visited(5, [a,b,c,d,e], q_abcde_2, fr(1/4,2:1/12), correct). 
 
 
% Summary - XP3 ADAPTIVE TEST output xp3_4a 
problems_presented(12,68). 
opportunities_presented([(a,4),(b,6),(c,12),(d,8),(e,8),(f,2)]). 
opportunities_correctly_applied([(a,4),(b,6),(c,12),(d,8),(e,8),(f,2)]). 
 
 
% XP3 ADAPTIVE TEST output xp3_5a 
  
Student = [[sam5a-[[makeVulgar,makeCommon],[checkAndAdd],[cancel,makeProper,makeWhole]]]] 
 
Selected Node : 3 
Visited list : 
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), wrong). 
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct). 
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct). 
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), correct). 
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), wrong). 
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct). 
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct). 
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), correct). 
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), correct). 
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), correct). 
 
Selected Node : 5 
Visited list : 
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), wrong). 
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct). 
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct). 
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), correct). 
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), wrong). 
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct). 
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct). 
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), correct). 
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), correct). 
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), correct). 
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct). 
visited(5, [a,b,c,d,e], q_abcde_2, fr(1/4,2:1/12), correct). 
 
Selected Node : 6 
Visited list : 
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), wrong). 
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct). 
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct). 
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), correct). 
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), wrong). 
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct). 
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visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct). 
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), correct). 
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), correct). 
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), correct). 
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct). 
visited(5, [a,b,c,d,e], q_abcde_2, fr(1/4,2:1/12), correct). 
 
% Summary - XP3 ADAPTIVE TEST output xp3_5a 
problems_presented(12,68). 
opportunities_presented([(a,4),(b,6),(c,12),(d,8),(e,8),(f,2)]). 
opportunities_correctly_applied([(a,3),(b,5),(c,10),(d,8),(e,6),(f,2)]). 
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Appendix O.  Tabulated Results of Different Students 

This appendix contains the tabulated results of running different assessors for a selected list of 
simulated students, as discussed in Chapter 9.  The assessors are XP, ST, XP1, XP2 and XP3.  The 
table identifier is given at the top left hand corner of each table.  For example ‘XP_1a’ means the 
tabulated results of running XP for simulated student sam1a.  The shaded skills are the skills 
mastered by the student and instantiated during the creation of each simulated student (see Section 
6.3). 
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Table XP _1a       

Skills Total no.of 
opportunities 

No. of 
opportunities 

presented 

No. of 
opportunities 

correctly 
applied 

No. of 
opportunities 

wrongly 
applied 

Accuracy 
on 

mastered 
skill 

Accuracy 
on 

unmastered 
skill 

a. makeVulgar 14 4 4 0 1.00 - 
b. makeCommon 37 4 4 0 1.00 - 
c. checkAndAdd 68 7 7 0 1.00 - 
d. cancel 44 5 5 0 1.00 - 
e. makeProper 45 6 6 0 1.00 - 
f.  makeWhole 11 3 3 0 1.00 - 

Total: 219 29 29 0     
Average:     1.00 - 

       
Table XP_2e       

Skills Total no.of 
opportunities 

No. of 
opportunities 

presented 

No. of 
opportunities 

correctly 
applied 

No. of 
opportunities 

wrongly 
applied 

Accuracy 
on 

mastered 
skill 

Accuracy 
on 

unmastered 
skill 

a. makeVulgar 14 4 3 1 0.75 - 
b. makeCommon 37 5 4 1 0.80 - 
c. checkAndAdd 68 11 7 4 0.64 - 
d. cancel 44 7 4 3 0.57 - 
e. makeProper 45 8 6 2 0.75 - 
f.  makeWhole 11 4 0 4 - 1.00 

Total: 219 39 24 15     
Average:     0.70 1.00 

       
Table XP_2f       

Skills Total no.of 
opportunities 

No. of 
opportunities 

presented 

No. of 
opportunities 

correctly 
applied 

No. of 
opportunities 

wrongly 
applied 

Accuracy 
on 

mastered 
skill 

Accuracy 
on 

unmastered 
skill 

a. makeVulgar 14 4 1 3 - 0.75 
b. makeCommon 37 6 1 5 0.17 - 
c. checkAndAdd 68 15 3 12 0.20 - 
d. cancel 44 8 0 8 - 1.00 
e. makeProper 45 9 1 8 - 0.89 
f.  makeWhole 11 4 0 4 - 1.00 

Total: 219 46 6 40     
Average:     0.18 0.91 
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Table XP_3a       

Skills Total no.of 
opportunities 

No. of 
opportunities 

presented 

No. of 
opportunities 

correctly 
applied 

No. of 
opportunities 

wrongly 
applied 

Accuracy 
on 

mastered 
skill 

Accuracy 
on 

unmastered 
skill 

a. makeVulgar 14 4 2 2 0.50 - 
b. makeCommon 37 6 3 3 0.50 - 
c. checkAndAdd 68 14 5 9 0.36 - 
d. cancel 44 8 0 8 - 1.00 
e. makeProper 45 9 4 5 0.44 - 
f.  makeWhole 11 4 0 4 0.00 - 

Total: 219 45 14 31     
Average:     0.36 1.00 

       
Table XP_4a       

Skills Total no.of 
opportunities 

No. of 
opportunities 

presented 

No. of 
opportunities 

correctly 
applied 

No. of 
opportunities 

wrongly 
applied 

Accuracy 
on 

mastered 
skill 

Accuracy 
on 

unmastered 
skill 

a. makeVulgar 14 4 4 0 - 0.00 
b. makeCommon 37 4 4 0 1.00 - 
c. checkAndAdd 68 7 7 0 1.00 - 
d. cancel 44 5 5 0 - 0.00 
e. makeProper 45 6 6 0 - 0.00 
f.  makeWhole 11 3 3 0 - 0.00 

Total: 219 29 29 0     
Average:     1.00 0.00 

       
Table XP_5a       

Skills Total no.of 
opportunities 

No. of 
opportunities 

presented 

No. of 
opportunities 

correctly 
applied 

No. of 
opportunities 

wrongly 
applied 

Accuracy 
on 

mastered 
skill 

Accuracy 
on 

unmastered 
skill 

a. makeVulgar 14 4 4 0 1.00 - 
b. makeCommon 37 4 4 0 1.00 - 
c. checkAndAdd 68 7 7 0 1.00 - 
d. cancel 44 5 5 0 1.00 - 
e. makeProper 45 6 6 0 1.00 - 
f.  makeWhole 11 3 3 0 1.00 - 

Total: 219 29 29 0     
Average:     1.00 - 
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Table XP1_1a     

Skills Total no.of 
opportunities 

No. of 
opportunities 

presented 

No. of 
opportunities 

correctly 
applied 

No. of 
opportunities 

wrongly 
applied 

Accuracy 
on 

mastered 
skill 

Accuracy 
on 

unmastered 
skill 

a. makeVulgar 14 8 8 0 1.00 - 
b. makeCommon 37 8 8 0 1.00 - 
c. checkAndAdd 68 14 14 0 1.00 - 
d. cancel 44 10 10 0 1.00 - 
e. makeProper 45 12 12 0 1.00 - 
f.  makeWhole 11 6 6 0 1.00 - 

Total: 219 58 58 0     
Average:     1.00 - 

      
Table XP2_2e      

Skills Total no.of 
opportunities 

No. of 
opportunities 

presented 

No. of 
opportunities 

correctly 
applied 

No. of 
opportunities 

wrongly 
applied 

Accuracy 
on 

mastered 
skill 

Accuracy 
on 

unmastered 
skill 

a. makeVulgar 14 8 6 2 0.75 - 
b. makeCommon 37 10 8 2 0.80 - 
c. checkAndAdd 68 22 14 8 0.64 - 
d. cancel 44 14 8 6 0.57 - 
e. makeProper 45 16 12 4 0.75 - 
f.  makeWhole 11 8 0 8 - 1.00 

Total: 219 78 48 30     
Average:     0.70 1.00 

      
Table XP1_2f       

Skills Total no.of 
opportunities 

No. of 
opportunities 

presented 

No. of 
opportunities 

correctly 
applied 

No. of 
opportunities 

wrongly 
applied 

Accuracy 
on 

mastered 
skill 

Accuracy 
on 

unmastered 
skill 

a. makeVulgar 14 8 2 6 - 0.75 
b. makeCommon 37 12 2 10 0.17 - 
c. checkAndAdd 68 30 6 24 0.20 - 
d. cancel 44 16 0 16 - 1.00 
e. makeProper 45 18 2 16 - 0.89 
f.  makeWhole 11 8 0 8 - 1.00 

Total: 219 92 12 80     
Average:     0.18 0.91 
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Table XP1_3a       

Skills Total no.of 
opportunities 

No. of 
opportunities 

presented 

No. of 
opportunities 

correctly 
applied 

No. of 
opportunities 

wrongly 
applied 

Accuracy 
on 

mastered 
skill 

Accuracy 
on 

unmastered 
skill 

a. makeVulgar 14 8 4 4 0.50 - 
b. makeCommon 37 12 6 6 0.50 - 
c. checkAndAdd 68 28 11 17 0.39 - 
d. cancel 44 16 1 15 - 0.94 
e. makeProper 45 18 8 10 0.44 - 
f.  makeWhole 11 8 0 8 0.00 - 

Total: 219 90 30 60     
Average:     0.37 0.94 

 
Table XP1_4a      

Skills Total no.of 
opportunities 

No. of 
opportunities 

presented 

No. of 
opportunities 

correctly 
applied 

No. of 
opportunities 

wrongly 
applied 

Accuracy 
on 

mastered 
skill 

Accuracy 
on 

unmastered 
skill 

a. makeVulgar 14 8 8 0 - 0.00 
b. makeCommon 37 8 8 0 1.00 - 
c. checkAndAdd 68 14 14 0 1.00 - 
d. cancel 44 10 10 0 - 0.00 
e. makeProper 45 12 12 0 - 0.00 
f.  makeWhole 11 6 6 0 - 0.00 

Total: 219 58 58 0     
Average:     1.00 0.00 

      
Table XP1_5a      

Skills Total no.of 
opportunities 

No. of 
opportunities 

presented 

No. of 
opportunities 

correctly 
applied 

No. of 
opportunities 

wrongly 
applied 

Accuracy 
on 

mastered 
skill 

Accuracy 
on 

unmastered 
skill 

a. makeVulgar 14 8 8 0 1.00 - 
b. makeCommon 37 8 8 0 1.00 - 
c. checkAndAdd 68 14 14 0 1.00 - 
d. cancel 44 10 10 0 1.00 - 
e. makeProper 45 12 12 0 1.00 - 
f.  makeWhole 11 6 6 0 1.00 - 

Total: 219 58 58 0     
Average:     1.00 - 
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Table XP2_1a      

Skills Total no.of 
opportunities 

No. of 
opportunities 

presented 

No. of 
opportunities 

correctly 
applied 

No. of 
opportunities 

wrongly 
applied 

Accuracy 
on 

mastered 
skill 

Accuracy on 
unmastered 

skill 

a. makeVulgar 14 4 4 0 1.00 - 
b. makeCommon 37 6 6 0 1.00 - 
c. checkAndAdd 68 12 12 0 1.00 - 
d. cancel 44 8 8 0 1.00 - 
e. makeProper 45 8 8 0 1.00 - 
f.  makeWhole 11 2 2 0 1.00 - 

Total: 219 40 40 0     
Average:     1.00 - 

       
Table XP2_2e       

Skills Total no.of 
opportunities 

No. of 
opportunities 

presented 

No. of 
opportunities 

correctly 
applied 

No. of 
opportunities 

wrongly 
applied 

Accuracy 
on 

mastered 
skill 

Accuracy on 
unmastered 

skill 

a. makeVulgar 14 4 4 0 1.00 - 
b. makeCommon 37 6 6 0 1.00 - 
c. checkAndAdd 68 12 10 2 0.83 - 
d. cancel 44 8 6 2 0.75 - 
e. makeProper 45 8 8 0 1.00 - 
f.  makeWhole 11 2 0 2 - 1.00 

Total: 219 40 34 6     
Average:     0.92 1.00 

      
 
Table XP2_2f       

Skills Total no.of 
opportunities 

No. of 
opportunities 

presented 

No. of 
opportunities 

correctly 
applied 

No. of 
opportunities 

wrongly 
applied 

Accuracy 
on 

mastered 
skill 

Accuracy 
on 

unmastered 
skill 

a. makeVulgar 14 2 2 0 - 0.00 
b. makeCommon 37 6 2 4 0.33 - 
c. checkAndAdd 68 18 6 12 0.33 - 
d. cancel 44 8 0 8 - 1.00 
e. makeProper 45 8 2 6 - 0.75 
f.  makeWhole 11 2 0 2 - 1.00 

Total: 219 44 12 32     
Average:     0.33 0.69 
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Table XP2_3a       

Skills Total no.of 
opportunities 

No. of 
opportunities 

presented 

No. of 
opportunities 

correctly 
applied 

No. of 
opportunities 

wrongly 
applied 

Accuracy 
on 

mastered 
skill 

Accuracy 
on 

unmastered 
skill 

a. makeVulgar 14 2 2 0 1.00 - 
b. makeCommon 37 6 4 2 0.67 - 
c. checkAndAdd 68 18 11 7 0.61 - 
d. cancel 44 8 1 7 - 0.88 
e. makeProper 45 8 6 2 0.75 - 
f.  makeWhole 11 2 0 2 0.00 - 

Total: 219 44 24 20     
Average:     0.61 0.88 

       
Table XP2_4a       

Skills Total no.of 
opportunities 

No. of 
opportunities 

presented 

No. of 
opportunities 

correctly 
applied 

No. of 
opportunities 

wrongly 
applied 

Accuracy 
on 

mastered 
skill 

Accuracy 
on 

unmastered 
skill 

a. makeVulgar 14 4 4 0 - 0.00 
b. makeCommon 37 6 6 0 1.00 - 
c. checkAndAdd 68 12 12 0 1.00 - 
d. cancel 44 8 8 0 - 0.00 
e. makeProper 45 8 8 0 - 0.00 
f.  makeWhole 11 2 2 0 - 0.00 

Total: 219 40 40 0     
Average:     1.00 0.00 

       
Table XP2_5a       

Skills Total no.of 
opportunities 

No. of 
opportunities 

presented 

No. of 
opportunities 

correctly 
applied 

No. of 
opportunities 

wrongly 
applied 

Accuracy 
on 

mastered 
skill 

Accuracy 
on 

unmastered 
skill 

a. makeVulgar 14 4 3 1 0.75 - 
b. makeCommon 37 6 5 1 0.83 - 
c. checkAndAdd 68 12 10 2 0.83 - 
d. cancel 44 8 8 0 1.00 - 
e. makeProper 45 8 6 2 0.75 - 
f.  makeWhole 11 2 2 0 1.00 - 

Total: 219 40 34 6     
Average:     0.86 - 
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Table XP3_1a      

Skills Total no.of 
opportunities 

No. of 
opportunities 

presented 

No. of 
opportunities 

correctly 
applied 

No. of 
opportunities 

wrongly 
applied 

Accuracy 
on 

mastered 
skill 

Accuracy 
on 

unmastered 
skill 

a. makeVulgar 14 4 4 0 1.00 - 
b. makeCommon 37 6 6 0 1.00 - 
c. checkAndAdd 68 12 12 0 1.00 - 
d. cancel 44 8 8 0 1.00 - 
e. makeProper 45 8 8 0 1.00 - 
f.  makeWhole 11 2 2 0 1.00 - 

Total: 219 40 40 0     
Average:     1.00 - 

      
Table XP3_2e      

Skills Total no.of 
opportunities 

No. of 
opportunities 

presented 

No. of 
opportunities 

correctly 
applied 

No. of 
opportunities 

wrongly 
applied 

Accuracy 
on 

mastered 
skill 

Accuracy 
on 

unmastered 
skill 

a. makeVulgar 14 4 4 0 1.00 - 
b. makeCommon 37 6 6 0 1.00 - 
c. checkAndAdd 68 12 10 2 0.83 - 
d. cancel 44 8 6 2 0.75 - 
e. makeProper 45 8 8 0 1.00 - 
f.  makeWhole 11 2 0 2 - 1.00 

Total: 219 40 34 6     
Average:     0.92 1.00 

      
Table XP3_2f      

Skills Total no.of 
opportunities 

No. of 
opportunities 

presented 

No. of 
opportunities 

correctly 
applied 

No. of 
opportunities 

wrongly 
applied 

Accuracy 
on 

mastered 
skill 

Accuracy 
on 

unmastered 
skill 

a. makeVulgar 14 2 2 0 - 0.00 
b. makeCommon 37 6 2 4 0.33 - 
c. checkAndAdd 68 18 6 12 0.33 - 
d. cancel 44 8 0 8 - 1.00 
e. makeProper 45 8 2 6 - 0.75 
f.  makeWhole 11 2 0 2 - 1.00 

Total: 219 44 12 32     
Average:     0.33 0.69 
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Table XP3_3a      

Skills Total no.of 
opportunities 

No. of 
opportunities 

presented 

No. of 
opportunities 

correctly 
applied 

No. of 
opportunities 

wrongly 
applied 

Accuracy 
on 

mastered 
skill 

Accuracy 
on 

unmastered 
skill 

a. makeVulgar 14 2 2 0 1.00 - 
b. makeCommon 37 6 4 2 0.67 - 
c. checkAndAdd 68 18 11 7 0.61 - 
d. cancel 44 8 1 7 - 0.88 
e. makeProper 45 8 6 2 0.75 - 
f.  makeWhole 11 2 0 2 0.00 - 

Total: 219 44 24 20     
Average:     0.61 0.88 

      
Table XP3_4a      

Skills Total no.of 
opportunities 

No. of 
opportunities 

presented 

No. of 
opportunities 

correctly 
applied 

No. of 
opportunities 

wrongly 
applied 

Accuracy 
on 

mastered 
skill 

Accuracy 
on 

unmastered 
skill 

a. makeVulgar 14 4 4 0 - 0.00 
b. makeCommon 37 6 6 0 1.00 - 
c. checkAndAdd 68 12 12 0 1.00 - 
d. cancel 44 8 8 0 - 0.00 
e. makeProper 45 8 8 0 - 0.00 
f.  makeWhole 11 2 2 0 - 0.00 

Total: 219 40 40 0     
Average:     1.00 0.00 

      
Table XP3_5a       

Skills Total no.of 
opportunities 

No. of 
opportunities 

presented 

No. of 
opportunities 

correctly 
applied 

No. of 
opportunities 

wrongly 
applied 

Accuracy 
on 

mastered 
skill 

Accuracy 
on 

unmastered 
skill 

a. makeVulgar 14 4 3 1 0.75 - 
b. 
makeCommon 

37 6 5 1 0.83 - 

c. checkAndAdd 68 12 10 2 0.83 - 
d. cancel 44 8 8 0 1.00 - 
e. makeProper 45 8 6 2 0.75 - 
f.  makeWhole 11 2 2 0 1.00 - 

Total: 219 40 34 6     
Average:     0.86 - 
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Table ST_1a   

Skills Total no.of 
opportunities 

No. of 
opportunities 

presented 

No. of 
opportunities 

correctly 
applied 

No. of 
opportunities 

wrongly 
applied 

Accuracy 
on 

mastered 
skill 

Accuracy 
on 

unmastered 
skill 

a. makeVulgar 14 14 14 0 1.00 - 
b. makeCommon 37 37 37 0 1.00 - 
c. checkAndAdd 68 68 68 0 1.00 - 
d. cancel 44 44 44 0 1.00 - 
e. makeProper 45 45 45 0 1.00 - 
f.  makeWhole 11 11 11 0 1.00 - 

Total: 219 219 219 0     
Average:     1.00 - 

    
Table ST_2e     

Skills Total no.of 
opportunities 

No. of 
opportunities 

presented 

No. of 
opportunities 

correctly 
applied 

No. of 
opportunities 

wrongly 
applied 

Accuracy 
on 

mastered 
skill 

Accuracy 
on 

unmastered 
skill 

a. makeVulgar 14 14 12 2 0.86 - 
b. makeCommon 37 37 35 2 0.95 - 
c. checkAndAdd 68 68 57 11 0.84 - 
d. cancel 44 44 33 11 0.75 - 
e. makeProper 45 45 41 4 0.91 - 
f.  makeWhole 11 11 0 11 - 1.00 

Total: 219 219 178 41     
Average:     0.86 1.00 

    
Table ST_2f     

Skills Total no.of 
opportunities 

No. of 
opportunities 

presented 

No. of 
opportunities 

correctly 
applied 

No. of 
opportunities 

wrongly 
applied 

Accuracy 
on 

mastered 
skill 

Accuracy 
on 

unmastered 
skill 

a. makeVulgar 14 14 4 10 - 0.71 
b. makeCommon 37 37 3 34 0.08 - 
c. checkAndAdd 68 68 8 60 0.12 - 
d. cancel 44 44 0 44 - 1.00 
e. makeProper 45 45 4 41 - 0.91 
f.  makeWhole 11 11 0 11 - 1.00 

Total: 219 219 19 200     
Average:     0.10 0.91 
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Table ST_3a     

Skills Total no.of 
opportunities 

No. of 
opportunities 

presented 

No. of 
opportunities 

correctly 
applied 

No. of 
opportunities 

wrongly 
applied 

Accuracy 
on 

mastered 
skill 

Accuracy on 
unmastered 

skill 

a. makeVulgar 14 14 6 8 0.43 - 
b. makeCommon 37 37 13 24 0.35 - 
c. checkAndAdd 68 68 25 43 0.37 - 
d. cancel 44 44 1 43 - 0.98 
e. makeProper 45 45 20 25 0.44 - 
f.  makeWhole 11 11 0 11 0.00 - 

Total: 219 219 65 154     
Average:     0.32 0.98 

       
Table ST_4a     

Skills Total no.of 
opportunities 

No. of 
opportunities 

presented 

No. of 
opportunities 

correctly 
applied 

No. of 
opportunities 

wrongly 
applied 

Accuracy 
on 

mastered 
skill 

Accuracy 
on 

unmastered 
skill 

a. makeVulgar 14 14 12 2 - 0.14 
b. makeCommon 37 37 15 22 0.41 - 
c. checkAndAdd 68 68 34 34 0.50 - 
d. cancel 44 44 20 24 - 0.55 
e. makeProper 45 45 22 23 - 0.51 
f.  makeWhole 11 11 8 3 - 0.27 

Total: 219 219 111 108     
Average:     0.45 0.37 

    
Table ST_5a     

Skills Total no.of 
opportunities 

No. of 
opportunities 

presented 

No. of 
opportunities 

correctly 
applied 

No. of 
opportunities 

wrongly 
applied 

Accuracy 
on 

mastered 
skill 

Accuracy 
on 

unmastered 
skill 

a. makeVulgar 14 14 13 1 0.93 - 
b. makeCommon 37 37 36 1 0.97 - 
c. checkAndAdd 68 68 63 5 0.93 - 
d. cancel 44 44 43 1 0.98 - 
e. makeProper 45 45 42 3 0.93 - 
f.  makeWhole 11 11 11 0 1.00 - 

Total: 219 219 208 11     
Average:     0.96 - 
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Appendix P.  Summary of Performance of Assessors 

A summary of results from running all five assessors – XP, ST, XP1, XP2 and XP3 – for different 
types of simulated students is given in the following table.   
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  Skills Presented Skills Correctly Assessed Accuracy in Assessment 

  Mastered Unmastered Total Mastered Unmastered Total Mastered Unmastered Overall 

ST 1752 0 1752 1506 - 1506 0.86 - 0.86 

XP 292 0 292 202 - 202 0.69 - 0.69 

XP1 584 0 584 404 - 404 0.69 - 0.69 

XP2 320 0 320 284 - 284 0.89 - 0.89 

Sam1 

XP3 320 0 320 284 - 284 0.89 - 0.89 

ST 1049 265 1314 573 245 818 0.55 0.92 0.62 

XP 188 55 243 99 50 149 0.53 0.91 0.61 

XP1 376 110 486 198 100 298 0.53 0.91 0.61 

XP2 246 54 300 164 46 210 0.67 0.85 0.70 

Sam2 

XP3 208 48 256 150 40 190 0.72 0.83 0.74 

ST 735 360 1095 172 297 469 0.23 0.83 0.43 

XP 147 68 215 44 56 100 0.30 0.82 0.47 

XP1 294 136 430 89 111 200 0.30 0.82 0.47 

XP2 198 86 284 83 61 144 0.42 0.71 0.51 

Sam3 

XP3 122 74 196 55 49 104 0.45 0.66 0.53 

ST 672 423 1095 271 300 571 0.40 0.71 0.52 

XP 95 70 165 74 17 91 0.78 0.24 0.55 

XP1 210 154 364 121 73 194 0.58 0.47 0.53 

XP2 226 122 348 137 53 190 0.61 0.43 0.55 

Sam4 

XP3 140 76 216 104 28 132 0.74 0.37 0.61 

ST 862 14 876 738 4 742 0.86 0.29 0.85 

XP 138 4 142 76 2 78 0.55 0.50 0.55 

XP1 244 8 252 169 4 173 0.69 0.50 0.69 

XP2 246 10 256 182 4 186 0.74 0.40 0.73 

Sam5 

XP3 202 2 204 158 0 158 0.78 0.00 0.77 

Table 9.  Comparing Five Assessors for Five types of Simulated Students 
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Appendix Q.  List of Publications 

This appendix contains a list of publications of the author.    
 
a) Premodelling for Examination Revision through Adaptive Testing. Chua Abdullah, S. In 

Proceedings of the 3rd Human Centred Technology Postgraduate Workshop “Interacting 

through/with Technology: Increasing the Potential for Communicating and Learning?”, 

HCT'99, 30th September - 1st October 1999, Brighton, UK, organised by the University of 

Sussex, School of Cognitive and Computing Sciences.  
 
b) Using Constraints to Develop and Deliver Adaptive Tests. Chua Abdullah, S. and Cooley, R.E. 

In H. Cooper and S. Clowes, editors, Proceedings of the Fourth International Computer 

Assisted Assessment Conference, Loughborough University, UK, pages 93-101, June 2000.  
 
c) Modelling Human Testing Strategies: A Computer-Aided Approach to Knowledge Acquisition. 

Chua Abdullah, S. and Cooley, R.E.  In Proceedings of Workshop W1 on Modeling Human 

Teaching Tactics and Strategies, held as part of the Fifth International Conference on 

Intelligent Tutoring Systems, ITS'2000, Montréal, Canada, page 17, June 2000.  
 
d) The Use of Constraint Logic Programming in the Development of Adaptive Tests. Chua 

Abdullah, S. and Cooley, R.E. In G. Gauthier, C. Frasson and K. VanLehn, editors, Lecture 

Notes in Computer Science 1839, Proceedings of the Fifth International Conference on 

Intelligent Tutoring Systems, ITS 2000, Montréal, Canada, page 650. Springer-Verlag, June 

2000.  
 
e) Controlling Problem Progression in Adaptive Testing. Cooley, R.E. and Chua Abdullah, S. 

Proceedings of the International Conference on Computers in Education and the International 

Conference on Computer Assisted Instruction, ICCE/ICCAI 2000, Taiwan, November 2000.  
 
f) Using Simulated Students to Evaluate an Adaptive Testing System. Chua Abdullah, S. and 

Cooley, R.E. (2002).  Proceedings of the International Conference on Computers in Education, 

ICCE 2002, New Zealand, December 2002. 
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