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Abstract 
Distributed System design is a highly complicated and 

non-trivial task. The problem is characterised by the need 
to design multi-threaded, multi-processor, and multi-
media systems. Design frameworks such as Open 
Distributed Processing (ODP), the ITU/ISO standard, 
define a number of viewpoints from which the design of a 
distributed system should be approached. To use the 
framework, a design language for each of these 
viewpoints must be defined. This paper defines a 
computational viewpoint language based on the Unified 
Modelling Language (UML) and Component Quality 
Modelling Language (CQML). The use of this approach 
to provide the ODP viewpoint languages enables 
standard UML tools to be used as part of an ODP 
compliant design process; and in addition, it will 
potentially enable the use of Meta Object Facility (MOF) 
based generation tools for constructing tool support for 
our language. 

1. Introduction 

The formation of the ‘Global Grid Forum’ and the 
consequent interest in 

“research, development, deployment, and support 
activities related to high-capability distributed 
software systems” [1] 

reinforces the need for a significant improvement in the 
capabilities of tools and support environments for the 
development of distributed systems. The technologies of 
the internet, CORBA, web services, etc. provide the 
capability to build such systems. However, there is not the 
necessary level of support at the design stage to enable 
systems analysts and designers to manage the inherent 
complexity. 

The work contained in this paper forms part of a 
project – Design Support Environments for Distributed 
Systems (DSE4DS [2]), which aims to extend facilities 
for the design of multimedia distributed systems, to 
ensure that they can meet the needs of complex systems 
that include the use of stream communication, 
multicasting and Quality of Service (QoS) constraints. 
The work will augment the design environment with 
descriptions in sufficiently precise notations to enable 

assessments of designs to be made based on fitness for 
purpose, performance and functionality. 

As a basis for the definition of a distributed system, we 
target the definitions contained in the ITU/ISO standard 
framework for Open Distributed Processing (ODP). The 
telecommunications industry has long been investigating 
the problems of designing distributed systems and has 
standardised on a number of issues. The Reference Model 
for ODP (RM-ODP) [3] addresses the design of 
distributed systems; and related standards [4, 5] address 
specifically the issue of stream communication and the 
definition of the quality at which the computing system 
components provide their services – commonly known as 
Quality of Service (QoS). 

The work reported in this paper looks at enabling tool 
support for the design languages involved, in particular 
this paper describes a design method and language to 
support design within the computational viewpoint – one 
of the five viewpoints defined by the ODP standard, with 
the aim of using this as input to a tool generation suite. 

An aspect of our approach to the design of computing 
systems is to make use of the current common and best 
practises and tools that support the design of the types of 
distributed multimedia systems in which we are 
interested; this approach should result in widely 
understood specifications and gain us maximum support 
from existing design tools. 

Currently, the Unified Modelling Language (UML [6]) 
is by common practise a clear contender for the design 
language of choice. However, although having significant 
community and tool support, it does not provide a means 
to address some of the issues relevant to distribution and 
multimedia; to support the design of such systems we 
make use of the RM-ODP. The RM-ODP does not 
prescribe the use of any particular concrete notation; 
hence where appropriate we make use of notations taken 
from the UML, e.g. for the specification of behaviour we 
use the UML State Diagram [6] notation. 

We are aware that the definition of the UML is 
surrounded by arguments involving its ambiguity and lack 
of precision. Hence, we aim in this paper to provide an 
ODP Computational Viewpoint language that will be 
supported by tools that implement the UML language; 



 

however, the provided language must be well defined and 
based on the concepts from the RM-ODP specifications. 

We argue that by defining the ODP viewpoint 
languages in this manner, we gain three benefits: 

1. Tool support for the languages, by utilising the 
wide range of tool support given to the UML; 

2. Machine readable specifications, produced by the 
tools, in the UML standard XMI format, enabling 
further tools to be developed that read the design 
models, and give back appropriate feedback; 

3. Tool generation facilities, made possible due to the 
meta-modelling approach to language specification 
(see explanation of Kent Modelling  Framework 
(KMF) section 2.1). 

The Computational Viewpoint Language defined here 
builds on the work started in [7], taking the opportunity to 
introduce additional facility for modelling multicast 
features. The language draws on the notations used in [8] 
and the language defined in [9]. 

The rest of the paper is organised as follows. Section 2 
introduces ODP, describing in particular the concepts that 
are required in a computational viewpoint specification 
language. This section also describes the language 
definition architecture (i.e. a means to define our 
computational viewpoint language) we will use and 
introduces the definition of a concrete language for the 
Computational Viewpoint. Section 3 contains the 
specification of a Near Video on Demand system as an 
example to illustrate our method and language for 
computational viewpoint design and discusses the 
differences between our language and the UML. Section 4 
reviews related work and discusses tool support for our 
language, illustrating how tools can be used to provide 
support for the computational language. Section 7 
concludes the paper, including an indication of future 
work to be carried out in relation to that presented here. 

2. A Computational Viewpoint Language 

The ODP framework proposes a multi-paradigm 
specification approach for the design of distributed 
systems by identifying five separations of concern and 
addresses the design of the system from each. Different 
languages may be used for each separation of concern 
providing the benefit that the relative strengths of 
different specification languages can be exploited. In 
ODP terminology these five separations of concern are 
named viewpoints.  

The RM-ODP defines five viewpoints: enterprise, 
information, computational, engineering and technology; 
further information regarding both the reference model 
and its approach to using viewpoints can be found in [3, 
10, 11].  The language definition approach proposed in 
this paper is explored within the scope of the 
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Figure 1 - Architecture for a language 
definition 
computational viewpoint, although we believe it is also 
applicable to the other viewpoints. 

The computational viewpoint is concerned with the 
identification of distributable components (objects) and 
their interaction points (interfaces). The viewpoint 
addresses the specification of the behaviour of identified 
objects; the specification of the signatures of the 
interfaces through which they interact; the specification of 
templates from which such components can be 
instantiated; and the specification of any constraints under 
which the objects must operate. The mechanism by which 
distributed communication is achieved is not addressed in 
this viewpoint (that is part of the purpose of the 
engineering viewpoint), i.e. distribution transparency is 
assumed. 

Part 3 of the RM-ODP [3] defines the concepts and 
structuring rules that define an ‘abstract’ language for 
each of the viewpoints. The definitions must be 
considered abstract, as there is no defined (concrete) 
syntax specified for any of the viewpoint languages. The 
description of concepts and rules can be modelled using 
the OMG’s MOF [12] concepts of class, association, 
generalization etc. These are a subset of the specification 
concepts found in the more commonly used UML. The 
following two subsections firstly describe the language 
definition architecture that we will use and then illustrate 
its use by showing parts of the definition of our 
computational viewpoint language. The full definition can 
be found at [13]. 

2.1 A Language Definition Architecture 

Many of the approaches to computational viewpoint 
design propose the use of existing languages such as 
LOTOS [14] or Z [15]. This approach enables the reuse of 
existing tools and reuse of existing experience that 
designers might have with that language. However, 
whichever existing language is used the approach 
invariably requires a mapping between that language and 
the concepts of the computational viewpoint. This 
mapping is often defined informally; often requires the 



 

use of many constructs of the language to define a single 
concept of the Computational Viewpoint; and often is 
unable to specify some of the Computational Viewpoint 
concepts either at all or in an intuitive manner. 

To improve upon this, our approach is to design a 
bespoke Computational Viewpoint language that includes 
all of the appropriate concepts required by the 
Computational Viewpoint definition. The drawback of our 
approach would seem to be an inability to make use of 
existing experience and tools. Hence, we form two 
additional requirements for the language: a) that it is 
similar to an existing and widely used language (where 
possible); and b) that we must be able to use tools for that 
similar language to define specifications in our 
Computational Viewpoint language. 

As outlined previously, we aim to make use of the 
work related to the UML and its community in order to 
take advantage of its tool support and wide acceptance. In 
addition there is a UML related modelling architecture  
[16, 17] with tool support [18] that can be used for the 
definition of visual languages and the generation tools 
supporting that language. 

This architecture views a language as consisting of 
three primary packages that define the abstract syntax, 
semantics and semantic domain of a language, see F

. In addition four other packages are used to define a 
concrete syntax for both the abstract syntax and semantic 
domain, F . The RM-ODP partitions its definitions 
is a similar manner, although using different names - 
Specification Concepts (rather than Abstract Syntax) and 
Basic Modelling Concepts (rather than Semantic 
Domain). We believe that the RM-ODP names are more 
appropriate, better conveying a descriptive meaning of 
what is inside the packages. (In particular we feel that the 
name ‘Semantic Domain’ carries alternative meanings 
and context that do not quite apply here.) As the terms 
‘model’ and ‘modelling’ are heavily used within the 
context of the UML, we use the name Configuration 
Concepts to replace the RM-ODP name of Basic 
Modelling Concepts. In addition to defining a model of 
the concepts for specification and for configuration we 
also specify models for a concrete syntax to enable 

visualisation of such concepts. Finally the key part of the 
architecture is the facility to specify mappings between 
the various models. The technique and details of defining 
these mappings is more fully described in [19, 20]. 

To define the mapping we specify relations between 
elements from each of two models; e.g. between elements 
from the concrete syntax model and the configuration 
concepts model. For each relation we specify the domain 
and range as a set of instances from each of the two 
related models and define a matching condition that 
defines whether an element from one model should be 
related to an element from the other. The following 
section includes examples to illustrate this. 

The Kent Modelling Framework (KMF) [18] gives us a 
tool set that supports this language definition architecture 
and enables automatic generation of tools that support the 
defined language. KMF provides a mechanism to generate 
a tool implementation from a UML model, including 
execution of Object Constraint Language (OCL) [6] 
expressions within the model. The generated tool includes 
a repository for populating the model; a basic GUI for 
viewing and manipulating the population; and facility to 
check and execute OCL constraints and expressions. In 
anticipation of the results from the KMF project, we 
choose to specify our language in a manner that enables 
us to make use of the KMF tool-generation tools. In the 
mean time, we specify a set of stereotypes that enable us 
to use make use of existing UML tools. 

igure 
1

igure 2
The concrete syntax to concept mappings define a 

method to visualise expressions in each of the 
specification and configuration languages. Additionally 
we specify a mapping between the specification and 
configuration concepts that enables us to verify whether 
or not a particular configuration conforms to a particular 
specification. 

The facilities of the KMF framework and tools mean 
that having fully defined the models and mappings, we 
can generate tools to support the language. Additionally, 
the runtime OCL evaluation feature of KMF enables the 
generated tools to perform the conformance verification 
between a configuration and a specification. 
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Figure 2 - Architecture for Concrete Syntax Definitions 



 

 2.2 A Computational Configuration Language 

Figure 4

Figure 3

igure 6

Figure 5

Fig

 shows a simplified definition of the concepts 
for defining a computational system configuration (the 
full definition is tool large to describe here and can be 
found at [13]). Such a configuration consists of 
computational objects, interfaces and primitive bindings. 

 shows the model of a concrete syntax for 
visualizing computational configurations. The syntax 
consists of lines, circles, oblongs and T-bars. Circles and 
T-bars have labels. (An example use of the syntax is 
shown in F .) These two figures show the language 
concepts and visualization concepts of a computational 
language for defining system configurations. To complete 
the definitions a mapping is required as the final step in 
defining the language.  
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3.  illustrates the mapping relationships for the 
configuration language. The definitions of the domain, 
range and matching condition are specified using the OCL 
in the context of the aggregations (labelled ‘a’ and ‘b’) 
that specify one relation as a sub-relation of another. They 
are placed in this context so that it is possible to reuse the 
specification of a relation (although this facility is not 
illustrated by the current example). The OCL for these 
mappings is give below: 
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Figure 4 – Computational Objects 
ure 7

context b 
 domain: object.interfaces 
 range: circle.lineEnds.owner->select( el | 
                         el.oclIsKindOf(TBar)) 
 match: interface.name = tBar.label 

The same approach is used to define a specification 
guage for defining object templates and interface 
natures. An example of this language is shown in 

. In addition we have defined a set of mapping 
ations between the specification concepts and the 
figuration concepts. This enables us to check whether 

not a particular configuration conforms to the template 
 signature specifications. 

A Near Video on Demand System 

This section presents the computational viewpoint 
ign of an example system. It demonstrates our method 
 constructing computational viewpoint designs and 
strates the computational viewpoint design languages. 
The example system is a Near Video on Demand 
oD) System. Users of the system instantiate a browser 

ject and connect to a service manager. They then 
uest a particular film, causing a video window to be 
ated for the user. The window is added to a group of 
ndows receiving the video stream for the requested 

. At the designated showing time, the film is played 
 streamed to all users in the appropriate group. 

The system contains multi-media, multicast, and group 
tures, all of which can be handled by the computational 

 

Figure 5 – Concrete Syntax to Configuration Concepts Mapping 



 

Interfaces are illustrated using ‘T’ shapes, attached to a 
circle to indicate that the computational object (depicted 
by the circle) offers that particular interface. The role of 
the interface (producer/consumer, initiator/responder or 
client/server) is indicated by the direction and style of an 
arrow placed near the interface (as suggested in [8]). 
Bound interfaces are either connected via an irregularly 
dashed line (e.g. vsCtrl and service) or placed head to 
head (e.g. videoTrans, videoRec). 

viewpoint design language. We start with a snapshot of 
the system, which gives an indication of the primary 
distributable components composing the system and the 
interfaces required to connect them. From the snapshot we 
identify and specify the computational object templates 
and interface signatures of the system. For each 
computational object we subsequently provide a 
behaviour specification. Finally we specify environment 
contracts for each computational object in the form of 
some QoS constraints. The design details are described in 
the following subsections. 

The identification policy for objects and interfaces is 
similar to the approach used in UML object diagrams, 
computational objects and interfaces are identified by 
either or both of an ‘instance name’ and a ‘template 
name’ separated by a colon and underlined. Where bound 
interfaces are close together we omit naming both 
interfaces separately and distinguish between them using 
their role. The scope of an interface name is with respect 
to the computational object supporting that interface; 
hence interface names can be repeated within the scope of 
a snapshot. In this snapshot the two bindings are labelled 
with only the template name (see following section); the 
film objects and vidWins group objects are labelled with 
only an instance name (as are the interfaces); and the 
manager object and browsers group are labelled with 
both. 

3.1 System Snapshot 

The first stage in our design approach is to create one 
or more system snapshots in the form of configuration 
diagrams (i.e. using the configuration language discussed 
above). This follows an object-oriented design 
methodology and helps to identify the types of object and 
interface that we need to create. 

An aspect of a computational viewpoint specification 
is the decomposition of the system into distributable 
objects that interact at interfaces. A computational object, 
which may be a composition of two or more other objects, 
is a unit of distribution and management that encapsulates 
behaviour [3]. In particular, computational objects are not 
instances of classes, as is the case in Object Oriented 
(OO) languages [11]. To avoid confusion with the word 
object, which is a ‘reserved’ word in the UML, we shall 
use the term Computational Object. 

The film computational objects emit video frames to 
the video bindings across the bound videoTrans stream 
interfaces. The receiving vidWins computational objects 
receive the video frames from the bindings at the bound 
videoRec stream interfaces. The service interfaces are 
operational interfaces and the vsCtrl interfaces are signal 
interfaces. The two interfaces ui and display attached to 
the browser objects are for interaction with the user 
input/output devices. 

Figure 6 depicts a computational viewpoint snapshot of 
our example system. Circles depict computational objects; 
there are three of these – manager, film1 and film2. The 
‘stacked’ circles depict a group of computational objects; 
there are three groups indicated – vidWins1, vidWins2 and 
browsers. The computational objects film1 and film2 
transmit video frames. The frames are transferred via 
binding objects to the receiver computational object 
groups – vidWins1 and vidWins2. Binding objects are 
distinguished from computational objects by illustrating 
them as elongated circles. 

As an alternative Concrete Syntax for these 
configuration diagrams we can use standard UML object 
diagrams (if a bespoke configuration diagram editor is 
unavailable). Computational Objects and Interfaces are 
both shown using the UML notation for an object. These 
UML objects should be stereotyped in order to distinguish 
between the representations of an interface from that of a 
computational object and to distinguish between different 
types of interface and computational object. UML ‘links’ 
are use to show connectivity between interfaces and 
computational object, and to show bindings between 
interfaces.  
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3.2 Template and Signature Specifications 

The snapshot discussed in the previous subsection 
indicates the kinds of component needed in order to build 
the system. The next step is to fully specify those 
components in order to obtain reusable and detailed 
definitions of the aggregated parts of the system. From a 
computational viewpoint, the necessary specifications 
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Figure 6 Computational Viewpoint snapshot

illustrating the nVod system 
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«CompObjectTemplate» 
ScheduledShowing 

«CompObjectTemplate» 
VideoWindow 

«StreamBindingObjectTemplate» 
VideoStream 

«StreamInterfaceSignature» 
VideoInterface 

video : VideoFlow 
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join(vw:VideoInterface) : void 
leave(vw: VideoInterface) : void 

«responder» 

«CompObjectTemplate» 
ServiceManager 
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ServiceInterface 

getProgramme : Set( FilmDescription ) 
selectToView( f : FilmDescription, 
                         vw : VideoInterface ) : void
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Figure 7 Computational Template Diagram for the nVoD system 
e the definition of computational object templates, 
ace signatures, and the relationships between them. 
ce the UML provides a rich set of notations for 

ring various aspects of computing systems, the ODP 
unity has shown extensive interest in using parts of 

ML to specify various parts of ODP designs [21-24].  
wever, the ODP concept of an object is not entirely 
atible with the UML (and other) Object Oriented 

concept of an object. There are two subtle 
ences: 

n ODP class is a set of entities that satisfy a type 
i.e. a specification of how to classify objects), 
here as a UML class is the specification of how 

o construct an object; and 
n interface supported by an ODP object provides 

 communications port, whereas a UML interface 
s a type classifier. 
UML the class tends to be the focus of modelling, 
ject simply being an instance of a class. In ODP, the 
t itself is the focus of modelling; object instantiation 
ugh a defined object template, rather than a class. 
ord class in the ODP context refers to the set of all 
s that satisfy some type. So in ODP we can talk of a 
of objects of type X, a class of interfaces of type Y 
lass of templates of type Z. A type in ODP refers to 
icate, a set of conditions to classify an element of 

stem and which can be evaluated for all elements. 
 identifying feature of classes in ODP is that an 
class, being a set, can be empty, i.e. nothing satisfies 
n type, though it may later have members. On the 
hand, templates are patterns of feature. In particular, 
erface signature (template) defines the type of the 
ace and the interactions that may occur across that 

interface. For each interaction type, the interface template 
defines the name and type of the interaction, the types of 
the parameters, the directionality and the exceptions 
raised. As a result, the normal UML concept of class 
relates more closely to the RM-ODP concept of a 
template. 

The relationship between objects and interfaces in the 
UML world is one of realization. A UML interface 
defines a particular set of features; to realize an interface, 
an object (defined by a UML class definition) implements 
the defined set of features. I.e. with respect to an 
interface, the features are abstract definitions, which are 
only ‘made real’ by an object. 

Within the ODP, interfaces are more of a first class 
entity; ODP objects offer a number of interfaces, through 
which interactions, both incoming and outgoing, occur. 
The same interface signature may be instantiated and 
offered by an object multiple times – offering the same set 
of interactions to multiple different peers. A particular 
point to note is that both input and output communications 
require an interface in the ODP world – unlike the UML, 
which only facilitates the specification of incoming 
communications; there is no means to explicitly specify 
what outgoing operations an object may call. 

A consequence of these differences is that we cannot 
use UML class diagrams “as is” to model the structure of 
distributed systems within our approach. The semantics of 
a UML class and its relationships are not wholly 
compatible with the ODP semantics of templates. 
However, given that the UML allows us to ‘stereotype’ its 
design concepts, enabling us to effectively define our own 
concepts, we do so. Thus we reuse the notation of UML 
class diagrams as a notation for the specification language 



 

of computational viewpoint templates. This both, gives us 
an appropriate notation, and allows reuse of existing UML 
tools, for the specification of computational viewpoint 
specifications. 

The UML concept of a class is similar to the ODP 
notion of a template (and signature) we define stereotypes 
of the UML class to enable definition of the ODP 
concepts of: computational object template; stream, 
operational and signal binding object template; reactive 
object template; and stream, operational and signal 
interface signature. UML allows us to define icons related 
to each stereotype, so we associate an appropriate icon 
with each stereotype label. The concrete notation is that of 
UML class diagrams, with each component showing its 
appropriate stereotype by either or both of a label or icon. 
As discussed above, this gives us a language and notation 
suitable for defining the computational viewpoint of an 
ODP system, which is (hopefully) familiar to UML 
designers; easily used; and provided with tool support 
from many standard UML tools. 

Figure 7
igure 6

 defines a template diagram for the 
computational snapshot shown in F .  Both 
computational object template and interface signatures are 
depicted using the notation for UML classes, 
distinguished using stereotypes. To aid the distinction, 
computational object and binding object templates are 
shaded, whereas interface signatures are not. The 
stereotype of interface signatures distinguishes (textually) 
between operations, stream and signal signatures. The 
iconic notation for the templates is included in the top 
right corner of the boxes as an additional visual aid to 
distinguish between objects, interfaces and bindings. 

The relationship between a computational object 
template and the interfaces that its instances may offer is 
defined using stereotyped UML associations. The 
stereotype of the association defines the role in which the 
object may offer instances of the interface signature; the 
association end name gives a navigation name for the 
object to refer to the interface. Each interface instance 
may be offered by only one object; hence the object end 
of the association is defined to be an aggregation (using a 
black diamond). Where an interface signature may be 
used to bind to a group of objects, we allow the UML 
multiplicity notation to be used on the end of the 
association near the interface, to indicate that a specific 
number (or many) interface instances may be created (e.g. 
the «producer» aggregation between VideoStream and 
VideoInterface). The UML ‘realization’ dashed-line arrow 
is a possibility as an alternative notation to the 
aggregation; this would be more inline with the UML 
notation for relating classes to interfaces. However, 
standard UML tools are unlikely to enable that addition of 
multiplicities to such relationships, disabling the facility 
to specify groups; thus we choose the aggregation 
relationship as our preference. 

3.3 Behaviour 

After defining the object templates and the interfaces 
they may support, it is necessary to define the behaviour 
of the objects and the interactions that occur across the 
interfaces. This subsection firstly describes our adopted 
approach to specifying behaviour and subsequently 
illustrates the techniques by defining the behaviour of the 
ServceManager and Browser objects. 

As stated in the introduction, one of our requirements 
is to use common design practices; following this 
directive we look to the UML for a notation that enables 
the specification of state-based behaviour. The UML 
defines a particular variant of state and transition based 
behaviour, based on (a subset of) the formalism of 
Statecharts [25], and renamed State Diagrams within the 
context of the UML. A state diagram represents the 
behaviour of entities capable of dynamic behaviour by 
specifying its response to the receipt of event instances. A 
state diagram consists of states and transitions. 

A state is a condition during the life of an object or an 
interaction, during which it satisfies some condition, 
performs some action, or waits for some event. A state is 
normally depicted as a rectangle with rounded corners, 
although special types of state are depicted in other ways. 

A transition is a relationship between two states 
indicating that an instance in the first state will enter the 
second state and perform specific actions when a 
specified event occurs provided that certain guard 
conditions are satisfied. A transition is shown as a solid 
line originating from the source state and terminated by an 
arrow on the target state; a transition is typically labelled 
with a string that has the following general format: 

<event-signature> ‘[’ <guard-condition> ‘]’ 
‘/’ <comma-separated-action-expressions> 

Where event-signature describes an event with its 
arguments, guard-condition is a Boolean expression 
written in terms of parameters of the triggering event and 
attributes of the object whose behaviour is described by 
the state machine. The action-expressions are executed if 
and when the transition fires (i.e. the source state is active, 
the event occurs and the guard evaluates to true). Actions 
are expressions that either: 

1) Alter or access the local state of the object; 
2) Instantiate interfaces to be offered by the object; or 
3) Cause an interaction at a specified interface. 
An action must be executed entirely before any 

following actions are considered – i.e. actions are 
considered atomic. 

Within our usage of State Diagrams, events are caused 
by the receipt of signals at interfaces offered by the 
object. These are either: directly by receiving a signal sent 
to a responder signal interface; by receiving an operation 
call at a server operational interface; or by receiving a 
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sent (Return_getProgramme(…)), passing the return 
parameter consisting of the programme listing (retrieved 
from some internal state of the service manager object – 
not modelled here). 

 

The lower transition is fired by a call to the 
selectToView operation on the service interface. 
Parameters film and vw are passed with the operation call 
and hence are present in the event. There are two actions 
in caused by the transition; the first retrieves the value of 
a VSControlInteface interface for the selected film (from 
some unmodelled internal state of the object) and assigns 
the retrieved interface reference the name ctrl. The second 
action sends a join signal to the retrieved interface, which 
should cause the passed video window interface reference 
parameter, vw, to be added to the group of computational 
 ServiceManager 

let e = service.getProgramme() / 
e.source.Return_getProgramme (programmeList) 

Waiting 

service.selectToView(film, vw) /  
  let ctrl = shows.get(film), 
  ctrl.join(vw) 

Figure 8 

cket or frame at a consumer stream interface. The event 
me and parameters are taken from the respective 
erface signature and is clarified by the name of the 
erface instance with respect to the object offering it. 
State diagrams also allow hierarchical nesting of states; 
s enables complex behaviour to be specified in a 
ncise manner. Sub-states are either single state 
grams in which contained states are ‘or’-states in that 
e or other is active; or alternatively sub-states can be 
ncurrent whereby both sub-states are active and 
nerally further refined to a sub state. 
There are also four special types of state (known in the 
L as pseudo states). These are: the initial state, where 

 behaviour starts, depicted as a filled circle with a 
gle outgoing transition; the final state, where the 
haviour terminates, depicted as a filled circle inside a 
llow circle; the choice state, causing dynamic 
aluation of guards to determine the behavioural path, 
picted as a hollow circle; and the junction state, which 
ables multiple transitions to be chained or merged 
ether. Pseudo states are not assumed to be stable – i.e. 
 state machine should not ‘wait’ for an event to occur 
thin a pseudo state. 
These different types of state map to some of the 
havioural actions defined in the RM-ODP. The other 
P actions are supported by specific keywords or by 

ing a ‘virtual’ node management function interface that 
vides the required behaviour. 
The example diagrams of F  and F  show 
haviour specifications for ServiceManager and Browser 
jects. The service manager has a ready or Waiting state 
m which it provides its services of either returning the 
ered programme of films or registering a user’s interest 
a particular film. The upper transition is fired by the 
ent getProgramme received at the service interface. The 
ent is assigned to the name e so that it can be referenced 
 the following action. There is a single action on this 
nsition, which retrieves a reference to the client 
erface that initiated the operation call (e.source). The 
tion causes the return signal of the operation call to be 

object interface that receive the selected film. 
The behaviour specification for the browser objects, 

shows a connected and unconnected state. The browser 
moves into a connected state when the user has specified 
the service manger to which the browser should connect. 
The transition is split to facilitate reuse of the connection 
actions, when a user specifies connection to a different 
manger; there are three actions involved. The first makes 
use of the ‘node management function’ bind that forms a 
binding between two interfaces. The other two actions 
retrieve the programme of films and display them to the 
user. When connected, a user of the browser can select to 
view a particular film. The event ui.select(film) detects 
this and invokes actions to firstly create a video window 
object and secondly pass the appropriate film description 
and interface reference of the video window on to the 
service manager. 

3.4 Environment Contracts – QoS Specification 

The previous subsections have defined the structure, 
templates and functional behaviour of the system. Now 
we address the specification of non-functional aspects of 
the system by defining some QoS constraints. The ODP 
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Browser 

Connected 

Unconnected

ui.enterServiceURL(s) / 

 / bind(service, s) 
   let p = service.GetProgramme(), 
   display.displayProg(p) 

Waiting 

ui.select (film) /  
  let vw = create VideoWindow 
  clientServiceInterface.selectToView(film, vw.videoRec) 

ui.enterServiceURL(s) / 

Figure 9 



 

standard defines the concept of an environment contract. 
This is a contract between an object and its environment, 
i.e. all other object with which it interacts. As interactions 
occur across interfaces, environment contacts for an 
object generally involve one or more interfaces. A QoS 
constraint is one such example of an environment 
contract. Such a constraint involves two parts: 

1) Requirements of the object by the environment, 
known as obligations; and 

2) Requirements of the environment by the object, 
known as expectations. 

The relationship between these two parts states that 
provided the expectations are met (by the environment) 
the obligations will be met (by the object). 

There is currently no clear contender for a most 
commonly used (de facto) QoS language. Many have 
been proposed [9, 26-29]; one that we have found to be 
most suited to our design approach, partly due to its 
association with the OCL and UML, is the Component 
Quality Modelling Language (CQML) [30, 31]. CQML is 
a lexical language for QoS specification and has been 
developed to explicitly include as many features as 
possible [9]. We have found the language to be 
expressive, very useable and easily integrated with our 
other UML based languages within the ODP framework. 
There are many possible QoS characteristics that could be 
constrained, [32] lists those identified by the ITU. For the 
purpose of this paper we look at three stream and time 
related characteristics – latency, anchored jitter and 
throughput. Latency is the amount of time between two 
events (e.g. time between sending a frame and receiving 
it); throughput is the rate of occurrence of events (e.g. the 
rate of flow of frames); and anchored jitter is a variation 
in nominal throughput. 

CQML facilitates the definition of quality 
characteristics such as latency, throughput and anchored 
jitter in terms of the history of events at a particular 
interface. The following CQML statements define these 
characteristics in terms of the events occurring at each 
interface involved in the constraint. The semantics define 
that each flow of an interface instance contains a 
historical sequence of events. This is essentially provision 
of the ‘Event Notification Function’, defined by the RM-
ODP [3], which requires event histories to be made 
available. 

quality_characteristic throughput( 
                    duration : Integer, 
                    flow : Flow 
                   ) { 
  domain: increasing numeric integer [0..) 
                            eventsPerDuration; 
  values: flow.events->select(e | 
    flow.events->last.time - e.time > duration 
   )->size 
} 

This definition defines the characteristic named 
throughput. The characteristic takes two parameters, the 

duration over which the throughput is constrained, and the 
particular flow of an interface to which the constraint is 
applied. The first part of the characteristic (domain) 
defines the type of value constrained by the characteristic 
and the units to be used. The values part is an OCL 
expression that defines the value of the constraint in terms 
of the parameters. This particular characteristic gives 
increasing positive integers and is calculated by counting 
the number of events whose time stamp is within duration 
milliseconds of the last event. 

quality_characteristic latency( 
                    src : Flow, 
                    tgt : Flow 
                   ) { 
  domain: decreasing numeric milliseconds;  
  values: 
   let tgt_evt = tgt.events->last 
   let src_evt = src_events->any(e | 
                    tg_evt.id = e.id ) in 
   tgt_evt.time – src_evt.time 
} 

This latency characteristic defines latency to be the 
time between the last two corresponding events from the 
source and target flows. 

Constraints regarding particular characteristics are 
formed in CQML by specifying quality statements, these 
are grouped to form QoS specifications on particular 
objects or object templates as QoS Profiles. A QoS profile 
includes statements for both expectations and obligations; 
each expectation or obligation is an expression referring 
to one or more quality statements. The quality statements 
enable reuse of QoS specifications across multiple QoS 
profiles. A quality statement contains the conjunction of a 
number of sub expressions that constrain a variety of 
quality characteristics. Each quality characteristic is 
defined by an OCL expression that (in the case of latency, 
anchored jitter and throughput) references the associated 
event histories. To enable quality characteristics to be 
generalised and reused, they can be defined with specific 
parameters. Given a set of pre-defined quality 
characteristics (throughput, anchoredJitter and latency) 
the QoS specifications associated with the VideoStream 
Template defined in F  (defining templates for the 
system illustrated in F ) can be specified and 
explained as follows. 

igure 7
igure 6

The video binding from film to video window is 
specified to provide a through frame rate of no less than 
25 fps with a latency of between 40 and 60 milliseconds 
(ms) so long as it receives an input frame rate of no less 
than 25 fps. This is expressed in CQML as follows: 

QosProfile for VideoBinding { 
 exp: quality { 
   throughput(1000, videoTrans.video)>=25; }; 
 obl: videoRec->forAll( vr | 
  quality { 
   throughput(1000, vr.video) >= 25; 
   latency(videoTrans.video, 
           vr.video).maximum = 60; 
   latency(videoTrans.video, 
           vr.video).minimum = 40; };  } 



 

The above QoS Profile, defined for the VideoBinding 
template, defines one expectation, that there should be at 
least 25 events received every second (1000 ms) at the 
‘video’ VidowFlow part of the consumer interface 
videoTrans. It also defines that for all of the videoRec 
interfaces the binding is obliged to provide at least 25 
frames every second (fps) from the VideoFlow (named 
‘video’) part of the VideoInterface signature, supported by 
the binding in the role of a producer. The particular 
VideoFlows on which the constraints are placed is 
navigated to using the association end names of the 
associations relating object templates to interface 
signatures. Additionally there are constraints between 
consumer and producer VideoFlows that specify the 
maximum and minimum latency that should occur for a 
frame passing through the binding. We have extended the 
CQML language to allow OCL quantification over 
collections of interfaces in order that we can support the 
specification of quality constraints over groups. 

This completes the computational viewpoint design. A 
number of iterations through this process may be required 
as filling out each stage may prompt a designer to add or 
change information initially entered during a previous 
stage. However, by deciding on the information to be 
entered into the design at each of these stages 
(configuration, templates, behaviour, and environment 
contracts) we complete a computational viewpoint design. 

This design can subsequently be used to populate 
model checking and verification tools to provide feed 
back about the design. Other aspects of the DSE4DS 
project address the provision of such tools, based on 
computational viewpoint designs consisting of the above 
described information. 

4. Tool Support and Related Work 

As discussed earlier, the primary motivations for 
specifying out language using this approach is to facilitate 
use of the KMF tool generator to provide tools for our 
language. Currently the KMF tool will: 
• Provide a repository for storing and manipulating 

specifications in our language. 
• Enable (OCL) constraints to be checked in order to 

affirm that a valid specification has been formed. 
• Provide persistent storage of the specification as an 

XML document; enabling saving and loading of 
Computational Viewpoint specifications. 

• Support the implementation of mappings between 
two models, enabling constraints to be evaluated that 
report whether or not a mapping is valid. 

• Provide transformation code that will either generate 
one model from the other or reconcile two partially 
consistent models. 

The KMF tool will not yet generate editors for the 
concrete syntax – these must be provided separately. One 
option, currently in use, is to use a UML tool along with 
the defined stereotypes and provide a mapping between 
the UML meta-model and our Computational Viewpoint 
language model. Using a UML tool we can save the 
specification as an XML representation of the model 
(using the defined UML encoding – XMI). This can be 
loaded into the tool generated by KMF and by activating a 
model transformation be used to populate our abstract 
Computational Viewpoint language model. We hope to 
provide a bespoke concrete syntax editor within the next 
few months. 

The design approach presented in this paper is an 
evolution of our earlier work [7, 33]. Previously we 
proposed an approach that used the UML in a stricter 
fashion for the structural and behavioural design and the 
language QL for specifying QoS. The strict use of UML 
caused designs to be expressed in a manner that made 
them hard to read and lengthy to write. Additionally, the 
QoS language QL does not integrate well with UML – as 
described in [33]. To improve upon this, we have adopted 
a more flexible approach to using UML, providing 
stereotypes to enable design using specifically the 
concepts defined in the RM-ODP. This approach has also 
been used in [34] although they do not use the RM-ODP 
terminology and in [21] and [23] which stereotype UML 
elements to define a language for creating ODP Enterprise 
specifications. 

There is also the EDOC profile for UML [35]; this is 
very large, but does not address sufficiently facilities for 
specifying computational viewpoint languages. Besides, 
for the reasons outlined above, we prefer a newly defined 
language rather than an adaptation of a language designed 
with other specification goals in mind. We have allowed 
our design approach to be influenced by non-UML based 
methods such as the work at Lancaster [28] and in 
particular the methods proposed by Blair and Stefani in 
[8]. 

Our approach to QoS specification uses the Aagedal’s 
CQML language [9] which he has shown to be well 
integrated with and useable in the context of UML based 
designs [30]. There are other approaches to the 
specification of QoS, discussed in [9] and in [36]. The 
approach taken by [37] and defined in the new CORBA 3 
standard [38] is to use extensions of the OMG’s Interface 
Definition Language (IDL) for defining QoS, however we 
consider this to be a technology specific approach and 
prefer the use of a language less related to 
implementation. Similarly, [39] suggests the use of TINA-
ODL [27] that is also an extension of the OMG IDL. 
Finally, the OMG has issued an RFP for a UML profile 
for modelling QoS [40]; in [30] the authors state that 
CQML is intended to contribute towards  this RFP. 



 

Naumenko and Wegmann [41] define a model for the 
ODP foundation concepts using the language Alloy. Their 
work, although providing a model of the concepts, does 
not provide a specification language for those concepts. 

UML for Real Time proposes the concept of capsules 
and ports. These are similar to the ODP idea of object and 
interface. However, the UML-RT concepts are closer to 
the Engineering viewpoint concepts than the 
computational ones; and besides, why re-invent the ideas 
again, when they are perfectly well defined in RM-ODP. 

5. Conclusion 

This paper has presented a fully integrated set of 
notations that together form a concrete language used to 
specify computational viewpoint aspects of a distributed 
system. The language is precisely based on the concepts 
defined within the RM-ODP and fully supports all of the 
definitions. This enables us to define distributable 
components, their interfaces, their functional and their 
non-functional behaviour. We can specify how the 
components are configured to form particular systems and 
specify the templates from which the components are 
instantiated. 

We have presented the precise technique used to define 
the language concepts and integrate the different notations 
to form a consistent model of the specification. This 
language definition technique also enables us to 
automatically generate the significant portion of a tool to 
support the defined language; this tool is currently under 
development. 

Use of this computational viewpoint language has 
enabled us to define a number of examples. Within the 
framework of the DSE4DS project these examples have 
been used to develop techniques for verifying that the 
behaviour of computational objects conform to the 
defined QoS constraints placed on them. 

We have found the Configuration and Specification 
notations to be easily used for specifying a variety of 
systems involving multi-media streams – such as the Near 
Video on Demand system described in this paper and a 
Lip Synchronisation system described in [42]. In 
particular the facilities offered by the QoS specification 
language CQML enable us to take full advantage of being 
able to specify non-functional aspects of a system in 
addition to the functional ones. 

In the future we intend to use this approach to generate 
tools and definitions to support specification in additional 
ODP viewpoints. We also plan to investigate the use of 
the Mappings technique within the context of inter-
viewpoint consistency with the hope of using KMF to 
generate supporting tools. These tools will then be 
integrated with our work on the verification of functional 
against non-functional (QoS) specifications [42] to 

provide parts of our design support environment for 
distributed systems. 
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